
Computers and Structures 156 (2015) 110–121
Contents lists available at ScienceDirect

Computers and Structures

journal homepage: www.elsevier .com/locate/compstruc
Reliability-based robust design of smart sensing systems for failure
diagnostics using piezoelectric materials
http://dx.doi.org/10.1016/j.compstruc.2015.04.012
0045-7949/� 2015 Elsevier Ltd. All rights reserved.

⇑ Corresponding author.
E-mail addresses: pingfeng.wang@wichita.edu (P. Wang), zxwang5@wichita.edu

(Z. Wang), bdyoun@snu.ac.kr (B.D. Youn), sblee@umbc.edu (S. Lee).
Pingfeng Wang a,⇑, Zequn Wang a, Byeng D. Youn b, Soobum Lee c

a Department of Industrial and Manufacturing Engineering, Wichita State University, Wichita, KS 67260, USA
b School of Mechanical Engineering, Seoul National University, Seoul, South Korea
c Department of Mechanical Engineering, University of Maryland, Baltimore County, MD 21250, USA

a r t i c l e i n f o
Article history:
Received 8 December 2013
Accepted 16 April 2015

Keywords:
Design
Fault diagnosis
Structure sensing
Piezoelectric material
Detectability
Robustness
a b s t r a c t

This paper presents a reliability-based robust design approach to develop piezoelectric materials based
structural sensing systems for failure diagnostics and prognostics. A detectability measure is defined to
evaluate the performance of any given sensing system, and the sensing system design problem can be
formulated to maximize detectability for different failure modes by optimally allocating piezoelectric
materials into a target structure. This formulation can be conveniently solved within a reliability-based
robust design framework to ensure design robustness while considering the uncertainties such as those
from structure properties and operation conditions. Two case studies, that design sensor networks for
an aircraft wing panel and a power transformer structure, are employed to demonstrate the effectiveness
of the proposed methodology in developing multifunctional material sensing systems.
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1. Introduction

With a growing complexity of engineered systems, failure
diagnostics techniques have been prevalently employed to pre-
vent potential catastrophic failures and improve system reliability
and safety. Real-time health diagnostics interpret data acquired
by smart sensors, and utilize these data streams in making critical
operation and maintenance decisions [1]. Enormous benefits can
be provided by effective health diagnostics activities, such as
improved system safety, reliability, and reduced costs for the
operation and maintenance of complex engineered systems.
Structure maintenance and life-cycle management is an area that
can significantly benefit from diagnostics and improved mainte-
nance practices, as unexpected system breakdowns could be pro-
hibitively expensive [2]. Thus to reduce and possibly eliminate
such problems, it is important to accurately assess the health
condition of an operating system in real time through effective
health diagnostics. Researches on condition monitoring address
these challenges by assessing system health states utilizing sen-
sory information from the functioning system [3–5]. Monitoring
of system health state (HS) changes over time provides valuable
information about the performance degradation of system
components for critical maintenance decision makings, and has
been successfully applied to many engineering systems such as
bearings [6–9], machine tools [10], power transformers [11], engi-
nes [12], aircraft wings [13], and turbines [14]. In the literature,
there are two categories of approaches in general that are often
employed for health diagnostics, machine learning techniques
and statistical inference techniques. The machine learning-based
health diagnostics approaches can further be divided into
supervised learning, unsupervised learning and semi-supervised
learning techniques. In addition to the aforementioned machine
learning-based algorithms, statistical inference-based algorithms
can also be used to classify system HSs based on statistical
distances such as Mahalanobis distance [15], k-nearest neighbor
method [16] and k-mean clustering [17]. Significant advance-
ments in diagnostics area have been achieved by applying
classification techniques based on machine learning or statistical
inferences, resulting in a number of classification methods, such
as back-propagation neural networks [18–21], deep belief net-
works [22,23], support vector machines [24–28], self-organizing
maps [29], and Mahalanobis distance (MD) [15]. Some research-
ers combined two or more existing techniques to form hybrid
models to achieve better diagnostic performance. Zhang et al.
[9] proposed a bearing fault diagnosis methodology using
multi-scale entropy (MSE) and adaptive neuro-fuzzy inference
system. Saimurugan et al. [24] presented a multi-component fault
diagnosis of a rotational mechanical system based on decision
trees and support vector machines.
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Nomenclature

R reliability
U standard Gaussian cumulative distribution function
bt target reliability index
CL user-defined confidence level
F(x) cumulative distribution function
F�1(x) inverse cumulative distribution function

fx(x) probability density function
f(�|�) conditional probability density function or likelihood

function
pfs probability of system failure
Gi function of the ith constraint
C cost function

x
yz
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Top electrode

Fig. 1. Schematic of a piezoelectric ceramic sheet.
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Despite a variety of numerical diagnostics algorithms being
developed and a broad range of successful applications in various
engineering fields being reported in the literature, one of the key
challenges in structural health diagnostics lies in the fact that
health relevant sensory data must be collected effectively so that
enough evidences can be provided for diagnostics algorithms to
conduct health state identification and damage detection.
However, implicit relationship between sensory signals and
system health states as well as sensor noise and uncertainties
related to system operating conditions render a grand challenge
in developing an effective sensor network so that system health
states can be accordingly diagnosed accurately with sensory data
collected from the sensor network. To overcome this challenge, a
sensor network must be developed with sensors nodes being
optimally placed so that the differences between different system
health states can be reflected clearly on sensory signals. In
addition, the sensor network must be designed to ensure the
robustness of health diagnostics given the aforementioned
uncertainties and variability involved in sensing and diagnosing
processes. In the literature, sensor placement optimization under
uncertainties has been studied for structural health monitoring
applications [30,31], and further optimal location of sensors has
been presented for parametric identification of linear structural
systems [32]. A methodology for optimally locating sensors in a
dynamic system [33,34] was developed as a probabilistic
approach in structural health monitoring system. The study in
[35] developed a Bayesian approach to optimize sensor placement
for structural health monitoring. In [36], an optimal sensor loca-
tion methodology for structural identification and damage detec-
tion has been studied. Most of these methods were settled for
allocating a number of sensors to distinguish a specific health
state of structural damage, and their applications were limited
by the type of health state failure mechanisms. Although reported
studies on sensor placement optimization have showed
improvements on health diagnostics performance, there are two
fundamental challenges that hinder the broad applications of this
technique. First, the sensing capability of the sensor nodes used in
sensor placement studies have been mostly assumed to be inde-
pendent to the target systems, which is generally not true for
practical structural applications; Second, there is no quantitative
measure for the diagnostics performance related based upon a
given sensor network design, thus, the performance robustness
cannot be ensured in the sensor network design process.

To address the aforementioned sensor network design chal-
lenges for structural diagnostics applications, this paper presents
a novel reliability-based robust design optimization (RBRDO)
framework for structural sensing function design using multifunc-
tional materials. The RBRDO technique has been developed to
ensure the performance robustness thus improve quality and
reliability in product and process design, while considering
uncertainties involved in different stages of a system’s life cycle
[37–42]. In detail, design optimization of piezoelectric embedded
sensor patches is considered to realize structural sensing function
[43–48]. First, a generic detectability measure is defined in this
study to quantify the performance of a given sensing system for
diagnostics under uncertainty. A novel detectability analysis
approach based on Mahalanobis distance classifier is then
developed to carry out the detectability analysis for a given sensing
system design. Second, with the defined detectability measure and
developed detectability analysis approach, a novel reliability-based
robust design optimization (RBRDO) framework is presented for
sensing system design in order to minimize the system
development costs while maintaining the predefined detectability
target. The rest of the paper is organized as follows. First, smart
sensing with piezoelectric materials is introduced in Section 2. In
Section 3, a detectability measure is defined in a probabilistic form
as a unified quantitative measure for the performance of any given
sensing system used for the structural health diagnostics. A general
approach for detectability evaluation is also introduced based on
health state classification. In Section 4, a generic RBRDO framework
is developed to design smart material systems for the structural
health diagnostics and prognostics. Two case studies are used in
Section 5 to demonstrate the effectiveness of the proposed
methodology in developing structural sensing systems.
2. Smart sensing with piezoelectric materials

Piezoelectric materials can be potentially applied in both
sensing and actuating applications [49–53]. In sensing applications
the PZT sensor is attached to a structure and exposed to a stress
field that creates electric charges (direct piezoelectric effect). In
actuating applications the PZT actuator is attached to a structure
and an external electric source is applied to the actuator that
induce strain field (reverse piezoelectric effect). In both cases the
constitutive relationship can be mathematically formulated as
follows:

ei ¼ SE
ijrj þ dmiEm ð1Þ

Dm ¼ dmiri þ er
ikEk ð2Þ

where the indexes i, j = 1, 2, . . . , 6 and m, k = 1, 2, 3 refer to different
directions within the material coordinate system [51], r is a vector
of the stress (N/m2) and e is a vector of the strain, d is a matrix of the
piezoelectric strain constants that defines strain per unit at constant
stress (m/V), E is a vector of the electric field (V/m), SE is a matrix of
the elastic compliance (m2/N), D is a vector of the electric
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displacement (Coulomb/m2), er is a matrix of the dielectric permit-
tivity (F/m). This paper considers a sensing application which uti-
lizes d31 effect of PZT material: a voltage output along the
thickness direction as a response of in-plane strain (see Fig. 1).

This paper considers use of piezoelectric materials for real-time
monitoring of structural damages utilizing direct piezoelectric
effect – generation of electric potential in response to an applied
mechanical stress. A harmonic vibration with a fixed frequency is
assumed for a structure to be monitored. Harmonic response
analysis solves the time-dependent equation of motion for linear
structures under steady-state vibration with a fixed excitation
frequency. Considering a general equation of motion for a
piezoelectric coupled-field structure after the application of the
variational principle and finite element (FE) discretization, the
coupled FE matrix equation is derived as [54]:

M 0
0 0

� �
€u
€V

� �
þ

C 0
0 0

� �
_u
_V

� �
þ K K z

ðK zÞT Kd

� �
u

V

� �
¼

F

L

� �
ð3Þ

where M, C, and K are the structural mass, damping, and stiffness
matrices respectively, Kz is piezoelectric coupling matrix, Kd is
dielectric conductivity matrix, {u} is displacement vector, {V} is
voltage vector, and {F} and {L} are structural and electrical load vec-
tors. The electrical load vector {L} is assumed to be zero in this
paper, thus, only the structural input loading exists for the design
of structural sensing functions. Although the application problems
with piezoelectric material patches could have very little effect on
the structure stiffness, however, it could still affect the PZT sensor
outputs. Thus, in the presented sensor network design study, the
coupling effects have been taken into consideration, as shown in
Eq. (3), in which Kz indicates piezoelectric coupling matrix. In the
harmonic response analysis, all points in the structure are vibrating
at a same known frequency. Therefore displacements and voltage
can be defined as:

fug¼fumaxgejðuþxtÞ ¼ fumaxðcosuþ jsinuÞgejxt ¼ ½furegþ jfuimg�ejxt

fVg¼fVmaxgejðuþxtÞ ¼ Vmaxðcosuþ jsinuÞf gejxt ¼ ½fVregþ jfVimg�ejxt
ð4Þ

where {umax} and {Vmax} are the maximum displacement and volt-
age, respectively; u is the phase angle, x is the imposed excitation
frequency, j is the square root of �1, and the sub-indices re and im
represent the real and imaginary components, respectively. The
force vector can be specified analogously as follows:

fFg¼fFmaxgejðuþxtÞ ¼ fFmaxðcosuþ jsinuÞgejxt ¼ ½fFregþ jfFimg�ejxt

ð5Þ

Finally, substituting Eqs. (4) and (5) into Eq. (3) and canceling the
ejxt term, the following structural equations [54] can be obtained

�x2 M 0
0 0

� �
þ jx

C 0
0 0

� �
þ K Kz

ðKzÞT Kd

� �� � furegþ jfuimg
Vref gþ jfVimg

� �
¼

Fref gþ j Fimf g
0

� �
ð6Þ

One of the commonly used piezoelectric materials is lead zirconate
titanate (PZT), a piezoelectric ceramic, which has wide application
in vibration sensors and health monitoring systems [46]: a
self-sensing piezoelectric actuator for collocated control [47], health
monitoring/damage detection of a rotorcraft planetary gear train
system using piezoelectric sensors [48], and smart sensor system
for structural condition monitoring of wind turbines [49]. In this
paper a new smart sensing system design framework will be devel-
oped for structural health diagnostics using piezoelectric materials.

3. Probabilistic detectability measure for diagnostics

Sensing systems can monitor the physical behaviors and
determine the health state of a system. However, false alarm
may occur due to the uncertainties of system operation processes
and manufacturing. Therefore, the performance of sensing system
should be qualified using a probabilistic method, so that the
accurate detection of system health states can be achieved. In the
proposed RBRDO framework, a set of health states must be
categorized based on historical failure data. Thus correct and incor-
rect detection rates of every health state can be defined as the
sensing performance measures. The correct detection rate can be
calculated by a conditional probability that the sensing system
can correctly detect the health state given that the system is
operated at one health state. In contrast, the incorrect detection
rate can be expressed as a conditional probability that the
sensing system detects wrong information. Using the data of cor-
rect and incorrect detection rates, the sensing system detectability
can be expressed by constructing a probability-of-detection (PoD)
matrix.

This section introduces the concept of detectability and the
method to evaluate the detectability for each health state based
on structural simulation and system health state classification.
Section 3.1 introduces the concept of probability of detection
matrix to qualify the sensing system. Section 3.2 presents the
Mahalanobis distance based approach for health state classifica-
tion. In this research, it is assumed that all numerical models are
valid and they deliver accurate results associated with actual
systems.
3.1. Probability-of-detection (PoD) matrix

A PoD matrix defines the overall sensing system diagnostics
performances, which consists of the probabilities of correct detec-
tion and misdetection for all predefined health states. A general
form of the PoD matrix is shown as

PoD ¼

P11 P12 P13 � � � P1NHS

P21 P22 P23 � � � P2NHS

P31 P32 P33 � � � P3NHS

..

. ..
. ..

. . .
. ..

.

PNHS1 PNHS2 PNHS3
..
.

PNHSNHS

2
666666664

3
777777775

ð7Þ

In the PoD matrix, NHS represents the number of health states (HS),
where Pij indicates the probabilistic relationship between the true
system health state, i, and the health state, j, detected by the
sensing system. Pij can be defined as the conditional probability that
the system is detected to be operated at HSj by the sensing system
given that the system is operated at HSi. This relationship can be
statistically expressed as

Pij ¼ PrðHSjas Detected jHSi as TrueÞ ð8Þ

To provide a probabilistic measure for diagnostics performance of a
sensing system while considering uncertainties induced in manu-
facturing and system operating processes, detectability can be
defined for each system health state accordingly based on the diag-
onal terms in the PoD matrix. As an example, the detectability for
the ith system health state (HSi) can be statistically defined below as

Di ¼ Pii ¼ PrðHSi as Detected jHSi as TrueÞ ð9Þ

While considering all health states, the diagonal terms in the PoD
matrix, which represent the probabilities of correct detection for
predefined health states, will determine the overall SN detection
performance. With the predefined detectability requirements, these
diagonal terms in the PoD matrix will then constitute NHS number
detectability targets to be satisfied during the sensing function
design process. In the following, an example is employed to demon-
strate the proposed detectability measure.
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Suppose that only one sensor is used to collect data for diagnos-
tics and three predefined health states are given as following: (1)
Health State 1 (HS1): the system is operating normally without
any damage and sensor output follows a normal distribution as N
(1, 0.92); (2) Health State 2 (HS2): the system is operating but has
some minor damage that follows a normal distribution as N (3,
0.62) and (3) Health State 3 (HS3): The system is operating but has
a severe damage that follows a normal distribution as N (6, 1.52).
In what follows, the detectability values for all three defined health
states will be determined based on the available information. To
calculate the detectability value for each health state, it is necessary
to classify any given set of testing sensory data into one of the three
health states. This can be accomplished simply by defining a nor-
malized distance, the z-score for this example, between the testing
data and the sensor output distribution for each health state. The
normalized distance measures the divergence of the testing data
from the sensor output distribution of each health state, and conse-
quently the testing data should be classified into the health state
which has the smallest normalized distance.

To facilitate the diagnostics process, boundaries between two
health states will be identified by one neutral point that leads to
three equal normalized distances as shown in Fig. 2. The natural
point (X1–2) between HS1 and HS2 can be calculated using
Eq. (10), and the natural point (X2–3) between HS2 and HS3 can be
also calculated accordingly as shown in Eq. (11).

X1—2 � 1
0:9

¼ 3� X1—2

0:6
; X1—2 ¼ 2:2000 ð10Þ

X2—3 � 3
0:6

¼ 6� X2—3

1:5
; X2—3 ¼ 3:8571 ð11Þ

With the identified neutral points between different health states,
the detectability (Di) can be evaluated as shown in Eqs. 12–14,
respectively, using the conditional probability defined in Eq. (9).

D1 ¼ P11 ¼ PrðDetected as HS1jSystem is at HS1Þ
¼ PrðX 6 X1�2jX � Nð1;0:92ÞÞ ¼ 0:9088 ð12Þ

D2 ¼ P22 ¼ PrðDetected as HS2jSystem is at HS2Þ
¼ PrðX1�2 6 X 6 X2�3jX � Nð3;0:62ÞÞ ¼ 0:8322 ð13Þ

D3 ¼ P33 ¼ PrðDetected as HS3jSystem is at HS3Þ
¼ PrðX P X2�3jX � Nð6;1:52ÞÞ ¼ 0:9234 ð14Þ

From this mathematical example with analytical evaluation of
the detectability, it is clear that statistical distributions and health
Fig. 2. Sensor output distributions neural points.
states classification of sensor outputs are critical for detectability
analysis of a given sensing system. Nevertheless, in practical engi-
neering applications, a sensing system will generally contain
numerous sensors to deal with much more than three health
states. Thus, analytical evaluation of sensing system detectability
becomes challenging, for example, the calculation of boundaries
between different health states. In addition, statistical distribu-
tions of sensors’ outputs for all health states are not commonly
available. To effectively evaluate the detectability for a given sens-
ing system design, a new detectability analysis approach is devel-
oped in this study, as detailed in the next subsection, in which the
Mahalanobis distance (MD) classifier is employed to handle the
uncertainties of sensor output for each system health state and
classify sensory data points for detectability calculation.

3.2. Detectability analysis using Mahalanobis distance classifier

This section details a detectability analysis method, which
employs Mahalanobis distance (MD) classifiers for the calculation
of detectability values based on structural simulation and system
health state classification. A MD classifier quantitatively measures
the similarity between an online data point and different training
data sets from different system health states, and represents the
similarity using a Mahalanobis distance measure, whereby a
shorter distance indicates a greater similarity. With the MD
measure, a testing data point will can be accordingly classified into
a health state that induces a minimum Mahalanobis distance value
by its training data set. Thus, a MD classifier is capable of
categorizing a testing data point measured from an operating
system by a sensor network to a predefined system health state
from which the sensory data point is most likely measured.
Mathematically, the Mahalanobis distance [55] of a testing data point
from the training data sets of a health state can be calculated by

MDi ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðX �MiÞTR�1

i ðX �MiÞ
q

ð15Þ

where the T denotes matrix transpose, X is the given testing data
point to be classified, Mi and Ri represent the mean vector and
the covariance matrix, respectively, for the training data sets for
the ith health state, HSi.

In the following, one example is used to explain the MD-based
health state classification process for detectability analysis. In this
example, there are two sensors and three predefined health states
(NHS = 3), in which HS1 is used for system healthy, HS2 for system
with minor damage, and HS3 for system with severe damage. The
training data information from two different sensors correspond-
ing to different health states is listed in Table 1. In this example,
for each health state 100 sensory data points are generated from
the distribution information as shown in Table 1, and used as the
training data sets.

First, to demonstrate the MD-based classification process, five
testing data points, as shown in the first two columns in Table 2,
will be classified to its corresponding health states. Using the MD
classifier, the MD values for each testing data set can be calculated
with the training data sets using Eq. (15), and a testing data point is
classified to a given health state that provides the minimum MD
values out of all three. For example, to classify the first testing data
point [2.07,0.78] as shown in Table 2, the MD values are calculated
Table 1
Predefined system health states.

Health state Sensor 1 Sensor 2

HS1 N(1.5,0.52) N(1.5,0.52)
HS2 N(1.5,0.52) N(1.5,0.52)
HS3 N(1.5,0.52) N(1.5,0.52)



Table 2
Health states classification using MD classifier.

Testing data Mahalanobis distance Classified state

S1 S2 HS1 HS2 HS3

2.07 0.78 4.83 73.79 27.52 HS1

0.89 �0.88 5.19 48.61 2.72 HS3

1.72 0.46 1.43 62.19 17.57 HS1

�2.54 0.90 90.97 1.13 34.76 HS2

0.58 �1.14 10.12 44.93 2.13 HS3
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to be 4.83, 73.79, and 27.52 using the training data sets from three
different health states, respectively, and consequently this testing
data point will be classified as it belongs to HS1 since the MD value
4.83 obtained from the first health state is the minimum.

In the following, the PoD matrix for this example will be
evaluated and the detectability values for all three predefined
health states will be determined by following the same procedure
used above. Suppose that there are totally Ti sets (here Ti = 100 is
used) of testing data from the health state HSi, and within which
Tij sets are classified into the health state HSj by the MD classifier,
where i, j = 1, 2, . . . , NHS, the element Pij in the PoD matrix can be
approximately calculated based on the definition as

Tij ¼
86 0 14
0 98 2
9 3 88

2
64

3
75 ð16Þ

Pij �
TijP

jTij
¼

0:86 0:00 0:14
0:00 0:98 0:02
0:09 0:03 0:88

2
64

3
75 ð17Þ

Since any set of testing data from the health state HSi will definitely
be classified into one of the predefined NHS health states, the follow-
ing equation regarding Pij can be obtained:

XNHS

j¼1

Pij ¼ 1 ð18Þ

The above Eq. (18) suggests that the summation of each row in the
PoD matrix will always equal to one. Similarly, the detectability,
diagonal terms in the PoD matrix, for the health state HSi can be
obtained as

Di ¼ Pii � 0:86 0:98 0:88½ � ð19Þ
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Health State 
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Fig. 3. RBRDO flowchart for detectabil
4. Reliability based robust design optimization for structural
sensing function design

Reliability-based robust design optimization (RBRDO) aims to
find the best compromise between cost and reliability by taking
uncertainties into account. Moreover, it can be used to ensure
the robustness of system designs by minimizing design cost and
its uncertainty factors while meeting system reliability or
detectability requirements. In this study, the design of a smart
sensing system is formulated with RBRDO to optimally allocate
PZT sensors so that the robustness of the sensing system perfor-
mance can be ensured and the detectability requirements for dif-
ferent failure modes can be guaranteed. Generally, the RBRDO
formulation of the PZT sensing system design can be presented
as an optimization problem as follows:

Minimize
Xnf

j¼1

Mjðx;dÞ þ Q f ðx;dÞ

subject to Diðx;dÞP DT ; i ¼ 1 . . . n
xL
6 x 6 xU ; x 2 Rnr

dL
6 d 6 dU

; d 2 Rnd

ð20Þ

where the design constraints involved in the sensing systems
design framework are detectability requirements considering
uncertainties introduced by PZT material properties, manufacturing
processes, as well as operating conditions. The design variables are
the decision variables for PZT sensors dimension, PZT sensors loca-
tions, and the parameters for controlling the sensing process. The
intent of the sensing systems design optimization is to minimize
the cost while ensuring the design robustness and satisfying all
detectability requirements. The objective function is thus defined
as minimizing PZT sensor size and its variance, where M(x, d) is
the material and installation cost of PZT sensors for a given sensing
system design, Qf (x;d) is robustness penalty cost associated with
the quality loss, which is measured by the variability of the cost
function M, Di is the detectability of the sensing system for the
HSi, DT is the target detectability, xU and xL are upper and lower
bounds for the random design variables x, respectively, whereas
dU and dL are upper and lower bounds for the deterministic design
variables d. The parameters n, nr, and nf, are the numbers of proba-
bilistic constraints, random variables, design variables, and objec-
tive functions, respectively.

The RBRDO problem in Eq. (20) contains discrete decision vari-
ables for the selection of sensing devices, integer variables for the
Initial Design

Cost Function 
Analysis

Probabilistic 
Performance Analysis

RBRDO Optimizer

RBRDO

Optimum?

New 
Design

Optimum Design

ity-based sensing function design.
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number of selected sensing devices, as well as continuous variables
for the sensor locations. Thus, it is formulated as a mixed-integer
nonlinear programming (MINLP) problem [54], and heuristic algo-
rithms such as Genetic Algorithms (GAs) can be used as the opti-
mizer for the optimization purpose. In this study, the GA is
employed for the example problem that will be detailed in the sub-
sequent section. More alternative algorithms for solving the MINLP
problem can be found in the references [54,56]. Fig. 3 shows the
flowchart of the SN design optimization process. As shown in the
figure, the process starts from an initial design and goes into the
design optimization subroutine (the right hand side grey box),
which will carry out the sensing function design cost analysis, call
the detectability analysis subroutine (the left hand side grey box)
to evaluate the performance of the sensing function at the current
design, and execute the optimizer to generate the new designs if
the optimality condition is not met. In the detectability analysis
subroutine, the detectability analysis as discussed in the previous
section will be carried out. Before solving the optimization prob-
lem, valid system computer simulation models have to be built
and structural simulations have to be accomplished so that the
training and testing data sets for each predefined health state are
available at the iterative design optimization process for
detectability analysis.
5. Case studies

In this section, the developed reliability-based robust design
optimization technique for smart sensing function design using
piezoelectric materials is demonstrated with two design case stud-
ies. In the first case study, the sensing function will be design for a
rectangular aircraft wing panel considering rivet joint failures,
whereas the second case study designs smart sensing function
for power transformer mechanical fault diagnosis. The rest of this
section details the two design case studies and results using the
developed RBRDO sensing function design methodology.
Fig. 4. Sensing function design of an aircraft
5.1. Sensing function design for a rectangular aircraft wing panel

This subsection demonstrates the proposed RBRDO approach by
designing PZT material based sensor patches for a rectangular air-
craft wing panel. As shown in Figs. 4 and 5, the aircraft wing panel
considered in this study has dimensions of two meters by one
meter and is fastened by eight rivet joints, as indicated by L1–L8,
respectively. There is a harmonic force F with a frequency of
120 Hz applied in the middle of panel to detect joint failures. In
this case study, eight health states are defined based on the differ-
ent rivet joint failure and combinations, as listed in Table 3. To
identify the healthy state of the panel, four square PZT sensors
are attached to the surface of panel. The electrical potential signal,
obtained out of the PZT sensors, is used to identify the health state
based on Mahalanobis distance.

The objective function of this RBRDO is to minimize PZT sen-
sor size and its variance while the detectability of each health
state meets its requirement to be greater than the target 0.99.
For each sensor, the coordinate and side length of each squared
PZT sensor are chosen as design variables, thus totally there are
12 design variables for this case study. All the design variables
are assumed to be normal distributed and their upper and lower
bounds of means and standard deviation are shown in Table 4.
Besides the random design variables, three geometric random
parameters are also considered in this case study, as listed in
Table 5.

In this case study, RBRDO of sensing system for the rectangular
panel can be formulated as follows:

Minimize
X4

j¼1

Sj þ Var
X4

j¼1

Sj

 !

subject to : DiðX;Y; SÞP DT ; i ¼ 0 . . . 7
xL
6 x 6 xU ; X 2 Rnr

yL
6 y 6 yU ; Y 2 Rnr

sL
6 s 6 sU ; S 2 Rnr

ð21Þ
wing panel using piezoelectric materials.



Fig. 5. Rectangular aircraft wing panel with indicated rivet joints.

Table 3
Health states definition of aircraft wing panel case study.

Health states HS0 HS1 HS2 HS3 HS4 HS5 HS6 HS7

Joint failure None L6 L7 L4 L6, L7 L6, L4 L4, L7 L4, L6, L7

Table 4
Design variables of the rectangular aircraft wing panel case study.

Variables Definition LB UB Distribution SD

X1 X coordinate of the first sensor 0 2 Normal 0.02
Y1 Y coordinate of the first sensor 0 1 Normal 0.02
S1 Side length of the first sensor 0 0.1 Normal 2e�3
X2 X coordinate of the second

sensor
0 2 Normal 0.02

Y2 Y coordinate of the second
sensor

0 1 Normal 0.02

S2 Side length of the second
sensor

0 0.1 Normal 2e�3

X3 X coordinate of the third sensor 0 2 Normal 0.02
Y3 Y coordinate of the third sensor 0 1 Normal 0.02
S3 Side length of the third sensor 0 0.1 Normal 2e�3
X4 X coordinate of the fourth

sensor
0 2 Normal 0.02

Y4 Y coordinate of the fourth
sensor

0 1 Normal 0.02

S4 Side length of the fourth sensor 0 0.1 Normal 2e�3

Table 5
Random parameters of the rectangular aircraft wing panel case study.

Parameters Definition Distribution Mean SD

L Length of panel Normal 10 0.1
W Width of panel Normal 5 0.05
F Amplitude of force Normal 1000 50

S1

S2

S3

S4

Fig. 6. Sensor layout and vibration amplitude contour of the panel for HS0.

S2

S1

S4

S3

Fig. 7. Electrical potential contours of four PZT sensors.
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where the objective function is to minimize the total area of PZT
sensors and its variance, as denoted by the summation of the area
Sj for each sensor unit. The detectability target is set as 0.99 for
all seven health states. To obtain the electrical potential response
of PZT attached on the panel, a 3D finite element model is estab-
lished in ANSYS 12. Fig. 6 shows a particular sensor layout and its
vibration displacement of health states HS0. The electrical potential
contours of four PZT sensors are shown in Fig. 7.

The location and size of PZT sensor can directly determine the
electrical potential response given a certain scenario. In this case,
sensor S2 and S3 get relative significant electrical response while
there is almost no obvious electrical potential for sensor S1 and
S4. Due to the uncertainties involved from not only the whole
structural but also the sensing system, the signal output of each
sensor is also a random value. Generic algorithm is used to search
optimal solution for the RBRDO problem, and the optimal design is
obtained after 15 generations. The design history is shown in
Table 6 while the corresponding detectability and cost are shown
in Table 7 in which CT represents the total cost comprising design
cost M and quality lost Qc. The corresponding detectability of each
generation is also shown in Fig. 8. Fig. 9 demonstrates the cost dis-
tribution of initial and optimum designs while Fig. 10 shows the
optimum layout of sensor system. As shown in the Fig. 9; both
the mean and variance of design cost are increased slightly while
the detectability of sensing system is improved significantly.

5.2. Sensing function design for power transformer mechanical fault
diagnostics

Power transformers are among the most expensive elements of
high-voltage power systems. The monitoring of power transform-
ers enables the transition from the traditional time-based mainte-
nance to the condition-based maintenance, resulting in significant
reductions in maintenance costs. Due to the difficulties of direct
measurement inside the transformer, the data that are actually
most often used for both diagnosis and prognosis of transformers
are obtained through indirect measurements. For example, mea-
surements of temperature are firstly accomplished at accessible
points and a modeling of the gradient can then be used to induce
the maximum temperature in some areas; electric parameters
and analysis of moisture content of the cooling oil are often per-
formed for the diagnosis and condition-based maintenance of



Table 6
Iterative design history of rbrdo for the aircraft wing panel case study.

Iter. X1 Y1 S1 X2 Y2 S2 X3 Y3 S3 X4 Y4 S4

1 12.00 12.00 3.00 110.00 60.00 3.00 12.00 60.00 3.00 110.00 12.00 3.00
2 23.64 17.87 3.80 175.64 71.10 3.20 18.52 65.55 6.79 175.70 61.45 5.77
3 71.91 27.42 5.11 115.07 71.65 3.44 68.83 64.02 6.07 139.60 67.59 3.03
4 71.91 25.34 3.45 115.07 77.63 3.44 68.83 64.02 6.07 168.58 69.27 3.03
5 71.91 25.34 3.45 115.07 77.63 3.44 68.83 64.02 6.07 139.60 69.27 3.03
6 73.91 25.34 3.45 115.07 77.63 3.44 68.83 64.02 4.07 141.60 69.27 3.03
7 75.91 25.34 3.45 115.07 77.63 3.44 68.83 64.02 4.07 141.60 69.27 3.03
8 75.91 25.34 3.45 167.15 77.63 3.00 68.83 60.31 4.07 141.60 69.27 3.03
9 75.91 25.34 3.45 167.15 77.63 3.00 68.83 60.31 4.07 141.60 69.27 3.03

10 73.91 25.34 3.45 115.07 77.63 3.00 68.83 60.31 4.07 141.60 69.27 3.03
11 73.91 25.34 3.45 115.07 77.63 3.00 68.83 60.31 4.07 142.60 69.27 3.03
12 76.91 25.34 3.45 115.07 79.35 3.00 68.83 60.31 3.07 142.60 69.27 3.03
13 76.91 25.34 3.45 115.07 79.35 3.00 68.83 60.31 3.07 142.60 69.27 3.03
14 76.91 25.34 3.45 115.07 79.35 3.00 68.83 60.31 3.07 142.60 69.27 3.03
15 76.91 25.34 3.45 115.07 79.35 3.00 68.83 60.31 3.07 142.60 69.27 3.03

Table 7
Detectability and cost of RBRDO for the aircraft wing panel case study.

Iter. D0 D1 D2 D3 D4 D5 D6 D7 M Qc CT

1 0.79 0.96 0.93 0.95 0.90 0.97 0.94 0.95 36.00 5.76 41.76
2 0.96 1.00 0.98 0.98 1.00 1.00 0.99 1.00 104.0 16.70 120.7
3 0.97 0.99 0.97 0.99 1.00 1.00 1.00 0.99 84.00 13.45 97.45
4 0.98 0.98 1.00 0.99 0.99 1.00 1.00 0.98 69.76 11.10 80.86
5 0.99 1.00 1.00 1.00 1.00 1.00 1.00 0.99 69.76 11.21 80.97
6 0.99 1.00 1.00 1.00 1.00 1.00 1.00 0.99 49.48 7.91 57.39
7 0.99 1.00 1.00 1.00 1.00 1.00 1.00 0.99 49.48 7.93 57.41
8 0.98 0.99 1.00 0.99 1.00 1.00 1.00 1.00 46.62 7.47 54.09
9 0.98 0.99 1.00 0.99 1.00 1.00 1.00 1.00 46.62 7.49 54.11

10 0.98 0.99 1.00 0.99 1.00 1.00 1.00 0.99 46.62 7.44 54.06
11 0.98 0.99 1.00 0.99 1.00 1.00 1.00 0.99 46.62 7.50 54.12
12 0.99 0.99 1.00 1.00 1.00 0.99 1.00 1.00 39.48 6.35 45.83
13 0.99 0.99 1.00 1.00 1.00 0.99 1.00 1.00 39.48 6.31 45.79
14 0.99 0.99 1.00 1.00 1.00 0.99 1.00 1.00 39.48 6.29 45.77
15 0.99 0.99 1.00 1.00 1.00 0.99 1.00 1.00 39.48 6.33 45.81

Fig. 8. The detectability history of RBRDO for the aircraft wing panel case study. Fig. 9. The cost distributions of initial and optimal design.
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transformers, with frequency response analysis of electric charac-
teristics being common; the vibrations of the magnetic core and
of the windings could characterize transitory overloads and per-
manent failures before any irreparable damage occurs. This case
study aims at designing an optimum PZT sensor system on the
front wall surface of a power transformer. The measurements of
the transformer vibration responses induced by the magnetic field
loading enables the detection of mechanical failures of winding
support joints inside the transformer.
In this study, the winding support joint loosening is considered
as the failure mode, the detection of which will be realized by col-
lecting the vibration signal, induced by the magnetic field loading
with a fixed frequency on the power transformer core, using the
optimally designed PZT sensor system at the external surface of
the transformer. The validated finite element (FE) model of a
power transformer was created in ANSYS as shown in Fig. 11,
where one exterior wall is concealed to make the interior structure
visible. Fig. 12 shows 12 simplified winding support joints with 4



Fig. 10. Layout of the Sensors for the Optimum Design.

Fig. 11. A power transformer FE model (without the covering wall).

Fig. 12. Winding support joints and their numberings.

Table 8
Random property of the power transformer.

Random variable Randomness (cm, g, degree)

Young’s modulus of support joint N(2e12,4e102)
Young’s modulus of loosening joints N(2e10,4e82)
Young’s modulus of winding N(1.28e12,3e102)
Poisson ratio of joints N(0.27,0.00542)
Poisson ratio of winding N(0.34,0.00682)
Density of joints N(7.85,0.1572)
Density of windings N(8.96,0.1792)
Length of PZT layer N(S, (0.05 ⁄ S)2)

Table 9
Definition of system health states.

Health state 1 2 3 4 5 6 7 8 9

Loosening joints – 1 2 3 1, 2 1, 3 1, 5 1, 9 1, 11
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for each winding. The transformer is fixed at the bottom surface
and a vibration load with the frequency of 120 Hz is applied to
the transformer core. The joint loosening has been realized by
reducing the stiffness of the joint itself. Different combinations of
the loosening joints will be treated as different health states of
the power transformer which will be detailed in the next subsec-
tion. The uncertainties in this case study are modeled as random
parameters with corresponding statistical distributions listed in
Table 8. These uncertainties will be propagated into the structural
vibration responses and will be accounted for when designing an
optimum PZT sensor system.

For the purpose of demonstrating the proposed design method-
ology, 9 representative health states shown in Table 9 were
selected from all possible combinations of 12 winding support
joint failures. Among these 9 selected health states, HS1 denotes
the healthy condition without any loosening joint, whereas
HS2–HS9 are health states with either one or two loosening joints.
According to the statistical properties of random parameters in
Table 8 and 200 sets of random samples were generated and the
simulations for each of 9 health states were carried out and the
average electoral potentials of PZT layers were extracted as sensor
signals and saved as the simulation results.

The displacement contour of the healthy state power trans-
former at the nominal values of the random parameters from the
structural simulation is shown in Fig. 13.

Similar to the first case study, applying the developed sensor
network design methodology for the power transformer case
study, the design problem can be formulated as follows:



Fig. 14. Detectability history during RBRDO.
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Minimize
X4

j¼1

Sj þ Var
X4

j¼1

Sj

 !

subject to : DiðX;Y ; SÞ � DT ; i ¼ 1 . . . 9
xL
6 x 6 xU ; X 2 Rnr

yL
6 y 6 yU ; Y 2 Rnr

sL
6 s 6 sU ; S 2 Rnr

ð22Þ

where the objective function is to minimize the total area of PZT
sensors and its variance, and the detectability target has been set
to 0.90 for all nine health states. To conduct the design optimization
of the piezoelectric material based sensor network, the simulation
has been conducted with random inputs as given in Table 8. The
first 100 sets of simulation results were used as the training data
set and the others were used as testing data set. These simulation
results were later used to evaluate the detectability of sensor
system. As mentioned in the previous section, this case study
problem is formulated as designing a PZT sensor system on the sur-
face of the covering wall of the power transformer to minimize the
cost of the SN while satisfying the detectability constraints for each
health state, i.e., the detectability should be greater than a target
detectability of 0.9. In the RBRDO framework, the cost function is
defined as the sum of two parts: the mean and variance of total
PZT area; the total number of PZT sensor are four and the PZT sen-
sors are assumed to be square. The design variables in this case
study include: (1) location of each PZT sensor, (2) length of each
PZT sensor. The RBRDO problem in this case study was solved using
the genetic algorithm. With the target detectability being 0.9, we
obtained the optimum sensor system design on the outer wall
surface (140 cm � 90 cm) with totally 4 sensors, as shown in
Fig. 13. Vibration contour of the winding support for the healthy state of power
transformer.

Table 10
Design history during RBRDO.

Iter. X1 Y1 S1 X2 Y2 S2

1 �40.00 �35.00 8.00 �40.00 20.00 8.0
2 �36.87 �15.35 4.93 �32.03 0.22 1.5
3 �40.00 �35.00 8.00 �21.56 0.26 8.0
4 �14.87 �22.73 7.66 �56.55 20.00 8.0
5 �46.05 �35.00 1.82 �40.00 0.83 6.3
6 �52.32 �34.00 1.82 �12.50 0.13 9.0
7 �71.74 �35.00 8.00 �40.00 0.13 3.9
8 �46.05 �35.00 3.19 �40.00 0.26 7.8
9 �46.05 �35.00 3.19 �40.00 0.26 3.8

10 �71.74 �35.00 2.51 �40.00 0.13 3.8
Table 10. Figs. 14 and 15 show the detectability and cost history
of RBRDO process for 9 health states, respectively, whereas Fig. 16
demonstrates the distribution of initial and optimum sensor system
designs. The final optimum sensor system is illustrated in Fig. 17.
5.3. Remarks on the case studies

This subsection provides the remarks of the two case studies as
presented in the previous two subsections.
X3 Y3 S3 X4 Y4 S4

0 40.00 �35.00 8.00 40.00 45.00 8.00
0 0.80 �23.61 5.71 0.67 0.84 7.68
0 40.00 �35.00 8.86 40.00 0.25 7.22
0 0.41 �35.00 8.00 0.91 0.22 7.16
7 0.44 �35.00 6.60 0.95 0.05 6.17
0 40.00 �35.00 6.30 0.95 0.16 8.91
6 0.14 �54.12 2.19 40.00 0.27 2.88
1 40.00 �35.00 2.19 40.00 0.27 1.88
2 40.00 �43.45 2.19 40.00 0.27 2.88
2 40.00 �43.45 2.19 40.00 0.96 2.88
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Fig. 15. Cost history during RBRDO.



0 50 100 150 200 250 300 350
0

0.05

0.1

0.15

0.2

0.25

PZT Total Area

P
D

F

 

 
Initial Design

Optimum Design

Fig. 16. Cost distribution of initial and optimum designs.

Fig. 17. Optimal layout of sensor system.
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Remark 1. In this study, the detectability of the designed sensor
networks using piezoelectric materials has been calculated based
on finite element simulation models. Note that the simulation
model is an important factor that would affect the results of sensor
network designs. In the previous study, the experimental valida-
tion for the structure simulation models coupled with piezoelectric
materials has been performed and reported in one of the authors’
previous publications [57], where an excellent agreement of open
circuit voltage between the simulation and the test has been
reported. In the studies presented in this paper, the same modeling
and simulation strategies as reported in [57] have been used. As
this study is focused on developing a new probabilistic design
framework based on the new detectability concept for generic
smart sensing systems, the authors assumed that the simulation
models used in both case studies are valid.
Remark 2. In the power transformer case study, the electrical field
inside the power transformer could have an impact on the piezo-
electric sensors attached to it. However, it is assumed that the
impact of electric field inside the power transformer windings on
piezoelectric sensor outputs is minor compared to the one con-
tributed by power transformer vibrations. Thus, to maintain the case
study in a certain level of simplicity without losing the generosity to
demonstrate the proposed sensor network design methodology, the
internal electric field impact has been neglected in this study.
6. Conclusion

This paper presented a reliability-based robust design optimiza-
tion approach for the development of piezoelectric materials based
structural sensing systems for failure diagnostics and prognostics,
to ensure the robustness of sensing performance. In the proposed
approach, a detectability measure is defined to evaluate the perfor-
mance of any given sensing system, and the sensing system design
problem can be formulated to maximize detectability for different
failure modes by optimally allocating piezoelectric materials into a
target structure. This formulation can be conveniently solved
within a reliability-based robust design framework to ensure
design robustness while considering the uncertainties. Two case
studies were employed to demonstrate the effectiveness of the
proposed methodology in developing multifunctional material
sensing systems. The case study results indicated that the devel-
oped approach is very effective for the structural sensing design
problems considering the uncertainties, in that it takes into
account the performance variability in the design optimization
process thus the design cost can be reduced while simultaneously
the performance robustness can be ensured and all detectability
requirements can be satisfied.
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