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Abstract

Deep Learning-Based Domain Adaptation Method for
Identifying Peripheral Arterial Disease Locations

under Various Severity Levels
In Chan Lee
Department of Mechanical Engineering
The Graduate School
Seoul National University

This paper's primary purpose is to develop a blood pressure waveform (BPW)
based deep learning diagnosis model for identifying peripheral arterial disease (PAD)
on frequent PAD occurrence arteries. Two issues make it hard to obtain a
generalized PAD diagnosis model with a data-driven approach: 1) domain
discrepancy resulted from the differences of disease severity and occurring location,
2) data imbalance resulted from the symptomless characteristic of mild PAD. To
train a generalized PAD diagnosis model considering practical issues, we propose
auxiliary tasks-assisted maximum classifier discrepancy for supervised domain
adaptation. The proposed model is validated using virtual patients' BPWs generated
from the transmission line model under various disease severity levels. The results
show that the proposed model has a superior performance for identifying PAD
locations under various disease severity levels. This finding indicates the feasibility
of the proposed diagnosis model to real hospitals for identifying the PAD locations

in the lower extremities under various disease severity.
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Chapter 1. Introduction
1.1 Motivation

A disease related to the heart or blood vessels is called cardiovascular disease.
Among cardiovascular diseases, those in the arms or legs are called peripheral
arterial disease (PAD). PAD is a disease in which plaque accumulates in blood

vessels, reducing the amount of blood flow through the blood vessels.

PAD affects 13% of the western population, mostly over 60 years of age [1]-[3].
Because PAD mainly affects elder people, it is expected that PAD will prevail more
in the near future due to societal aging. One crucial characteristic of PAD is that it is
initially asymptomatic. If symptoms develop, the cure is complex, and mortality
increases rapidly [4]. Therefore, it is desirable to address PAD at an early stage

through early diagnosis and treatment.

Currently, the most-used method for PAD diagnosis is the Ankle-Brachial Index
(ABI) [5], [6]. ABI is the ratio of the maximum blood pressure of the brachial
artery (in the arm) and blood pressure in the patient’s ankle. PAD can be diagnosed
by comparing this index with a reference value. However, ABI is often criticized for

its limited accuracy and robustness [7], [8].

Thanks to the development of artificial neural networks, we can train various
models with a data-driven approach [9]-[13]. To overcome the weaknesses of ABI,
many researchers have used machine learning (ML) and deep learning (DL)
approaches based on pulse waveform analysis (PWA) [14]-[17]. PAD alters the

propagation and reflection characteristics of the artery affecting the shape of arterial



pulse wave signal (e.g., blood pressure waveform (BPW) and blood flow waveform).
Thus, we can obtain information about PAD by analyzing the pulse waveforms.
Because pulse waveforms have more information than ABI, a discrete value made
by pulse waveform, we can make a more robust and accurate diagnosis result than

the conventional ABI method.

Prior research has studied PAD diagnosis by combining deep learning and pulse
waveform analysis [18]. However, in this study, the diagnosis was carried out only
for abdominal PAD; thus, there is a limitation in that this method cannot diagnose
frequently occurring PAD lesions in areas other than the abdomen. For applying
PAD screening in public health, it is more important to apprise whether PAD occurs

or not.

There are two problems to learn diagnosis model with data-driven approach in
real hospitals: 1) a distribution difference of data by the disease location and severity
levels [19], [20] and 2) data imbalance between severe and mild PAD patients due
to symptomless characteristic. A BPW measured at the peripheral part of the artery
is changed by the PAD occurring locations and the disease severity levels. Moreover,
it is hard to obtain mild PAD patients’ BPW data resulting from the symptomless
characteristic in the early stage of PAD. In contrast, the severe PAD patients’ data is
relatively easy to obtain. For these reasons, it is hard to train a diagnosis model with

generalization performance using a nave data-driven model.

This paper proposes a generalized PAD diagnosis learning method to train a
model to screen PAD on frequently PAD occurring lesions considering real hospital

situations. We apply a domain adaptation approach to extract domain invariant



features to disease location and severity levels. Then, we validate the generalized
diagnosis performance with virtual PAD patients’ BPW generated by the

transmission line model considering inter and intra individualities.

1.2 Structure of the Thesis

This paper is organized as follows. Section 2 insists on the limitation of the naive
data-driven approach for PAD diagnosing. Then, it describes the main idea of our
proposed method. In addition, there is an explanation of our data generation method
for describing practical problem situations. Section 3 shows the validation results of
our proposed method. Then, section 4 discusses the efficacy of our proposed method.

Finally, section 4 concludes this research with suggestions for future works.



Chapter 2. Materials and Methods
2.1 Problem Definition of naive data-driven approach

The PAD location and severity levels can alter the measure BPW at the peripheral
part of an artery. Thus, though PAD occurs at the same artery location, the BPW data
can differ according to PAD severity. In other words, there is a domain discrepancy

by PAD severity level.

If there is a domain discrepancy between two datasets, the model trained with a
data-driven approach shows poor classification performance on the target domain
data, which does not appear in the training step. This is because the model trains the
classifier to optimize source domain data. To minimize the performance degradation
resulting from domain discrepancy, many researchers have studied domain

adaptation, extracting domain invariant features to obtain a generalized model.

Inevitably, there is a domain discrepancy in actual hospital data because each
patient has their own vascular parameters and severity levels. Moreover, it is hard to
derive mild patients” BPW data because of the symptomless characteristic of PAD.
In contrast, it is easy to obtain severe patients’ BPW data. That is, there are domain
discrepancy and data imbalance problems at the same time in real hospitals. Thus, it
is hard to make a generalized PAD diagnosis model with a data-driven approach
because of domain discrepancy and data imbalance. This paper focuses on
developing a robust DL-based PAD location identification method considering real

hospital situations using BPWs.



2.2 Proposed Method for Training Generalized PAD
Diagnosis Model

2.2.1 Domain Adaptation

If there is a domain discrepancy between two datasets (train and test dataset), the
model, which is trained by a data-driven approach, shows poor diagnosis
performance on the test dataset [21]-[24]. The model optimizes to classify the train

dataset as shown in figure 2-1.

At first, we define domain and class for a clear understanding. The PAD severity
level is the domain. Therefore, severe PAD patients’ data is source domain data
mainly utilized to train the classification task. In contrast, the target domain is Mild
PAD patients. Next, the class is PAD occurring locations because our task is to
identify PAD lesions. Thus, class is PAD occurring arteries such as Thigh and Calf.
In the future description, domain differences are expressed in color, and data classes

are expressed in the shape of the data.

Severlty Domain Source Domain Target Domain
Location Severe Mild
<l
Thigh A N A _J{ A . 2
O |akO)| o ) AE -y A
ety O Domain L & 2 Domain Cross-Domain --=~%;, ©
Source Domain < o Discrepancy O m Adaptation Classifier
Classifier

Figure 2-1 Conceptual diagram of domain discrepancy and domain adaptation

If there is a domain discrepancy between two datasets (train and test dataset), the
model, which is trained by a data-driven approach, shows poor diagnosis
performance on the test dataset [21]-[24]. The model optimizes to classify the train

dataset as shown in figure 2-1.



At first, we define domain and class for a clear understanding. The PAD severity
level is the domain. Therefore, severe PAD patients’ data is source domain data
mainly utilized to train the classification task. In contrast, the target domain is Mild
PAD patients. Next, the class is PAD occurring locations because our task is to
identify PAD lesions. Thus, class is PAD occurring arteries such as Thigh and Calf.
In the future description, domain differences are expressed in color, and data classes

are expressed in the shape of the data.

2.2.2 Maximum Classifier Discrepancy
Unlike the adversarial-based domain adaptation method, maximum classifier
discrepancy (MCD) is known for learning task-specific classifiers [31]. Thus, MCD

can learn task-relevant classifiers while extracting domain invariant features.

MCD is a representative unsupervised domain adaptation method considering
task-specific decision boundaries. As shown in figure 2-2, the MCD learning method
needs a model consists of one feature extractor and two classifiers for manipulating

distribution discrepancy.

Input:
BPWs under Output:
Various Severity —® Predicted Classes
Levels (PAD Locations)

Figure 2-2 The architecture of maximum classifier discrepancy

Figure 2-3 shows the overall training procedure of MCD. As can be seen in the



figure, the MCD learning method is composed of three steps.
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Step 1: Training on source domain data. As the first step of the MCD, the feature
extractor and two classifiers are trained to classify source domain data well. So, after

this step, the model can appropriately classify source domain data.

K
LOGTS) = =ty ) sy l0gpI%) @Y
k=1

Step 2: Maximizing domain discrepancy. In this step, only two classifier’s
weights are updated while the feature extractor’s weights are fixed. Two classifiers
are trained to predict different classes of target domain data while learning to
distinguish the class of the source domain data. In other words, two classifiers are
trained to maximize the discrepancy regions in which two classifiers predict different
classes about target domain data. Target samples that two classifiers predict

differently can have domain-related features extracted by the feature generator.
min L(Xs, Ys) = Exox, (A1 (lxe), p2 (1%} (2.2)

Step 3: Minimizing domain discrepancy. For extracting domain invariant but
optimized for classification features, only the feature extractor is updated while two
classifiers’ weights are fixed. Then, the feature extractor is trained to extract features
that can minimize the discrepancy. By doing so, the embedded features of target
domain data are much closer to source domain data. Moreover, this learning step
repeats N times in the same batch for deriving feature extractor which can extract

domain invariant features.

max By x {d(p1(y1xe), p2 lx,)} (2.3)



2.2.3 Proposed Methods

MCD is an unsupervised domain adaptation approach, which cannot be applied
to the faced problem. In our faced problem, we have few labeled mild PAD patients’
data and a relatively large amount of labeled severe PAD patients’ data. Because we
have labeled data in both domains, our problem must be solved by a supervised

learning method, not unsupervised.

For applying the MCD to our problem while taking advantage of a task-specific
classifier, we add two auxiliary tasks: semantic alignment and separation loss [32].
Semantic alignment loss can measure the distance between features with the same
label but in different domains. Thus, if we minimize this loss, we can closely embed
data features with the same class but different domains. Semantic alignment loss is

expressed in equation (2.4)

Cc
Lsa(9) = ) d (p(a0x). p(9(xXL)) 24
a=1

On the other hand, separation loss can measure the distance between features with
different labels but in the same domain. Therefore, we can faraway embed data
features with the same domain but different classes. If we combine these two loss
terms, we can expect the synergy effect which increases classification performance

as well as decreases domain discrepancy (shown in figure 2-4.).

Ls(g) = z k(p(g(Xé)),p(g(Xﬁ))) (2.5)

a,bla#b
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Our proposed loss function is shown in equation (2.6)
mGin d(pr(Vlxe), D2 (1xe)) —w * Lsa(g) + (1 — w) x Ls(g) (2.6)

The first term of equation (2.6) is original MCD’s feature extraction task to
minimize the domain discrepancy. Additionally, we add weighted semantic
alignment and separation loss to original MCD’s loss for increasing classification

performance while decreasing domain discrepancy.

For applying the proposed learning method to our task, we utilize CNN
architecture composed of a modified Alexnet structure [15]. Figure 2-5 shows the
CNN architecture used in our work. This architecture predicts the PAD locations
based on the 2ch input composed of blood pressure waveforms measured at arm and
ankle. We use an RMSprop optimizer to train our model with a 0.00005 initial
learning rate. Also, we set the weight between semantic alignment and separation

loss as 0.1 and the number of repetitions as 8 in step 3.
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2.3 Virtual PAD Patients’ BPW Data Generation

2.3.1 Transmission Line Model

We use the simulation model used in early work[34],[35] to generate blood
pressure waveform data. This model combines the modified Noordergraaf’s 55
segments arterial model[36] and transmission line model. The model simulates blood
flow and blood pressure with blood vessel parameters based on hemodynamics.

Blood pressure and blood flow can be calculated using the following equations.
Poutiet = Pinter (1 + r‘)/(e]/l + Fe"’l)
Fouttet = Finletf(1 - [‘)/(eyl - Fe"”l)

where y is a propagation coefficient that is determined by the geometric and
physical properties of the artery. T' is a reflection coefficient that is determined by
the branching and impedance of blood vessels. Also, [ represents the length of each
blood vessel segment. Blood pressure and blood flow are connected by input

impedance, as shown in the following equation.

(e" +Te™)
Pintet = FintetZinput = FintetZc m

Therefore, the blood pressure or blood flow in all branches can be calculated by
using the blood pressure or blood flow data in one blood vessel, using above

equations.
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Table 2 - 1 Number and name of 55 segments of arterial tree

Segment Arterial segment name Segment Arterial segment name

number number
1 Ascending aorta 29 Abdominal aorta IIT
2 Aortic arch I 30 Left renal
3 Brachiocephalic 31 Abdominal aorta IV
4 Right subclavian | 32 Inferior mesenteric
5 Right carotid 33 Abdominal aorta V
6 Right vertebral 34 Right common iliac
7 Right subclavian 11 35 Right external iliac
8 Right radius 36 Right internal iliac
9 Right ulna I 37 Right deep femoral
10 Aortic arch 1T 38 Right femoral
11 Left carotid 39 Right external carotid
12 Thoracic aorta I 40 Left internal carotid
13 Thoracic aorta Il 41 Right posterior tibial
14 Intercostals 42 Right anterior tibial
15 Left subclavian 1 43 Right interosseous
16 Left vertebral 44 Right ulnar II
17 Left subclavian 11 45 Left ulnar II
18 Left ulnar I 46 Left interosseous
19 Left radius 47 Right internal carotid
20 Celiac I 48 Left external carotid
21 Celiac I 49 Left common iliac
22 Hepatic 50 Left external iliac
23 Splenic 51 Left internal iliac
24 Gastric 52 Left deep femoral
25 Abdominal aorta I 53 Left femoral
26 Superior mesenteric 54 Left posterior tibial
27 Abdominal aorta II 55 Left anterior tibial
28 Right renal
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2.3.2 Setting for Virtual PAD Patients
For simulating virtual PAD patients’ BPWs using multibranch transmission line

model, we consider various virtual patients which has different vascular parameters.

The geometric and physical vascular parameters that have a great influence on
blood pressure or blood flow are arterial radius (R), length (L), Young's modulus (E),
wall thickness(T), and peripheral resistance (PR). Combination of these five major
vascular parameters can be used to describe a variety of people. In addition, it is
possible to generate blood pressure waveforms of various people by putting a

combination of the five blood vessel parameters as inputs to the simulation model.

According to the previous study [8], the values of the major vascular parameters
were set as 5 representative values of the normal category, respectively. Therefore,
a total of 3,125 individuals were generated through a combination of each parameter

(575).

To reflect uncertainties in measurement of BPWSs, we set the main vascular
parameters coefficient of variation as 0.01. Therefore, one patient’s simulated BPWs
can be vary from simulation to simulation. We simulate 10 BPWs with uncertainty
for each patient. Figure 2.7 shows the schematic diagram of virtual PAD patients

generation considering inter and intra individualities.
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Figure 2-7 The schematic diagram of virtual PAD patients generation

We generated blood pressure waveforms of normal individuals and PAD patients
who had PAD in 5 representative frequent PAD sites. PAD is described as the
situation in which the radius of the PAD-affected artery is reduced. The severity of
the disease was defined as a decreased radius, as compared to the original radius. For
example, if the size of the original radius is reduced by 60%, the severity is defined

as 60%.

2.3.3 Data Description

We generate virtual PAD patients by implementing 6 disease statuses (1 normal
and 5 representative PAD status) to virtual individuals made by combinations of 5
main vascular parameters. These virtual PAD patients’ arm and ankles BPWs

generated through multibranch transmission line model.
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Among 3,125 virtual individuals, 3,000 individuals are severe PAD patients, 62
individuals are mile PAD patients, and 63 individuals set mild PAD patients for
validating diagnosis model performance. We assumed that each individual has only
one randomly selected PAD disease status. Then, 10 BPWs of each patient were
measured. Here, Severe PAD patients’ severity range is 50-60% and mild PAD
patients’ severity range is 20-30%. The Severity level is distributed randomly in a

set severity range.

Test Dataset consists of specific severity levels (20, 30, 40, 50%). For validating
generalized performance of diagnosis model, each severity test data is composed of
all possible case of virtual PAD patients. In other words, each individual virtual PAD

patients can have 6 PAD disease statuses.

Table 2-2 shows the summary of the generated datasets which is used for

training(source, target, and validation data).

Table 2 - 2 Training and test dataset

Training
Dataset

Severe PAD Patients
(Source)

Mild PAD Patients
(Target)

Mild PAD Patients
(Validation)

Patient
Number

3,000

62

63

Severity
Level

50 ~ 60 %

20~30 %

20~30 %

PAD
Location
(Patient
Number)

496 522 469 523 478 513

33 49 50 53

55

55
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2.4 Overall Procedure

Figure 2-8 shows the overall flowchart of the our work. The flowchart is largely
composed of 3 step: data generation, diagnosis model training, and diagnosis model

testing.

The first step of data generation is virtual PAD patient generation considering
inter-individuality and PAD locations. The generated virtual PAD patients are
assigned to the source and target domains. Then, generated virtual PAD patients are
used as an input to the transmission line model considering intra -individuality for
simulating the BPWs. Train, validation, and test dataset are generated by doing this

procedure.

In the training step, after initializing the model, learning is performed according
to the training step described in 2.2.2. At first, the model is trained to maximize
classification performance on source domain data. Then, the two classifiers are
trained to maximize target domain discrepancy while the feature extractor’s weights
are fixed. The feature extractor is trained to minimize target domain discrepancy
while two classifiers are frozen in the last step. Here, step 3 is N times repeated for

one minibatch.

In the last diagnosis model testing step, we test the model which shows the lowest
loss in the training. Here we use a test dataset having all six PAD states for validating

the PAD diagnosis accuracy.



Data Generation

Virtual Patient Generation Through Parameter Combination

A

Assign Virtual Patients to Source and Target Domain

A

Data Simulation

y y
Source Domain Target Domain
( Severity 50 — 60% ) ( Severity 10 — 20% )
| ]
v

Training Dataset

Diagnosis Model Training

A

Diagnosis Model Construction and Parameter Initialization

P 4

Training Step
Step 1) Classification Task Learning with Only Source Domain
Step 2) Classifier Learning with A Fixed Generator
Step 3) Generator Learning with two Auxiliary Tasks for N times

4

Diagnosis Model Testing

A

S — Maximum Epoch? — ]

Trained Diagnosis Model

A

Test with Testing Data

A

Figure 2-8 Flowchart of the proposed method
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Chapter 3. Results
3.1 Compared Methods

To verify the effectiveness of our proposed method, the diagnosis performance
of other CNN-based learning methods were compared: (1) vanilla supervised
learning method with only source domain data (2) vanilla supervised learning
method with source and target domain data. (3) supervised domain adaptation
learning method with source and target domain data [14]. (4) proposed learning
method with source wand target domain data. Above 4 learning methods are trained
with CNN architecture shown in figure 2.5. We trained 100 models for each learning

method.

3.2 Results

Table 3-1 shows the average diagnosis accuracy of four learning methods. Also,
figure 3-1 shows the bar plots with average diagnosis performance of four learning
methods. Figure 3-2 compares the latent space of four methods via t-distributed
Stochastic Neighbor Embedding (t-SNE)[37]. Via gradient-weighted class activation
mapping (Grad CAM), figures 3-3 and 3-4 present feature importance by disease
severity levels of diagnosis model with domain adaptation and without domain
adaptation [38]. Figure 3-5 compares the confusion matrix of (a) without domain
adaptation model with 30% severity test dataset, (b) without domain adaptation
model with 50% severity test dataset, (c) with domain adaptation model with 30%

severity test dataset, (d) with domain adaptation model with 50% severity test dataset
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Table 3 - 1 Diagnosis results comparison of four learning methods

0
Leaing Accuracy (%)
Methods 30% SL 359 SL 40% SL 45% SL
Source Only 5511+ 556 3579+6.83 5623:569 83.31+5.90
(No DA)
Source * Targel 5334438 72194354 7842:264 91.73+3.71
(No DA)
Source + Target
with SAgS 73924502 82164542 89.71+595 9398+7.02
Proposed 89.41+2.65 93.88:2.28 96.33:2.73 97.18:3.45
method

- Source Only

Source + Target

- Source + Target with SA &S
Proposed

100 |

80 |

(o2}
o
1

I
o

Accuracy (%)

N
o
1

30

35

40
PAD Severity Level (%)

45

Figure 3-1 Average diagnosis accuracy of each method
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Figure 3-5 Confusion matrix of (a) vanilla supervised learning method with 30% severity level,

(b) vanilla supervised learning method with 50% severity level, (c) proposed

learning method tested with 30% severity level, (d) proposed learning method tested

with 50% severity level.
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Chapter 4. Discussion
4.1 Efficacy of Proposed Learning Method

From table 3-1 and figure 3-1, our proposed model shows the highest
classification performance in all severity of test datasets. We can find that the lower
the test data’s severity level, the lower the diagnosis accuracy of models. This is
because the lower the severity level, the larger the difference of data distribution with
source domain data. Therefore, the domain adaptation applied models ((3), (4))

outperform the two vanilla models ((1), (2)), which do not contain domain adaptation.

We can understand the performance difference of models through feature space
visualization via t-Stochastic Neighbor Embedding. Figure 3-2 (a), (b) shows the
feature space of vanilla CNN models ((1), (2)) in which domain adaptation is not
applied. It is hard to make a cluster and classify the class of the target domain data.
The diagnosis performance is relatively bad because these two models’ features are
embedded poorly in the feature space. On the other hand, model (3)’s feature space
is much more straightforward than (1) and (2). As shown in figure 3-2 (c), source
and target domain data with the same class are clustered well in the latent space.
Also, it is easy to differentiate the cluster’s class by looking at the feature space.
Model (4)’s feature space is shown in figure 3-2 (d). In this figure, the cluster looks
clear, and the distance between each cluster is appropriate. Therefore, we can easily
identify the data’s class by looking at the latent space. Thus, we can infer that the
diagnosis performances of models (3),(4) are superior to that of models (1) and (2)

by the figure 3-2.



4.2 Effects of Domain Adaptation

To understand how domain adaptation affects the diagnosis performance of the
model, Grad CAM is applied to model (2) and model (4), to which domain adaptation
is not applied and applied, respectively. Figure 3-3 and 3-4 are the results showing
which places are considered essential when predicting the class of each severity level
test dataset by applying Grad CAM to models 4 and 2, respectively. In the case of
model 4, to which Domain adaptation is applied, classification is performed focusing
on the same place for each class even if the severity of the test data varies. On the
other hand, in the case of model 2, to which domain adaptation is not applied, the
model focus on 49 and 50 artery PAD differs depending on the severity. We can
estimate that inconsistency also affects the classification results from the confusion

matrix shown in figure 3-5

In Figure 3-5, it can be confirmed that the conformation matrix (b), (d) of the two
models for the 50% Severity test dataset is very clean. On the other hand, confusion
matrix (a), (c) of the two models for the 30% severity test dataset are somewhat
massive. First, it may be seen from (a) that many misclassifications are made for 49
and 50 artery PADs. In other words, there are many misclassifications of the actual
49 and 50 artery PAD data, and the actual 53 artery PAD is misclassified as well. On
the other hand, in the case of (c), to which domain adaptation is applied, this
misclassification has been significantly reduced. The model misclassified normal
and 49 arteries PAD, 49 and 50 artery PAD. For this part, misclassification may be

performed due to measurement uncertainty in data sets with low severity.

Figures 3-3 and 3-4 show that when domain adaptation is applied, characteristics
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that remain unchanged according to the severity of the disease are extracted. In
addition, through the analysis of Figure 3-5, it was confirmed that these

characteristics had a positive effect on disease classification.

4.3 Potential for Practical Applicability

As discussed in 4.1, the diagnostic performance of the proposed method is
superior to that of other models. In addition, patients with a 30% severity level can
be diagnosed with high accuracy about 90%. Compared to the other models, the
diagnostic accuracy does not differ much as the severity level decreases. As
discussed in 4.2, this is because features irrelevant to the severity of the disease are

selected and used for classification in the model (4).

According to previous studies, when the severity of PAD reaches around 60%,
patients feel symptoms. ABI can be effectively applied to detect PAD from this point
on. However, it is known that there are problems in terms of accuracy and reliability
in diagnosing PAD at a severity level of less than 50% with ABI. On the other hand,
our proposed deep learning-based PAD diagnostic model can diagnose both severe
patients and 30% severity level patients with high accuracy above 90%. In other
words, it is possible to diagnose early patients with PAD that cannot be detected with
the conventional diagnostic model ABI. Therefore, if the proposed method is used
for an actual diagnosis, it is expected to contribute to the promotion of national health

through the early diagnosis of PAD.
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Chapter 5. Conclusions
5.1 Summary and Contributions

This paper proposes a deep learning-based domain adaptation method for
identifying PAD locations under various severity levels. To minimize domain
discrepancy resulted from disease severity difference while utilizing few labeled
target domain data, we propose auxiliary tasks-assisted maximum classifier
discrepancy for supervised domain adaptation. The proposed method was
demonstrated using virtual patients' BPWSs data considering domain discrepancy and
data imbalance. The results show that the proposed method offers the best accuracy
for PAD location identification. The t-SNE results showed that our proposed method
exhibits distinctive feature space. Moreover, using Grad CAM, we investigated the
input importance and found that our proposed model can extract domain invariant

features.

Contribution 1: First research for identifying PAD occurring locations

This is the first study for identifying PAD occurring locations. Previous studies
have focus on the disease detection at one artery location. Many researchers studied
about disease severity level estimation. However, it is more critical for applying
practical health screening to detect PAD on PAD frequently occurring arteries than
PAD disease severity regression. Therefore, we developed a deep learning-based
PAD location diagnostic model based on the fact that when PAD occurs, blood
pressure waveforms are deformed. If these diagnostic methods are actually applied,
they can be used for primary care, such as the health screening system, to promote

national health. In addition, it is expected that it will be able to preoccupy the digital
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healthcare market by installing the proposed method to wearable devices.

Contribution 2: Auxiliary tasks-assisted MCD for supervised domain

adaptation

Unlike adversarial domain adaptation, MCD is an unsupervised learning method
that learns task-specific decision boundaries. However, since label information of
the target domain is given in the faced problem, a supervised learning method is
needed to use the information efficiently. Therefore, two additional tasks were added
to utilize most of the label information of the target domain while maintaining the
advantage of learning task-specific decision boundaries. As a result, the domain
disparity decreased, and the classification performance increased, efficiently solving

the problems faced.

Contribution 3: Development of robust PAD diagnosis model considering

practical issues (domain discrepancy, data imbalance)

There are many things to consider for applying the PAD diagnosis model: 1)
Inter- individuality, 2) intra individuality, 3) domain discrepancy 4) data imbalance.
We consider all of these things in the data generation step. Therefore, our proposed
method suggests the feasibility of a generalized PAD diagnosis model considering

practical issues.

5.2 Suggestions for Future Research

Based on the research conducted in this work, we can present future research in

three directions.
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Issue 1: Applying the suggested method to other cardiovascular diseases.

We developed a new supervised learning method by adding two auxiliary tasks
to the existing MCD method. Our proposed method can be applied to diagnose
various cardiovascular diseases that can be diagnosed using pulse waveform analysis.
For example, it can be applied to Abdominal aortic aneurysms, where the blood
pressure waveform measured at the distal end changes when it occurs. It is expected
to solve the problem of domain discrepancy and data imbalance by applying the

proposed method to these cardiovascular diseases.

Issue 2: Verification of the proposed method based on real patient data in

hospital.

Although several realistic situations such as inter and intra individualities,
domain discrepancy, and data imbalance have been considered, there will be more
significant uncertainty in actual patient data. Therefore, before applying the
proposed method to primary care, it is necessary to verify the trained diagnosis
model with actual patient data. When this verification is completed, various studies

can be conducted to apply the technology to actual medical diagnoses.

Issue 3: Domain adaptation: Simulation data as a source and real patient data

as a target.

Obviously, there will be a difference in data distribution between actual patient
data and simulation data acquired in the transmission line model. We can acquire a
blood pressure waveform of a virtual patient that is close to infinity. Therefore,

setting the verified simulation data to the source domain and the actual patient data
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to the target domain will allow us to learn a PAD diagnostic model with generalized

performance.
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FAlo]: AP} AZ(Cardiovascular Disease)
Ux59 A3k (Peripheral Arterial Disease)
33 HA (Pulse Waveform Analysis)
9 #Yd (Deel Learning)

Ev]¢l A2 (Domain Adaptation)

g wW: 2020-25983
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