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Abstract 

Deep Learning-Based Domain Adaptation Method for  

Identifying Peripheral Arterial Disease Locations 

under Various Severity Levels 

In Chan Lee 

Department of Mechanical Engineering 

The Graduate School 

Seoul National University 

  

This paper's primary purpose is to develop a blood pressure waveform (BPW) 

based deep learning diagnosis model for identifying peripheral arterial disease (PAD) 

on frequent PAD occurrence arteries. Two issues make it hard to obtain a 

generalized PAD diagnosis model with a data-driven approach: 1) domain 

discrepancy resulted from the differences of disease severity and occurring location, 

2) data imbalance resulted from the symptomless characteristic of mild PAD. To 

train a generalized PAD diagnosis model considering practical issues, we propose 

auxiliary tasks-assisted maximum classifier discrepancy for supervised domain 

adaptation. The proposed model is validated using virtual patients' BPWs generated 

from the transmission line model under various disease severity levels. The results 

show that the proposed model has a superior performance for identifying PAD 

locations under various disease severity levels. This finding indicates the feasibility 

of the proposed diagnosis model to real hospitals for identifying the PAD locations 

in the lower extremities under various disease severity. 
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PAD Peripheral Arterial Disease 

ABI Ankle Brachial Index 

ML Machine Learning 

DL Deep Learning 

BPW Blood Pressure Waveform 

MCD Maximum Classifier Discrepancy 

CNN Convolutional Neural Network 

t − SNE t-Stochastic Neighbor Embedding 

Grad CAM Gradient-weighted Class Activation Mapping  

DA Domain Adaptation 

SA Semantic Alignment 

S Seperation 
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Chapter 1. Introduction     

1.1 Motivation 

A disease related to the heart or blood vessels is called cardiovascular disease. 

Among cardiovascular diseases, those in the arms or legs are called peripheral 

arterial disease (PAD). PAD is a disease in which plaque accumulates in blood 

vessels, reducing the amount of blood flow through the blood vessels. 

PAD affects 13% of the western population, mostly over 60 years of age [1]-[3]. 

Because PAD mainly affects elder people, it is expected that PAD will prevail more 

in the near future due to societal aging. One crucial characteristic of PAD is that it is 

initially asymptomatic. If symptoms develop, the cure is complex, and mortality 

increases rapidly [4]. Therefore, it is desirable to address PAD at an early stage 

through early diagnosis and treatment. 

Currently, the most-used method for PAD diagnosis is the Ankle-Brachial Index 

(ABI) [5],      [6]. ABI is the ratio of the maximum blood pressure of the brachial 

artery (in the arm) and blood pressure in the patient’s ankle. PAD can be diagnosed 

by comparing this index with a reference value. However, ABI is often criticized for 

its limited accuracy and robustness [7], [8].  

Thanks to the development of artificial neural networks, we can train various 

models with a data-driven approach [9]-[13]. To overcome the weaknesses of ABI, 

many researchers have used machine learning (ML) and deep learning (DL) 

approaches based on pulse waveform analysis (PWA) [14]-[17]. PAD alters the 

propagation and reflection characteristics of the artery affecting the shape of arterial 
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pulse wave signal (e.g., blood pressure waveform (BPW) and blood flow waveform). 

Thus, we can obtain information about PAD by analyzing the pulse waveforms. 

Because pulse waveforms have more information than ABI, a discrete value made 

by pulse waveform, we can make a more robust and accurate diagnosis result than 

the conventional ABI method. 

Prior research has studied PAD diagnosis by combining deep learning and pulse 

waveform analysis [18]. However, in this study, the diagnosis was carried out only 

for abdominal PAD; thus, there is a limitation in that this method cannot diagnose 

frequently occurring PAD lesions in areas other than the abdomen. For applying 

PAD screening in public health, it is more important to apprise whether PAD occurs 

or not. 

There are two problems to learn diagnosis model with data-driven approach in 

real hospitals: 1) a distribution difference of data by the disease location and severity 

levels [19], [20] and 2) data imbalance between severe and mild PAD patients due 

to symptomless characteristic. A BPW measured at the peripheral part of the artery 

is changed by the PAD occurring locations and the disease severity levels. Moreover, 

it is hard to obtain mild PAD patients’ BPW data resulting from the symptomless 

characteristic in the early stage of PAD. In contrast, the severe PAD patients’ data is 

relatively easy to obtain. For these reasons, it is hard to train a diagnosis model with 

generalization performance using a naïve data-driven model. 

This paper proposes a generalized PAD diagnosis learning method to train a 

model to screen PAD on frequently PAD occurring lesions considering real hospital 

situations. We apply a domain adaptation approach to extract domain invariant 
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features to disease location and severity levels. Then, we validate the generalized 

diagnosis performance with virtual PAD patients’ BPW generated by the 

transmission line model considering inter and intra individualities. 

1.2 Structure of the Thesis 

This paper is organized as follows. Section 2 insists on the limitation of the naïve 

data-driven approach for PAD diagnosing. Then, it describes the main idea of our 

proposed method. In addition, there is an explanation of our data generation method 

for describing practical problem situations. Section 3 shows the validation results of 

our proposed method. Then, section 4 discusses the efficacy of our proposed method. 

Finally, section 4 concludes this research with suggestions for future works.  
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Chapter 2. Materials and Methods 

2.1 Problem Definition of naïve data-driven approach  

The PAD location and severity levels can alter the measure BPW at the peripheral 

part of an artery. Thus, though PAD occurs at the same artery location, the BPW data 

can differ according to PAD severity. In other words, there is a domain discrepancy 

by PAD severity level. 

If there is a domain discrepancy between two datasets, the model trained with a 

data-driven approach shows poor classification performance on the target domain 

data, which does not appear in the training step. This is because the model trains the 

classifier to optimize source domain data. To minimize the performance degradation 

resulting from domain discrepancy, many researchers have studied domain 

adaptation, extracting domain invariant features to obtain a generalized model. 

Inevitably, there is a domain discrepancy in actual hospital data because each 

patient has their own vascular parameters and severity levels. Moreover, it is hard to 

derive mild patients’ BPW data because of the symptomless characteristic of PAD. 

In contrast, it is easy to obtain severe patients’ BPW data. That is, there are domain 

discrepancy and data imbalance problems at the same time in real hospitals. Thus, it 

is hard to make a generalized PAD diagnosis model with a data-driven approach 

because of domain discrepancy and data imbalance. This paper focuses on 

developing a robust DL-based PAD location identification method considering real 

hospital situations using BPWs. 

 



5 
 

 

 

2.2 Proposed Method for Training Generalized PAD 

Diagnosis Model  

2.2.1 Domain Adaptation 

If there is a domain discrepancy between two datasets (train and test dataset), the 

model, which is trained by a data-driven approach, shows poor diagnosis 

performance on the test dataset [21]-[24]. The model optimizes to classify the train 

dataset as shown in figure 2-1.  

At first, we define domain and class for a clear understanding. The PAD severity 

level is the domain. Therefore, severe PAD patients’ data is source domain data 

mainly utilized to train the classification task. In contrast, the target domain is Mild 

PAD patients. Next, the class is PAD occurring locations because our task is to 

identify PAD lesions. Thus, class is PAD occurring arteries such as Thigh and Calf. 

In the future description, domain differences are expressed in color, and data classes 

are expressed in the shape of the data. 

 

Figure 2-1 Conceptual diagram of domain discrepancy and domain adaptation 

If there is a domain discrepancy between two datasets (train and test dataset), the 

model, which is trained by a data-driven approach, shows poor diagnosis 

performance on the test dataset [21]-[24]. The model optimizes to classify the train 

dataset as shown in figure 2-1.  
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At first, we define domain and class for a clear understanding. The PAD severity 

level is the domain. Therefore, severe PAD patients’ data is source domain data 

mainly utilized to train the classification task. In contrast, the target domain is Mild 

PAD patients. Next, the class is PAD occurring locations because our task is to 

identify PAD lesions. Thus, class is PAD occurring arteries such as Thigh and Calf. 

In the future description, domain differences are expressed in color, and data classes 

are expressed in the shape of the data.  

2.2.2 Maximum Classifier Discrepancy 

Unlike the adversarial-based domain adaptation method, maximum classifier 

discrepancy (MCD) is known for learning task-specific classifiers [31]. Thus, MCD 

can learn task-relevant classifiers while extracting domain invariant features. 

MCD is a representative unsupervised domain adaptation method considering 

task-specific decision boundaries. As shown in figure 2-2, the MCD learning method 

needs a model consists of one feature extractor and two classifiers for manipulating 

distribution discrepancy.  

 

Figure 2-3 shows the overall training procedure of MCD. As can be seen in the 

G

C1

C2

Output: 

Predicted Classes 

(PAD Locations)

Input: 

BPWs under 

Various Severity 

Levels 

Figure 2-2 The architecture of maximum classifier discrepancy 
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figure, the MCD learning method is composed of three steps.  
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Step 1: Training on source domain data. As the first step of the MCD, the feature 

extractor and two classifiers are trained to classify source domain data well. So, after 

this step, the model can appropriately classify source domain data.  

 

𝐿(𝑋𝑠 , 𝑇𝑆) = −𝐸𝑥𝑠,𝑦𝑠~(𝑋𝑠,𝑌𝑠)∑l[𝑘=𝑦𝑠]𝑙𝑜𝑔𝑝(𝑦|𝑥𝑠)

𝐾

𝑘=1

 (2.1) 

Step 2: Maximizing domain discrepancy. In this step, only two classifier’s 

weights are updated while the feature extractor’s weights are fixed. Two classifiers 

are trained to predict different classes of target domain data while learning to 

distinguish the class of the source domain data. In other words, two classifiers are 

trained to maximize the discrepancy regions in which two classifiers predict different 

classes about target domain data. Target samples that two classifiers predict 

differently can have domain-related features extracted by the feature generator.  

𝑚𝑖𝑛
𝐹1,𝐹2

𝐿(𝑋𝑠, 𝑌𝑠) − 𝐸𝑥𝑡~𝑋𝑡{𝑑(𝑝1(𝑦|𝑥𝑡), 𝑝2(𝑦|𝑥𝑡)} (2.2) 

Step 3: Minimizing domain discrepancy. For extracting domain invariant but 

optimized for classification features, only the feature extractor is updated while two 

classifiers’ weights are fixed. Then, the feature extractor is trained to extract features 

that can minimize the discrepancy. By doing so, the embedded features of target 

domain data are much closer to source domain data. Moreover, this learning step 

repeats N times in the same batch for deriving feature   extractor which can extract 

domain invariant features.  

𝑚𝑎𝑥
𝐺

𝐸𝑥𝑡~𝑋𝑡{𝑑(𝑝1(𝑦|𝑥𝑡), 𝑝2(𝑦|𝑥𝑡)} (2.3) 
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2.2.3 Proposed Methods 

MCD is an unsupervised domain adaptation approach, which cannot be applied 

to the faced problem. In our faced problem, we have few labeled mild PAD patients’ 

data and a relatively large amount of labeled severe PAD patients’ data. Because we 

have labeled data in both domains, our problem must be solved by a supervised 

learning method, not unsupervised. 

For applying the MCD to our problem while taking advantage of a task-specific 

classifier, we add two auxiliary tasks: semantic alignment and separation loss [32]. 

Semantic alignment loss can measure the distance between features with the same 

label but in different domains. Thus, if we minimize this loss, we can closely embed 

data features with the same class but different domains. Semantic alignment loss is 

expressed in equation (2.4) 

𝐿𝑆𝐴(𝑔) = ∑𝑑 (𝑝(𝑔(𝑋𝑎
𝑠)), 𝑝(𝑔(𝑋𝑎

𝑡)))

𝐶

𝑎=1

 (2.4) 

On the other hand, separation loss can measure the distance between features with 

different labels but in the same domain. Therefore, we can faraway embed data 

features with the same domain but different classes. If we combine these two loss 

terms, we can expect the synergy effect which increases classification performance 

as well as decreases domain discrepancy (shown in figure 2-4.). 

𝐿𝑆(𝑔) = ∑ 𝑘 (𝑝(𝑔(𝑋𝑎
𝑠)), 𝑝 (𝑔(𝑋𝑏

𝑡)))

𝑎,𝑏|𝑎≠𝑏

 (2.5) 
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Our proposed loss function is shown in equation (2.6) 

𝑚𝑖𝑛
𝐺

𝑑(𝑝1(𝑦|𝑥𝑡), 𝑝2(𝑦|𝑥𝑡)) − 𝑤 ∗ 𝐿𝑆𝐴(𝑔) + (1 − 𝑤) ∗ 𝐿𝑆(𝑔) (2.6) 

The first term of equation (2.6) is original MCD’s feature extraction task to 

minimize the domain discrepancy. Additionally, we add weighted semantic 

alignment and separation loss to original MCD’s loss for increasing classification 

performance while decreasing domain discrepancy. 

For applying the proposed learning method to our task, we utilize CNN 

architecture composed of a modified Alexnet structure [15]. Figure 2-5 shows the 

CNN architecture used in our work. This architecture predicts the PAD locations 

based on the 2ch input composed of blood pressure waveforms measured at arm and 

ankle. We use an RMSprop optimizer to train our model with a 0.00005 initial 

learning rate. Also, we set the weight between semantic alignment and separation 

loss as 0.1 and the number of repetitions as 8 in step 3. 
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ReLU

FC-1 x 6

PAD Location

Input : 2 Ch PW

CONV-1 (1,3) x 96

ReLU

CONV-1 (1,3) x 256

ReLU

Batch Norm 1D

CONV-1 (1,3) x 384

ReLU

Batch Norm 1D

CONV-1 (1,3) x 384

ReLU

Batch Norm 1D

CONV-1 (1,3) x 384

ReLU

Batch Norm 1D

Arm Ankle

Figure 2-5 A CNN architecture for PAD diagnosis 
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2.3 Virtual PAD Patients’ BPW Data Generation  

2.3.1 Transmission Line Model  

We use the simulation model used in early work[34],[35] to generate blood 

pressure waveform data. This model combines the modified Noordergraaf’s 55 

segments arterial model[36] and transmission line model. The model simulates blood 

flow and blood pressure with blood vessel parameters based on hemodynamics. 

Blood pressure and blood flow can be calculated using the following equations. 

𝑃𝑜𝑢𝑡𝑙𝑒𝑡 = 𝑃𝑖𝑛𝑙𝑒𝑡(1 + Γ)/(𝑒𝛾𝑙 + Γ𝑒−𝛾𝑙) 

𝐹𝑜𝑢𝑡𝑙𝑒𝑡 = 𝐹𝑖𝑛𝑙𝑒𝑡(1 − Γ)/(𝑒𝛾𝑙 − Γ𝑒−𝛾𝑙) 

where 𝛾 is a propagation coefficient that is determined by the geometric and 

physical properties of the artery. Γ is a reflection coefficient that is determined by 

the branching and impedance of blood vessels. Also, 𝑙 represents the length of each 

blood vessel segment. Blood pressure and blood flow are connected by input 

impedance, as shown in the following equation. 

𝑃𝑖𝑛𝑙𝑒𝑡 = 𝐹𝑖𝑛𝑙𝑒𝑡𝑍𝑖𝑛𝑝𝑢𝑡 = 𝐹𝑖𝑛𝑙𝑒𝑡𝑍𝐶
(𝑒𝛾𝑙 + Γ𝑒−𝛾𝑙)

(𝑒𝛾𝑙 − Γ𝑒−𝛾𝑙)
 

Therefore, the blood pressure or blood flow in all branches can be calculated by 

using the blood pressure or blood flow data in one blood vessel, using above 

equations. 
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Figure 2-6 Arterial tree 
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Table 2 - 1 Number and name of 55 segments of arterial tree 

Segment 

number 
Arterial segment name 

Segment 

number 
Arterial segment name 

1 Ascending aorta 29 Abdominal aorta Ⅲ 

2 Aortic arch Ⅰ 30 Left renal 

3 Brachiocephalic 31 Abdominal aorta Ⅳ 

4 Right subclavian Ⅰ 32 Inferior mesenteric 

5 Right carotid 33 Abdominal aorta Ⅴ 

6 Right vertebral 34 Right common iliac 

7 Right subclavian Ⅱ 35 Right external iliac 

8 Right radius 36 Right internal iliac 

9 Right ulna Ⅰ 37 Right deep femoral 

10 Aortic arch Ⅱ 38 Right femoral 

11 Left carotid 39 Right external carotid 

12 Thoracic aorta Ⅰ 40 Left internal carotid 

13 Thoracic aorta Ⅱ 41 Right posterior tibial 

14 Intercostals 42 Right anterior tibial 

15 Left subclavian Ⅰ 43 Right interosseous 

16 Left vertebral 44 Right ulnar Ⅱ 

17 Left subclavian Ⅱ 45 Left ulnar Ⅱ 

18 Left ulnar Ⅰ 46 Left interosseous 

19 Left radius 47 Right internal carotid 

20 Celiac Ⅰ 48 Left external carotid 

21 Celiac Ⅱ 49 Left common iliac 

22 Hepatic 50 Left external iliac 

23 Splenic 51 Left internal iliac 

24 Gastric 52 Left deep femoral 

25 Abdominal aorta Ⅰ 53 Left femoral 

26 Superior mesenteric 54 Left posterior tibial 

27 Abdominal aorta Ⅱ 55 Left anterior tibial 

28 Right renal   

 

 

 

 

 

 



17 
 

 

 

2.3.2 Setting for Virtual PAD Patients  

For simulating virtual PAD patients’ BPWs using multibranch transmission line 

model, we consider various virtual patients which has different vascular parameters. 

The geometric and physical vascular parameters that have a great influence on 

blood pressure or blood flow are arterial radius (R), length (L), Young's modulus (E), 

wall thickness(T), and peripheral resistance (PR). Combination of these five major 

vascular parameters can be used to describe a variety of people. In addition, it is 

possible to generate blood pressure waveforms of various people by putting a 

combination of the five blood vessel parameters as inputs to the simulation model. 

According to the previous study [8], the values of the major vascular parameters 

were set as 5 representative values of the normal category, respectively. Therefore, 

a total of 3,125 individuals were generated through a combination of each parameter 

(5^5). 

To reflect uncertainties in measurement of BPWs, we set the main vascular 

parameters coefficient of variation as 0.01. Therefore, one patient’s simulated BPWs 

can be vary from simulation to simulation. We simulate 10 BPWs with uncertainty 

for each patient. Figure 2.7 shows the schematic diagram of virtual PAD patients 

generation considering inter and intra individualities.  



18 
 

 

 

We generated blood pressure waveforms of normal individuals and PAD patients 

who had PAD in 5 representative frequent PAD sites. PAD is described as the 

situation in which the radius of the PAD-affected artery is reduced. The severity of 

the disease was defined as a decreased radius, as compared to the original radius. For 

example, if the size of the original radius is reduced by 60%, the severity is defined 

as 60%. 

2.3.3 Data Description 

We generate virtual PAD patients by implementing 6 disease statuses (1 normal 

and 5 representative PAD status) to virtual individuals made by combinations of 5 

main vascular parameters. These virtual PAD patients’ arm and ankles BPWs 

generated through multibranch transmission line model. 

Figure 2-7 The schematic diagram of virtual PAD patients generation 

3,125
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Among 3,125 virtual individuals, 3,000 individuals are severe PAD patients, 62 

individuals are mile PAD patients, and 63 individuals set mild PAD patients for 

validating diagnosis model performance. We assumed that each individual has only 

one randomly selected PAD disease status. Then, 10 BPWs of each patient were 

measured. Here, Severe PAD patients’ severity range is 50-60% and mild PAD 

patients’ severity range is 20-30%. The Severity level is distributed randomly in a 

set severity range. 

Test Dataset consists of specific severity levels (20, 30, 40, 50%). For validating 

generalized performance of diagnosis model, each severity test data is composed of 

all possible case of virtual PAD patients. In other words, each individual virtual PAD 

patients can have 6 PAD disease statuses. 

Table 2-2 shows the summary of the generated datasets which is used for 

training(source, target, and validation data). 

 

 

  

Training 

Dataset 

Severe PAD Patients 

(Source) 

Mild PAD Patients 

(Target) 

Mild PAD Patients 

(Validation) 

Patient 

Number 
3,000 62 63 

Severity 

Level 
50 ~ 60 % 20 ~ 30 % 20 ~ 30 % 

PAD 

Location 

(Patient 

Number) 

N 33 49 50 53 55 N 33 49 50 53 55 N 33 49 50 53 55 

496 522 469 523 478 513 9 10 12 15 6 9 17 10 7 9 12 7 

Table 2 - 2 Training and test dataset 
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2.4 Overall Procedure  

Figure 2-8 shows the overall flowchart of the our work. The flowchart is largely 

composed of 3 step: data generation, diagnosis model training, and diagnosis model 

testing.  

The first step of data generation is virtual PAD patient generation considering 

inter-individuality and PAD locations. The generated virtual PAD patients are 

assigned to the source and target domains. Then, generated virtual PAD patients are 

used as an input to the transmission line model considering intra -individuality for 

simulating the BPWs. Train, validation, and test dataset are generated by doing this 

procedure. 

In the training step, after initializing the model, learning is performed according 

to the training step described in 2.2.2. At first, the model is trained to maximize 

classification performance on source domain data. Then, the two classifiers are 

trained to maximize target domain discrepancy while the feature extractor’s weights 

are fixed. The feature extractor is trained to minimize target domain discrepancy 

while two classifiers are frozen in the last step. Here, step 3 is N times repeated for 

one minibatch. 

In the last diagnosis model testing step, we test the model which shows the lowest 

loss in the training. Here we use a test dataset having all six PAD states for validating 

the PAD diagnosis accuracy.  
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Diagnosis Model Construction and Parameter Initialization

Training Step

Step 1) Classification Task Learning with Only Source Domain

Step 2) Classifier Learning with  A Fixed Generator

Step 3) Generator Learning with two Auxiliary Tasks for N times

Output Diagnosis Results

Test with Testing Data

Maximum Epoch?

Trained Diagnosis Model

Data Generation

Diagnosis Model Training

Virtual Patient Generation Through Parameter Combination

Assign Virtual Patients to Source and Target Domain

Data Simulation 

Source Domain 

( Severity 50 – 60% )

Target Domain

( Severity 10 – 20% )

Training Dataset

Diagnosis Model Testing

Figure 2-8 Flowchart of the proposed method 
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Chapter 3. Results 

3.1 Compared Methods 

To verify the effectiveness of our proposed method, the diagnosis performance 

of other CNN-based learning methods were compared: (1) vanilla supervised 

learning method with only source domain data (2) vanilla supervised learning 

method with source and target domain data. (3) supervised domain adaptation 

learning method with source and target domain data [14]. (4) proposed learning 

method with source wand target domain data. Above 4 learning methods are trained 

with CNN architecture shown in figure 2.5. We trained 100 models for each learning 

method. 

3.2 Results 

Table 3-1 shows the average diagnosis accuracy of four learning methods. Also, 

figure 3-1 shows the bar plots with average diagnosis performance of four learning 

methods. Figure 3-2 compares the latent space of four methods via t-distributed 

Stochastic Neighbor Embedding (t-SNE)[37]. Via gradient-weighted class activation 

mapping (Grad CAM), figures 3-3 and 3-4 present feature importance by disease 

severity levels of diagnosis model with domain adaptation and without domain 

adaptation [38]. Figure 3-5 compares the confusion matrix of (a) without domain 

adaptation model with 30% severity test dataset, (b) without domain adaptation 

model with 50% severity test dataset, (c) with domain adaptation model with 30% 

severity test dataset, (d) with domain adaptation model with 50% severity test dataset 
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Table 3 - 1 Diagnosis results comparison of four learning methods  
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Figure 3-1 Average diagnosis accuracy of each method 
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Figure 3-2 Latent space visualization via t-SNE of (a) vanilla supervised learning 

method with only source domain data (b) vanilla supervised learning 

method (c) supervised domain adaptation learning method. (d) 

proposed learning method 
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Figure 3-5 Confusion matrix of (a) vanilla supervised learning method with 30% severity level, 

(b) vanilla supervised learning method with 50% severity level, (c) proposed 

learning method tested with 30% severity level, (d) proposed learning method tested 

with 50% severity level.  
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Chapter 4. Discussion 

4.1 Efficacy of Proposed Learning Method 

From table 3-1 and figure 3-1, our proposed model shows the highest 

classification performance in all severity of test datasets. We can find that the lower 

the test data’s severity level, the lower the diagnosis accuracy of models. This is 

because the lower the severity level, the larger the difference of data distribution with 

source domain data. Therefore, the domain adaptation applied models ((3), (4)) 

outperform the two vanilla models ((1), (2)), which do not contain domain adaptation. 

We can understand the performance difference of models through feature space 

visualization via t-Stochastic Neighbor Embedding. Figure 3-2 (a), (b) shows the 

feature space of vanilla CNN models ((1), (2)) in which domain adaptation is not 

applied. It is hard to make a cluster and classify the class of the target domain data. 

The diagnosis performance is relatively bad because these two models’ features are 

embedded poorly in the feature space. On the other hand, model (3)’s feature space 

is much more straightforward than (1) and (2). As shown in figure 3-2 (c), source 

and target domain data with the same class are clustered well in the latent space. 

Also, it is easy to differentiate the cluster’s class by looking at the feature space. 

Model (4)’s feature space is shown in figure 3-2 (d). In this figure, the cluster looks 

clear, and the distance between each cluster is appropriate. Therefore, we can easily 

identify the data’s class by looking at the latent space. Thus, we can infer that the 

diagnosis performances of models (3),(4) are superior to that of models (1) and (2) 

by the figure 3-2. 
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4.2 Effects of Domain Adaptation 

To understand how domain adaptation affects the diagnosis performance of the 

model, Grad CAM is applied to model (2) and model (4), to which domain adaptation 

is not applied and applied, respectively. Figure 3-3 and 3-4 are the results showing 

which places are considered essential when predicting the class of each severity level 

test dataset by applying Grad CAM to models 4 and 2, respectively. In the case of 

model 4, to which Domain adaptation is applied, classification is performed focusing 

on the same place for each class even if the severity of the test data varies. On the 

other hand, in the case of model 2, to which domain adaptation is not applied, the 

model focus on 49 and 50 artery PAD differs depending on the severity. We can 

estimate that inconsistency also affects the classification results from the confusion 

matrix shown in figure 3-5 

In Figure 3-5, it can be confirmed that the conformation matrix (b), (d) of the two 

models for the 50% Severity test dataset is very clean. On the other hand, confusion 

matrix (a), (c) of the two models for the 30% severity test dataset are somewhat 

massive. First, it may be seen from (a) that many misclassifications are made for 49 

and 50 artery PADs. In other words, there are many misclassifications of the actual 

49 and 50 artery PAD data, and the actual 53 artery PAD is misclassified as well. On 

the other hand, in the case of (c), to which domain adaptation is applied, this 

misclassification has been significantly reduced. The model misclassified normal 

and 49 arteries PAD, 49 and 50 artery PAD. For this part, misclassification may be 

performed due to measurement uncertainty in data sets with low severity. 

Figures 3-3 and 3-4 show that when domain adaptation is applied, characteristics 
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that remain unchanged according to the severity of the disease are extracted. In 

addition, through the analysis of Figure 3-5, it was confirmed that these 

characteristics had a positive effect on disease classification. 

4.3 Potential for Practical Applicability  

As discussed in 4.1, the diagnostic performance of the proposed method is 

superior to that of other models. In addition, patients with a 30% severity level can 

be diagnosed with high accuracy about 90%. Compared to the other models, the 

diagnostic accuracy does not differ much as the severity level decreases. As 

discussed in 4.2, this is because features irrelevant to the severity of the disease are 

selected and used for classification in the model (4).  

According to previous studies, when the severity of PAD reaches around 60%, 

patients feel symptoms. ABI can be effectively applied to detect PAD from this point 

on. However, it is known that there are problems in terms of accuracy and reliability 

in diagnosing PAD at a severity level of less than 50% with ABI. On the other hand, 

our proposed deep learning-based PAD diagnostic model can diagnose both severe 

patients and 30% severity level patients with high accuracy above 90%. In other 

words, it is possible to diagnose early patients with PAD that cannot be detected with 

the conventional diagnostic model ABI. Therefore, if the proposed method is used 

for an actual diagnosis, it is expected to contribute to the promotion of national health 

through the early diagnosis of PAD. 
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Chapter 5. Conclusions  

5.1 Summary and Contributions 

This paper proposes a deep learning-based domain adaptation method for 

identifying PAD locations under various severity levels. To minimize domain 

discrepancy resulted from disease severity difference while utilizing few labeled 

target domain data, we propose auxiliary tasks-assisted maximum classifier 

discrepancy for supervised domain adaptation. The proposed method was 

demonstrated using virtual patients' BPWs data considering domain discrepancy and 

data imbalance. The results show that the proposed method offers the best accuracy 

for PAD location identification. The t-SNE results showed that our proposed method 

exhibits distinctive feature space. Moreover, using Grad CAM, we investigated the 

input importance and found that our proposed model can extract domain invariant 

features.  

Contribution 1: First research for identifying PAD occurring locations  

This is the first study for identifying PAD occurring locations. Previous studies 

have focus on the disease detection at one artery location. Many researchers studied 

about disease severity level estimation. However, it is more critical for applying 

practical health screening to detect PAD on PAD frequently occurring arteries than 

PAD disease severity regression. Therefore, we developed a deep learning-based 

PAD location diagnostic model based on the fact that when PAD occurs, blood 

pressure waveforms are deformed. If these diagnostic methods are actually applied, 

they can be used for primary care, such as the health screening system, to promote 

national health. In addition, it is expected that it will be able to preoccupy the digital 
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healthcare market by installing the proposed method to wearable devices. 

Contribution 2: Auxiliary tasks-assisted MCD for supervised domain 

adaptation 

Unlike adversarial domain adaptation, MCD is an unsupervised learning method 

that learns task-specific decision boundaries. However, since label information of 

the target domain is given in the faced problem, a supervised learning method is 

needed to use the information efficiently. Therefore, two additional tasks were added 

to utilize most of the label information of the target domain while maintaining the 

advantage of learning task-specific decision boundaries. As a result, the domain 

disparity decreased, and the classification performance increased, efficiently solving 

the problems faced. 

Contribution 3: Development of robust PAD diagnosis model considering 

practical issues (domain discrepancy, data imbalance) 

There are many things to consider for applying the PAD diagnosis model: 1) 

Inter- individuality, 2) intra individuality, 3) domain discrepancy 4) data imbalance. 

We consider all of these things in the data generation step. Therefore, our proposed 

method suggests the feasibility of a generalized PAD diagnosis model considering 

practical issues. 

5.2 Suggestions for Future Research 

Based on the research conducted in this work, we can present future research in 

three directions.  
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Issue 1: Applying the suggested method to other cardiovascular diseases. 

We developed a new supervised learning method by adding two auxiliary tasks 

to the existing MCD method. Our proposed method can be applied to diagnose 

various cardiovascular diseases that can be diagnosed using pulse waveform analysis. 

For example, it can be applied to Abdominal aortic aneurysms, where the blood 

pressure waveform measured at the distal end changes when it occurs. It is expected 

to solve the problem of domain discrepancy and data imbalance by applying the 

proposed method to these cardiovascular diseases. 

Issue 2: Verification of the proposed method based on real patient data in 

hospital. 

Although several realistic situations such as inter and intra individualities, 

domain discrepancy, and data imbalance have been considered, there will be more 

significant uncertainty in actual patient data. Therefore, before applying the 

proposed method to primary care, it is necessary to verify the trained diagnosis 

model with actual patient data. When this verification is completed, various studies 

can be conducted to apply the technology to actual medical diagnoses. 

Issue 3: Domain adaptation: Simulation data as a source and real patient data 

as a target. 

Obviously, there will be a difference in data distribution between actual patient 

data and simulation data acquired in the transmission line model. We can acquire a 

blood pressure waveform of a virtual patient that is close to infinity. Therefore, 

setting the verified simulation data to the source domain and the actual patient data 
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to the target domain will allow us to learn a PAD diagnostic model with generalized 

performance. 

 

  



35 
 

 

 

References  

1. Morley R L, Sharma A, Horsch A D, Hinchliffe R J. Peripheral artery 

disease BMJ 2018; 360 

2.  Criqui, M. H. (2001). Peripheral arterial disease-epidemiological aspects. 

Vascular medicine, 6(1_suppl), 3-7. 

3.   Sigvant, B., Wiberg-Hedman, K., Bergqvist, D., Rolandsson, O., Andersson, 

B., Persson, E., & Wahlberg, E. (2007). A population-based study of 

peripheral arterial disease prevalence with special focus on critical limb 

ischemia and sex differences. Journal of vascular surgery, 45(6), 1185-1191. 

4.  McGrae McDermott M, Greenland P, Liu K, et al. Leg Symptoms in 

Peripheral Arterial Disease: Associated Clinical Characteristics and 

Functional Impairment. JAMA. 2001;286(13):1599–1606. 

5.  Grenon, S. M., Gagnon, J., & Hsiang, Y. (2009). Ankle–brachial index for 

assessment of peripheral arterial disease. N Engl J Med, 361(19), e40. 

6. Stephens, J., Hagler, D., & Clark, E. (2011). Got PAD? Hidden dangers 

revealed with ABI. Journal of Vascular Nursing, 29(4), 153-157. 

7. Khan, T. H., Farooqui, F. A., & Niazi, K. (2008). Critical review of the ankle 

brachial index. Current cardiology reviews, 4(2), 101-106. 

8. Nelson, M. R., Quinn, S., Winzenberg, T. M., Howes, F., Shiel, L., & Reid, C. 

M. (2012). Ankle-Brachial Index determination and peripheral arterial disease 



36 
 

 

 

diagnosis by an oscillometric blood pressure device in primary care: 

validation and diagnostic accuracy study. BMJ open, 2(5), e001689. 

9.  Pal, S. K., & Mitra, S. (1992). Multilayer perceptron, fuzzy sets, classifiaction. 

10.  He, K., Zhang, X., Ren, S., & Sun, J. (2016). Deep residual learning for image 

recognition. In Proceedings of the IEEE conference on computer vision and 

pattern recognition (pp. 770-778). 

11.  Goodfellow, I., Pouget-Abadie, J., Mirza, M., Xu, B., Warde-Farley, D., Ozair, 

S., ... & Bengio, Y. (2014). Generative adversarial nets. Advances in neural 

information processing systems, 27. 

12.  Zhao, Z. Q., Zheng, P., Xu, S. T., & Wu, X. (2019). Object detection with deep 

learning: A review. IEEE transactions on neural networks and learning 

systems, 30(11), 3212-3232. 

13.  Van Houdt, G., Mosquera, C., & Nápoles, G. (2020). A review on the long 

short-term memory model. Artificial Intelligence Review, 53(8), 5929-5955. 

14. Ghasemi, Z., Lee, J. C., Kim, C. S., Cheng, H. M., Sung, S. H., Chen, C. H., ... 

& Hahn, J. O. (2018). Estimation of cardiovascular risk predictors from non-

invasively measured diametric pulse volume waveforms via multiple 

measurement information fusion. Scientific reports, 8(1), 1-11. 

15. Kim, S., Hahn, J. O., & Youn, B. D. (2021). Deep Learning-Based Diagnosis 

of Peripheral Artery Disease via Continuous Property-Adversarial 

Regularization: Preliminary in Silico Study. IEEE Access, 9, 127433-127443. 



37 
 

 

 

16. Xiao, H., Avolio, A., & Huang, D. (2016). A novel method of artery stenosis 

diagnosis using transfer function and support vector machine based on 

transmission line model: A numerical simulation and validation study. 

Computer methods and programs in biomedicine, 129, 71-81. 

17.   Kim, S., Hahn, J. O., & Youn, B. D. (2020). Detection and severity assessment 

of peripheral occlusive artery disease via deep learning analysis of arterial 

pulse waveforms: Proof-of-concept and potential challenges. Frontiers in 

bioengineering and biotechnology, 8, 720.  

18. Kim, S., Hahn, J. O., & Youn, B. D. (2021). Deep Learning-Based Diagnosis 

of Peripheral Artery Disease via Continuous Property-Adversarial 

Regularization: Preliminary in Silico Study. IEEE Access, 9, 127433-127443. 

19. Lewis, J. E., Williams, P., & Davies, J. H. (2016). Non-invasive assessment of 

peripheral arterial disease: Automated ankle brachial index measurement and 

pulse volume analysis compared to duplex scan. SAGE Open Medicine, 4, 

2050312116659088. 

20. Rutherford, R. B., Lowenstein, D. H., & Klein, M. F. (1979). Combining 

segmental systolic pressures and plethysmography to diagnose arterial 

occlusive disease of the legs. The American Journal of Surgery, 138(2), 211-

218. 

21. Kouw, W. M., & Loog, M. (2018). An introduction to domain adaptation and 

transfer learning. arXiv preprint arXiv:1812.11806. 



38 
 

 

 

22.  Tao, J., Chung, F. L., & Wang, S. (2012). On minimum distribution 

discrepancy support vector machine for domain adaptation. Pattern 

Recognition, 45(11), 3962-3984. 

23.  Lu, C., Gu, C., Wu, K., Xia, S., Wang, H., & Guan, X. (2020). Deep transfer 

neural network using hybrid representations of domain discrepancy. 

Neurocomputing, 409, 60-73. 

24.  Zhou, Q., Wang, S., & Xing, Y. (2021). Multiple adversarial networks for 

unsupervised domain adaptation. Knowledge-Based Systems, 212, 106606. 

25.  Tzeng, E., Hoffman, J., Saenko, K., & Darrell, T. (2017). Adversarial 

discriminative domain adaptation. In Proceedings of the IEEE conference on 

computer vision and pattern recognition (pp. 7167-7176). 

26.  Wang, X., & Liu, F. (2020). Triplet loss guided adversarial domain adaptation 

for bearing fault diagnosis. Sensors, 20(1), 320. 

27. Ben-David, S., Blitzer, J., Crammer, K., & Pereira, F. (2006). Analysis of 

representations for domain adaptation. Advances in neural information 

processing systems, 19. 

28.  Chen, C., Chen, Z., Jiang, B., & Jin, X. (2019). Joint domain alignment and 

discriminative feature learning for unsupervised deep domain adaptation. In 

Proceedings of the AAAI conference on artificial intelligence (Vol. 33, No. 01, 

pp. 3296-3303). 

29.  Ma, P., Zhang, H., Fan, W., & Wang, C. (2020). A diagnosis framework based 



39 
 

 

 

on domain adaptation for bearing fault diagnosis across diverse domains. ISA 

transactions, 99, 465-478. 

30. Ganin, Y., Ustinova, E., Ajakan, H., Germain, P., Larochelle, H., Laviolette, 

F., ... & Lempitsky, V. (2016). Domain-adversarial training of neural networks. 

The journal of machine learning research, 17(1), 2096-2030. 

31. Saito, K., Watanabe, K., Ushiku, Y., & Harada, T. (2018). Maximum classifier 

discrepancy for unsupervised domain adaptation. In Proceedings of the IEEE 

conference on computer vision and pattern recognition (pp. 3723-3732). 

32. Motiian, S., Piccirilli, M., Adjeroh, D. A., & Doretto, G. (2017). Unified deep 

supervised domain adaptation and generalization. In Proceedings of the IEEE 

international conference on computer vision (pp. 5715-5725). 

33. Krizhevsky, A., Sutskever, I., & Hinton, G. E. (2012). Imagenet classification 

with deep convolutional neural networks. Advances in neural information 

processing systems, 25. 

34.  He, W., Xiao, H., & Liu, X. (2012). Numerical simulation of human systemic 

arterial hemodynamics based on a transmission line model and recursive 

algorithm. Journal of Mechanics in Medicine and Biology, 12(01), 1250020. 

35. Xiao, H., Avolio, A., & Zhao, M. (2016). Modeling and hemodynamic 

simulation of human arterial stenosis via transmission line model. Journal of 

Mechanics in Medicine and Biology, 16(05), 1650067. 

 



40 
 

 

 

36. Liang, F., Takagi, S., Himeno, R., & Liu, H. (2009). Multi-scale modeling of 

the human cardiovascular system with applications to aortic valvular and 

arterial stenoses. Medical & biological engineering & computing, 47(7), 743-

755. 

37. Van der Maaten, L., & Hinton, G. (2008). Visualizing data using t-SNE. 

Journal of machine learning research, 9(11). 

38. Selvaraju, R. R., Cogswell, M., Das, A., Vedantam, R., Parikh, D., & Batra, 

D. (2017). Grad-cam: Visual explanations from deep networks via gradient-

based localization. In Proceedings of the IEEE international conference on 

computer vision (pp. 618-626). 

 

  



41 
 

 

 

Abstract (Korean)  

 

다양한 질환 심각도 하에서  

말초동맥 질환 위치 식별을 위한  

딥러닝 기반 도메인 적응 방법 연구  

 

서울대학교 공과대학 

기계공학부 대학원 

이 인 찬 

 

본 논문의 주요 목적은 말초동맥 질환 빈번 발생 동맥에서 말초 동맥 

질환을 식별하기 위한 혈압 파형 기반 딥러닝 진단 모델을 개발하는 

것이다. 데이터 기반 방식으로 일반화된 말초동맥 질환 진단 모델을 

얻기 위해서는 2가지 문제점이 있다: 1) 질환 심각도와 발병 위치의 

차이로 인한 도메인 불일치, 2) 말초동맥 질환 초기 증상이 없다는 

특징으로 인한 데이터 불균형. 실제 문제를 고려하여 일반화된 말초동맥 

질환 진단 모델 훈련을 위해, 최대 분류 불일치 방법에 두가지 보조 

테스크를 추가한 지도 도메인 적응 방법을 제안한다. 제안된 모델은 

다양한 질병 심각도 수준에서 전송 선로 모델에서 생성된 가상 환자의 

혈압파형을 사용하여 검증된다. 결과는 제안된 모델이 다양한 질병 

심각도 수준에서 PAD 위치를 식별하기 위한 우수한 성능을 가지고 

있음을 보여준다. 이 결과는 다양한 질병 심각도에서 하지의 PAD 

위치를 식별하기 위해 제안된 진단 모델을 실제 병원에 적용할 가능성을 

나타낸다.  
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주제어: 심혈관 질환(Cardiovascular Disease) 

 말초동맥 질환(Peripheral Arterial Disease) 

   파형 분석(Pulse Waveform Analysis) 

 딥 러닝(Deel Learning) 

 도메인 적응(Domain Adaptation) 
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