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Abstract 

 

Investigation on Fault Information 

Extraction for Acoustic Emission 

based Rolling Element Bearing 

Diagnostics under Noisy Conditions  

 

Su Ji Kim 

Department of Mechanical and Aerospace Engineering 

The Graduate School 

Seoul National University 

 

In modern industry, the bearing is one of the most commonly used mechanical 

components for general rotor systems. It supports the applied loads on the rotary 

machine and makes the shaft system stable during rotation. The unexpected bearing 

failures can cause a halt down of whole rotor systems, making a huge economic loss. 

To prevent unexpected losses, much research has been conducted regarding 

condition monitoring of bearing systems using transducers, such as velocimeters and 

accelerometers. Recently, by means of the development of data processing 

technology, acoustic emission (AE) sensor has been actively employed for sensitive 

bearing diagnosis. The high sensitivity of AE sensors enables an early fault detection 
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and defect monitoring of high stiffness systems, which is rather difficult for the 

vibrational approach. The raw measured AE signals include much information about 

the bearing’s health states. However, it is hard to figure out the health index directly. 

Because the measured AE signals generally consist of multi-components, including 

noise. The bearing fault signal is almost buried under other components due to the 

weak energy. In addition, AE signal handling involves high sampling rate measuring, 

which can cause the applicability issue of traditional vibration-based signal 

processing techniques in a practical manner. For this reason, extracting target fault 

information in raw AE data practically needs several advanced signal processing 

techniques: it includes detecting the hidden fault signals and eliminating the 

unrelated components to bearing defects. 

Therefore, this doctoral dissertation focuses on developing signal processing 

techniques for AE-based bearing diagnosis under noisy conditions. The dissertation 

investigates two thrusts: 1) research into a frequency band searching for bearing fault 

reasoning and 2) study of de-noising the irrelevant components to bearing defect. 

The first research thrust suggests an effective band-selection method for AE 

sensor data under severe noise conditions. To increase the method’s practicality in 

real applications, the proposed method defines a new indicator that is calculated from 

the time-domain features of the measured signal, without additional spectrum 

analysis. The suggested indicator employs the correlation coefficient and kurtosis of 

specially segmented signals to prevent disturbances from impulsive and non-

Gaussian periodic noise components. The other research thrust proposes a de-noising 

technique for electrical components, especially electromagnetic interference (EMI), 

which easily corrupts AE measurements with highly non-stationarity. To this end, 
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this study employs multi-sensor approach with an additional current sensor. In 

addition, an empirical mode decomposition (EMD) and probability-based dynamic 

filter are designed to adaptively sort out EMI components. A multi-sensor approach 

using EMD delivers algorithmic robustness even under the ever-changing nature of 

EMI, and a probabilistic approach enables effective filtering, while minimizing the 

risk of interrupting the bearing’s defect signal. Finally, the proposed dynamic filter 

effectively removes EMI components from the AE envelope spectrum for bearing 

diagnosis. 
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Acoustic emission (AE) 

Frequency band selection 

Electrical noise elimination 
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Chapter 1  

 

Introduction 

 

1.1 Motivation 

Monitoring the health conditions of mechanical components is necessary for better 

availability and productivity in industrial field. To obtain the system’s safety and 

prevent the failure, many engineers have researched fault diagnosis techniques for 

various kinds of machine elements [1]–[5]. Among the various mechanical 

components, the rolling element bearing (REB) is one of the most widely utilized 

mechanical components. 

Rolling element bearings are essential components in many mechanical systems 

and components with various type, size, and speeds, as shown in Figure 1-1; thus, 

they have become a popular study target. Since the failure of a bearing affects the 

operation of a rotary system, it is important to diagnose and predict the state of a 

bearing in real-time. For this purpose, much research has been conducted regarding 

the estimation of bearing states, and many methods have been developed [6]. 
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Traditionally, vibration analysis through an accelerometer is commonly 

performed because of its ease of use. Although the vibration signal contains many 

defect features, it has difficulty detecting a fault in its early stages or a high-stiffness 

system. Thus, recently, research using more sensitive sensors (e.g., AE sensors) has 

been explored. When AE sensors are used for diagnosis, applying existing vibration 

analysis methods becomes inadequate due to the features of the AE sensor. The huge 

sampling rate of AE sensors requires even more computing power, and a wideband 

operating frequency range rather becomes a burden to engineers for finding fault-

related frequency bands. In addition, their high sensitivity makes the analysis 

vulnerable to noise, especially in the case of random impact and non-Gaussian 

periodic noise like electrical noise. The problem becomes even more challenging 

when impulsive defect energy from other cyclic components is measured 

simultaneously, or in a multi-defect condition with non-target bearings containing a 

different carrier frequency. 
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Figure 1-1 The usage of industrial rolling element bearings. 



4 

 

1.2 Research Scope and Overview 

The ultimate goal of this doctoral dissertation is to extract fault information of rolling 

element bearing from AE signal that is measured under noisy conditions. To achieve 

this goal, two technical processes are needed: discovering the hidden fault-related 

information among the multi-components AE signals and removing the irrelevant 

components to target faults. To this end, this dissertation contains two research 

thrusts. First, a frequency band searching method for AE signals is developed. The 

other is de-noising techniques for electrical components. The specific research 

thrusts are as follows. 

 

Research Thrust 1: Noise-robust frequency band selection for optimally 

extracting the fault-related information using segment-

based efficient searching 

Research thrust 1 proposes a noise-robust and efficient frequency band selection 

architecture for AE signals to searching the optimum frequency band. When 

diagnosing a rolling element bearing (REB), it is important to select the frequency 

band that has the most defect information. Many band-selection methods have been 

developed in recent years. Most existing methods target the vibration signal; hence, 

these methods are often unsuitable for use with acoustic emission (AE) sensors. With 

existing methods, the large sampling rate and high sensitivity of AE sensors causes 

huge computing costs and susceptibility to noise. To realize sensitive diagnosis with 

AE sensors, it is necessary to develop a proper band selection algorithm that operates 

under noisy conditions and with low computing cost. Thus, this paper proposes a 
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correlation- and kurtosis- based band selection method for AE sensor data. The 

proposed method is validated by applying it to both simulated and experimental data. 

The test data contains random impulsive and non-Gaussian noises to represent the 

signal from other components and electrical noise from the motor system, 

respectively. With traditional methods, these noises either interrupt the proper band 

selection or increase the computing cost; however, the proposed method handles 

these noises and provides proper band selection with moderate computing efficiency. 

 

Research Thrust 2: Multi-sensor based filter design using motor current signals 

for de-noising the electromagnetic interference 

Research thrust 2 designs a multi-sensor based filter and develops a de-noising 

scheme for removing electrical components. The high sensitivity of AE sensors 

enables engineers to detect tiny fault signals of a bearing in advance of failure. 

However, this process is also easily corrupted by noise, due to the sensitivity of the 

sensors. Interference signals can mask the desired defect signal by dropping the 

signal-to-noise ratio. Among possible noise sources, electromagnetic interference 

(EMI) generated by variable frequency drives (VFD) is one of the most difficult 

noises to address because of its highly nonstationary characteristics. This disturbs 

the envelope spectrum, which is the conventional method of bearing diagnosis. Thus, 

in this research, a method is proposed to adaptively remove EMI from the AE signal 

for more accurate bearing diagnosis. The proposed method eliminates EMI peaks in 

the enveloped frequency spectrum, using a motor current signal. To this end, the 

proposed method employs empirical mode decomposition (EMD) and probabilistic 
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filtering techniques to adaptively extract the EMI components from the current 

signals and filter out the EMI-related components in AE signals. The proposed 

method is verified by examining bearing testbed data and effectively eliminates the 

unwanted peaks of the EMI for AE signals. 

 

1.3 Dissertation Layout 

The rest of this doctoral dissertation is organized as follows. Chapter 2 provides 

technical background and literature review of rolling element bearing diagnosis 

using AE sensors. Chapter 3 describes the two kinds of experimental resources in 

this dissertation. Chapter 4 proposes a novel optimum frequency band selection 

method to figure out bearing-related frequency information from AE signals, and it 

is demonstrated by simulated and experimental validation. Chapter 5 develops a 

motor-current-based EMI filter for electrical noise elimination on envelope spectrum 

domain, and it is also verified using experimental validation. Finally, Chapter 6 

summarizes the contributions and significance of this doctoral dissertation and 

suggests future research. 
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Chapter 2  

 

Technical Background and 

Literature Review 

  

2.1 Framework of PHM for mechanical systems 

Monitoring the health states of mechanical components and predicting their failure 

is necessary for diminishing economic loss and securing human safety in industrial 

fields. For this purpose, many researchers have endeavored to develop prognostics 

and health management (PHM) for various systems, with the goal of optimal 

decision making [7]–[11].  

Figure 2-1 shows the general procedure of PHM. It contains four steps for optimal 

decision-making. First, the sensing step gathers health information of target systems 

through various types of transducers. Gathered analog data is converted to digital 

form by the data acquisition modules and receiver. Synthetically designed software 

stores the measured digital information into analyzable data files. Second, the pre-

processing step performs data manipulation to extract the hidden health information 

better. In this process, the raw signals are refined with de-noising and filtering to 



8 

 

help further steps. Then the feature extraction step figures out the clues for hidden 

health information and estimate it in quantifying manner. Finally, the health 

reasoning step diagnoses the health conditions and prognoses the remaining useful 

life or quality degradation path. Among them, this dissertation mainly focuses on the 

front three steps: sensing, pre-processing, and feature extraction. 
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Figure 2-1 General procedure of PHM. 
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2.2 Acoustic Emission Techniques for Bearing System 

Monitoring 

Since the failure of a bearing module can result in severe damage to a rotary system, 

it is desirable to accurately monitor and diagnose the health condition of REBs. To 

estimate the current status of a bearing, various transducers have been used, 

including distance, proximity, laser, optic, velocimeter, accelerometer, and 

ultrasonic sensor [12]. As the demand for precise diagnostic solutions has increased 

with the advances in sensing technology, acoustic emission (AE) sensors have 

emerged for bearing health diagnosis in many applications, such as turbines [13], 

[14], fan systems [15], slewing systems [16], railway axles [17] and dynamometer 

[18]. AE sensors have been used in both low- and high-speed conditions. Jamaludin 

and Mba focused on their studies on use in extremely slow machinery, less than 2 

rpm [19]. Caesarendra et al. presented a review of AE-based condition monitoring 

in low-speed bearings [20]. Since low-speed bearings in heavy machines have a 

weak fault signal, a typical transducer cannot detect it. In other work, Saravanan et 

al. applied this type of sensor to spindle bearings to monitor the tool’s condition to 

avoid the degradation of manufacturing quality and for early detection of a fault that 

may lead to a tool’s failure [21]. Furthermore, Hasan et al. present a spectral imaging 

technique using AE data under variable speed conditions [22]. 

AE sensors have two advantages in bearing diagnosis: a high sampling rate and 

excellent sensitivity. When a bearing’s component gets a microscopic defect on the 

surface of a material, high-frequency elastic waves are generated due to atomic 

cracking and the interaction between components. An elastic wave is propagated 

along the material, and the AE sensor catches the propagated energy through the 
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resonance character of the element inside the sensor. This allows engineers to extract 

health features as the precursor to failure. To detect a transient abnormality of a 

bearing, many researchers have monitored typical time-domain features for AE 

signals, including: RMS, kurtosis, event, peak, count, rising time, and crest factor, 

etc. [12], [15], [23], [24]. However, these features have the purpose of being used 

for abnormality detection and trend analysis. Recently, a high-frequency resonance 

technique using envelope analysis has been generally adopted to diagnose a 

bearing’s fault mode, through the use of a raw AE signal [17], [25]–[29]. 
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2.3 Overview of Rolling Element Bearing Systems Diagnosis 

2.3.1 Fundamentals of Bearing Health Monitoring 

A rolling element bearing consists of the rolling elements (e.g., ball, roller, pin), cage, 

lubricant, and the inner and outer raceways [30]. A bearing fault means any failure 

of any of these components. Various factors can cause a failure, such as surface 

asperity, brinelling, indentation from particles, lubricant film thickness, temperature 

condition, misalignment, electrical erosion, and improper mounting [31]. As bearing 

could be broken for a variety of reasons, it has various failure modes and mechanisms. 

Among the many failure modes, the primary bearing failure mode is material surface 

fatigue in the proper environment for operation and non-contaminated conditions 

[32]. The fatigue failure originated from subsurface cracks, and it is propagated 

according to continuous operation, as shown in Figure 2-2. 

When there is a local defect in one of the bearing components, periodic impact 

signals are generated, due to the repeated collision between the defect and the 

neighboring components. The instantaneous local impact excites the overall 

frequency domain, such as modal test using an impact hammer. Then, diverse system 

characteristics appear in the frequency domain, including system and sensor 

resonance. To detect and diagnose the bearing defects, many researchers have relied 

on the frequency domain information generated by the cyclical impacts. To this end, 

engineers transform the time-domain signal into a frequency domain signal and go 

through feature analysis to extract meaningful information of frequency components 

related to target systems. Figure 2-3 illustrates this. 
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Figure 2-2 Health degradation process of REB by rolling contact fatigue failure. 
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Figure 2-3 Frequency spectrum of a fault bearing signal. 
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In the figure, the spectrum of a fault signal is divided into four zones, each with 

different features. The main peaks in zone 1 indicate shaft frequency, revolutions per 

second (RPS), and harmonics. When there is misalignment or unbalance in the shaft 

system, these revolution-related peaks can increase. Problems with the driving 

transmission components, such as a coupling, also could be a source of these peaks. 

Additionally, direct current (DC) components lie at zero hertz. Although some 

features of the rotating system appear in this zone, the bearing’s defect signal is 

hardly observed in zone 1. 

In zone 2, the characteristic frequencies of a bearing are observed. Each bearing 

component has an individual frequency. Bearing characteristic frequencies (BCFs) 

are a direct key to bearing diagnosis. The BCF changes according to a defect’s 

position. Thanks to bearing dynamics, BCF can be calculated when the driving 

condition and bearing geometry are specifically given [6], [33]. The ball pass 

frequency inner race (BPFI), ball pass frequency outer race (BPFO), ball spin 

frequency (BSF), and fundamental train frequency (FTF) are examples of such BCFs. 

When a defect is located on the rotating component of the bearing, the impulse train 

is modulated by the shaft rotation and load distribution [34]. This leads to sidebands 

around the BCF, as shown in Figure 2-3.  

Zone 3 represents the resonance frequency of the bearing system. When the 

bearing’s defect creates an internal impact, it excites the system resonance frequency. 

The frequency is an inherent characteristic of the system, the peaks in zone 3 depend 

on the system condition. A change in the defect condition may alter the appearance 

of the peaks. The status of the bearing is inferred by tracking the change of these 

peaks. 
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Finally, zone 4 contains information about the high-frequency stress wave 

generated by the interaction between bearing elements. This zone contains diverse 

information, such as the collision of elements, metal-to-metal contact noise, and 

frictional energy, which propagates along the metal in the system. Many engineers 

employ an AE sensor to capture this energy through the sensor resonance character. 

Although clues to the bearing’s status are presented all over the frequency domain, 

the actual implementation of bearing fault detection is not easy. Because the bearing 

is usually a part of a bigger system, the bearing signal is overlapped with and covered 

by the system’s signal. For example, even though zone 2 contains definite peaks 

reflecting a defect in the bearing components, in practice, this frequency area is 

considered inadequate for fault detection due to the noise from the system. Unless 

the bearing failure is severe and its signal becomes dominant, it is common for BCFs 

in zone 2 to be buried by other low-frequency signals. Hence, one of the issues in 

applying bearing diagnosis in the real world is to separate the defect signal from the 

raw data. 

 

2.3.2 Analysis of Sensor Signal for Rolling Element Bearing 

Unlike zone 2, zones 3 and 4 are less affected by the low-frequency signal from the 

system. However, the defect signal is not as intuitive in zones 3 and 4 as it is in zone 

2. While bearing diagnosis with zone 2 is directly possible by checking BCFs, zone 

3 and zone 4 need additional analysis to extract the defect frequency. Figure 2-4 

shows a conceptual defect signal with the resonance frequency. Each impulse 

generates a repeated phenomenon of resonance and attenuation during the defect 
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period. This looks like the amplitude modulation of the resonance signal by the 

impulse period. The envelope technique, using an analytic signal with Hilbert 

transform, has been widely adopted for demodulation analysis. The resulting 

demodulated signal, called an envelope, is obtained from this analysis. This envelope 

signal is positioned in zone 2 of the spectrum, representing the BCF. That is, the 

processed signal contains the bearing defect information like the one originally 

located in zone 2, but without the system’s low-frequency signal, because that comes 

from zone 3 and 4. 

 

Figure 2-4 Demodulation process through envelope analysis. 

However, if there is insufficient energy to resonate the system, due to low RPM 

or small defect size, the necessary information may not be captured in zone 3. Such 

low energy requires a highly sensitive sensor for detection. The AE sensor is one 

that can capture the weak resonance signal in zone 4. However, because of its high 
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sensitivity, an AE sensor also measures the other ambient noises in the high-

frequency region; this disturbs the fault diagnosis. Thus, a suitable method to remove 

the noise is required.  

The high-frequency resonance technique (HFRT) is one representative 

methodology for bearing diagnosis using aforementioned high frequency 

information. This method is popular for extracting mechanical defect features from 

a raw signal [35]. The technique catches the resonance frequency generated by 

impulses of a bearing defect. Then, it converts high-frequency fault information to 

the bearing characteristic defect frequency through envelope analysis. The Key 

process of HFRT is frequency filtering and fault feature extraction from envelope 

spectrum. The frequency filtering excludes the components irrelevant to bearing 

defects, which is related to thrust 1 of this dissertation. Moreover, fault feature 

extraction under noise conditions is also an important procedure for diagnosis, which 

is related to thrust 2 of this dissertation. The detail of the literature review is covered 

in following Sections 2.4 and 2.5. 

Figure 2-5 represents the conceptual procedure of high frequency resonance 

techniques (HFRT), which is traditional methodology for bearing fault diagnosis. It 

employs the four technical steps of signal processing. First, raw signal is measured 

from sensor on system housing, and the frequency filter is adopted for de-noising 

and defect information extraction. Then the envelope analysis capture the signal’s 

overall envelope path to capture the modulation of high-frequency resonation from 

defect. Finally, spectrum analysis on envelope signal visualize the specific defect 

information on frequency domain.
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Figure 2-5 Conceptual procedure of high-frequency resonance technique (HFRT). 
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2.4 Optimum Frequency Band Selection 

For successful information extraction of bearing defect-related signals, the optimal 

frequency band of the resonance signal that carries the most defect information must 

be found. Two approaches have been proposed for selecting the optimal frequency 

band. The first approach is to use optimization-based techniques, such as particle 

swarm optimization (PSO), genetic algorithm (GA), and harmonic search (HS) [36]. 

In the optimization approach, two parameters defining the frequency band filter (i.e., 

bandwidth and frequency center) are optimized, while the objective function is set 

to be the measure of the bearing defect features. Although these methods can define 

the optimal band, they require high computing cost. 

To reduce the computing cost, an alternative approach called sub-optimal band 

selection, which allows fast searching with low computing cost, has emerged. 

Researchers utilize the characteristics of the bearing fault for efficient band searching 

and selection. Impulsiveness and periodicity in the bearing fault signal are two major 

characteristics used for band selection [37]. Dyer and Stewart reveal that the 

impulsive signal that arises from a bearing defect distorts the Gaussian distribution 

of the normal bearing signal at a particular frequency band [38]. Therefore, by 

observing the degree of distortion, the frequency band that contains the fault 

information can be selected. These researchers also suggested the use of the kurtosis 

as a measure for the distortion of the distribution. Their observation inspired the 

following researchers to develop various objective metrics based on the kurtosis. 

Dwyer suggested frequency domain kurtosis (FDK) to consider localized transient 

or hidden non-stationary components [39]. Pagna and Ottonello developed modified 

FDK through short-time Fourier transform (STFT) [40]. Antoni et al. proposed 
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spectral kurtosis (SK) using Wold-Cramer decomposition [41]; further research was 

conducted to define the Kurtogram [42] and Fast Kurtogram (FK) [43]. FK has 

become a popular method to interpret a frequency domain, due to its fast computing. 

Barszcz and JabŁoński developed Protrugram using iterative narrow band-passing 

and kurtosis of the envelope spectrum to effectively search the central frequency of 

the defect band [44].  

Other researchers have focused on the periodic characteristics for band selection. 

Borghesani et al. and Smith et al. proposed spectrum features for cyclic defect 

monitoring, which they called the ratio of cyclic contents (RCC) and the indicator of 

2nd order cyclostationarity (ICS2) [45], [46]. They found specific frequency 

components related to the bearing’s defect and quantified the amount of fault 

information through demodulation and spectrum analysis. Smith et al. suggested a 

log-cycligram that upgrades the pre-proposed features using the log-envelope 

spectrum [37]. Mauricio proposed a noise-robust algorithm, improved from RCC by 

employing spectral coherence. Antoni and Borghesani suggested a distcsgram using 

a statistical test for condition indicators to consider non-Gaussianity and 

cyclostationarity [47]. 

Although considering impulsive and periodic characteristics has many 

advantages, it still has limitations. Kurtosis-based methods are simple and effective 

in finding hidden impulsive features; however, they are vulnerable to external 

impulsive noise. Spectrum-based methods guarantee better detection of a fault signal 

by using the known defect frequency, but additional signal processing related to the 

demodulation, spectral analysis, and objective function design is needed. To avoid 

these limitations, band-selection methods have been developed to consider both 
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impulsive and periodic characteristics without spectral analysis. Zhang et al. 

presented correlated kurtosis to quantify the periodic impulsiveness of time-series 

data [48]. McDonald and Zhao proposed multipoint kurtosis-based deconvolution 

methods for optimally extracting defect symptoms [49]. Antoni proposed Infogram, 

which uses time and spectral domain indicators that represent impulsiveness and 

periodicity, respectively [50]. Moshrefzadeh presented Autogram, which uses 

wavelet decomposition and autocorrelation to handle the vulnerability of Infogram 

to noise [51].  

The aforementioned methods have been mostly developed for vibration analysis. 

Although the vibration signal contains many defect features, it has difficulty 

detecting a fault with low energy, or a fault in a high-stiffness system. For example, 

a bearing fault in a low-speed rotating machine or a bearing fault in its early stage 

that is releasing a low energy signal is difficult to detect with vibration sensors and 

related analysis. Thus, recently, research using acoustic emission (AE) sensors has 

been explored for sensitive bearing diagnosis. AE techniques were originally 

proposed for nondestructive testing decades ago [52]. The ability of AEs to measure 

with high-frequency and great sensitivity is useful in many applications [53], 

especially for low-speed and high-stiffness bearing systems [16], [20], [54]. In the 

beginning, transient AE features such as count, event, peak, and amplitude were 

utilized for precise and early fault detection of a bearing [12], [24]. During the last 

two decades, waveform-based raw AE data analysis has been spotlighted [23], [28]. 

In the waveform-based approach, continuously measured raw signals enable 

engineers to interpret AE signals using traditional signal processing features based 

on rotary dynamics. However, because AE’s broadband information requires 
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significant computational resources, frequency band selection is necessary for 

efficient application of the AE techniques. 

There has been much research about frequency band selection of AE signals for 

bearing fault diagnosis. Eftekharnejad applied the spectral kurtosis approach to 

optimize the frequency band of AE data [27]. Nguyen et al. implemented empirical 

mode decomposition and discrete wavelet packet transform for frequency reasoning 

[28]. Spectral kernel-based optimum band searching research has also been 

conducted in other recent work [55], [56]. These researchers developed a sub-band 

selection measure using a Gaussian distribution and a mixture model. However, 

AE’s high sensitivity makes this analysis approach vulnerable to noise, especially in 

the case of random impact and non-Gaussian periodic noise, such as electrical noise 

[37], [57], [58]. In addition, existing noise-robust vibration methods cannot be 

directly applied as is; instead, they need modification to deal with the characteristics 

of AE data, specifically, data heaviness and wide frequency information. The huge 

sampling rate of AE sensors requires even more computing power for the de-noising 

process in practice, and the wide frequency range needs detailed examination in 

terms of frequency decomposition. For example, a high-cost algorithm, such as 

spectral coherence or Autogram, consumes a huge amount of time for an AE signal 

input, and wavelet-based decomposition methods can generate computational 

burden due to the dense frequency filtering. The computation burden for AE data is 

a concern in practice [59], and noise (e.g., EMI noise) – a problem even for a 

vibration signal – is considered even more critical for an AE signal [60], [61]. In 

addition, the problem becomes even more challenging when both impulsive and non-

Gaussian periodic noise must be addressed simultaneously.  
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2.5 De-noise the Undesirable Components in Sensor Signal 

While the high sensitivity of an AE sensor brings diagnostic advantages, it is subject 

to being affected by undesirable noise signals. When an AE sensor is used, the 

signal-to-noise ratio could easily get worse, depending on the data acquisition 

conditions. Among the various noise sources, electrical noise is one of the main 

problems that contaminate bearing data [62]. Electrical noise comes from the power 

supply and electric devices, such as the motor, servo-drive, signal converter, digitizer, 

etc. Electrical noise cannot be perfectly removed because it stems from the data 

acquisition or system operating module. Electromagnetic interference (EMI) is 

considered by many to be the most irritating electrical noise for condition monitoring. 

Skibinski et al. revealed the EMI generated from modern PWM AC drives and noted 

that it affects susceptible equipment like high-frequency sensors and measuring 

systems [63]. Sikorska and Mba presented that EMI is a challenge when using AE 

data for condition monitoring [60]. Smith et al. described the detailed effect of EMI 

on the bearing signal gathered from an accelerometer [64]. Sun explored an analytic 

study of a PWM, which is the source of EMI, and presented some frequency 

characteristics [65]. EMI creates high-frequency noise with harmonics up to the 

megahertz. Also, the noise is ever-changing, depending on the operating system and 

conditions. These broadband nonstationary factors critically affect bearing data 

gathered by AE sensors, which observe a wide bandwidth for fault detection. This 

issue not only degrades the signal-to-noise ratio but also can mislead efforts of defect 

identification.  

Several research studies have attempted to remove this disturbance; however, 

most of them considered vibration data. Antony and Randall proposed unsupervised 
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noise cancellation methods: self-adaptive noise cancellation (SANC) and 

discrete/random separation (DRS) [66], [67]. Both algorithms sift the interference 

using a filter designed by the given signal and a time-delayed signal of itself. Randall 

and Sawalhi designed a cepstral editing procedure to remove discrete components in 

the frequency domain [68]. Through their cepstrum approach, they successfully 

eliminated harmonic components in the frequency domain. Smith et al. proposed an 

optimized spectral kurtosis method to diminish the effect of EMI [64]. They 

optimized the filter by iteratively shifting the band parameter and considering each 

kurtosis value. Mauricio et al. proposed an automated filter selection method based 

on cyclic spectral coherence information [61]. Their method showed better 

performance in detecting bearing faults, as compared to existing methods. All of 

these previous studies focus on increasing the bearing’s defect symptoms through 

proper filter design. However, those methods work successfully only when the 

bearing defect frequency and operating system information are known. Also, these 

presented methods demand high computing costs for use with AE data, considering 

the large sampling rate. Moreover, the AE data is more vulnerable to EMI, as 

compared to vibration data, due to the observing bandwidth. 

Despite the weaknesses of using AE data, there has not been much research to 

date to deal with the EMI gathered by AE sensors for bearing diagnosis. Acuña and 

Vicuña developed a frequency filter for EMI on AE data as a way of preprocessing 

for bearing defect size estimation [57]. They constructed a filter based on the 

cyclostationary peak ratio distribution (CPRD) and compared it to traditional filters. 

However, this method also has a limitation in that it operates under insufficient 

information.  
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Chapter 3  

 

Description of Experimental 

Resources 

  

This section describes the experimental resources used to demonstrate the proposed 

methodologies in this dissertation. Two kinds of test rigs are constructed for different 

types of bearing: angular ball bearing and slewing bearing. The angular ball bearing 

test rig targets small-sized ball bearing with axial and thrust loads, which is used for 

low to high-speed operating conditions with approximately 10 to 3000 RPM of shaft 

rotation. The slewing bearing test rig is designed to experiment with low-speed 

bearing with heavy axial load, which targets very low to low-speed conditions, 

approximately 0.01 to 30 RPM. The detailed experimental setup and description are 

presented in the following sections. Section 3.1 describes the configuration of the 

angular ball bearing testbed, and Section 3.2 presents about slewing bearing testbed. 
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3.1 Configuration of Angular Ball Bearing Testbed 

The angular ball bearing test-rig is shown in Figure 3-1(a). The main shaft is 

supported by three angular ball bearings. At one end, two angular bearings are 

assembled, and the other end is supported by the test bearing. The load is applied to 

the test bearing using two pneumatic cylinders in the axial and radial directions. The 

load cell measures the load in real-time. For realistic load on the bearing, the dynamic 

equivalent radial load is calculated through ISO 281. The servo motor delivers 

driving force to the main shaft, and the servo drive controls the rotational speed, 

gathering the encoder signal. A coupling transfers the driving force to the main shaft. 

The AE sensor is attached for data acquisition. A wideband resonance type AE 

sensor, WSa from Mistras Inc., is placed on the closest housing to the test bearing, 

as shown in Figure 3-1(b). A preamplifier, model 3/6/9c from Mistras Inc., amplifies 

the obtained data by 40dB. A digitizer model 9775 from National Instruments then 

converts the amplified analogue signal to digital data with 14-bit resolution. 
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(a) 

 

(b) 

Figure 3-1 Configuration of the data acquisition system: (a) the bearing test rig, and 

(b) the AE sensor. 
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For the test bearing, an angular ball bearing, model 7202a from NSK Corporation, 

is used. This bearing supports both the axial and radial load of the shaft. The contact 

angle between the ball and raceway is 30 degrees. The sealing type is open, which 

facilitates disassembly of the bearing components. To emulate the defect of the 

bearing, a fault is artificially seeded on the inner raceway of the test bearing, as 

shown in Figure 3-2. The defect size is determined such that the defect signal is 

distinguishable from the noise. The examination of a severe defect helps to clearly 

show how effectively the proposed method filters out only the noise signal, by 

inspecting the removal or attenuation of the defect signal. 

 

Figure 3-2 Artificial local defect on the inner raceway of angular ball bearing. 
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3.2 Configuration of Slewing Bearing Testbed 

Figure 3-3(a) shows the overall configuration of the slewing bearing test rig. The 

electric motor and driver are located on the upper side of the bearing system and the 

shaft rotates vertically. The rotation speed of the motor is reduced to 1/60 through a 

gearbox. The bearing specimen is located on the end of the shaft and the axial force 

is applied by a hydraulic cylinder from the bottom of the bearing. The load cell 

between the specimen and the hydraulic cylinder measures the applied load on the 

specimen. As shown in Figure 3-3(b), the AE signal is measured through an acoustic 

emission sensor clamped by a magnetic holder on the housing of the outer raceway. 

The sensor, WSa from Mistras Inc., is a wideband resonance type with 55dB peak 

sensitivity, as with angular ball bearing data acquisition system in Section 3.1. 

Figure 3-4(a) shows the test specimen. The inner and outer diameters of the test 

slewing bearing are 200mm and 360mm, respectively, and the weight of each 

specimen is 26kg. The artificial defect is made on the middle surface of the outer 

raceway, as shown in Figure 3-4(b). The artificial defect is intentionally generated 

to make the defect signal noticeable, despite stress wave attenuation that arises due 

to the distance gap between the sensor and the defect spot. In this experiment, the 

stress wave attenuation is inevitable because the sensor is installed away from the 

defect spot, in order to imitate the case of an unknown fault location. 
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Figure 3-3 Slewing bearing test rig: (a) overall configuration of the test rig, and (b) 

data gathering through the AE sensor. 
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(a) 

 

(b) 

Figure 3-4 Test specimen: (a) slewing bearing, and (b) artificial defect on the 

raceway.  
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Chapter 4  

 

Noise-robust Frequency Band 

Selection with Segment based 

Efficient Searching 

 

This chapter introduces the design of band selection process that is noise-robust and 

efficient for AE data. For successful bearing diagnosis, proper frequency band 

searching is inevitable. In addition, efficient and noise-robust band searching is 

necessary for the practical use of AE sensors in bearing diagnosis. The detailed 

sections of this chapter are organized as follows. Section 4.1 briefly explains the 

characteristics of a bearing’s defect signal from the perspective of impulsiveness and 

periodicity, as an objective feature of band selection algorithm. Section 4.2 expresses 

the proposed optimized band-selection algorithm and the four steps of its procedure. 

Section 4.3 explains the generation of simulated signals to demonstrate the proposed 

band selection method, and the results are discussed. Section 4.4 describes the 

experimental data and the results of verifying the proposed band selection method. 

Finally, a summary and discussion of the research thrust are provided in Section 4.5. 
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4.1 Bearing Defect Characteristics for Optimum Band 

Selection 

When any of the bearing’s components have local defects (e.g., spalling or crack), 

the interaction between the defect and bearing elements results in periodic impacts 

during the operation. Nonetheless, detecting a bearing fault in a raw signal is almost 

impossible because the bearing signal is generally weak and buried by other 

dominant signals from the gearbox, motor, and shaft. To extract the bearing’s defect 

signal from the noisy signal, the high-frequency part of the raw signal that contains 

transient resonances of the system that is generated by the defect impulse is used. 

However, extracting the target signal is challenging for several reasons. The 

resonance frequency differs across different systems and the spectral response is 

highly non-linear because the system is composed of many components. In addition, 

various kinds of high-frequency noise components could obscure the target signal. 

To effectively extract the proper frequency band, two characteristics of the bearing’s 

defect signal – impulsiveness and periodicity – are used. The details of these two 

characteristics are explained in the following sections. 

 

4.1.1 Signal Impulsiveness from Defect Impulses 

A defect in a bearing generates locally large-amplitude signals, as compared to the 

normal state signal. Using this fact, an abnormality of a bearing can be detected. The 

statistical approach has been regarded as a simple and powerful methodology for this 

purpose. Many statistical moments have been considered for the measure of the 

abnormality; the fourth moment, the kurtosis, has been recognized as the most useful 
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feature for detection of an abnormality. The kurtosis for sampled data, 𝐾𝑠, is defined 

as Equation (4.1). 

 𝐾𝑠 =

1
𝑛

∑ (𝑋𝑖 − 𝜇)4𝑛
𝑖=1

[
1
𝑛

∑ (𝑋𝑖 − 𝜇)2𝑛
𝑖=1 ]

2 (4.1) 

In this equation, 𝑋𝑖 is the 𝑖-th value from 𝑛 sampled data and 𝜇 is the sample 

mean. A defect in a bearing generates an abnormal signal that is off the normal signal; 

it makes the tail of the distribution heavier, resulting in increased kurtosis [69]. 

Figure 4-1(a) shows the overlapped time domain plot of normal and fault signals, 

simulated by the MATLAB software. The Orange line represents fault data, and the 

blue line represents normal data. The fault signal has an additional periodic defect 

impulse, the amplitude of each instantaneous impulse pass over the amplitude level 

of normal states. Figure 4-1(b) shows histogram of each signals. Histogram of fault 

signal seems more widespread than normal case. Because multi-impulse make the 

signal distribution change as increase the thickness of the tail-end. This means more 

percentage of fault samples locates the edge side of the distribution. 
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(a) 

 

(b) 

Figure 4-1 Simulated comparison between normal and fault signals (normal signal 

kurtosis≈3, fault signal kurtosis≈5): (a) time domain signal, (b) 

amplitude histogram for each signal. 

On the other hands, Antoni extended the concept of time-domain kurtosis to the 

frequency domain, and proposed the formal definition of spectral kurtosis (SK) using 

Wold-Cramér decomposition of a conditionally non-stationary process [41]. Antoni 

also proposed the short-time Fourier transform (STFT) based SK estimator, which is 

shown in Equation (4.2). 

 𝐾𝑋(𝑓) =
〈|𝑋𝑤(𝑛, 𝑓)|4〉

〈|𝑋𝑤(𝑛, 𝑓)|2〉2
− 2 (4.2) 

where Xw(n,f) is a complex envelope in terms of STFT for time-domain signal X(n), 

with narrow bandpass filtering around frequency f. <> is the average operator and 
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the 2nd order spectral moment in the denominator is the power spectral density in 

frequency f. The 4th and 2nd order spectral moments in Equation (4.2) deliver a 

kurtosis concept that is similar to that shown in Equation (4.1), which means the 

temporal energy dispersion of the envelope from a given signal around the target 

frequency. The visualization of SKs along the frequency bands is devised to show 

the SKs intuitively; this is called the Kurtogram. However, since the computation of 

SK for every frequency band is costly, Antoni developed the Fast Kurtogram (FK) 

[43] approach. FK uses a filter bank approach with a 1/3 binary tree and a simplified 

analytic filter to quickly compute the overall SK tendency. The strength of its rapid 

computing and good performance have resulted in FK becoming a powerful and 

widely used technique for mechanical fault diagnosis in industry. 

The SK represents the kurtosis of an analytic signal that is filtered with target 

bands; its physical meaning is the energy significance in the squared envelope 

spectrum [46]. Although SK can extract the hidden impulsiveness and non-stationary 

information more effectively than simple time-domain kurtosis analysis, it still has 

intrinsic drawbacks related to the multi-component signals. The kurtosis value is 

easily activated by fault-irrelevant impulsiveness and disturbed by other components 

of the envelope spectrum. Those drawbacks are more critical for AE sensors because 

of their susceptibility to external disturbances, such as random impulsive noise from 

pressing, cutting processes, or the defects of other components.   
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4.1.2 Signal Periodicity from Defect Impulse Trains 

A bearing’s periodic defect impulses physically excite the resonance of the local 

bearing module. The amplitude of the resonance signal is modulated by the pulse of 

the defect frequency. These phenomena give clues for defect reasoning through high-

frequency information and additional signal processing through demodulation and 

spectrum examination make accurate diagnosis possible. However, the additional 

signal processing requires further computing resources and in some cases (e.g., edge 

computing) it is not possible. Also, feature designs are needed in the spectrum 

inspection process to extract the engineer’s intended information. The refinement of 

the features for noise robustness requires high-cost techniques, which can become 

an algorithmic burden.  

The auto-correlation (AC) approach is a conceptually concise and powerful 

methodology for analyzing the periodicity of univariate time-series signals without 

additional spectral analysis. As a correlation-based method, AC quantifies the 

signal’s self-dependency based on given time interval. The autocorrelation function 

(ACF) is widely used to analyze the self-dependency, along with the time intervals; 

further, it can determine the hidden periodicity of raw data as a function of time 

interval 𝜏. The ACF is defined as shown in Equation (4.3). 

 𝑅𝑥𝑥(𝜏) = 𝐸[𝑋(𝑡)𝑋(𝑡 + 𝜏)] =
1

(𝑛 − 𝜏)
∑[(𝑋𝑖 − 𝜇)(𝑋𝑖+𝜏 − 𝜇)]

𝑛−𝜏

𝑖=1

 (4.3) 

𝜇, 𝜎 are the mean and standard deviation of n sampled signal X, respectively. Rxx(𝜏) 

represents the correlation coefficient between the raw signal and its lagged signal by 

𝜏. The large value of Rxx(𝜏) indicates that X(t) has the tendency to repeat a similar 
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pattern every 𝜏 period. In other words, X(t) has a high chance of a defect signal with 

𝜏 period. Figure 4-2 shows a schematic example of ACF derived using a simulated 

defect signal. Figure 4-2(a) is a simulated fault signal, where the defect impulse 

appears about every 1000 data points. As Figure 4-2(b) shows, the periodic defect 

impulse is observed in harmonic peaks, with the lag of the defect period. 

The advantage of ACF in fault detection is its robustness against Gaussian and 

random noise. Due to this advantage, some researchers utilize ACF to preprocess for 

spectral analysis and band selection [29], [70]. The Autogram approach proposed by 

Moshrefzadeh and Fasana is a representative method that uses ACF for band 

searching [51]. Autogram can successfully detect the periodicity of a bearing’s 

defect by wavelet preprocessing and ACF. Equation (4.4) shows the calculation of 

Autogram for optimum band searching. 

 
𝐾𝐴(𝑋) =

∑ [𝑅̂𝑋𝑋(𝑖) − min (𝑅̂𝑋𝑋(𝜏))]
4𝑁/2

𝑖=1

[∑ [𝑅̂𝑋𝑋(𝑖) − min (𝑅̂𝑋𝑋(𝜏))]
2𝑁

2
𝑖=1

]

2 
(4.4) 

where 𝑅̂𝑋𝑋 is the auto-correlation where the input signal is a squared envelope of a 

decomposed signal from the wavelet packet. 
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(a) 

 

(b) 

Figure 4-2 Simulated result of autocorrelation for a fault signal: (a) simulated fault 

signal, (b) autocorrelation function plot. 

  



42 

 

The ACF requires iterative calculation; thus, it is unsuitable for data with large 

sample sizes, such as AE data. In addition, since the correlation coefficient easily 

fluctuates due to other periodic sources, fault detection with ACF is often misled by 

cyclic non-Gaussian noise. Non-Gaussian periodic noises are prevalent in industry, 

and include such noises as motor, gearbox, transmission, transformer, and electrical 

devices (e.g., driver, inverter, switching system). These noise sources can easily 

corrupt AE signals by disturbing the defect-related information of the bearing in the 

signal. 

 

4.2 Correlation and Kurtosis based Optimum Band Selection 

Two approaches that have been proposed to capture defect-related information of a 

bearing – kurtosis- and autocorrelation-based methods – are introduced in the 

previous section. Kurtosis-based methods are good for identifying a periodic 

impulsive defect; however, they are vulnerable to other impulsive and non-Gaussian 

noise. In contrast, autocorrelation-based methods are robust for impulsive noise but 

are vulnerable to periodic noise. Because an AE sensor is easily corrupted by both 

impulsive and non-Gaussian noises, another method that can manage both types of 

noise is required. Several methods (e.g., spectral coherence) have been proposed to 

handle these various noises; however, they are numerically intense and are thus not 

suitable for an AE signal, which has a large sampling rate. Thus, a more effective 

band-selection algorithm is needed that is suitable for AE sensor data and robust to 

noise. To work to meet this need, this study proposes a new procedure for optimum 

band selection of AE sensor data. The proposed method aims to select the proper 
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band under the conditions of various noises and massive sample sizes. To this end, 

correlation and kurtosis approaches are both adopted and combined to examine the 

characteristics of a bearing fault’s impulsiveness and periodicity. 

Figure 4-3 shows the overall procedure of the proposed method. It consists of 

four steps. In the first step, the raw AE data is decomposed to split the spectral 

information, using frequency windowing. Then, signal segmentation is applied to the 

decomposed signals as a preprocessing task before step 3. This preprocessing 

clarifies the defect signal through phase matching with selectable parameters. Next, 

step 3 quantifies the periodicity and impulsiveness of the defect signal using the 

proposed measure. Finally, the performance results of the candidate bands are 

compared, and the optimum band is selected. The selected band information can be 

subsequently utilized for bearing fault diagnosis. The details of each step are outlined 

in the next section. 
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Figure 4-3 Flow chart of the correlation and kurtosis based optimum band 

selection. 

 

4.2.1 Frequency Decomposition 

The quality of band selection depends on the way the frequency range is decomposed. 

If the bandwidth of the decomposed bands is coarse, the band may have a high 

chance of containing defect-irrelevant information, as well as defect information. In 

contrast, if the bandwidth is too fine, the band may contain only partial information 

about the defect. There are several methods that may help systematic frequency 

decomposition, including bandpass-based meshing or the wavelet packet technique 
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[43]. These methods first divide the frequency range coarsely and then gradually 

increase the number of divisions along the level of the decomposition depth. 

AE data requires a high level of decomposition for the sake of fine frequency 

meshing, due to its wide frequency range, which can be up to several mega-hertz. 

Further, each band carries a large number of sample points due to the high sampling 

rate. Both the wide frequency range and the high sampling rate of AE data bring 

about computational burden. To reduce the computational burden, it is necessary to 

carefully choose an adequate filter function to extract the frequency band. A simple 

shape filter has a short computation time; however, it is accompanied with significant 

distortion of the original signal during domain shifting. In contrast, a high-order filter 

induces little distortion, but is numerically costly. Furthermore, a narrowband filter 

usually demands a higher-order filter function, which causes the exquisite frequency 

investigation necessary for AE data to be impractical. 

In this research, the Hanning window is adopted to consider the trade-off between 

signal distortion and computational cost. The Hanning window function for an M 

dimensional target vector is defined as follows [71].   

 𝑤(𝑚) = {
0.5 (1 − cos (2𝜋

𝑚

𝑀
)) ,    0 ≤ 𝑚 ≤ 𝑀,

0,                     𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒
 (4.5) 

where w(m) is the window’s weight value for the m-th index of the target vector. The 

Hanning window is the finite impulse response window function with a smooth tail 

and zero boundary values. Since the equation is formulated with a simple cosine 

function, fast computation is possible. Also, the Fourier transformed Hanning 
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window locates around zero hertz; thus, the majority of the signal is less distorted by 

filtering [72]. 

The decomposition is conducted using frequency meshing with Hanning 

windows. Figure 4-4 shows the hierarchical frequency meshing and Hanning filter 

bank. The entire operating frequency range is divided into two types, based on 

decomposition level. The integer level splits the frequency range in a dyadic manner 

and the non-integer level divides the range into three from the previous 

decomposition level to prevent information loss on the borderline. The number of 

decomposed bands and bandwidths are 2lv and fs/(2
lv+1) at the integer level, and 2lv-

1×3 and fs/(2
lv+1×3) at the non-integer level, where lv is the level of meshing and fs is 

the sampling frequency. 

 

 

Figure 4-4 Hierarchical filter bank for signal decomposition in the frequency 

domain. 
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The k-th decomposed spectrum in the lv level is derived as shown Equation (4.6). 

In Equations (4.7) and (4.8), L and U are the lower and upper boundaries, 

respectively, of the k-th frequency band in the lv level. 

 𝐹𝑘
𝑙𝑣(𝜔) = 𝐹(𝜔)𝑤𝑘

𝑙𝑣(𝜔) (4.6) 

 𝐿 = {
𝑓𝑠(𝑘 − 1)/2𝑙𝑣+1,    𝑙𝑣 ∈ ℤ,

𝑓𝑠(𝑘 − 1)/(2𝑙𝑣 × 3),    𝑙𝑣 ∉ ℤ
 (4.7) 

 𝑈 = {
𝑓𝑠𝑘/2𝑙𝑣+1,    𝑙𝑣 ∈ ℤ,

𝑓𝑠𝑘/(2𝑙𝑣 × 3),    𝑙𝑣 ∉ ℤ
 (4.8) 

Each decomposed spectrum includes different spectral information through the filter 

bank and becomes a candidate for the optimum defect band. 

 

4.2.2 Time-domain Signal Segmentation 

Each decomposed spectrum from step 1 has different spectral information (e.g., 

frequency center and bandwidth). Some may contain abundant defect information 

and some may not. To find out the amount of defect information a frequency band 

has, a proper measure is required. The defect measure will be introduced in the next 

section. In this section, as a preprocessing step, each decomposed spectrum is 

transformed into time-domain segmented signals to clarify the defect feature. 

The process is as follows. The decomposed spectrums from Section 4.2.1, 

𝐹𝑘
𝑙𝑣(𝜔), are transformed back to time-domain signals using the inverse Fourier 

transform, resulting in 𝑋𝑘
𝑙𝑣(𝑡) = Φ−1[𝐹𝑘

𝑙𝑣(𝜔)]. The time-domain signal 𝑋𝑘
𝑙𝑣(𝑡) is 

then segmented with a length of defect period of 1/fd, so that each segment has n data 
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points and equal phase of the defect frequency. The number of divided segments, ns, 

is defined by Equations. (4.9) and (4.10), and the size of the segment vector, nseg, is 

calculated by Equation (4.11). 

 𝑛𝑠 = ⌊(
𝑛𝑑 − 𝐷

𝑆
+ 1)⌋ (4.9) 

 𝑛𝑑 = ⌊(
𝑛

𝑓𝑠 × 𝑓𝑑
)⌋ (4.10) 

 𝑛𝑠𝑒𝑔 =
𝑓𝑑

𝑓𝑠
× 𝐷 (4.11) 

where ⌊∙⌋ indicates round-down operations, and nd is the number of defect impulses 

in a given n-length signal, which determines ns by using selectable parameters D and 

S. D indicates the number of defect impulses in each segment, and S means stride for 

the moving window filter. A large 𝑆  decreases the computational burden by 

diminishing ns. Also, a large 𝑆 could be helpful for considering the modulation of 

the defect signals. However, a large S can also cause phase dislocation of defect 

impulses between segments because of bearing slip effects or uncertainty in defect 

periods. On the other hand, an increase of parameter D can reduce ns by containing 

more defect impulses in a segment. However, it also increases the segment length, 

which makes the segment include low-frequency noise that has large energy and 

disturbs the ability to find the defect impulse. In general, a large ns tends to secure 

the robustness in detecting a defect under noisy conditions by avoiding the signal’s 

local singularities; however, it also increases computational cost, and vice-versa. 
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(a) 

 

(b) 

Figure 4-5 Signal segmentation of a modulated defect signal: (a) D=3 and S=1, and (b) D=4 and S=4. 
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Figure 4-5 illustrates the signal segmentation process for two different cases. The 

lth segmented signals are denoted by Sk,l, and all of the segments have the same phase 

of the defect. Figure 4-5(a) shows segmentation of the signal with constant amplitude 

defects. The segmentation parameters are set to be D=3 and S=1. Figure 4-5(b) 

targets the modulated defect signal. In this case, the modulating frequency is 

4×defect periods. Since the bearing’s main modulation is related to the geometry of 

the bearings, the modulating frequency can be easily inferred, even in real cases. As 

shown in Figure 4-5(b), proper adjustment of parameters allow the defect train to 

group even in the case of an inconstant amplitude defect by modulation. 

Meanwhile, if the measured signal carries too many defect cycles, ns needs to be 

limited to include fewer defect cycles. The authors suggest a maximum number of 

ns with 30 segments, based on the statistical central limit theorem. In the later section 

of this research, the parameters are fixed with the value of one, and ns is limited to 

30. 

 

4.2.3 Defect Measure 

In this section, the amount of defect information in the kth decomposed signal, 

𝑋𝑘
𝑙𝑣(𝑡), is measured to select the optimal band. The metric is defined as shown in 

Equation (4.12). 

 𝑀 =
1

𝑛𝑠 − 1
∑ 𝑅(𝑆𝑘,𝑙 , 𝑆𝑘,𝑙+1) 

𝑛𝑠−1

𝑘=1

×
1

𝑛𝑠
∑ 𝐾𝑠(𝑆𝑘,𝑙) 

𝑛𝑠

𝑙=1

 (4.12) 
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 𝑅(𝑋, 𝑌) =
1

𝑛
∑

(𝑋𝑖 − 𝑋̅)(𝑌𝑖 − 𝑌̅)

𝜎𝑋𝜎𝑌

𝑛

𝑖=1

 (4.13) 

where Sk,l(t) denotes the lth segmented signal of 𝑋𝑘
𝑙𝑣(𝑡)  at step 2, R(,) is the 

Pearson correlation coefficient defined as Equation (4.13), and Ks() is the kurtosis 

of the target signals. The multiplication is used in this study to combine kurtosis and 

correlation factors, the method used to combine the two measures can be improved 

by considering the nonlinear form in future research. 

The measure is composed of two parts. The first part is the average of the Pearson 

correlation coefficient between adjacent segmented signals. The Pearson correlation 

coefficient quantifies similarity between signals in a bounded manner. It helps to 

capture the periodic defect impulses with numerically stability. If the kth 

decomposed signal, 𝑋𝑘
𝑙𝑣(𝑡), has defect impulses and is segmented as described in 

step 2, the segments have similar shapes, leading to a high Pearson correlation 

coefficient. On the other hand, if the decomposed signal has no defect impulses, the 

segments have low repeatability, resulting in a low Pearson correlation coefficient. 

The latter part of Equation (4.12) contains the kurtosis and it quantifies the 

impulsiveness of the bearing defect. Unlike the traditional kurtosis-based approach, 

which calculates the kurtosis of the whole signal as 𝐾𝑠(𝑋𝑘
𝑙𝑣(𝑡)), here the kurtosis is 

calculated for each segment, as 𝐾𝑠(𝑆𝑘,𝑙(𝑡)), and the values are averaged. Through 

this approach, the impulsive noise is averaged out. As a result, the proposed method 

can concentrate on defect impulses instead of various potential noises that bias the 

kurtosis of the measured signals. 
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In summary, the proposed method simultaneously considers local periodicity and 

global impulsiveness through Equation (4.12). Local signal correlation of adjacent 

segments enables the algorithm to avoid long-term effects in the time domain, such 

as slip, signal lagging, and inevitable modulated noise with massive energy. On the 

other hand, the global kurtosis from the segmented signal makes the algorithm 

observe the overall impulsiveness from the bearing defect. These two features 

complement each other, allowing the objective function to be robust for both types 

of noise at the same time: random impulsive and periodic non-Gaussian. 

 

4.2.4 Scoring and Optimum Band Selection 

The calculated defect measures for overall frequency meshing from Section 4.2.1 are 

compared to select the optimum bands. Each frequency band is scored by the defect 

measure found in Section 4.2.3, and the frequency band with the highest score is 

selected. In addition, the result of the defect measures can be mapped in a two-

dimension hierarchical plot, as done in the visualization of traditional –gram 

techniques. 

Figure 4-6 shows an example of 2-dimensional visualization of scoring and 

searching results of the optimum frequency band. The X-axis represents the target 

frequency domain, and it is divided according to Y-axis, the decomposition level. 

Each rectangle block in the 2-dimension space represents the objective defect 

measure value on the corresponding frequency band. In the figure, the frequency 

band around 4500 Hz is highlighted, and it can be inferred that the bearing failure-

related information is in the corresponding frequency band. 
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Figure 4-6 A 2-dimension hierarchical plot for optimum band searching using 

proposed defect measure. 

 

4.3 Simulated Validation of the Proposed Method 

This section demonstrates the proposed band selection method using simulated data. 

The simulated signal is a combination of various signals, including the bearing, gear, 

and noises, to represent a real-life situation. To verify the effectiveness of the 

proposed method under noisy conditions, two kinds of noise are added: impulsive 

and cyclic non-Gaussian noises. The impulsive noise reflects random impulses 

coming from the surrounding modules or the systemic impact. For cyclic non-

Gaussian noise, electromagnetic interference (EMI) from a motor drive is considered; 

this is captured in the AE sensor and hinders the diagnosis of the bearing. The details 
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of the synthetically generated data are reviewed in Section 4.3.1, and the results of 

the proposed method are described and analyzed in Section 4.3.2. 

 

4.3.1 Simulation Data Design 

The simulation signal, x(t), includes the signals of six components, including the: 

shaft (xs), gear (xg), bearing defect (xbd), impulsive noise (xin), EMI (xEMI), and white 

Gaussian noise (n), as shown in Equation (4.14). The coefficient ai is the amplitude 

of each signal. In this simulation, the signal-to-noise ratio (SNR) of the Gaussian 

noise is set to 30dB. 

 𝑥(𝑡) = 𝑎1𝑥𝑠ℎ + 𝑎2𝑥𝑔 + 𝑎3𝑥𝑏𝑑 + 𝑎4𝑥𝑖𝑛 + 𝑥𝐸𝑀𝐼 + 𝑛 (4.14) 

First, the shaft and gear signals are represented with simple sinusoidal functions 

with frequency fsh and fg, respectively. 

 𝑥𝑠ℎ(𝑡) = sin (2𝜋𝑡𝑓𝑠ℎ) (4.15) 

 𝑥𝑔(𝑡) = sin (2𝜋𝑡𝑓𝑔) (4.16) 

The bearing defect signal, xbd, is formulated as follows. 

The sine function represents the oscillation by defect impulses with resonance 

frequency (fr). The exponential term indicates the damping effect of the signal with 

decaying parameter α. Then, the decaying impulse is convoluted to the Dirac comb 

 𝑥𝑏𝑑(𝑡) = {[sin(2𝜋𝑡𝑓𝑟) ∗ 𝑒−𝛼𝑡]⨂ ∑ 𝛿 (𝑡 − 𝑘
1

𝑓𝑑
)

∞

𝑘=−∞

} (4.17) 
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function with an interval of the bearing defect periods (1/fd) to make periodic defects. 

Figure 4-7 visualizes the formulating procedure. 

 

Figure 4-7 The process of generating the defect signal of a bearing. 

External impulsive noise, 𝑥𝑖𝑛, has another resonance frequency that is unlike the 

target bearing defect. Equation (4.18) shows that it oscillates with the noise 

resonance frequency (fn) and exponentially decays like the defect impulse. It is noted 

that 𝑥𝑖𝑛 is non-cyclic and excited only once during the measurement.  

 𝑥𝑖𝑛(𝑡) = sin(2𝜋𝑡𝑓𝑛) ∗ 𝑒−𝛼𝑡 (4.18) 

Finally, 𝑥𝐸𝑀𝐼 represents the electrical noise from the electric motor and drive 

systems. This noise is observed in the AE data and disturbs the frequency 

information [60]. Because the frequency response of EMI is highly complicated, 

depending on the operating conditions, analytic simulation of EMI is very intricate 

and difficult. Nevertheless, Kim et al. studied the spectral effect of EMI on an AE 
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signal, and showed that the switching frequency from the inverter and electrical 

driving frequency from the motor drive is important [58]. Based on previous research, 

in this research, two dominant components are considered for simplicity: the inverter 

and the motor drive. The suggested simulated EMI is formulated in Equation (4.19). 

 𝑥𝐸𝑀𝐼(𝑡) = 𝑎5 ∑ [sin(2𝜋𝑡 × 𝑘𝑓𝑠𝑓)]

⌊
𝑓𝑠

2∗𝑓𝑠𝑓
⌋

𝑘=1

+ 𝑎6𝑓𝑃𝑊𝑀(sin (2𝜋𝑡 × 𝑓𝑒𝑓)) 

(4.19) 

The first term indicates the switching noise from inverters when converting DC to 

the desired AC motor input. It consists of multi-components with a sinusoidal 

function of the switching frequency, (fsf), and its harmonics. The index k is an integer 

up to affordable harmonics of fsf within the target signal’s observing frequency. The 

second part of Equation (4.19) indicates pulse-width modulation (PWM) noise from 

the motor drive. It is one of the primary causes of EMI from electric devices for 

variable-frequency controls [65]. The sinusoidal function with electrical frequency, 

fef, is the desired continuous motor input for current operating speed. However, 

complicated rectification of the input signal is inevitable when converting and 

inverting the supplying voltage. The fPWM represents the effect of the rectification 

process on the input signal. It reshapes the continuous electric frequency waveform 

in a discrete manner, with the resolution of the switching frequency. 

The parameters of the simulated signal are given in Table 4-1. The total number 

of samples for the simulated signal is 1.28×106, equivalent to 10 seconds of 

measuring with 128k/sec of sampling frequency (fs). The virtual rotation speed of 

the shaft (fsh) is 1200 RPM, and the gear (fg) operates five times faster. The bearing 
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defect frequency (fd) is calculated as 132.48 Hz by setting the unit defect frequency 

of the target bearing as 6.624 Hz. The resonance frequency (fr) is 24 kHz, and the 

impulsive noise oscillates at 13 kHz. The switching frequency noise (fn) from the 

virtual inverter system is set to 10 kHz, and the electrical frequency of the motor (fef) 

is set to 160 Hz considering the eight pole-pairs of the motor system. 

Figure 4-8(a) shows each component in Equation (4.14) without additional 

Gaussian noise. The SNR of the bearing defect power to the others is about -40dB. 

It is a highly noisy condition with electric and dynamic components, where the AE 

sensor has difficulty diagnosing the system. Figure 4-8(b) represents the resulting 

time domain signal, the superposition of all of the components from Figure 4-8(a) 

with additional Gaussian noise. The overall shape of the signal follows the 

components with large energy, and the impact and bearing defect are unrecognizable. 

Figure 4-8(c) illustrates the spectrum of the simulated signal. The defect-related 

resonance frequency appears around 24kHz. Additionally, there are many spectral 

peaks throughout the frequency domain. The high-frequency noise from the 

impulsive components is barely visible in the spectrum around 13kHz because it is 

temporal excitation and has low energy. The vertical peaks at every harmonic of 

10kHz are generated from the former part of Equation (4.19). The other peaks come 

from the PWM noise, which seems to be affected by the complex modulation effect 

of fsf regarding fef. 
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Table 4-1 Frequency parameters of the simulation data. 

Parameter Physical meaning Values [Hz] 

𝑓𝑠 Sampling frequency 128000 

𝑓𝑠ℎ Shaft rotating frequency 20 

𝑓𝑔 Gear rotating frequency 100 

𝑓𝑑 Bearing defect frequency 132.48 

𝑓𝑟 Bearing resonance frequency 24000 

𝑓𝑛 Impulsive high-frequency noise 13000 

𝑓𝑠𝑓 Switching frequency of the inverter 10000 

𝑓𝑒𝑓 Electrical frequency of the motor 160 
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(a) 
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(b) 

 

(c) 

Figure 4-8 Illustrations for the simulated signal: (a) schematic plot for multi-

components without the addition of Gaussian noise, (b) time-domain 

plot for the simulated signal, and (c) spectrum of the simulated signal. 
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4.3.2 The Results for Simulated Validation 

The proposed method for band selection is applied to the simulated data. The 

performance of the proposed method is compared with the traditional Fast 

Kurtogram (FK) and Autogram approaches. Figure 4-9 illustrates the results of band 

selection for each method, and the detailed selected parameters are listed in Table 

4-2. 

Figure 4-9(a) shows that the Kurtogram method picks up 13kHz, which is related 

to the impulsive noise, rather than the defect frequency, 24kHz. Although there is 

weak evidence that the Kurtogram is interested in the defect frequency, it is strongly 

attracted to 13kHz. The reason that the Kurtogram picks the frequency for impulsive 

noise despite the low and temporal energy level of the impulse signal is the 

sensitiveness of spectral kurtosis to the impulsiveness of the signal. Unlike the 

Kurtogram, Figures 4-9 (b) and (c) show that Autogram approach and the proposed 

method deliver the correct band selection. 

 

Table 4-2. The results of band-selection for the simulated data. 

 Fast Kurtogram Autogram Proposed method 

Level 6 5 4.5 

Frequency center 

[Hz] 
13500 23000 25333 

Bandwidth [Hz] 1000 2000 2667 
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Figure 4-9 The results of each band selection algorithm for the simulated signal: (a) 

FK, (b) Autogram, and (c) proposed method. 
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Figure 4-10 shows the band-passed signals with the selected frequency band and 

their envelope spectrums. Figures 4-10 (a) and (b) are the results of Kurtogram. 

These figures show that the selected frequency band rarely captures the periodic 

defect signal. Leaking defect energy during band-pass filtering generates several 

peaks, according to the target defect frequency in the envelope spectrum, and the 

background noise level is relatively large. Figures 4-10 (c) to (f) are the results of 

Autogram and the proposed method. Both methods properly catch periodic defect 

patterns in the time-domain signals. The defect frequency at 132.48 Hz and its 

harmonics clearly appears in the envelope spectrum domain with little spectral noise. 
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 (a) (b) 

 

 (c) (d) 
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 (c) (d) 

Figure 4-10 Band-pass signals and envelope spectrums at the selected frequency band, as found by each band-selection 

method for the simulated signal: (a), (b) Fast Kurtogram, (c), (d) Autogram, (e), (f) the proposed method. 
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Figure 4-11 shows the detailed ACF analysis of Autogram’s results for the 

simulation data. The graph represents the autocorrelation of the envelope signal 

filtered by wavelet at the selected band. As shown in the figure, the signal selected 

by Autogram has periodic patterns with an interval of about 967 data points. This 

interval corresponds to the defect periods of the bearing, which means that Autogram 

successfully extracts the fault-related frequency bands. The correlation values of the 

peaks are close to 0.95, representing that the defect components are dominant in the 

filtered signal. 

 

Figure 4-11 Autocorrelation function of the simulated signal filtered by the 

optimally selected band from Autogram. 

Figure 4-12 illustrates a sequence of segment signals, Sk,l, for the selected 

frequency band of the proposed method. It is observed that the dominant pattern of 

each segment is similar. This means that all segments represent the periodic 

bearing’s defect well through a set of single impacts with the same phase. 
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Figure 4-12 Sequence of segment signals (Sk,l) with index l=1~5 at the selected 

band for the simulated data. 

Figure 4-13 shows the results of the comparison study for each method’s 

computing time. The results are displayed through box plots; each box has 50 

samples for the consuming time value. Every iteration is performed with an identical 

algorithm, without a random number generation process for Gaussian noise adding. 

The decomposition level is fixed at six for every method. Fast Kurtogram, as 

expected, has the best computing cost, regardless of diagnostic performance. Most 

of the samples are located between one and two seconds. Autogram shows the worst 

results from among the objective methods for over a minute, even though it does not 

carry out 1/3-binary tree decomposition. The proposed method has better 

performance; it is more than three times faster than Autogram, even with the 

additional 1/3-binary tree analysis. The detailed wavelet analysis in Autogram might 

cause additional time costs. However, the main reasons for the difference in 
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calculation time seem to come from the algorithmic process. Autogram examines all 

the lag of given samples for auto-correlation analysis. However, the proposed 

methods examine the correlation analysis only for a limited number of preprocessed 

signals using the defect period, as mentioned in Section 4.2.2. 

 

Figure 4-13 Comparison of calculation time for each method. 

To investigate the noise robustness of the proposed method under the potential 

extremely harsh conditions of AE sensors, experimental analysis in a low-SNR case 

is carried out for simulated data. The SNR level is controlled by decreasing the 

energy of xbd in Equation (4.14). The bearing defect power, in relation to the others, 

is set to about -55 dB, which means a harsher condition for fault detection than that 

of the case of Figure 4-9. Figure 4-14 displays the results of band selection for each 

method in the low-SNR case, and the detailed selected parameters are listed in Table 

4-3. The FK has the same result as the previous case study with impulsive noise 

selection. The faintly visible defect bands in Figure 4-9 (a) no longer appear as a 

result of the low defect energy. Autogram approach and the proposed method have 
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different results, unlike in Figure 4-9. Figure 4-14(b) shows that Autogram approach 

chooses the high-frequency band irrelevant to the bearing’s defect; however, the 

proposed method correctly selects the band that carries the defect information. 

Compared with the high-SNR case in Figure 4-14(c), defect bands are not 

highlighted well throughout many levels, and the optimum bandwidth is enlarged 

because of the small energy of the defect. 

 

Table 4-3. The results of band-selection for the simulated data with low SNR. 

 Fast Kurtogram Autogram Proposed method 

Level 6 4 3.5 

Frequency center 

[Hz] 
13500 54000 24000 

Bandwidth [Hz] 1000 4000 5333 
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Figure 4-14 The results of each band selection algorithm for a simulated signal 

with low SNR: (a) Fast Kurtogram, (b) Autogram, and (c) the proposed 

method. 
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Figure 4-15 represents the band-pass signals and envelope spectrums of selected 

bands for the low-SNR cases. Kurtogram has a similar result to the high-SNR case, 

which focuses on impulsive noise components. Figure 4-15(b) shows a spectrum that 

gradually attenuates as it goes up to high frequency due to the impulsive noise. The 

leaking defect energy that was slightly visible in Figure 4-10(b) is no longer visible, 

and only the 320Hz component, which is the second harmonic of motor noise, 

appears. The time-domain results of Autogram incorrectly selected the band. Here, 

it seems that the signal does not have any particular pattern, like white Gaussian 

noise; however, Figure 4-15 (d) shows the spectral features that only have motor-

related components prominently. The failure of Autogram seems to be caused by the 

intrinsic character of auto-correlation (AC). AC can easily filter out uncorrelated 

components, such as random impulses or non-periodic components. However, 

because it thoroughly examines all the time lags for given signals, other cyclic 

components occupying a large proportion of energy (i.e., gear, coupling, and 

electrical noise) could be easily triggering the decision parameter. In this study, the 

simulated signal is generated to suppose an electrically harsh condition, which might 

induce Autogram’s failure. On the other hand, the results of the proposed methods 

demonstrate that it can successfully find the optimum bands for the defect signal, 

despite the low-SNR condition Figures 4-15 (e) and (f) represent that the periodic 

defect patterns are clearly shown in the time domain, and the defect-related 

frequency components stand out in the envelope spectrum domain. 
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 (a) (b) 

 

 (c) (d) 
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 (c) (d) 

Figure 4-15 Band-pass signals and envelope spectrums at the selected frequency band, as found by each band-selection 

method for the low-SNR simulated signal: (a), (b) Fast Kurtogram, (c), (d) Autogram, (e), (f) the proposed 

method. 
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Figure 4-16 shows the autocorrelation analysis of Autogram’s results in the low-

SNR simulated case. Unlike the good-SNR case shown in Figure 4-11, several 

different periodic components, unrelated to the bearing’s fault, are observed in the 

lag domain. The main pattern seems to be repeated with an interval of about 400 data 

points, and it matches with the period of a 360 Hz component. Considering the input 

signal that has gone through the squared envelope analysis, Autogram method 

focuses on the motor-related noise, with 160Hz as the main component. 

 

Figure 4-16 Autocorrelation function for the simulated signal filtered by the 

optimally selected band from Autogram, in the bad-SNR case. 

Figure 4-17 illustrates a sequence of segment signals, Sk,l, for the frequency band 

selected by the proposed method in the low-SNR case. Although the overall segment 

signals have random fluctuations because of the low-SNR character, the periodic 

bearing's defect could be observed with the same phase. This indicates that the 

proposed method properly operates under noisy conditions. 
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Figure 4-17 Sequence of segment signals (Sk,l) with index l=1~5 at the selected 

band for the simulated data in the low-SNR case. 

Two additional simulation analyses have been conducted to demonstrate the 

behavior of both the traditional and proposed methods for the input signal’s diverse 

circumstances. The additional studies differ in their noise conditions, considering the 

predominant components of impulsive and electrical noise, as shown in Equation 

(4.14). Two cases are considered: first, a case without electrical noise, xEMI, and 

second, a case without impulsive noise, xin. An identical process of signal processing 

and band selection is applied to both signals, as conducted for the previous simulated 

analysis. Figure 4-18 and Table 4-4 show the band selection results for the case 

without electrical noise components. The Fast Kurtogram approach failed to find the 

fault-related frequency band, as expected. On the other hand, Autogram and the 

proposed method worked successfully to find the bearing defect band around 24000 

Hz. Figure 4-19 and Table 4-5 represent the results of the case without the impulsive 



76 

 

noise component. In this case, Fast Kurtogram was barely able to find the proper 

band due to the high-frequency noise from the electrical components, as highlighted 

in decomposition level one. Autogram failed to find the proper band, as shown in 

Figure 4-14. Here, it seems that the absence of electrical noise allowed the successful 

searching of the Autogram approach. In other words, local periodicity of electrical 

components can disturb target defect searching. The proposed method works on both 

cases, which demonstrates its noise robustness for both noise components of 

impulsive and locally periodic noise. 
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Figure 4-18 The results of each band selection algorithm for a simulated signal in a 

low-SNR situation without electrical noise components: (a) Fast 

Kurtogram, (b) Autogram, and (c) the proposed method. 
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Figure 4-19 The results of each band selection algorithm for a simulated signal in a 

low-SNR case without an impulsive noise component: (a) Fast 

Kurtogram, (b) Autogram, and (c) the proposed method. 
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Table 4-4. The results of band-selection for simulated data in a low-SNR case 

without electrical noise components. 

 Fast Kurtogram Autogram Proposed method 

Level 5.5 5 3.5 

Frequency center 

[Hz] 
12667 23000 24000 

Bandwidth [Hz] 1333 2000 5333 

 

 

Table 4-5. The results of band-selection for simulated data in a low-SNR case 

without an impulsive noise component. 

 Fast Kurtogram Autogram Proposed method 

Level 5.5 4 3.5 

Frequency center 

[Hz] 
24667 54000 24000 

Bandwidth [Hz] 1333 4000 5333 
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4.4 Experimental Validation of the Proposed Method 

This section demonstrates the proposed band selection method using experimental 

data from a bearing test rig in the laboratory. The test rig is set up for health 

monitoring of a slewing bearing used for the yawing system in heavy machinery, as 

mentioned in Section 3.2. Heavy machinery’s large stiffness and low operating speed 

create the need for an AE sensor to measure it over long-time-period observations to 

trace the periodicity sensitively. The long-time measuring easily exposes the AE 

signal to impulsive and periodic non-Gaussian noise. The experimental data 

acquisition and description through the test rig are presented in Section 4.4.1. The 

proposed method is applied to the measured data, and the results are compared with 

the traditional Fast Kurtogram, and Autogram approaches in Section 4.4.2. 
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4.4.1 Experimental Data Acquisition and Description 

Slewing bearing test data set is measured through constructed testbed in Section 3.2. 

The detailed parameters of the data acquisition are listed in Table 4-6. 

Table 4-6. Detailed parameters for slewing bearing data acquisition. 

Parameter Values 

Sampling rate 100000 sample/s 

Sample time 60 sec 

Axial load 10 tf (104 kgf) 

Rotating speed of the shaft 15 rpm 

Figure 4-20 shows the time and frequency domain plot for the measured AE 

signal. Several local impulsive peaks are observed on the time-series data in Figure 

4-20(a); these seem to be generated from the bearing’s defect, but this is uncertain 

because of the noise. The spectrum of the raw signal in Figure 4-20(b) shows that 

the signal is highly smeared by the electrical noise. 60Hz and its harmonics are the 

main supplying current frequency in a single phase, and 30Hz and its harmonics are 

the electrical frequency of the motor at 15RPM with a 1/60 reduction gear ratio. 
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(a) 

 

(b) 

Figure 4-20 Measured AE signal: (a) time-domain signal, and (b) spectrum. 

 

4.4.2 The Results for Experimental Validation 

The proposed method for band selection is applied to the experimental data. The 

performance of the proposed method is compared with the traditional methods in the 

same manner as described in Section 4.3. Figure 4-21 illustrates the results of the 

Kurtogram method, Autogram, and the proposed method. The details of the selected 

band for each method are listed in Table 4-7. Algorithms other than the proposed 

method select a band around 19,000Hz, while the proposed method selects 6,250Hz. 
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Figure 4-22 shows the envelope spectrum of the selected band for each method. 

Figures 4-20 (a) and (b) show similar spectrum results with many harmonic peaks of 

60Hz, which is the main electric power supplying frequency. In addition, between 

those harmonic components, several minor peaks appear with an interval of 30 Hz, 

which is the electrical frequency of the motor at 15RPM with a 1/60 reducer. Figure 

4-22(c) also shows the peaks of the electrical components, however, they are less 

dominant. In contrast, Figure 4-22(c) shows a number of peaks in the low-frequency 

region under 100Hz. Those peaks are the harmonics of 4.79Hz, the characteristic 

defect frequency of the target slewing bearing, which can be calculated using the 

general equation for defect frequency calculation [35]. The detailed geometry 

parameters are as follows: there are 39 rolling ball elements, ball diameter is 20mm, 

pitch diameter is 280mm, and the approximate contact angle is 75 degrees. Judging 

from the results of the spectrum, the proposed method can extract objective defect 

signals, unlike the Fast Kurtogram and Autogram methods, which focus on the 

electrical components.  

 

Table 4-7. The results of band-selection for the experimental data. 

 Fast Kurtogram Autogram Proposed method 

Level 6 5 3.5 

Frequency center 

[Hz] 
19141 19531 6250 

Bandwidth [Hz] 781 1563 4167 
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Figure 4-21 The results of each band selection algorithm for the experimental data: 

(a) Fast Kurtogram, (b) Autogram, and (c) the proposed method. 
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(a) 

 

(b) 

 

(c) 

Figure 4-22 Envelope spectrums of the selected frequency band for each method: 

(a) Fast Kurtogram, (b) Autogram, and (c) the proposed method. 
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Figure 4-23 shows the autocorrelation analysis of Autogram’s results for the 

slewing bearing data. Many peaks in the lag domain contain motor noise and target 

defect components. It seems that the motor noise, corresponding to 60, 30 Hz and 

their harmonics, is predominant, as compared to the defect. The periodic motor 

noises disturb the distribution of the ACF, which can increase Equation (4.4) by 

selecting a band irrelevant to the target defect. In addition, the low SNR of the 

measured signal results in low correlation of the defect components, which makes 

Autogram vulnerable to periodic noise. 

 

Figure 4-23 Autocorrelation function for the slewing bearing signal filtered by the 

optimally selected band from Autogram. 

Figure 4-24 shows a sequence of segmented signals, Sk,l, at the selected frequency 

band of the proposed method. A similar impulsive pattern is observed in the latter 

part of every segment. Even though the nonlinearity of the bearing system might 

cause a slight phase discrepancy along the segments, the local phases match. Local 

phase matching increases the correlation score of the defect measure in Equation. 
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(4.12); this it means that the proposed band selection method successfully selects the 

band related to the target fault. 

 

Figure 4-24 Sequence of segment signals (Sk,l) with index l=1~5 at the selected 

band for the experimental data. 

Figure 4-25 compares the computing times for the experimental data, as described 

in Section 4.3.2. The experimental data has a large number of samples because of 

the long sampling time and slow periodicity. Although the relatively large samples 

increase the average computing times, the trend among methods is similar to the 

results of the simulation data; this is shown in Figure 4-25. Each box plot has 50 

samples of cost times for the experimental data. Fast Kurtogram approach takes the 

shortest time, around 10 seconds, and Autogram method takes the longest time, 

around 450 seconds on average. Autogram’s high computing cost comes from the 

wavelet packet decomposition step, which could take more time as the 
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decomposition level increases. The proposed method is faster than Autogram by 

about 4.5 times. 

 

Figure 4-25 Comparison of calculation time for each method. 

For further verification, an additional experiment has been carried out with 

different operating speed conditions. Figure 4-26 and Table 4-8 show the band 

selection results for each method with 10 RPM of shaft rotation. A decrease of 

rotating speed causes an energy drop in the defect signal, resulting in a low SNR of 

the measured data. As a result, Fast Kurtogram and Autogram approaches fail to find 

the detailed fault frequency band. Although Figures 4-26(a) and (b) show a faint 

highlight at around 8kHz in both methods, macroscopic noise of the raw signal is 

sufficient to distract the objective function of the traditional algorithm. The proposed 

method, meanwhile, selects a frequency band around 6.5kHz, a similar center 

frequency as that of the 15RPM case shown in Table 4-7. These experimental results 

and the simulated validation in Section 4.2 show the potential ability of the proposed 
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algorithm, even in a low-SNR condition. These results show the superiority and 

high-sensitivity of the proposed method, as compared to the traditional methods. 

Furthermore, it demonstrates the effectiveness of the proposed segment-based defect 

measure in Equation (4.12), as a noise-robust factor that considers impulsive and 

non-Gaussian periodic noise. 

 

Table 4-8. The results of band selection for the experimental data for the 10RPM 

condition. 

 Fast Kurtogram Autogram Proposed method 

Level 0 0 6.5 

Frequency center 

[Hz] 
25000 25000 6510 

Bandwidth [Hz] 50000 50000 521 
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Figure 4-26 The results of each band-selection algorithm for the experimental data 

for the 10RPM condition: (a) Fast Kurtogram, (b) Autogram, and (c) the 

proposed method. 
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4.5 Summary and Discussion 

This study proposes the design of a noise-robust and efficient band-selection method 

for AE sensor data. The proposed correlation- and kurtosis-based measure makes the 

selected band focus on the periodic and impulsive characteristics of the bearing 

defect. Its features prevent the proposed method from being deceived by external 

impulsive or periodic non-Gaussian noise. The proposed method is verified by 

applying it to both simulated and experimental data; the results are compared to 

traditional band-selection methods. The suggested method has several advantages. 

First, by using the target defect period, it can search for the optimum defect band 

quickly, despite a large amount of data in noisy conditions. Second, the suggested 

method can be applied not only to an AE sensor but also to other sensors with a high 

sampling rate, such as ultrasound and ultra-high frequency (UHF) sensors. Third, the 

proposed defect measure uses only time-domain signals without spectral reasoning, 

which reduces the computational burden and allows practical use in industry. 

Furthermore, the proposed method can also be applied to other rotary components 

that carry periodic defect signals.  

  

Sections of this chapter have been published or submitted as the following journal 

articles:  

1) Su J. Kim, Sungjong Kim, Seungyun Lee, Byeng D. Youn, and Taejin Kim, 

“Effective band-selection algorithm for rolling element bearing diagnosis using AE 

sensor data under noisy conditions,” Structural and Multidisciplinary Optimization, 

Submitted. 
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Chapter 5  

 

Motor-current-based 

Electromagnetic Interference 

De-noising 

 

This chapter introduces the design of the de-noising filter eliminating the electrical 

components in AE signals. Among the electrical components, electromagnetic 

interference (EMI) becomes the main target of interrupting source, which is hard to 

separate from bearing signals because of the non-stationary and dynamic characters, 

despite optimum band selection. For successful extraction of bearing defect 

information, de-noising process that cancels out the defect-irrelevant components is 

required, as a preprocessing of diagnosis procedure. The detailed sections of this 

chapter are organized as follows. Section 5.1 briefly reviews the electromagnetic 

interference. Section 5.2 introduces the proposed de-noise filter algorithm for 

bearing fault detection. In section 5.3, the effectiveness of the proposed method is 

demonstrated using experimental data from a bearing test rig, and the experimental 

results are discussed. Finally, the last section provides a summary and discussion. 
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5.1 Electromagnetic Interference 

This section explains the electromagnetic interference (EMI) to help understand the 

noise that the author focuses on in this dissertation. Electromagnetic interference 

(EMI) is the high-frequency signal that is generated by a variable frequency motor 

(VFM). For rotary machines, it is common to use a VFM to control the rotational 

speed [63]. The VFM controls the speed by adjusting the frequency of the supplied 

AC. Figure 5-1 shows a schematic diagram of speed control with a VFM, and the 

source of EMI. 

The rectifier first converts the supplied AC to DC and then the inverter changes 

it back to AC, but with the desired frequency, 𝑓𝑒 . However, when the inverter 

changes DC back to AC, the resulting AC is not a true AC signal, but rather the 

summation of discontinuous DCs. In other words, it only mimics AC with DC, using 

the method called pulse width modulation (PWM) [65]. In the PWM process, a 

carrier signal with a switching frequency slices the target AC signal and makes a 

particular on/off pattern in DC to simulate the target AC. This approximation 

accompanies complex modulation of the switching frequency that affects the current 

input of the motor, which is the major source of EMI. In detail, from a macroscopic 

view, the motor’s input is seen as continuous low-frequency waves. However, from 

a microscopic view, the input is a discrete signal based on the switching frequency 

of the inverter. This micro-discontinuity of the motor input results in the low-

frequency modulation of the high-frequency switching components. Finally, 

electromagnetic force in the motor actualizes the EMI signal in the mechanical 

vibration on the system.
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Figure 5-1 A schematic diagram of speed control with a VFM and the source of EMI. 
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There are several notable characteristics of EMI. First, EMI causes a lot of 

harmonics of the switching frequency. Inverter manufacturers usually set the 

switching frequency between 2 ~ 15 kHz [73]; however, the PWM output has 

harmonics up to the megahertz range. Another characteristic is the complicated 

modulation of PWM output involving the Bessel function [65]. The modulation 

signal creates sideband effects on the switching frequency with an interval of 𝑓𝑒. 

The electrical frequency 𝑓𝑒 is related to the desired mechanical frequency 𝑓𝑚 by 

Equation (5.1). 

 𝑓𝑒[𝐻𝑧] =
𝑃𝑝

60
× 𝑓𝑚[𝑅𝑃𝑀] (5.1) 

where 𝑃𝑝 is the number of pole pairs of the motor. This means that EMI is variable 

noise that depends on the shaft rotation speed and motor driver specifications. When 

the operating conditions change, EMI from the motor is also altered by spectral 

shifting. 

Due to the previously mentioned characteristics, EMI disturbs the bearing 

diagnosis creating a large amount of noise in zone 4 of Figure 2-3, as well as in zone 

2 when the signal is demodulated after envelope analysis. Since EMI comes from 

the operating motor, it is inevitable in a rotary system. When data is gathered from 

an AE sensor, the signal is even more affected by EMI because of its high sensitivity 

and broad operating frequency. As a result, the AE data has a low signal-to-noise 

ratio (SNR) due to the unwanted noise from the motor. It needs to distinguish bearing 

fault signals from EMI signals in the envelope spectral domain and remove unwanted 

ones. When there is enough information on the motor, driver, and bearing system, it 

is possible to distinguish the noise from the target signal. However, all the necessary 
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information is not usually available. Further, even if it is available, it would still be 

arduous to filter out EMI that appears sporadically in the envelope spectrum. The 

proposed method, which is introduced in Section 5.2, assumes that the defect 

frequency is unknown; this is common in many cases because of unknown geometry 

or operating conditions. In this situation, many industrial solutions determine the 

abnormality of the bearing using physical and statistical measures of the envelope 

signal. The proposed method aids this problem by diminishing the EMI noise. 
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5.2 Multi-sensor-based EMI Filter Design 

The fundamental concept proposed to eliminate the EMI from the AE sensor signal 

is explained in this section. Because EMI is generated in a high-frequency region, 

the proposed method is suitable for AE sensors that observe broadband information. 

The filter for the AE signal is designed using the current signal. To extract necessary 

information from different physical quantities, a series of signal processing methods 

are also introduced. 

 

5.2.1 Framework of the Proposed Multi-sensor-based Filtering 

The AE signal is readily corrupted by the EMI, resulting in unwanted peaks in the 

frequency domain that hinder the diagnosis of the bearing. This study aims to 

effectively eliminate these peaks in the frequency domain for better bearing 

diagnosis. The key idea of the proposed approach is to separate the defect signal 

from the electrical noise using two different sensors, as shown in Figure 5-2: first, 

an AE sensor is used, which contains both the bearing and the EMI signals, the 

second is the current sensor, which contains only the EMI signal. 
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Figure 5-2 Key concept of the proposed multi-sensor approach. 
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Signals from the AE and current sensors can be expressed as follows. 

 𝑋𝐴𝐸 = 𝑂𝑟 + 𝐷𝑏 + 𝑅𝐴𝐸 + 𝐸𝐴𝐸 + 𝑆𝐴𝐸 + 𝑁𝐴𝐸  (5.2) 

 𝑋𝐶 = 𝑃𝑆 + 𝐸𝐶 + 𝑆𝐶 + 𝑁𝐶 (5.3) 

where 𝑂𝑟 is the operating signal related to the rotation of the shaft, 𝐷𝑏 is the defect 

signal from the bearing, and 𝑅𝐴𝐸 is the system resonance from the AE sensor, which 

has relation to 𝐷𝑏  with amplitude modulation, as shown in Figure 2-4. E and S 

represent the electromagnetic interference signals. S specifically means the 

switching frequency and harmonics. E is the modulation of S. The subscripts AE and 

C indicate that the signal is measured by the AE sensor and current sensor, 

respectively. PS is the signal related to the main power supply. Finally, 𝑁 is the 

noise from the external components, unexpected signal disturbance, and intrinsic 

noise in the data acquisition system.  

Although both 𝐸𝐴𝐸  and 𝑆𝐴𝐸  are electromagnetic interference terms, what 

particularly hinders bearing diagnosis is 𝐸𝐴𝐸 . When demodulating the defect signal 

(𝐷𝑏) from the resonance signal (𝑅𝐴𝐸), 𝐸𝐴𝐸  is also demodulated from the switching 

frequency (𝑆𝐴𝐸 ) because all these signals are tangled together. As a result, 𝐸𝐴𝐸  

generates a number of unwanted peaks in the envelope spectrum. To subtract the 

demodulated 𝐸𝐴𝐸  from the spectrum, the motor input current could be utilized 

because it is less correlated with bearing defects. Although 𝐸 on both signals cannot 

be directly subtracted due to the physical difference, one can be inferred from the 

other using their correlation. To this end, this study suggests an adequate signal 

processing method for removing 𝐸𝐴𝐸 , including the empirical mode decomposition 

(EMD) and cumulative distribution function (CDF)-based filter design. 
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The overall process of the proposed method is shown in Figure 5-3. It begins with 

data acquisition through two sensors, an AE and a current sensor. The bearing signal 

from the AE sensor goes through typical preprocessing for bearing diagnosis, which 

is band-pass filtering. Band-pass filtering picks out the unintended frequency 

information 𝑁𝐴𝐸 , such as low-frequency noise and signals from other mechanical 

components. The current signal also goes through preprocessing, but the EMD 

method is used for robust extraction of 𝐸𝐶 and 𝑆𝐶, instead of using the band-pass 

filter. Then, envelope spectrum analysis is adopted for both preprocessed signals to 

demodulate the high-frequency carrier signals 𝑅𝐴𝐸 , 𝑆𝐴𝐸 , and 𝑆𝐶 . After that, an 

adequate filter is designed by using the envelope spectrum of 𝐸𝐶 , using a 

probabilistic approach. Finally, EMI on the envelope spectrum of 𝐸𝐴𝐸  is filtered by 

the predesigned filter. The result of the process, the de-noised envelope spectrum 

can then be utilized for REB fault diagnosis. 

Two steps are of primary importance in the suggested process. One is the use of 

EMD to separate the EMI from the current signal; the other is the design of the CDF 

filter to cancel out the correlated noise components between the different sensors. 

Details of these steps will be described in the following sections. 
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Figure 5-3 Flowchart of EMI filter design. 
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5.2.2 EMI Signal Extraction using Empirical Mode Decomposition 

As described in the previous section, the motor input current signal is used to 

eliminate high-frequency EMI from the AE signal. For this purpose, the EMI-related 

signal is first extracted from the current data. This requires an adaptive algorithm for 

the following reasons. First, switching and electrical frequency information are not 

readily available in industry settings without the manufacturer’s support or 

experimental reasoning. This lack of information makes it difficult to figure out the 

EMI. Second, even if all of the necessary information is available, it is cumbersome 

to manually adjust the parameters of the EMI extractor whenever the inverter 

specifications change. Third, the variable speed of the motor changes the modulation 

frequency, which leads to a change in the EMI peaks in the spectrum. Finally, a 

variable switching frequency technique was recently developed in motor control to 

reduce the switching loss, making an ever-changing EMI. Considering these points, 

empirical mode decomposition (EMD) is employed to adaptively extract the 

interference signal. This technique is developed to interpret nonlinear and non-

stationary signals [74], [75]. The EMD method decomposes the raw signal into 

several other signals, like the Fourier series. One of the strengths of EMD is its 

adaptability in decomposing the original signal into periodic components. This 

method assumes that the original signal, 𝑦(𝑡), is a superposition of several periodic 

components, called the intrinsic mode function (IMF), expressed as 

 𝑦(𝑡) = ∑ 𝐼𝑀𝐹𝑖(𝑡)

𝑘

𝑖=1

+ 𝑟𝑘(𝑡) (5.4) 
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where the 𝑟𝑘(𝑡)  is the residual signal of 𝐼𝑀𝐹𝑘(𝑡) . The method iteratively 

decomposes the original signal into IMFs; each iteration is called ‘sifting’. After the 

first sifting, the first main cyclic component, 𝐼𝑀𝐹1(𝑡), is found and subtracted from 

the original signal, and the residual, 𝑟1(𝑡), is designated as the target signal for the 

subsequent sifting. 

During the sifting process, the average of the upper and lower envelope is 

iteratively subtracted from the given signal. The IMF is determined when the residual 

satisfies two criteria. First, the difference between the number of local extremes and 

the zero-crossing of the residual is zero or one. Second, the sum of the local 

maximum and minimum is zero. Satisfaction of these two criteria allows effective 

decomposition of an amplitude-modulated, non-stationary signal like EMI. In 

particular, the first property makes each IMF have different frequency characteristics. 

The earlier the IMF is extracted, the higher frequency the IMF contains. While power 

supply and sensor noise are commonly found in low-frequency regions, the EMI 

includes relatively high-frequency components. Based on the IMF’s frequency 

characteristics, the lower order of the IMF signal is more likely to extract the EMI 

as it withdraws unwanted signals. 

Note that although the frequency tends to decrease as the order of IMFs increases, 

it is not deterministic like frequency-based decomposition. IMFs are not globally 

orthogonal, they are locally orthogonal by frequency overlapping between 

neighboring IMFs. Despite this vagueness in decomposition, EMD has an advantage 

over frequency-based decomposition. EMD can sequentially extract the main 

periodic components from any given signal without knowing the characteristics of 

it. In the current signal, the switching frequency and its modulation lie in the high-
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frequency region; however, the specific region depends on the system and operating 

conditions. EMD can adaptively extract the high frequency of a given signal without 

prior knowledge of the system. Its flexible separation makes it easy for it to extract 

the high-frequency EMI. 

 

5.2.3 De-noising Filter Design with a Cumulative Distribution Function 

As mentioned in Section 5.2.1, in the envelope spectrum of the AE data, the 

demodulated EMI coexists with the bearing fault signal. To remove the EMI 

components selectively, a proper filter needs to be designed. There are some well-

known traditional filters, such as zero-passing, band-pass, and notch filters. These 

filters, however, have the drawback of eliminating the multiple peaks from EMI. 

Although a zero-passing filter could directly remove unwanted energy in the 

frequency domain, it needs to adjust the filtering parameter manually. Band-pass and 

notch filters could eliminate narrowband information, but they bring spectral 

distortion around the target band. Repetitive filtering for multi-peak de-noising could 

disturb the bearing’s defect signal. Furthermore, the high sampling rate of AE data 

requires a high-order function for designing the filter. The filter's response shape 

needs to be extremely sharp because the frequency scope of the target noise is too 

small, as compared to the entire spectral domain. This is not only computationally 

burdensome; it also increases the time cost.  

For this reason, we need an effective filter that removes only EMI components 

without touching the bearing fault. In this study, a probabilistic approach is adopted 
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in the diagnosis space. The filter design procedure consists of four steps, as depicted 

in Figure 5-4. 

 

Figure 5-4 Procedure of de-noising filter design. 

Step 1. Resampling. If two sensors' acquisition times are different, their 

frequency resolution in the positive real spectrum will not match each other. This 

causes grid discrepancy in the frequency plane during filtering. The longer the 

acquisition time, the higher the frequency resolution, regardless of the sampling rate. 

Thus, the two target signals with different frequency resolutions require a resampling 

process to adjust them. In order to prevent information loss, it is recommended to 

oversample, according to a relatively higher resolution signal. 

Step 2. Windowing. Since the two signals have different sampling rates, the 

observed frequency ranges are also different. Therefore, each envelope spectrum 

should be truncated to match the end. In this operation, the window size is a control 

parameter. If the range is too broad, (e.g., DC up to 100 kHz), too many peaks might 

be gathered, including the remaining switching frequency. This makes it difficult for 

the filter to focus on the demodulated signal in zone 2. On the other hand, when the 

range is too narrow, some information in the demodulated signal could be lost. A 

proper window size needs to be selected, excluding the switching frequency and 

including the demodulated signal. The recommended window size is between 2k and 

5k. 
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Step 3. Estimation of distribution. The processed AE data has peaks from both 

the bearing data and EMI; the processed current data has only EMI peaks. However, 

direct subtraction of these two signals cannot remove EMI from the AE data because 

of the scale difference. Hence, normalization is required. The problem is that the 

scale difference varies for each peak; thus, collective correction (e.g., multiplying 

the normalizing factor to a signal) will not work. Here a probabilistic filter will be 

designed to overcome this problem in step 4. As a preliminary step, probability 

distribution fitting for each signal is required. The amplitude of each of the grid 

points in the windowed current spectrum becomes a random variable of distribution. 

Various methods are available for distribution selection and parameter estimation. 

In the study, maximum log-likelihood estimation is used because of its simplicity. 

The equation is shown in Equation (5.5). 

 arg max
𝛉𝑗,𝑗

𝐸(𝛉𝑗) = ∏ 𝑝𝑗(𝑥𝑖|𝛉𝑗)

𝑖

 (5.5) 

where xi is spectrum amplitude of the ith index, pj() is the jth probability distribution 

function from the candidates, and θj represents the parameters of probability 

distribution pj(). The probability distribution and its parameters are obtained by 

maximizing Equation (5.5). 

Step 4. Filter design by RCDF. An EMI reduction filter is developed using the 

estimated probability distribution. The filter’s response function is made by 

weighting, through the reverse cumulative distribution function (RCDF). It is 

represented as  

 𝑤𝑖 = 1 − 𝐹𝑋(𝑥𝑖) (5.6) 
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where 𝐹𝑋(𝑥)  is the cumulative distribution function (CDF) from the group of 

amplitudes. The parameter of the distribution is estimated in step 3. Equation (5.6) 

substitutes the filter’s response weight 𝑤 for the amplitude of the ith frequency 

index. It applies to all grid samples in the truncated envelope spectrum. Demodulated 

EMI generates a multi-peak situation in the windowed envelope spectrum; these 

have a locally large amplitude. The 𝑎(𝑥) values corresponding to the multi-peak of 

EMI are computed as almost zero through RCDF. The zero weight results in an 

energy decline at those grid points during the filtering process. Employing this 

property, the array of weight becomes a filter’s response function, which can remove 

the overall multi-peak situation at once. Finally, the designed filter is multiplied by 

the AE data that is preprocessed by step 2, as shown in Equation (5.7). 

 𝑂𝑟 + 𝐷𝑏= 𝑤 × (𝑂𝑟 + 𝐷𝑏 + 𝐸𝐴𝐸) (5.7) 

The filtering process is performed on the envelope spectrum domain with 

element-wise products. In the preprocessed AE signal, 𝐸𝐴𝐸  exists in the form of a 

demodulated multi-peak. Through the equation, it can be removed selectively. 

 

5.3 Experimental Validation of the Proposed Method 

This section demonstrates the proposed de-noise method using experimental data 

from a bearing test rig in the laboratory. The resource for experimental validation of 

this thrust is the angular ball bearing test rig, as aforementioned in Section 3.1. The 

test rig is set up for health monitoring of angular ball bearing used in precision 

machining such as spindle module in CNC machine. In a precision machining 
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process, the abnormality of the bearing must be detected as soon as possible. Because 

precision machining generally has high-rotational speeds, tiny bearing defects can 

cause a critical effect on the machining process and human safety in a moment. In 

this process, high-speed operation entails a large amount of motor noise for speed 

control, and it disturbs AE signals on bearing diagnosis. The brief contents of this 

section are as follows. The experimental data acquisition through the test rig is 

presented in Section 5.3.1, and the data description and the detailed analysis of 

measured data are presented in 5.3.2. In Section 5.3.3, the proposed de-noising 

process is applied to the measured dataset, and the results are analyzed. Lastly, the 

additional experimental verifications are proceeded with containing comparison 

study with traditional methods and quantified result analysis, in Section 5.3.4. 

 

5.3.1 Experimental Data Acquisition 

Angular ball bearing test data set is measured through constructed testbed in Section 

3.1. A current sensor is additionally used for proposed multi-sensor filtering. The 

current sensor from Tektronix is clamped on the line between the driver and motor 

to measure the motor input current, as shown in Figure 5-5. An A/D converter, model 

9239 from National Instruments, converts the analog sensor signal to the digital form 

of current data. The module has a maximum sampling rate of 50kS/s per channel and 

offers 24-bit digital resolution. The experimental dataset is obtained under the 

conditions designated in Table 5-1. 
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Figure 5-5 Configuration of the current signal acquisition. 
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Table 5-1. Data acquisition and experimental conditions. 

Parameter Values 

Basic load rating 8650 N 

Dynamic equivalent radial load 27 % 

Rotational speed 2100 RPM 

Number of motor poles 8 

Inverter switching frequency 10000 Hz 

Sensors AE sensor Current Sensor 

Model (Maker) WSa (Mistras) A622 (Tektronix) 

Sampling frequency 2 MHz 50 kHz 

Sampling time 1 sec 1 sec 
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5.3.2 Description and Interpretation of Measured Data 

The sampled raw signal from the AE sensor is shown in Figure 5-6(a). Some features 

of the bearing are observed from the raw data. Figure 5-6(b) expands the signal with 

the period of the BPFI and its multiples. The figure shows the impact signals, which 

are indicated by the red arrow. Some defect signals that have enough energy that 

they can be distinguished from the noise; however, some cannot. If the severity of 

the defect is insignificant or operating speed decreases, the entire impulse train will 

be buried in the background noise, making it impossible to diagnose the fault. This 

background noise could result from various sources. One of the main problems is the 

EMI, as mentioned in section 2.2. Figure 5-6(c) shows the expanded signal along the 

switching period and its multiples. This figure shows the repeated signal pattern of 

the EMI. The cyclic signal does not look like a simple sinusoidal signal; rather, it is 

a complicated signal superposed by the harmonics of the switching frequency and 

chaotic modulation. This EMI noise is measured along with the bearing signal, 

lowering the SNR. 

Figure 5-7(a) shows the spectrum of the AE signal. The effect of EMI is observed 

in the form of vertical peaks. The pile of peaks consists of the harmonics of the 

switching frequency and the sideband generated by VFD. Figure 5-7(b) shows the 

expanded sideband around the 16th harmonic of the switching frequency, which has 

abundant spectral peaks. The spectrum shapes, the side bands around the harmonic 

in the figure, are repeated in almost every harmonic of the switching frequency 

involving an amplitude difference, according to the component energy. The green 

circle indicates 𝑆𝐴𝐸, the harmonic of the switching frequency. There are multiple 

sideband which indicate 𝐸𝐴𝐸  in Equation (5.2). 𝐸𝐴𝐸  can be categorized into two 
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Figure 5-6 Time-domain signal of an AE sensor with a faulty bearing: (a) raw 

signal, (b) BPFI period signal, and (c) switching period signal. 

  



113 

 

groups, which are designated by the red triangles and blue diamonds in the figure. 

The first group, denoted by the red triangles, is related to the driving frequency of 

the motor. In this experiment, the driving frequency is set to 2100 RPM; however, 

the actual speed measured by the encoder is approximately 2081 RPM because of 

the open-loop speed control with frictional torque. The electrical frequency is 

approximately 138.7 Hz. It seems that the electrical frequency of the motor is the 

main component of modulation because it is prominent across the spectrum. The 

second group, denoted by the blue diamonds, is related to the power supply of the 

motor system. This group contains 360 Hz interval peaks around the switching 

frequency. Additionally, there are 60 Hz interval peaks around the switching and 

electrical frequencies. In Korea, 60 Hz is the fundamental AC frequency, and 360 

Hz is the pulse frequency of a full-wave rectifier with three-phase power, based on 

60 Hz AC. Thus, it seems that the electrical frequency and AC power are also in 

modulation because of the 60 Hz interval sideband found in the electrical frequency 

sideband component. These two groups’ sideband information will be transformed 

to the noise peaks in the envelope spectrum domain for bearing diagnosis. 
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(a) 

 

(b) 

Figure 5-7 Spectrum of the AE signal with a faulty bearing: (a) total AE spectrum, 

(b) extended local AE spectrum of the 16th harmonics of the switching 

frequency.  
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The time-domain signal of the current data is shown in Figure 5-8(a). Figure 5-8(b) 

represents an enlarged time-domain signal with the electric driving period. The 

signal is repeated with the electric driving cycle; however, each cycle is different 

because of the superposition of the amplitude modulation signal from the PWM. 

Figure 5-8(c) is an expanded raw current signal along the inverter’s switching period 

and its multiples. Although it is not sinusoidal, the cyclic feature is clearly identified. 

The cyclic shape looks like a saw blade or train of the impulse signal; this is caused 

by the discrete operation of the inverting process. This means that the motor current 

input contains a PWM output, which justifies the direct extraction of EMI from the 

current signal. 
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Figure 5-8 Time-domain signal of the current sensor: (a) raw signal, (b) electric 

driving period signal, and (c) switching period signal. 
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The spectrum of the current data is depicted in Figure 5-9. The total spectrum of 

the current data can be divided into three parts, as shown in Figure 5-9(a). Under the 

2 kHz situation, the first part mainly has information about the power supply 

frequency, electric driving frequency, and other interference terms. The second part, 

around 1×104 Hz, has the switching frequency and sidebands that result from 

amplitude modulation. The last part, around 2×104 Hz, is the harmonic of the second 

part. The extended local spectrum of the second and third parts are similar. Figure 

5-9(b) shows the extended spectrum of the second part. The green circle in the 

middle indicates 𝑆𝐶 in Equation (5.3), and the other sideband peaks are EC. Similar 

to the AE spectrum in Figure 5-7(b), the sideband peaks can be classified into two 

groups: electric driving and power supply, as marked by the red triangles and blue 

diamonds, respectively. It is important to note that additional peaks of the power 

supply with 120 Hz intervals appear. 120 Hz is the pulse frequency of a full-wave 

rectifier with single-phase power, based on 60 Hz AC. The three-phase power is a 

superposition of three single-phase sources with a phase shift of 120 degrees from 

each other. 120 Hz interval peaks are presumed to occur because the entire three-

phase power cable is clamped by a current sensor when measuring data. Also, a 60 

Hz sideband in the electric frequency is rarely found; this might be because the 

electric frequency signal is relatively weak, as compared to the AE case. The main 

difference with the AE spectrum is that the AE sensor mainly catches the electric 

driving frequency, while the current focuses on both groups.  
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(a) 

 

(b) 

Figure 5-9 Spectrum of the current signal: (a) total spectrum, (b) extended local 

spectrum.  
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When comparing Figure 5-6(c) and Figure 5-8(c), the periodic signal looks 

different. The reason is the difference in sampling rate. Since the AE sensor has a 

sampling rate that is 40 times larger than the current sensor, high-frequency 

components are additionally fed into the signal, producing microscopic periodicity. 

However, as shown in Figure 5-7(b) and Figure 5-9(b), the sideband effect of the 

modulation signals appears similar in the spectrum of both sensors, despite the 

quantitative difference. From the perspective of bearing diagnosis, the signal to focus 

on is not the switching frequency but the modulation signal. This means that the 

signals obtained from two different sensors are affected by the same PWM; thus, it 

is reasonable to design a filter to eliminate EMI from the AE sensor using the current 

sensor. 

 

5.3.3 EMI De-noising of the AE signal using Current Data 

As the first step of the proposed method, a band-pass filter of 300 kHz to 500 kHz is 

applied to the AE data. This filter range is chosen to avoid the noises previously 

described in Section 3. The lower boundary is defined as 300 kHz for filtering 

undesired signals, such as low-frequency noise, signals from other mechanical 

components, metal-to-metal contact noise, and frictional elastic waves [29]. The 

upper bound is chosen because an impulse train above 500 kHz is easily attenuated 

during elastic wave propagation. Also, this upper bound is intended to reject high-

frequency electrical noise close to the megahertz range to enhance the SNR of the 

bearing defect energy. 
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Envelope analysis is then applied to the band-passed signal to demodulate the 

bearing defect. Then, the envelope spectrum is gained using a fast Fourier transform 

approach. Figure 5-10 illustrates the envelope spectrum of the band-passed signal. 

The peaks related to the bearing defect and EMI are marked with green inverted 

triangles and red diamond marks, respectively. The BPFI defect frequency is 229.7 

Hz, considering the rotating speed measured from an encoder. The peak at 460 Hz is 

the harmonic of the BPFI. Other peaks with a green inverted triangle are sidebands 

of BPFIs, with an interval of 35 Hz, the mechanical rotating frequency. Sidebands 

are generated by amplitude modulation of the impulse train from the load zone effect 

during rotation. Red diamond marks are the demodulated EMI, which is the target 

noise signal to be removed. The figure shows that the bearing defect signs and 

electrical noise are jumbled together in the zone 2 frequency space. The defect signs 

are scattered with multi-sidebands, and EMI noise peaks are spiked sparsely among 

them. Thus, the current signal is handled by the proposed procedure to eliminate the 

target spike without a manual process. 

 

Figure 5-10 The envelope spectrum of the AE data. 
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The current signal is preprocessed with an EMD. As mentioned earlier, the 

purpose of the EMD is to adaptively extract information about the electrical noise of 

the high frequency without expert domain knowledge. Figure 5-11 illustrates several 

IMF signals and their spectrum. As the order of IMF increases, the frequency band 

gets lower. Also, the time-domain signal becomes smooth, getting close to DC. This 

shows that each IMF is not perfectly decomposed (like the band-pass filter) because 

of the locally orthogonal nature of the IMFs. There are some low-frequency peaks 

under 1 kHz for every IMF; these are considered to come from the main power 

supply because it is dominant throughout the whole sample and hard to decompose. 

The first IMF mainly contains the high-frequency information, including the 

switching frequency and sideband elements. The second IMF also contains the 

corresponding component; however, the EMI near 20 kHz is excluded from the 

observing window. Furthermore, this IMF catches minor electrical components 

between 4k and 9k that are out of our area of interest. 

After decomposing the current signal with EMD, the first IMF signal is selected 

for the envelope analysis, as done for the AE data. The first IMF signal is selected 

because it contains a relatively large amount of information about the EMI, among 

the IMFs. Figure 5-12(a) shows the time domain plot of the first IMF; the orange 

lines are the upper and lower envelope. Figure 5-12(b) shows the spectrum of the 

envelope signal. The resulting spectrum reveals two primary signals: the electrical 

frequency and the power supply components. The electrical frequency is 138.7 Hz 

and the power supply components are 120 Hz. Both signals become a basis signal 

modulates the electrical frequency signal because there are minor peaks with a basis 

of about 19 Hz, which is the difference between the two primary basis frequencies. 
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Figure 5-11 Time- and frequency-domain signals along the sequence of the IMF. 
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(a) 

 

(b) 

Figure 5-12 Results of envelope analysis of the 1st IMF data: (a) time-domain plot 

of current IMF with envelope, and (b) envelope spectrum of the IMF. 

The envelope spectrum of the current signal is then utilized for designing the 

filter, following the steps from Section 3.3. The first step is resampling to meet the 

frequency resolution of AE and the current signal. In this experiment, the frequency 

resolution is equal for both sensors due to the same sampling time. Thus, there is no 

need to resample the spectrum. The window size is defined as ten times the BPFI, 

2297Hz, to avoid the undesired high-frequency peaks. For the next step, the 
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probabilistic distribution is found for the given signal. In this study, five distributions 

are considered to fit the data: normal, lognormal, exponential, extreme, and Weibull 

distribution. Each distribution’s parameter is optimized by maximum likelihood 

estimation. Table 5-2 shows the fitting score, and the Weibull distribution is chosen. 

Figure 5-13 shows the histogram and fitting result. The blue rods represent the count 

in each bin, and the red line is the probability density function with the Weibull 

distribution. The y-axis of the histogram is normalized for convenience of 

comparison with the PDF. The data above about 0.5×104 volts mean the electrical 

noise peaks on the envelope spectrum of the current, which will be transformed to a 

CDF value close to one. 

 

Table 5-2. Maximum log-likelihood comparison for five distributions. 

Distribution Maximum log-likelihood 

Normal 50988.1 

Lognormal 53906.2 

Exponential 53636.5 

Extreme 43933.7 

Weibull 54055.4 
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Figure 5-13 PDF fitting on a histogram from the envelope spectrum amplitude of 

the current IMF with a Weibull distribution. 

Finally, Figure 5-14 shows the designed filter and the resulting signal after 

applying the proposed filtering method. The designed filter is normalized over the 

whole spectrum, and the lower frequency range is shown in Figure 5-14(a), in which 

the array of values is calculated by Equation (5.6) using the envelope spectrum of 

the 1st IMF. This represents a value of almost zero at the point corresponding to the 

EMI peaks. This makes the filter able to achieve selective removal of target noise. 

Figure 5-14(b) shows the envelope spectrum after the filtering process. Compared to 

Figure 5-10, it selectively rejects the local frequency energy at the red diamond 

marks. When using the proposed method, although some side peaks of a defect can 

be weakened and fault information can be lost after de-noising when the defect peaks 
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are close to the EMI peaks, the overall EMI noise components of the AE data are de-

noised well, without significant disturbance of the main bearing defects. 

 

 

(a) 

 

(b) 

Figure 5-14 Results of de-noising the electrical noise: (a) a de-noising filter 

designed using the current signal, and (b) the de-noised envelope 

spectrum of the AE signal. 
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Additional studies are conducted to validate the proposed idea in Sections 5.2.2 

and 5.2.3. Firstly, to check the effectiveness of the EMI signal extraction process for 

proper noise elimination, the proposed multi-sensor-based filtering process has 

proceeded without EMI components extraction. For designing a dynamic filter, the 

5th IMF signal is hired, which rarely contains EMI components. Figure 5-15(a) shows 

the envelope spectrum of de-noising results without EMI components extraction. 

The filter response made by low-frequency components of current signals reduces 

AE signals’ the overall envelope spectrum amplitude. The EMI noise components 

still remain except for the first harmonics of EMI noise component. In addition, some 

of bearing defect peaks seem to be distorted by non-EMI and background 

components. Secondly, to test the effectiveness of probability-based dynamic filter, 

the proposed de-noising framework has proceeded without dynamic filter designs. 

The filter’s response function is designed with simple normalization of reverse 

current envelope spectrum in linear scale, which does not contain cumulative 

statistical techniques. Figure 5-15(b) shows de-noising results without probability-

based dynamic filter designs. It shows the little signal distortion of bearing defect-

related peaks. A few EMI-related peaks almost disappear. However the overall EMI 

components still remain with just a little amplitude shifting. This issue derives from 

the energy difference of target noise between AE and current sensors. These two 

additional tests validate that the proposed multi-sensor-based EMI filter design 

should contain proper EMI extraction and dynamic filter design as suggested in 

Sections 5.2.2 and 5.2.3. 
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(a) 

 

(b) 

Figure 5-15 Envelope spectrum results of electrical noise elimination for additional 

comparative studies: (a) test without EMI component extraction, and (b) 

test without probability-based dynamic filter design. 

 

  



129 

 

5.3.4 Performance Verification of the Proposed Method 

To verify the adaptability of the proposed method, an additional experiment is 

performed under different operating conditions. Figure 5-16 shows the results at 

1800 RPM of rotational speed. Both the original envelope spectrum, which contains 

bearing defect peaks, and demodulated EMI components are observed, as in the case 

of the 2100 RPM study. Figure 5-16(b) shows that the proposed method adaptively 

removes electrical noise components, despite the speed variation and spectral change, 

such as sideband intervals, defect, and noise peaks.  

For further verification of the proposed method, comparison studies have been 

carried out with traditional de-noising methods: wavelet packet decomposition 

(WPD) and minimum entropy deconvolution (MED). Both methods are widely used 

to de-noise the unnecessary signal and to find the impulsive fault signal [76]–[79]. 

For WPD, the Daubechies function – well known for its ability to detect an impulsive 

defect  signal – is utilized as the mother wavelet function [27]. The MED filter is 

determined with a filter length of 380, through a parametric study with a 0.01 

threshold for kurtosis variation and 100 max iterations. Figure 5-17(a) shows the 

envelope spectrum of a wavelet-filtered AE signal at 2100RPM. Wavelet filtering is 

implemented with the fourth packet node in the third-level decomposition, which has 

a target frequency band of 375 kHz to 500 kHz. The main defect peaks seem to have 

decreased somewhat; however, compared to Figure 5-10, some side peaks are 

generated around the main electrical noise. Figure 5-17(b) shows the results of MED. 

It can be seen that the ratio of defect energy to electrical component energy has 

increased more than before.  
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(a) 

 

(b) 

Figure 5-16 Results of de-noising the electrical noise in an operating condition of 

1800 RPM: original envelope spectrum of the AE signal, and (b) de-

noised envelope spectrum of the AE signal. 
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(a) 

 

(b) 

Figure 5-17 Envelope spectrum of the comparison study in a 2100RPM condition: 

(a) wavelet packet decomposition, and (b) minimum entropy 

deconvolution. 
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To compare different methods in a quantitative manner, the peak ratio (PR) 

metric is used [80] Because only the EMI and defect signal matter in this study, those 

peaks are extracted before applying the PR, using the median absolute deviation 

(MAD) threshold. MAD, proposed by Leys et al., is widely used for detecting 

statistically relevant peaks in spectrum analysis [81], [82]. Equations. (5.8) and (5.9) 

show the formula of the MAD and MAD threshold, where the function M stands for 

the median value of given data. Then the PR is formulated as shown in Equation 

(5.10), where bj is the amplitude of the jth bearing main defect harmonics and fn is 

the amplitude of the nth point of the spectrum. The superscript MAD indicates 

statistically relevant peaks, with MAD threshold as its lower bound. N is the number 

of points related to the upper bound of the target frequency. In this research, N is 

limited to include up to five harmonics of the defect frequency, to exclude 

meaningless spectral effects. Through the PR metric and MAD, the ratio of the main 

defect energy can be estimated from among relevant peaks in the spectrum. A higher 

value represents better detectability of a given spectrum. 

 𝑀𝐴𝐷 = 1.4826 × 𝑀[|𝑥 − 𝑀(𝑥)|] (5.8) 

 𝑀𝐴𝐷𝑡ℎ𝑟𝑒𝑠ℎ𝑜𝑙𝑑 = [𝑀(𝑥) − 3 ∗ 𝑀𝐴𝐷;  𝑀 + 3 ∗ 𝑀𝐴𝐷] (5.9) 

 𝑃𝑅 =
∑ (𝑏𝑗

𝑀𝐴𝐷)
2𝐽

𝑗=1

∑ (𝑓𝑛
𝑀𝐴𝐷)2𝑁

𝑛=1

 (5.10) 
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Figure 5-18 Envelope spectrum result with MAD threshold for the 2100RPM condition: (a) Original AE signal, (b) WPD 

filtered signal, (c) MED filtered signal, and (d) signal filtered by the proposed method. 



134 

 

 

Figure 5-19 Envelope spectrum result with MAD threshold for the 1800RPM condition: (a) Original AE signal, (b) WPD 

filtered signal, (c) MED filtered signal, and (d) signal filtered by the proposed method. 
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Figure 5-20 Comparison of PR results for two operating speed conditions: 2100 

and 1800 RPM. 

Figure 5-18 and Figure 5-19 show the envelope spectrum results with MAD 

thresholds for the 2100 and 1800 RPM speed conditions. The comparative methods’ 

parameters for this analysis are selected in the same manner as in the previous 

investigation, the results of which are shown in Figure 5-17. The red dotted line 

represents the MAD thresholds and the red dots indicate the main BPFI peaks and 

harmonics. WPD filtering somewhat effectively suppresses EMI; however, it 

produces other sideband noise in both speed conditions. MED filtering effectively 

enhances the fault components, but fails to sufficiently control demodulated EMI. 

Figure 5-20 displays the quantified comparative results obtained through the PR. In 

all categories, the detectability of the 2100RPM condition is higher than that of the 

1800RPM condition, due to the decrease of fault energy within the target band 
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caused by the speed drop. The WPD filtered results have numerically worse 

detectability than the unfiltered results because of the effect of additional peaks 

around the demodulated EMI. The MED filtered result has better detectability than 

the unfiltered and WPD filtered cases. The proposed method shows the best 

detectability from among all methodologies considered, including a sufficient 

decrease of the electrical component energy. 

 

5.4 Summary and Discussion 

This study proposes the design of a filter that removes the electromagnetic 

interference in an AE signal to enable better fault detection of rolling element 

bearings. To this end, a current sensor is measured to obtain data containing the EMI 

features. Then, the measured data is processed using EMD and envelope analysis. 

Finally, a filter is designed to pick out the undesired peaks that arise from the EMI. 

The proposed analysis is verified by studying experimental data in two speed 

conditions, and the results of the proposed method are quantitatively compared with 

those obtained from other de-noising methods. The suggested method has the 

following advantages. First, by using the current data, active removal of the EMI 

from AE signals becomes possible. This multi-sensor approach can extend the use 

of AE signals in REB diagnosis, regardless of failure mode. Second, this method is 

easy to use and does not require expert knowledge of the system or physical 

interpretation of the spectrum. Thus, the proposed method could be valuable in 

situations where the component (i.e., bearing, motor) specifications are not clear. 

Third, the proposed algorithm does not need rotating speed info. This allows its use 
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operate under variable-speed conditions, even in tacholess driving. Furthermore, the 

suggested method is expected to be applicable for use with different sensors, such as 

accelerometers, velocimeters, ultrasonic sensors, etc., whenever PWM noise disturbs 

the bearing defect frequency.  

 

  

Sections of this chapter have been published or submitted as the following journal 

articles:  

1) Su J. Kim, Keunsu Kim, Taewan Hwang, Jongmin Park, Hwayong Jeong, Taejin 

Kim, and Byeng D. Youn, “Motor-current-based electromagnetic interference de-

noising method for rolling element bearing diagnosis using acoustic emission 

sensors,” Measurement, Vol. 193, pp. 110912, 2022. 
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Chapter 6  

 

Conclusions 

 

6.1 Contributions and Significance 

This research investigates the extraction of bearing fault information from acoustic 

emission signals under noisy conditions. The dissertation contains two novel 

techniques as the research thrusts: 1) noise-robust and efficient frequency band 

selection for AE signals with fault-related defect measure; 2) multi-sensor-based de-

noising filter design for electromagnetic interference. Those proposed research are 

expected to offer the following potential contributions and significance. 

 

Contribution 1: Suggestion of advanced optimum band selection architecture 

considering bearing defect information 

This dissertation suggests a novel band selection architecture for AE signals. The 

main idea of the proposed architecture is based on segment signals made by using 

the target defect period, which enables the fast searching for optimum frequency 



139 

 

band despite a large sampling rate data. The suggested effective band searching 

architecture can be applied not only to an AE sensor but also to other sensors with a 

high sampling rate, such as ultrasound and ultra-high frequency (UHF) sensors. 

 

Contribution 2: Suggestion of a novel defect measure based on kurtosis and 

correlation. 

This dissertation defines a novel defect measure rooted in kurtosis and correlation 

of specially segmented signals. The segment signals are created using bearing defect 

information. However, the fundamentals of the proposed defect measure is figuring 

out the impulsive and periodic character of target signals. This means that the 

proposed method can also be applied to other rotary components that carry periodic 

and impulsive defect signals. 

 

Contribution 3: Generation of the simulated EMI signals. 

This dissertation generates the simulated EMI signals to validate the proposed 

methods. The analytic form of EMI is highly non-stationary and complex, including 

the superposition of a number of Bessel functions. Thus, the simulation of EMI 

components is not easy. This dissertation has significance in modeling the main 

components of EMI and simulating its effect on sensors for diagnostic purposes, 

even if those are not identical to the analytic form of EMI. 
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Contribution 4: Suggestion of multi-sensor based de-noise filter for electrical 

noise components 

This dissertation suggests a novel filter that eliminates the effect of EMI noise on 

envelope spectrum domain. To design desire filter, the proposed method utilizes 

current signals for motor input and develops an active EMI extractor through EMD 

technique. The EMI components in both sensors are not the same, but they are 

definitely correlated. By using an adaptive EMI extractor and probabilistic filter 

design, the proposed method can eliminate target EMI components regardless of 

bearing failure modes and operating conditions. In addition, proposed filtering even 

operates in situations where the component (i.e., bearing, motor) specifications are 

unclear. 

 

Contribution 5: Potential of expandability for the electrical components 

elimination  

The main idea of the proposed filter design is to utilize the current input of motor, 

which is the output of motor driver controlling the operating condition of motor. This 

fact implies that the suggested filtering is expected to be applicable for use with 

different sensors, such as accelerometers, velocimeters, ultrasonic sensors, etc., 

whenever PWM noise disturbs the main target sensor signals. 
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Contribution 6: Solutions for the practical issues of acoustic emission 

techniques in the industrial fields 

This dissertation aims at the practical issue of AE sensors in the industrial fields. 

In the real site, a comprehensive understanding of measured signal is almost 

impossible, and the computing capacity is sometimes poor, such as the edgy 

computing systems. For these reasons, fine-quality data gathering and proper 

diagnosis are almost impossible. The proposed idea in this dissertation focus on 

solving those practical issues. The proposed defect measure in the first thrust uses 

only time-domain signals without spectral reasoning, which reduces the 

computational burden and allows practical use in industry. In addition, the dynamic 

filter design of the second thrust does not require expert knowledge of the system or 

physical interpretation of the spectrum, which is expected to reduce the burden of 

field engineers and increase the practicality of diagnosis using AE sensors. 

 

6.2 Suggestions for Future Research 

This dissertation offers technical advances for rolling element bearing system 

diagnosis using AE sensor. Although the proposed methods clearly improve the 

overall performance, several limitations and future work still remain to be solved.  

 

Suggestion 1: Improvement of noise information extractor to solve mode mixing 

problem 
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The proposed method has a limitation in the de-noising filter’s optimal parameter 

selection, such as window size, distribution estimation, and target IMF, within the 

decomposed results from the EMD. In particular, the EMD algorithm decomposes 

the given signal empirically without physical meaning, which generates a mode 

mixing problem. Using the unsettled information from each of the IMFs, it does not 

guarantee that the first IMF always includes high-frequency EMI. Of course, the 

lower IMF has a large probability of including EMI; however, this still requires 

manual selection by a human being. Building on the initial success of the proposed 

method, these limitations will be addressed in future work. Future research will 

examine the use of advanced algorithms to optimize the design parameters and 

determine a proper quantitative indicator for robust EMI filter design. 

 

Suggestion 2: Development of proposed methods for variable speed conditions 

from constant speed operations. 

The proposed methods in this dissertation are demonstrated with constant 

operating speed conditions. These facts indicate that there is no guarantee for the 

performance of proposed methods in variable operating applications in many 

industrial systems. The variable speed conditions create much uncertainty and 

performance variations. Therefore, further research on variable speed conditions 

needs to be performed, and the robustness of the proposed idea must be checked. 

 

Suggestion 3: Development of the selectable parameter optimizer for the better 
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performance of optimum band searching 

The proposed band selection method has a limitation in its inability to optimize 

the selectable parameters. Although this paper verifies the effectiveness of the 

proposed idea with fixed parameters, optimized parameters could generate better 

performance. For this reason, parameter optimization is still open to discussion, with 

a trade-off relationship between algorithmic performance and time cost. The scope 

of this paper is to describe the newly proposed band-selection procedure and verify 

the algorithm; parameter optimization and related issues will be studied in future 

research. 
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국문 초록 

 

음향방출 기반 구름 요소 베어링 

진단을 위한 잡음 환경에서의 

고장 정보 추출 연구 

 

현대 산업에서 구름 요소 베어링(rolling element bearing)은 회전체를 

구성하는 부품 가운데 가장 다양한 시스템에서 활용되며 핵심적인 

역할을 하는 기계 부품 중 하나이다. 베어링은 회전체에 가해지는 하중 

및 자중을 지지하며, 축의 안정적인 회전을 보조한다. 예기치 못한 

베어링의 파손은 물적·인적 피해를 야기시킬 뿐 아니라, 이의 유지 

보수를 위한 회전체 시스템의 가동 중단으로 때때로 막대한 경제적인 

손실을 초래하기도 한다. 이를 예방하기 위하여 많은 연구자들은 

가속도계 혹은 속도계와 같은 진동 기반의 센서를 통하여 베어링의 

건전성 상태를 진단하는 연구를 수행해왔다. 최근에는 데이터 처리 

기술의 발전과 발맞추어 음향방출(acoustic emission) 센서를 활용하여 

보다 정밀하게 베어링을 진단하는 기술들이 활발히 연구되고 있다. 

음향방출 센서의 높은 민감도는 베어링의 건전성을 추론 할 수 있는 

미세한 고장 신호까지 취득이 가능하며, 이는 기존의 진동 기반의 상태 
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감시(condition monitoring)에서 다소 어려웠던 조기 고장 진단(early fault 

detection)이나 높은 강성을 가지는 베어링 시스템의 고장 진단(fault 

diagnosis)을 가능케 하였다. 하지만 높은 민감도로 인해 음향방출 

원신호(raw signal)는 베어링 관련 신호 뿐만 아니라 노이즈를 포함한 

다른 무수히 많은 정보들을 함축하고 있기에, 목적하는 베어링의 

건전성(health index)을 직접적으로 규명하기 어렵다. 아울러, 음향방출 

신호는 높은 샘플링 레이트(sampling rate)로 인하여 통상적으로 매우 큰 

데이터 규모를 갖기 때문에, 기존의 진동 기반 신호 처리 방법들을 

호환·적용하기에 현실적인 어려움이 있다. 때문에, 음향방출 센서로부터 

취득된 원신호에서 목적하는 베어링의 고장 정보를 성공적으로 추출하기 

위해서는 적절한 신호처리 방법이 필요하며, 이는 다른 신호에 가려져 

있는 베어링 고장 신호를 찾아내는 것과, 베어링의 고장과 관련되지 

않는 신호들을 제거하는 두 가지 핵심 기능을 동시에 수행하여야 한다.  

따라서, 본 박사 학위 논문에서는 잡음(noise) 환경에서의 회전체 

베어링 고장 진단을 위한 음향방출 신호처리 기법 개발에 초점을 

맞추고자 한다. 이에 두 가지 핵심 연구를 진행하였으며 주제는 다음과 

같다: 1) 베어링의 건전성을 추론하기 위한 고장 관련 주파수 밴드 선정 

기법에 관한 연구, 2) 베어링의 고장과 무관한 신호의 제거를 위한 

디노이징(de-noising) 기법 연구. 

먼저, 첫번째 핵심 연구는 노이즈가 많은 음향방출 데이터를 대상으로 

계산 비용에 효율적인 주파수 밴드 선정 알고리즘을 개발하는 것이다. 

산업내 실질적인 적용성을 증진시키기 위하여 해당 연구에서는 추가적인 

스펙트럼 분석(spectrum analysis) 없이, 시간 도메인의 특성치만을 

이용하여 고장을 가려내는 새로운 척도(defect measure)를 제안하였다. 
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제안된 척도는 베어링의 고장 특성을 기반으로 분할된 신호들의 

충격성(impulsiveness)과 반복성(periodicity)을 고려하여 설계되었으며, 

임의의 충격 외란(random impulsive disturbance)과 비정상성을 가지는 

주기적인 노이즈(non-Gaussian periodic noise)에 모두 강건성을 가짐을 

보였다. 또 다른 핵심 연구는 최적 주파수밴드 선정으로도 여전히 

필터링 할 수 없는 전기노이즈를, 진단 평면에서 디노이징 하는 

연구이다. 본 연구에서는 여러 전기 노이즈 중에서도 높은 비정상성으로 

음향방출 신호 분석에 있어서 큰 어려움으로 알려진 

전자파간섭(electromagnetic interference)에 초점을 맞추었다. 복잡한 고주파 

변조(complex high-frequency modulation)를 가지는 전자파간섭을 제거하기 

위하여, 본 연구는 다중 센서(multi-sensor) 기반의 분석법을 수행하였고, 

추가 센서로는 모터로 유입되는 전류 신호를 이용하였다. 다중 센서 

기반의 디노이징을 위해 경험적 모드 분해(empirical mode decomposition) 

기법과 확률 분포 기반의 동적 필터(dynamic filter) 설계를 수행하였다. 

이를 통해 전류신호로부터 운행 조건에 따라 변화무쌍한 전자기간섭 

노이즈를 유동적으로 선별하고, 목적하는 베어링 고장에 대한 신호적 

외란 위험성을 최소화하였다. 결과적으로, 제안된 디노이징 기법은 

시스템 작동 조건의 유무와 관계 없이 음향방출 신호의 포락 스펙트럼 

내 전자파간섭 성분들을 효과적으로 제거함을 보였다. 

 

주요어:  구름 요소 베어링 (rolling element bearing, REB) 

 고장 진단 (fault diagnostics) 

 음향 방출 (acoustic emission, AE) 
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 주파수 밴드 선정 (frequency band selection) 

 전기 노이즈 제거 (electrical noise elimination) 

학번:  2015-20718   
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