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Abstract 

 

Physics-guided Deep Learning Study 

for Fault Diagnostics of Industrial 

Motors Under Variable Operating 

Conditions Using Stator Current 

Signals  
 

Chan Hee Park 

Department of Mechanical and Aerospace Engineering 

The Graduate School 

Seoul National University 

 

Industrial motors are widely used in numerous equipment such as industrial robots, 

electric vehicles, pumps, air handling units. Although they are produced with high 

reliability to cover huge usage, the failure of industrial motors because of unexpected 

stresses can cause harmful accidents and economic losses. Therefore, many studies 

for motor fault diagnosis have been conducted and used to analyze stator current 

signals due to its convenience on implementation. Recently, motor fault diagnosis 

needs to be robust to variable operating conditions as the motion of practical settings 

has become complicated. However, the conventional fault diagnosis methods have 

challenges: 1) significant amount of parameter settings, 2) limited fault identification, 
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3) inconsistent severity estimation. To address these challenges, three research 

thrusts are proposed in this dissertation.  

The first research thrust proposes a fault detection method with enhancing 

fault-sensitivity by reducing the effects of variable speed and load torque conditions 

in stator current signals. The proposed method does not require significant amount 

of diagnostic knowledge and difficult expert knowledge such as motor- or fault-

related information. Also, the proposed method was available at a low sampling rate 

with low time cost, because the entire process is calculated in the time-domain. The 

second research thrust proposes a health image constructed by fault-related 

component pairs extracted from instantaneous amplitude and phase of a stator 

current signal. The instantaneous amplitude and phase of a stator current signal 

reveal the drive-related and the fault-related component, respectively. The proposed 

method extracts the current residual pairs by subtracting the drive-related component 

from the instantaneous amplitude and phase, then, the current residual pairs are 

scaled and spread into a two-dimensional matrix. The proposed method is a 

pioneering work that considers the image feature which reflects the fault-induced 

amplitude and phase modulations in stator current signals simultaneously. Thereby, 

it has a merit of qualitative fault diagnosis by investigating a degree or shape of 

spreading in the proposed health image. Moreover, the quantitative fault 

classification method under variable operating conditions is available with the 

convolutional neural network which learns the proposed health image as the input. 

The third research thrust proposes a deep learning-based fault severity estimation 

method using stator current signals. Using a hierarchical deep learning architecture, 

the proposed method is constructed to assign a fault diagnosis task to a parent module 
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and severity estimation tasks to child modules, then propagate the latent features in 

the parent module to the child modules. It leads the severity estimation modules to 

focus on abstracting the specific properties of a particular fault; thereby, the 

performance of severity estimation could be improved compared to conventional 

methods and the other deep learning-based methods.  

The three research thrusts can be integrated into a fault diagnosis framework of 

industrial motors under variable operating conditions using stator current signals, 

and they are related to each other. The first and second research thrusts are based on 

the physical behaviors of stator currents in a faulty state. The amplitude modulation 

in the fault detection method, which the product of the first research thrust focuses 

on, is connected to the envelope residual of the health image, which is the product 

of the second research thrust. Also, the severity estimation under variable operating 

conditions is available by providing the health image of the second research thrust 

as the input of the deep learning model which was proposed in the third research 

thrust. Furthermore, the outline of this dissertation can be a physics-guided deep 

learning study, because the features which were based on the physical behaviors of 

the stator current signals and the deep learning-based fault diagnosis are associated 

with each other.  

 

Keywords:  Fault diagnosis 
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Stator current signal 

Variable operating condition 
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Chapter 1 Introduction 

 

Introduction 

 

1.1 Motivation 

Industrial motors are widely used in numerous industrial applications, such as 

providing driving power to pumps, air conditioning units, electric vehicles and 

performing a variety of motions with precision control in robots, CNC machines [1]. 

Despite the high reliability of industrial motors, they are subjected to unexpected 

stresses such as in-use damage and environmental conditions; hence, they exhibit 

one of the highest downtime rates machines [2]. To address this problem, many 

research efforts have been made to develop fault diagnosis methods to infer their 

health state by analyzing the data from current, vibration, sound, voltage, 

temperature and so on [3]. Among several signals that have been used for fault 

diagnosis, the stator current signal is the most generally analyzed signal due to its 

ease of implementation [4]. Therefore, many fault diagnosis methods based on motor 

current signature analysis have been employed to high-risk industrial motors and 
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prevented harmful accidents and economic losses.  

However, previous fault diagnosis methods have been mainly developed under 

constant speed conditions [5], [6]; hence, the practical employment of the methods 

has become difficult in modern industrial applications because many of them work 

in variable speed and load torque conditions [7]. To this end, it is necessary to 

develop the fault diagnosis method which is applicable to transient current signals. 

Despite many of relevant previous studies, there are still several challenges for motor 

fault diagnostics under variable operating conditions using stator current signal. First, 

the significant amount of parameter settings are required. Several previous 

techniques could be conducted only if the motor design parameter is known or the 

fault-sensitive range is properly decided. Second, fault identification of the previous 

methods could be limited. For example, the analogy on the conventional features 

between eccentricity and several mechanical faults have been revealed [8]–[10]. 

Third, fault severity estimation of the previous methods has shown inconsistency. 

The studies on severity estimation is crucial in that it can be extended to fault 

prediction by estimating the growth of fault severity [11]. Most previous studies have 

analyzed the trend of the feature according to fault severity, however, the behavior 

of feature has been inconsistent with the fault severity .  

Thus, this doctoral dissertation aims at developing a fault diagnosis framework 

for industrial motors under variable operating conditions, through the deep learning 

study combined with the physical information of stator current signals. Considering 

the physical information of the stator current signals, the drive-related component is 

suppressed and the fault-related component is highlighted with minimal parameters; 

hence a physics-informed feature can properly indicate a fault under variable 
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operating conditions. Also, the physics-informed feature is combined to the deep 

learning-based fault diagnosis. Recently deep learning-based fault diagnosis has 

shown outstanding performance. Although only a few studies have been conducted 

using stator current signals, the deep learning approach can be a suitable solution to 

overcome the limited fault identification and inconsistency on severity estimation. 

Because deep learning-based fault diagnosis has merit in autonomous feature 

extraction by capturing the underlying relationship between the input data and the 

health state and has a form of classification and regression. 

 

1.2 Research Scope and Overview 

This doctoral dissertation aims at three essential studies for fault diagnosis of 

industrial motors under variable operating conditions: (1) Research Thrust 1 - fault 

detection with minimal parameter settings; (2) Research Thrust 2 - fault diagnosis 

with physics-informed health image feature under variable operating conditions; and 

(3) Research Thrust 3 - fault severity estimation with a feature-inherited hierarchical 

deep learning architecture. 

 

Research Thrust 1:  Fault detection with minimal parameter settings  

Research thrust 1 proposes a drive-tolerant current residual variance (DTCRV), for 

fault detection of industrial motors under variable speed and load torque conditions. 

This new approach requires no domain knowledge and is applicable under varying 
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speed and load torque conditions. In the proposed method, first, the envelope of the 

current signal is calculated to extract its modulation. Second, the drive-related signal, 

which greatly varies based on speed and load torque conditions, is extracted from 

the enveloped current signal. Third, the drive-tolerant current residual (DTCR) is 

calculated; the DTCR is defined as the subtraction of the drive-related signal from 

the enveloped current signal. Finally, the new health feature is calculated as the 

variance of the DTCR. To demonstrate the proposed method, the representative case 

study is presented that examines surface mounted permanent magnet synchronous 

motors (PMSMs) which were operated under several operating conditions (i.e., 

different speed profiles and load torque levels) 

 

Research Thrust 2:  Fault diagnosis with physics-informed health image 

feature under variable operating conditions 

Research thrust 2 proposes an instantaneous current residual map (ICRM) for fault 

diagnosis of industrial motors. Inspired by the idea that phase and amplitude 

modulations in a motor stator current signal provide a direct indication of a faulty 

state of a PMSM, the overall procedure for constructing ICRM includes two key 

steps: 1) to calculate the phase and envelop residuals and 2) to spread the scaled 

current residual pairs into a 2D matrix. A type of faults can be figured out by 

analyzing a degree or shape of spreading of the scaled current residual pairs in ICRM. 

Since the current residuals highlight fault-induced irregularities, ICRM is robust to 

variable operating conditions in practical settings. To demonstrate the effectiveness 

of ICRM, the experimental validation was conducted with PMSM, operated under 
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variable-speed and different load torque conditions.  

 

Research Thrust 3: Fault severity estimation with a feature-inherited 

hierarchical deep learning architecture 

Research thrust 3 proposes a new deep learning method, specifically, feature 

inherited hierarchical convolutional neural network (FI-HCNN) for motor fault 

severity estimation. FI-HCNN consists of a fault diagnosis part and a severity 

estimation part, arranged hierarchically. The proposed FI-HCNN has the special 

inherited structure between the hierarchy; the severity estimation part utilizes the 

latent features to exploit the fault-related representations in the fault diagnosis task. 

FI-HCNN can improve the accuracy of the fault severity estimation because the 

level-specific abstraction is supported by the latent features. The proposed method 

is confirmed its performance with two experimental studies.  

 

1.3 Dissertation Layout 

This doctoral dissertation is organized as follows. Chapter 2 reviews the literature 

regarding motor fault diagnostics. Chapter 3 describes the data used for validation 

of each proposed research thrust. Chapter 4 proposes a drive-tolerant current residual 

variance (DTCRV) for fault detection (Research Thrust 1). Chapter 5 presents an 

instantaneous current residual map (ICRM) for fault diagnosis (Research Thrust 2). 

Chapter 6 proposes a feature-inherited hierarchical convolutional neural network 
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(FI-HCNN) for fault severity estimation (Research Thrust 3). Then, Chapter 7 

summarizes the dissertation with its contributions and suggested future research. 



7 

 

 

 

Chapter 2  Literature Review 

 

Literature Review 

 

This chapter intends to provide previous studies about fault diagnosis methods for 

motors using the current signal. First, the fault diagnosis methods for the motors 

under stationary condition are reviewed. Then, the challenges for the previous 

methods to be applied in nonstationary conditions are presented. Next, fault 

diagnosis methods for the motors under non-stationary conditions are reviewed. Also, 

the fault diagnosis methods for motors based on deep learning are investigated. 

Finally, the limitations of the previous studies are discussed, and I explain how each 

research thrust is presented in the following sections. 

 

2.1 Fault Diagnostics of a Motor Under Stationary 

Conditions  

There are lots of previous studies to diagnose motor faults under stationary 

conditions using stator current signals; they can be largely categorized into physics-

based and signal based methods. Physics-based motor fault diagnosis can be 



8 

 

 

explained by sub-categorizing into three approaches; 1) spectral analysis, 2) 

modeling, and 3) Park’s vector approaches. Firstly, spectral analysis-based approach 

investigates the behavior of the spectral features that identify the particular fault 

using motor-specific parameters [12]–[15]. Further, the stator current spectrum was 

analyzed to estimate the severity of unbalance, eccentricity, and bearing faults [11]. 

Secondly, modeling-based approach has been widely used for detecting inter-turn 

short fault. Many fault indices have been developed with the basis of the electrical 

model of the faulty winding [16], [17]. In case of the mechanical faults (e.g. 

eccentricity, gearbox fault, bearing faults, misalignment and unbalance), the torque 

equation with the mechanical fault is coupled to the electromagnetic torque which is 

the output torque produced by the interaction between the magnetic field and the 

stator current in a motor. For eccentricity, which indicates the non-uniform airgap, 

the stator current model is revealed to have amplitude modulation from the 

permeance that is inversely related to the airgap length. Furthermore, the amplitude 

modulation also occurs in the case of several mechanical faults (e.g. misalignment, 

unbalance, bearing faults, and gearbox faults) because they induce the non-uniform 

airgap. In addition, the effect of the gearbox fault on the stator current signal of 

induction motor [18], [19] and permanent magnet synchronous motor [20] were 

modeled; and derived the fault signatures. Also, the stator current models for 

detecting bearing damage [21] and unbalance [22] have been derived for fault 

detection. These studies have derived that the phase modulation is revealed in the 

stator current by the load torque with mechanical faulty terms. Thirdly, Park’s vector 

approach has been widely applied to motor fault diagnosis. Park’s vector was 

originally developed for the ease on motor control by transforming the three-phase 

stator current into two axis orthogonal vectors (i.e. d-axis, q-axis). When the vector 
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of the two axes is drawn on the plane, the state of the motor can be observable by 

investigating the irregularity of the orbit. The aforementioned physics-based 

methods can be applied to generic motor systems; however, real-world applications 

are limited because specific motor expertise – which is not easily known – is 

necessary. Moreover, some fault features, which target different fault modes, have 

been shown to overlap. For example, the similarity in spectral features has been 

revealed between eccentricity and the other mechanical faults such as bearing inner 

race fault [10] and a broken rotor bar [8], [9]. These overlaps make it difficult for the 

physics-based fault diagnosis method to work properly.  

On the other hand, the signal-based method can offer the improved performance 

for fault diagnosis using only little prior knowledge like metrics for feature 

extraction, but without motor parameters. Many studies have made an effort to 

extract fault-sensitive features using signal processing techniques such as wavelet 

decomposition [23], discrete wavelet transform [24], and empirical mode 

decomposition [25]. Several machine learning techniques have been applied to 

extract the fault-sensitive features, for example, principle component analysis (PCA) 

[26]–[28], genetic algorithm [29], and support vector machine (SVM) [30]. These 

methods do not require motor- or fault-specific expertise; however, they do require 

significant level of diagnostic knowledge to devise features which are labor-

intensive. 

Despite continuous development of fault diagnostics using stator current signal 

under stationary condition, the practical application is difficult in modern industrial 

systems where variable operating conditions (i.e., various speed profiles and load 

torques) are prevalent. The signal deformation that results from these variable drive-
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related conditions makes it difficult to identify the fault-related fluctuations because 

the drive-related current signals are dominant in the variable operating condition. 

Figure representatively describes the difference of the result when the spectral 

analysis based, and Park’s vector approach are applied to the stator current signal 

under constant speed and variable speed conditions respectively. 

 

2.2 Fault Diagnosis of a Motor Under Variable Operating 

Conditions 

This section consists of the review of fault diagnosis methods for motors to handle 

variable operating conditions. As mentioned in 2.1., there are several limitations to 

apply the conventional methods to variable operating conditions. To address this 

limitations, the fault diagnosis methods have been developed by examining transient 

current signals. In this section, 1) time-frequency analysis-based, 2) signal-based, 

and 3) image-based approaches are reviewed.  

 

2.2.1 Time-frequency Analysis (TFA)-based Approach  

Time-frequency analysis (TFA) represents signals in the time-frequency domain; 

therefore, the spectral properties of signals can be shown in time-series. Most 

previous research using TFA has investigated the trend of coefficients according to 

the particular fault frequency[31]–[34]. In [35]–[38], the energy around fault 

characteristic frequency was computed in Wigner-Ville distribution (WD), and its 

behavior on speed and load variations were investigated. Similarly, the harmonic 
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order tracking method was developed to identify rotor faults using Garbor 

transformed current signals [39], and the gear fault frequency was tracked in the 

space vector modulus of the current using the improved polynomial chirplet 

transform (PCT) [40]. Figure 2-1 shows the time-frequency domain of stator current 

signal using pseudo-WD that often replaces WD to compensate for interference 

terms in practical applications [41]. For example, the energy of the modulated 

coefficients from those of principal can be investigated according to the fault 

characteristic frequency. The TFA-based approaches require several motor-specific 

information and the speed profile to compute the time-varying characteristic features.  

 

Figure 2-1 Example of time-frequency analysis-based approach using pseudo-

Wigner Ville distribution 

 

2.2.2 Signal-based Approach  

The signal-based approach can be one of the ways to avoid the challenge of TFA-

based method; it catches up the fault-sensitive signature by decomposing the signals 
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into subdivided components. The discrete wavelet transform (DWT), which 

decomposes a signal using high- and low-pass filters with particular mother wavelets, 

was applied to detect a motor fault by finding abnormally fluctuating wavelet 

coefficients [42], [43]. Figure 2-2 shows the procedure of signal decomposition using 

DWT with schematic. If d3 in Figure is confirmed to be fault-sensitive, the fault 

feature is designed using the d3 such as the energy. In [23], the linear combination 

of statistical features, defined by the detail signals in DWT, was used to observe the 

dynamic eccentricity of PMSMs. In [44], DWT decomposed the current signal of 

which the fundamental component was removed by the adaptive filter to detect faults 

under variable driving conditions. In [24], [45], the energy of the detail signals in 

DWT that revealed the fault patterns was investigated to detect rotor faults and mixed 

eccentricity. Also, the intrinsic mode function (IMF) calculated by empirical mode 

decomposition (EMD) was investigated to extract the information related to faults in 

the current signals. Several fault indicators were developed to detect faults under 

non-stationary condition, such as the degree of fluctuations of IMFs [25], [46], the 

energy of IMFs [47], and the instantaneous amplitude of IMFs computed by the 

Hilbert-Huang transform (HHT) [48], [49]. The signal-based approaches does not 

require expertise about motor and fault types, however, demand considerable level 

of diagnostic knowledge such as the selection of the particular bandwidth or 

decomposition level that is sensitive to the fault. 
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Figure 2-2 Example of signal-based approach using discrete wavelet transform 

 

2.2.3 Image-based Approach  

Recently, deep learning based fault diagnosis has shown outstanding performance, 

where it captures the underlying relationship between the input data and the health 

state [50], [51]. Especially, a convolutional neural network (CNN) has become the 

leading model for learning image-data; its advantages of local connectivity and 

parameter sharing [40] can bring the remarkable performance on good classification 

results in image-data. To make the best use of CNN for fault diagnosis, numerous 

studies have sought to convert sensory signals, which are a type of time-series data, 

to a two-dimensional (2D) input image [53]–[57]. For this purpose, several signal-

to-image encoding methods have been introduced, such as Gramian angular field 

(GAF) [58], [59], Markov transition field (MTF) [60], [61]. Figure 2-3 shows the 2D 
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images that are generated with GAF, MTF respectively. Through these images, the 

characteristics of the time-series signal, including the interactions between nearby 

data and the data ordering, can be considered to capture the signature that is spread 

over time. In [62]–[64], signals were simply stacked to construct a 2D input image 

based on the time ordering. In [64], each point of signals was allocated to a certain 

pixel in a 2D input image. Most signal-to-image encoding methods have mainly 

extracted time-domain features; however, some fault signatures of rotating machines 

can be more easily recognizable in the frequency-domain, such as harmonic 

components and peak frequency.  

Alternatively, time-frequency representation (TFR) can be used to generate a 

2D input image that contains spectral information with time. The attempts to use the 

2-dimensional time-frequency coefficients as image feature for fault detection have 

been conducted in medical applications for human disease detection at the beginning. 

The electroencephalogram (EEG) signals were analyzed by converting it into TFR 

image using WD, Gaussian kernel distribution, and modified-B distribution. Then, 

  

(a) (b) 

Figure 2-3 Example of image-based approach using time series signal to image 

encoding: (a) Gramian angular field (GAF), (b) Markov transition field (MTF) 
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the texture-based features were extracted from the TFR image with Haralick and 

local binary pattern. In this regard, the feature extraction is analogous to those of 

prior studies explained in Section 2.2.1, where fault-related patterns were 

investigated in the TFR. While the health feature is intensively captured based on 

considerable efforts with domain knowledge on statistics and signal processing, the 

deep learning architecture can replace the feature extraction by formulating the 

relationship between the input data and the given health state. Therefore, a 

spectrogram using short time Fourier transform (STFT) [65] and a scalogram using 

wavelet transform (WT) [66]–[68] have been used as 2D input images to a CNN 

model for fault diagnosis. However, TFR is still at risk of losing fault-related 

information because signals can be localized in different regions of TFR due to the 

dependency on parameter settings (e.g. window size, overlap length, and basis 

function) based on prior knowledge. Further, the resolution of TFR cannot be 

guaranteed because of Heisenberg’s uncertainty principle, thereby affecting the 

accuracy of fault diagnosis. In addition, a variation in motor stator current signals 

that is caused by different operating conditions could predominate over that by faults ; 

but it is difficult for TFR to distinguish them [69], [70].  

Advanced conversion methods that consider characteristics of rotating 

machines, such as omni-directional regeneration (ODR) [71] and symmetrized dot 

pattern (SDP) [72], have also been employed in conjunction with CNN-based fault 

diagnosis. Owing to the ability of the ODR technique to produce virtual vibration 

signals from any arbitrary direction, it can easily detect direction-oriented faults of 

rotor systems. By depicting changes in the amplitude and frequency of a vibration 

signal in a polar coordinate system, SDP images can reveal different vibration states. 
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However, it is worth pointing out that these conversion methods mainly concern 

image representation of vibration signals; there have been only a few attempts to put 

the physical meaning of motor stator current signals acquired from PMSMs to a 2D 

input image for CNN-based fault diagnosis. The revelation of physical meaning of 

the faults in the deep-learning based fault diagnosis is a still big challenge to be 

explored. 

 

2.3 Stator Current Model for Fault Diagnosis 

To offer the physical foundation of the procedures in the following proposed 

methods, this section explains the motor stator current model in the perspective of 

operating conditions and fault-induced components respectively. 

 

2.3.1 The Relation of the Stator Current Signal and Driving Conditions 

Through the electromagnetic torque Te, which is the torque produced in a motor, it 

is possible to associate the stator current signal with the driving conditions. In the 

case of a permanent magnet synchronous motor, Te can be expressed by a function 

of inductance and stator currents as [73]: 

e

3
[ ( ) ]

2
q d q d q

p
T i L L i i= + −  (2.1) 

where p is the number of poles; ϕ is the flux linkage generated by the permanent-

magnet poles of the rotor; and Ld, Lq  are the stator currents and inductances of 

the d- and q-axis, respectively. id and iq are the values converted from the three-



17 

 

 

phase stator currents using dq-transform for pursuing convenience in control. In the 

case of field-oriented control systems, which are generally used for servo-systems, 

iq is interpreted to be proportional to Te, because the flux of the d-axis is controlled 

to be continuously aligned with 𝑖𝑑 [74]. Considering the surface-mounted PMSM, 

which has the same 𝐿𝑑 and 𝐿𝑞 value, Te and the electromechanical torque equation 

can be expressed as: 

e L( ) ( ) ( ) ( ) ( )q r r

d
T t ki t J t B t T t

dt
 = = + +  (2.2) 

where k is the torque constant, J is the inertia of the rotating system, B is the friction 

coefficient, ωr(t) is the rotating speed, and TL(t) is the load torque. From (2.2), the 

driving conditions (i.e., load component, velocity, and acceleration) are confirmed 

to affect not only Te(t), but also iq(t), which is the converted value of the stator 

current signals. 

 

2.3.2 Fault Signatures in a Stator Current Signal  

Many studies have derived a stator current model considering many types of faults; 

the derivation can be summarized in two approaches that which physical term is 

changed due to the fault. 

2.3.2.1. Fault Model Derived from Airgap 

As mentioned in Section 2.1, the non-uniform airgap affects the permeance, which 

is inversely related to the airgap length as [41]: 
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0( , ) (1 cos( ) cos( ))s s d rt t
g


       = + − + −

 
(2.3) 

where, μ
0
 is the permeability of air, g is the nominal airgap length, φ

s
 is the angle 

of the minimum airgap position due to the static eccentricity, and 𝜃  is the 

circumference angle. δs and δd are the normalized degree of static and dynamic 

eccentricity [75], [76]. Considering the fundamental harmonic term, the 

magnetomotive force (MMF) can be approximated as: 

1F( , ) ( )cos( )et F t t p  = −  (2.4) 

where, F1(t) denotes the major amplitude of MMF, and 𝜔𝑒 is the electric rotating 

speed. Then, the airgap flux density B is defined as the product of MMF and the 

permeance as: 

B( , ) F( , ) ( , )

( )[ cos( )]cos( )B c m r e

t t t

K t B B t t p

  

   

= 

= + − −
 (2.5) 

V( ) I( ) ( )
d

t R t t
dt

= + 
 

(2.6) 

where, KB(t)  is F1(t)μ
0
/g,  Bc is 1+δs cos(θ-φ

s
) , Bm is 𝛿𝑑 , Rs is stator resistance, 

and V(t) is power supply voltage. As B is the derivative of the flux Φ(t), the stator 

voltage equation (as in (2.6)) implies that the major component of the stator current 

can be expressed as:  

1 1

I( ) ( )[ cos( )]cos( )

( )cos( ) ( )cos(( ) )

I c m r m

r

t K t I I t t

I t t I t t

   

     

= + − −

= − +  −
 

(2.7) 

where, KI(t), Ic, and Im are the corresponding terms of KB(t), Bc, and Bm, respectively. 

I1(t), φ , φ
m

 and ν  are the coefficients and phases of the stator current’s major 

components, including the terms related to the static and dynamic eccentricity, and 
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𝛼  is the modulation index. Based on (2.7), the faults can be confirmed by 

investigating the amplitude modulation in the stator current signals. Also, the 

electrical faults represented by stator turn shorts affect the stator current by showing 

odd multiples of the supply frequency’s third harmonics [77]–[79], or amplitude 

modulation of the rotating frequency [80], [81]. Therefore, the amplitude modulation 

of the stator current can be observed in both the mechanical and electrical fault states 

of a rotating system. 

 

2.3.2.2. Fault Model Derived from Torque Oscillation 

The load torque oscillation can also cause the modulation of a stator current signal 

[22]. When the load torque is described as: 

L L0 f cT ( ) cos( )t T T t= +  (2.8) 

Where TL0 is the constant load torque and Tf is the amplitude of the additional 

oscillation component varying at the characteristic frequency fc ( 2c cf = ). 

Assumed that the effect of friction coefficient is very small and substitute (2.8) to 

(2.2), the mechanical rotating speed ( )r t  can be expressed as: 

f

e L c c 0

c0

1
( ) ( ) ( cos( )

t

r r

T
t T T d t

J J
      


= − ) = + +  (2.9) 

where ωr0 is the average constant component of speed; φc are the oscillation-related 

phase. Then, the mechanical rotor position can be derived as: 
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f

r c c 0( ) sin( ) r

T
t t t

J
   = + +  (2.10) 

According to the reference frame, the rotor angular positions have the relationship 

as: 

s ' ( )r t  = +  (2.11) 

where θs is the rotor angular position in the stator reference frame and θ′ is the rotor 

angular position in the rotor reference frame. Considering the total MMF can be 

expressed with a combination of the stator MMF Fs(θs, t) and the rotor MMF Fr(θ′, 

t) as:  

s s r( , ) ( , ) ( , )F t F t F t   = +  (2.12) 

Substitute (2.11) to (2.12), it can be rewritten as: 

( , ) sin( ) cos( )s s r s rF t F p t F p p t     = − + − −  (2.13) 

Using the relationship of 0rp t =  and (2.10), the rotor MMF can be rewritten as: 

c2
( , ) cos( sin( ))c

r r s c

c

pT
F t F p t t

J
    


= − − +  (2.14) 

Based on (2.5) and the airgap permeance is supposed constant for simplicity, the 

airgap flux density can be described as: 

c2
B( , ) sin( ) sin( sin( ))c

s s r s c

c

pT
t B p t B p t t

J
      


= − + − − +  (2.15) 

Similar to the derivation of (2.7) and based on (2.6), the stator current signal can be 

estimated to have the time-derivative terms of the flux which is the integral of the 
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airgap flux density with θs. As a consequence, the stator current signal can be 

described as: 

2
I( ) sin( ) sin( sin( ))c

s s s r s c c

c

pT
t I t I t t

J
    


= + + + +  (2.16) 

Based on (2.16), the torque oscillations can leads the phase modulation of stator 

current signals; therefore, mechanical faults in a rotating system can be confirmed 

by investigating the phase modulation in the stator current signals. 

 

2.4 Summary and Discussion 

Fault detection by reducing effects of variable speed and load torque conditions 

with minimal parameter settings 

There are several fault diagnosis methods for variable-speed conditions as mentioned 

in Section 2.2; however, significant amount of parameter setting is required. For 

physics-based method, the fault, and motor specific information is necessary to 

calculate the feature. For signal-based method, diagnostic knowledge to process the 

stator current signal is necessary. Therefore, in this dissertation, a novel method to 

detect motor faults under variable speed and load torque conditions with minimal 

parameter setting is proposed. The proposed method requires neither fault-, motor-

specific information nor diagnostic knowledge. By subtracting the drive-related 

signal from the enveloped stator current signal in the time-domain, the time-cost also 

decreases.  
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Fault diagnosis with physics-informed health image feature under various 

operating conditions 

As mentioned in Section 2.3, the amplitude and phase modulation of the stator 

current signal was confirmed to have fault-related components; however, to the best 

of the authors’ knowledge, there is no health feature that considers fault-induced 

phase as well as amplitude modulations in a motor stator current signal measured 

from a PMSM under variable operating conditions. To fill this research gap, in this 

dissertation I newly proposes a physics-informed health image that can be used as 

the 2D input to a CNN model for accurate fault diagnosis. 

 

Fault severity estimation with a deep learning-based method that the latent 

features are propagated 

Severity estimation is essential for fault prediction; however, there exist only a 

relatively small number of studies that using stator current signals. For example, Ince 

et al. [82], [83] used a 1-D CNN architecture to detect a motor bearing cage fault. In 

[84], SincNet was adopted to classify multiple faults, including broken rotor bars 

and bearing faults. Therefore, in this dissertation, a new DL-based severity 

estimation method is proposed. Considering a hierarchical network for fault 

diagnosis, the severity estimation is fine level which followed by fault diagnosis; it 

intends to enhance the performance of severity estimation through a novel 

connecting architecture; the latent features in the fault diagnosis module are used as 
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inputs to the corresponding severity estimation modules. Moreover, the proposed 

method considers the continuity of fault severity with regression. 
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Chapter 3 Data Description  

 

Data Description 

 

This chapter describes the dataset which were used to validate the proposed method. 

First, the experiment setup to measure the stator current signals is described. Then, 

the dataset which are acquired from the testbed are presented specifically.  

Figure 3-1 shows the overall configuration of the testbed; the target motor is 

highlighted, which is surface-mounted PMSM embedded in 4th axis of a cooperative 

robot. The target motor was position-controlled using an incremental encoder, of 

which the resolution was 4000 pulses per revolution. A hysteresis brake (Magtrol, 

BHB-3BA) was connected to the motor shaft via couplings; a torque meter (Unipulse, 

UTM-II) was installed between two couplings to measure torque and speed. The 

three-phase stator current signals were measured by current probes (Tektroniks, 

A622), which were mounted between the servo drive and the motor. All signals were 

collected with a sampling rate of 12,800 Sa/s using an NI-system (C-RIO9066).  

Two fault modes were emulated to investigate the proposed methods. First, for 

the electrical fault, a stator inter-turn short was injected by coiling the uncovered 

windings in the production state. Figure 3-2 shows a faulty stator in which a portion 
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of the windings were chemically uncovered. Two motors with different fault levels, 

where the degrees of uncovered windings were different, were used in the 

experiment. Table 3-1 describes the measured impedance (resistance, inductance) of 

the two stator inter-turn short motors and normal motors; the uncovered windings 

were coiled up only in the a-phase.  

 

 

Figure 3-1 Overall setup of the testbed  

 

Figure 3-2 Inter-turn short windings  
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Table 3-1 The impedance of the stator inter-turn short motors used in experiment 

Phase Nor SIS1 SIS2 

Resistance 

(Ω) 

a 0.37 0.36 0.35 

b 0.37 0.37 0.38 

c 0.37 0.37 0.38 

Inductance 

(mH) 

  L Q L Q L Q 

2
5
0

 H
z a 0.33 1.42 0.31 1.30 0.26 1.09 

b 0.33 1.39 0.34 1.42 0.32 1.36 

c 0.32 1.35 0.32 1.37 0.31 1.31 

5
0
0

 H
z a 0.33 2.81 0.31 2.36 0.25 1.61 

b 0.33 2.74 0.34 2.79 0.32 2.67 

c 0.32 2.64 0.32 2.68 0.31 2.58 

 

To investigate a mechanical fault, misalignment was emulated by rearranging the 

vertical height of the motor with reference to [74], [85]–[87], as shown in Figure 3-3. 

Two fault levels (2mm and 4mm) were used in the experiment. For the variable 

operating conditions, two speed profiles (named trapezoidal and triangle) with five 

load torque levels (0 %, 30 %, 50 %, 70%, 100 % of the rated load torque) were 

examined as shown in Figure 3-4. All the operating conditions that were used in the 

experiment were summarized in Table 3-2. 

 

  

(a) (b) 

Figure 3-3 The misalignment set up: (a) Normal and (b) Misalignment 
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(a) (b) 

Figure 3-4 The speed profiles of operating conditions used in experiment: (a) 

Trapezoidal and (b) Triangle 

 

Table 3-2 The experimental conditions  

State 
Abbreviat

ion 
Fault level Speed profile Load torque (%) 

Normal NOR 0 
Trapezoidal 

0 30 50 70 100 
Triangle 

Stator 

inter-turn 

short 

SIS1 1 
Trapezoidal 

0 30 50 70 100 
Triangle 

SIS2 2 
Trapezoidal 

0 30 50 70 100 
Triangle 

Misalign

ment 

MSGN1 1 
Trapezoidal 

0 30 50 70 100 
Triangle 

MSGN2 2 
Trapezoidal 

0 30 50 70 100 
Triangle 
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2021 
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Chapter 4 Fault Detection Under Variable Operating Conditions with Minimal Parameter Settings: Drive-tolerant Current Residual Variance (DTCRV) 

 

Fault Detection Under Variable 

Operating Conditions with 

Minimal Parameter Settings: 

Drive-tolerant Current Residual 

Variance (DTCRV) 

 

The proposed drive-tolerant current residual variance (DTCRV) method is explained 

in detail in this section. As described in the introduction, the proposed DTCRV 

method was developed with the aim to detect motor faults under variable operating 

conditions using only the stator current signal. In this chapter, the conventional fault 

detection methods under time-varying conditions using stator current signals are 

reviewed first. Next, the proposed DTCRV method is explained. Then, the proposed 

method is demonstrated with experiment data.  

 

4.1 Review of Fault Detection Methods Using Stator Current 

Under Variable Operating Conditions  
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Although the conventional methods are described in the introduction, this section 

focuses on the TFA-based approach and signal-based approach for fault diagnosis of 

electrical and mechanical faults under variable operating conditions in order to 

compare them with the proposed method. 

First, in the TFA-based approach, it has common property in that the 

modulation of the fault-related frequency is in the current signal. The modulation of 

the third harmonic of the supply frequency is associated with an electrical fault; the 

modulations of the torque-fluctuated harmonics are associated with mechanical 

faults. Lots of researchers have adopted the approach of monitoring the third 

harmonics for detecting a stator inter-turn short [78], [88]–[90]. For mechanical 

faults, the characteristic frequencies are associated with the load torque oscillation, 

and appear as the sidebands of the fundamental frequency 𝑓𝑠 [21], [22], [41], [91]. 

Table 4-1 summarizes the fault characteristic fault frequency 𝑓𝑐  in the current 

spectrum, where 𝑓𝑟 is the rotating frequency, and 𝑛 = 1,2,3, … Although 𝑓𝑐 can 

detect each fault in stationary conditions, 𝑓𝑐  cannot be applied to non-stationary 

conditions directly, due to the time-varying 𝑓𝑟 and 𝑓𝑠. Therefore, several studies 

have conducted time-frequency analysis to track the magnitude of the fault 

characteristic frequency in the time-frequency domain [92]–[95]. In particular, WD 

has been widely used to calculate the features in the time-frequency domain [92], 

[93], and pseudo-WVD (PWD) often replaces WD to compensate for interference 

terms in practical application [41], [96]. For example, the energy of 3𝑓𝑠 is extracted 

for investigating stator inter-turn short; the energy around 𝑓𝑠 ± 𝑓𝑟/2  which are 

calculated using PWD can investigate the mechanical faults. These TFA-based 

approaches require several motor-specific information and the speed profile to 



31 

 

 

compute the time-varying characteristic frequencies. 

Further, signal-based approaches (e.g., discrete wavelet transform (DWT), [23], 

[24], [42], [44], [45], empirical mode decomposition (EMD) [25], [46], [47], Hilbert 

Hwang transformation (HHT) [48], [49]) have been adopted to readily extract the 

fault-related components. When DWT was used, the energy of the specific detail 

signals could be calculated for the health feature [24], [45]. The specific detail 

signals were selected based on an observation of the fault-pattern. When EMD [25], 

[46], [47] or HHT [48], [49] was used, the IMFs that reveal the fault-related 

components were investigated after decomposing the drive-related components in 

the preceding IMFs. However, the observation of the appropriate decomposed 

signals containing fault information is difficult for the signal decomposition based 

approach. In addition, most of the aforementioned studies were validated under only 

variable-speed profiles. Therefore, the application of these conventional methods for 

real driving conditions – in which the speed varies under several load torque 

conditions – is uncertain. 

To sum up the aforementioned approaches, they are limited to situations where 

the fault-related information is pre-assigned, such as fault characteristic frequency over 

time and the decomposition level that the fault patterns reveal. However, the proposed 

method does not require any information about the fault or the driving conditions; 

Table 4-1 Fault characteristic features in the current spectrum 

Fault mode 
Fault characteristic frequencies 

in the current spectrum 𝑓𝑐 

Stator inter-turn short 𝑓𝑐 = 3𝑓𝑠 

Mechanical faults caused by load torque 

oscillation (e.g., unbalance, misalignment, 

eccentricity) 

𝑓𝑐 = 𝑓𝑠 ± 𝑛𝑓𝑟 
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instead, it adaptively decreases the effect of speed and load torque conditions based on 

the physical relations between the torque and current of a motor.  

 

4.2 Proposed DTCRV Method 

This section presents the proposed DTCRV method to detect faults under operational 

speed and load torque conditions. Figure 4-1 offers a flowchart of the proposed 

method. The details of each step are described in Sections 4.2.1 and 4.2.2, focusing 

on the principle of the proposed method. In Section 4.2.3, the contribution and 

advantages of the proposed method are explained with the comparison of the 

conventional methods. 
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4.2.1 Extraction of the Drive-related Signal 

Since the raw stator current signal consists of a fundamental driving sinusoidal wave 

and other harmonics that can be generated by the controller, faults, or other factors, 

the envelope of the raw stator current signal is firstly extracted. Based on (2.7), the 

major component of the raw stator current signal can be expressed as: 

 

Figure 4-1 A framework of the proposed DTCRV method 
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1 1( ) ( )cos(2 ) ( )cos(2 ( ) )s s c cx t I t f t I t f f t   = +  +  (4.1) 

where α is the modulation index; f
c
 and φ

c
 are the frequency and phase angle of 

the fault, respectively. Then, the analytic signal of x(t) using HT can be related to the 

amplitude of the enveloped current signal as: 

( )ˆ( ) ( ) ( ) ( ) j t

a mx t x t jx t x t e = + =  (4.2) 

where xa(t)  is the analytic signal of x(t), x̂(t)  is the HT result of x(t) that is 

π/2  phase-shifted, xm(t)  is the amplitude of xa(t) , and ψ (t) is the instantaneous 

phase. Based on Section II-B, the information about the fault-related AM is expected 

to be carried in xm(t). xm(t) conserves the magnitudes of x(t), while it reduces the 

effect of high-frequency noises that are usually induced from a variable frequency 

drive. In this study, the upper signal of xm(t), denoted as ENV(t), is used.  

Next, the drive-related signal is extracted from ENV(t). In a balanced three-

phase system, the magnitude of xm(t) is proportional to Te(t); therefore, ENV(t) can 

be expressed from (2.2) as: 

( ) ( )qENV t i t  (4.3) 

Based on the fact that iq(t) is the result of dq-transformation of the three-phase 

x(t), iq(t) can be written from (4.1) as: 

1 0 1 0

1 1

( ) ( )cos(2 ) ( )cos(2 ( ) )

( )cos( ) ( )cos( 2 ')

q s s k k

p k

i t I t f t I t f f t

I t I t f t

     

   

= − +  + −

= +  +
 (4.4) 

where θ0 is set to 2πf
s
t+θp; θp is the constant phase angle, and φ'is φ

k
-θp. Also, 

the right-hand side of (2.2) can be rewritten to include the torque oscillations and 

spatial harmonics as: 



35 

 

 

L0

1

( ( ) ( ) T ) T ( )cos(2 )r r n n n

n

d
J t B t t f t

dt
   



=

+ + + +  (4.5) 

where TL0 is the constant load torque, n is the positive integers, Tn, f
n
, and φ

n
 are 

the amplitude, frequency, and phase angle for torque oscillations, respectively. When 

(4.4) and (4.5) are incorporated into (2.2), the torque-current mechanism can be 

described as:  

1 1

1

( )cos( ) ( )cos( 2 ')

( ( ) ( ) T ) T ( )cos(2 )

p k

r r c n n n

n

kI t k I t f t

d
J t B t t f t

dt

   

   


=

+  +

= + + + +
 (4.6) 

Sequentially the first term in the left-hand side corresponds to the first term in the 

right-hand side, which is related to the driving condition. Also, ENV(t) is 

proportional to (4.6) based on (4.3) as: 

1

( ) ( ( ) ( ) T ) T ( )cos(2 )r r c n n n

n

d
ENV t J t B t t f t

dt
   



=

 + + + +  (4.7) 

The first term in the right-hand side of (4.7) can be matched to the dominant linear 

trend of ENV(t) in the case of constant acceleration. Although the motion of 

manufacturing machines is complicated, the speed profile of a servo motor usually 

consists of constant acceleration, short or no constant speed, and deceleration. 

Figure 4-2 shows the procedure of extracting the dominant trend from ENV(t) in the 

driving condition, which consists of constant acceleration, constant speed, and 

constant deceleration. The dominant trend of ENV(t) changes linearly as the speed 

changes linearly in a uniform acceleration region. When the driving condition changes 

from acceleration to stationary, ENV(t) changes rapidly as Jdωr(t)/dt  in (4.7) 

disappears and becomes proportional to the level of load torque. Based on the 

association of the dominant trend of ENV(t) and the driving condition, the linear trend 

of ENV(t) is determined to be the drive-related signal D(t). Before extracting D(t), the 

gradient of ENV(t), which is denoted as G(t), is computed for subdivision. When the 
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driving condition is switched, ENV(t) changes drastically; thus, the transition time can 

be captured at the large gradient points. After subdividing ENV(t) into several sections, 

linear regressions of ENV(t) in each section are calculated. Then, D(t) is defined as the 

union of linear estimation. In Fig., G(t) has two peak points at the transition time, and 

D(t) can be determined as the combination of the linear estimations in three subsections 

that G(t) divides. 

Unlike the previous approaches that decomposed the non-stationary current 

signal empirically or removed the fundamental current signal using specific filters, the 

proposed DTCRV method readily extracts the drive-related components which are 

induced from the torque-current mechanism. The linear regressed D(t) is a strict 

equation-based extraction; however, several filters (e.g., moving average or low-pass) 

can be substituted for the linear regression and applied to various driving conditions. 

 

4.2.2 Drive-tolerant Current Residual 

Using D(t) which is determined in advance, the drive-tolerant current residual DTCR(t) 

can be calculated by the subtraction of D(t) from ENV(t) as: 

 

Figure 4-2 The procedure of extracting D(t) from ENV(t) 
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( ) ( ) ( )DTCR t ENV t D t= −  (4.8) 

After D(t) is subtracted, the dependence of DTCR on the driving condition 

becomes small; therefore, the influences that are not related to the driving conditions 

are prominent in the DTCR. Also, the fluctuations caused by faults receive more 

attention. Then, the variance is calculated to arrive at a representation of DTCR, 

which is defined as: 

2
DTCRV ( ( ) )E DTCR t = −  (4.9) 

where μ is the average of DTCR(t). DTCRV can be interpreted as the energy of the 

DTCR, since the energy of the time-series signal is usually defined as a summation 

of the squared signal and the mean of the DTCR would be zero in the ideal case. 

When D(t) does not include all time-varying effects, the DTCR could have a bias 

induced by a complicated driving condition; thus, the variance can compensate for 

the bias error of the DTCR. 

 

4.2.3 Contribution and Advantage of DTCRV 

Through the proposed DTCRV method, the stator current signals under operational 

driving conditions can be readily utilized to evaluate the health condition of a motor. 

It is beneficial that the DTCRV method, which is developed on the basis of physical 

relations between the torque and current of a motor, can be applied with less 

expertise. To precisely describe the contribution and advantages of the DTCRV, it is 

compared with two conventional approaches (i.e., TFA-based and signal 

decomposition-based). Table 4-2 summarizes the comparisons described below. The 

proposed DTCRV method does not require any information about the fault. In 
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contrast, the two conventional approaches are based on the extraction of fault-related 

components. Therefore, the two conventional methods are limited to situations 

where the fault-related information is pre-assigned, such as fault characteristic 

frequency over time and the decomposition level that the fault patterns reveal. The 

DTCRV method also does not require any information about the driving condition; 

instead, it adaptively decreases the effect of speed and load torque conditions by 

subtracting the linear components in the current envelope. For the TFA-based 

approach, the speed profile is essential for calculating the characteristic frequency. 

The load torque condition is optionally used to attempt to compensate for its 

influence. Furthermore, the DTCRV is less susceptible to the parameter settings and 

its time-cost is low because the entire process of DTCRV is automatically handled 

in the time-domain. In contrast, the time-cost for the TFA-based approach is high 

due to the computation of many convolutions. The signal decomposition-based 

approach is highly affected by several parameters, such as the type of wavelet 

function and the appropriate band using the DWT method, or the selection of proper 

IMFs using the EMD and HHT methods. Finally, the DTCRV method can highlight 

the current fluctuations through the automatic reduction of drive-related signals. 
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Table 4-2 Comparison of the proposed DTCRV and two conventional approaches 

 
Proposed 

(DTCRV) 

TFA-based approach 

(e.g. PWD) 

Signal-based approach 

(e.g. DWT, EMD, HHT) 

Required information about 

the fault 
None 

Fault characteristic 

frequency 

Fault-sensitive range that fault patterns 

reveal 

Required information about 

the driving conditions 
None 

Speed profile 

Load torque (optional) 
Load torque (optional) 

Parameter dependency Low Low High 

Time-cost Low High Low 
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4.3 Case Studies 

To validate the effectiveness of the proposed DTCRV method, two experimental 

studies were explored: 1) a stator inter-turn short (SIS) and 2) misalignment (MSGN). 

Both cases also include a comparative analysis with other previously published 

health features, which were described in Section 4.1, to confirm the superiority of 

the proposed method.  

 

4.3.1 Case Study 1: Stator Inter-turn Short  

Figure 4-3 shows the procedure for calculating DTCR from the raw current signal in 

several driving conditions of NOR; Figure 4-4 shows calculation for SIS2. Comparing 

the raw current of Figure 4-3 and Figure 4-4 the modulation caused by SIS can be 

confirmed; the enlarged parts of Figure 4-3 (b) and Figure 4-4 (b) obviously show the 

severity of modulation due to SIS at the constant speed region. From all ENV(t) of each 

driving condition in Figure 4-3 and Figure 4-4, it can be seen that ENV(t) was highly 

influenced by the speed variation and load torque level. The amplitude trend of ENV(t) 

was largely dominated by the speed variation and was simultaneously proportional to 

the load torque level. So DTCRs were obtained according to the procedure as described 

in Figure 4-2. G(t), which was calculated to set the criteria for subdividing ENV(t), had 

peak points when the speed profile was drastically changed, regardless of the health 

state of the motor. There appeared two peak points in Figure 4-3 (a-c) and Figure 4-4 

(a-c), while only one appeared in Figure 4-3 (d-f) and Figure 4-4 (d-f). Next, D(t) was 

regressed in each section that the peaks of G(t) divide. Then DTCRs were obtained by 

subtracting D(t) from ENV(t). The small difference of DTCRs under variable speed 
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and load torque levels indicated the tolerance of DTCR to driving conditions, as shown 

in DTCRs in Figure 4-3. While the difference of DTCRs depending on driving 

conditions was small in Figure 4-3, DTCRs of Figure 4-4 highly fluctuated compared 

to those of Figure 4-3. Therefore, we can confirm that the influence of SIS on DTCR 

was larger than that of the driving conditions. Furthermore, DTCRs were occasionally 

amplified at the transient regions in the case of SIS. Not only the instantaneous 

irregularities that occur right after the speed transition but the deterioration of the stator 

windings where the current flows could aggravate the fluctuation of DTCR, as shown 

in the transient sections of DTCRs. Figure 4-5 shows the results of each feature (i.e. 

EPWD, EDWT, EHHT, and DTCRV), as determined using the PWD, DWT, HHT, and the 

proposed DTCRV methods, respectively. Each feature was normalized with an 

average feature value of NOR. EPWD, EDWT, EHHT were calculated based on the 

conventional methods described in Section 2.2. For EPWD, the magnitudes of the 

coefficients of PWD around 3fs were mean-squared over time. For EDWT, the fifth 

detail signal, d5 was selected and calculated as the sum of squares based on the fact 

that the frequency band of d5 was from 1 kHz to 2 kHz, which contains the 

characteristic frequency in the constant-speed region, of which the fundamental 

frequency was 500 Hz. For EHHT, the third IMF of the raw current signal was extracted, 

and the variance of its instantaneous amplitude was computed. As can be seen in Figure 

4-5, DTCRV outperformed the other methods by detecting SIS with one criterion. 

EPWD and EDWT were proportional to the load torque level and could detect only SIS2 

within the same load torque condition. Through the result, we can determine that the 

effect of load torque condition was difficult to be suppressed or separated using PWD 

or DWT. The inferior performance of EHHT might be due to the instability of the 

empirical extraction of IMF.  
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Table 4-3 quantitatively shows the performance of SIS detection using two 

measures for class separation: 1) the Fisher discriminant ratio (FDR) [97] and 2) the 

probability of separation (PoS) [98]. DTCRV had an overwhelmingly better separation 

capacity in both measures. The outstanding performance of DTCRV was possible 

because its techniques, which suppress the drive-related components, enhanced its 

sensitivity to the fault. Further, it is noticeable that the unit computing time of DTCRV 

was significantly faster than that of EPWD and EHHT, as can be seen in Table. All the 

time-costs were measured under i7-6700K CPU with 32GB RAM. As DTCRV is 

calculated in the time-domain only, repeated convolutions to convert signals in the 

time-domain to the time-frequency domain are not required. Also, the procedure of 

determining the drive-related signal of DTCRV was much simpler than calculating 

local maxima and local minima. The results of DTCRV in 50% load torque conditions 

were sometimes low, as shown in Figure 4-5(a). These results could be explained 

based on the influence of the control system in deceleration. The motors were forced 

to stop in the commanded time in different load torque levels and the load torques were 

also used in deceleration. When the load torque was low, the output torque had to be 

replenished for the on-time stop; when the load torque was high, the output torque for 

hindering fast deceleration was required. This explanation was supported by checking 

the deceleration regions of Figure 4-3 and Figure 4-4. However, it is important to note 

that DTCRV showed remarkable performance when subjected to both speed profile 

and load torque variations, although it was affected by the control in deceleration. 
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Table 4-3 Performance of SIS detection and average time-cost for calculating one feature  

 Features DTCRV (Proposed) EPWD [40] EDWT [45] EHHT [48] 

Performance 

measure 

FDR 4.919 0.034 0.027 0.002 

PoS 0.959 0.091 0.082 0.019 

Time-cost 0.007±0.002 sec 46.664±4.317 sec 0.004±0.004 sec 0.028±0.005 sec 
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(a) (b) 

  

(c) (d) 

  

(e) (f) 

Figure 4-3 The procedure for calculating DTCR in NOR: [speed profile, load torque 

level] (a) [Trapezoidal, 0%], (b) [Triangle, 0%], (c) [Trapezoidal, 50%], (d) 

[Triangle, 50%], (e) [Trapezoidal, 100%], and (f) [Triangle, 100%] 
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(a) (b) 

  
(c) (d) 

  
(e) (f) 

Figure 4-4 The procedure for calculating DTCR in SIS2: [speed profile, load torque 

level] (a) [Trapezoidal, 0%], (b) [Triangle, 0%], (c) [Trapezoidal, 50%], (d) 

[Triangle, 50%], (e) [Trapezoidal, 100%], and (f) [Triangle, 100%] 
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(a) (b) 

  

(c) (d) 

Figure 4-5 Results of the proposed and the conventional methods under SIS: (a) DTCRV, (b) PWD, (c) DWT, (d) HHT. 
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4.3.2 Case Study 2: Misalignment  

Figure 4-6 shows the procedure for calculating DTCR from the raw current signal in 

several driving conditions of MSGN2. Comparing the raw current signals in Figure 

4-6 with those of the corresponding operating conditions in NOR (shown in Figure 

4-3), the amplitude became larger. This was because much output torque was required 

to compensate for the interference, which MSGN induced to normal output torque. 

Also, ENV(t)s of MSGN showed more peak shapes, while those of SIS had the form 

of modulation, as shown in the enlarged parts of Figure 4-3 (b) and Figure 4-6 (b), 

respectively. The large fluctuation of ENV(t) sometimes caused the oscillated G(t), as 

can be seen in Figure 4-6 (a, b). Nevertheless, it was not hard to divide sections 

because the peak points of G(t) were determined relatively. Comparing DTCRs in 

Figure 4-6 with those of Figure 4-4, DTCRs in MSGN more fluctuated than those of 

SIS. Through this large fluctuation, we can suggest that DTCR is more sensitive to 

mechanical faults. 

Figure 4-7 shows the results of each feature (i.e. EPWD, EDWT, EHHT, and 

DTCRV), as determined using the PWD, DWT, HHT, and the proposed DTCRV 

methods, respectively. The normalization of each feature and the calculation of the 

conventional features were conducted in the same way described in Section 2.3. For 

EPWD, the magnitudes of the coefficients of PWD around f
s
±f

r
/2 were mean-squared 

over time. For EDWT, the seventh detail signal d7 was selected and calculated as the 

sum of squares because the frequency band of d7 was from 250 Hz to 500 Hz, which 

was able to contain the time-varying characteristic frequency f
s
±f

r
. For EHHT, the 

second IMF of the raw current signal was extracted, and the variance of its 

instantaneous amplitude was computed. Like the results in Section 4.3.1, the 

behaviors of DTCRV were robust to variable speed profile and load torque 
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conditions. From Figure 4-7 (b, c), the influence of the load torque levels on EPWD 

and EDWT seemed to be higher than that of MSGN. EPWD could detect MSGN at the 

high-load torque levels; however, MSGNs under 50% or less load torque levels were 

not distinguishable from NOR at 100% load torque level. EDWT had a significant 

variance in each operating condition due to the insufficient signal decomposition; 

the characteristics of MSGN were concealed in the load torque conditions. As shown 

in Figure 4-7 (d), EHHT was able to detect MSGN2 because the drive-related 

components were separated in the first IMF; however, EHHT could not detect MSGN1.  

Table 4-4 quantitatively describes the performance and unit computing time of 

all the features, which were measured in the same state as in Section 4.3.1. The result 

of high FDR and PoS values with the small time-cost in DTCRV confirmed its 

outstanding performance compared to the other three features. Though both MSGNs 

showed the higher DTCRV values, as compared to those of NOR, the DTCRVs of 

MSGN1 and MSGN2 did not linearly increase, and DTCRVs of MSGN2 were 

spread in the trapezoidal speed profile case (see Figure 4-7 (a)). It seems possible 

that these results were due to the slight misalignment that resulted from the repeated 

experimental disturbances. However, it is noticeable that the proposed DTCRV 

approach can promptly detect the incipient MSGN without any information about 

the fault or driving conditions.  
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(a) (b) 

  
(c) (d) 

  

(d) (f) 

Figure 4-6 The procedure for calculating DTCR in MSGN2: [profile, load torque] 

(a) [Trapezoidal, 0%], (b) [Triangle, 0%], (c) [Trapezoidal, 50%], (d) [Triangle, 

50%], (e) [Trapezoidal, 100%], and (f) [Triangle, 100%]. 
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(a) (b) 

  
(c) (d) 

Figure 4-7 Results of the proposed and the conventional methods under MSGN: (a) DTCRV, (b) PWD, (c) DWT, (d) HHT. 
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Table 4-4 Performance of MSGN detection and average time-cost for calculating one feature  

 Features DTCRV (Proposed) EPWD [40] EDWT [45] EHHT [48] 

Performance 

measure 

FDR 2.986 0.258 0.001 0.222 

PoS 0.873 0.433 0.016 0.254 

Time-cost 0.007±0.002 sec 44.113±3.396 sec 0.004±0.007 sec 0.027±0.007 sec 
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Through the results of simulation and two experiments, the DTCRV method 

have shown the three noticeable remarks: 1)  DTCRV was able to detect a fault 

without being affected by the driving condition (i.e., speed profiles and load torque 

levels), while the conventional methods were dominated by the driving conditions. 

2)  Neither motor-specific information nor parameter settings for signal 

decomposition were required to calculate DTCRV. 3) The computational time of 

DTCRV was low. 

 

4.4 Summary and Discussion 

This chapter proposed a new, drive-tolerant current residual variance (DTCRV) 

method for detecting faults under operational speed and load torque conditions. The 

proposed method extracted the envelope of the raw current signal to emphasize its 

modulation, which contains both drive-related and fault properties. Then, drive-related 

components were estimated using gradient-based linear regression. The DTCR, which 

was taken by subtracting drive-related components from the envelope signal, 

highlighted the unexpected oscillations from the abnormal state. Finally, the variance 

was computed to quantify the variation of the DTCR. Two case studies that 

investigated the different fault modes (i.e., SIS and MSGN) were demonstrated to 

validate the performance of the proposed approach. These case studies showed that the 

DTCRV method could detect each fault under several driving conditions, while the 

conventional methods using PWD, DWT, and HHT suffered from the effect of driving 

conditions. The primary benefits of the proposed method are that it can detect an 

incipient abnormal state without requiring information about the fault or the driving 

condition. Moreover, the computational time of DTCRV is far less than that of the 
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TFA-based approach, motor domain knowledge is not required, and the number of 

parameters that DTCRV demands is also less than that of both TFA-based and signal 

decomposition-based approaches. Future work can be conducted to identify fault 

modes considering control constraints under a wider range of driving conditions. 

Further, DTCRV will be investigated and applied to other motors embedded in 

industrial robots or electric vehicles. 

 

Sections of this chapter have been published or submitted as the following journal 

articles:  
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Youn, "Drive-Tolerant Current Residual Variance (DTCRV) for Fault 

Detection of a Permanent Magnet Synchronous Motor Under Operational 

Speed and Load Torque Conditions." IEEE Access, vol. 9, pp. 49055-49068, 

2021 
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Chapter 5 Physics-informed Health Image for Fault Diagnosis: Instantaneous Current Residual Map (ICRM) 

 

Physics-informed Health Image for 

Fault Diagnosis: Instantaneous 

Current Residual Map (ICRM)  

 

5.1 Stator Current Signal with Faults Under Variable-speed 

Conditions  

Several motor current models have been proposed that focus on the phase 

modulation effect that arises from a fault under steady-state conditions. In [19], an 

induction motor current model was derived under variable-speed conditions, 

considering gear faults, modulation effects, and rotor eccentricity. In case of a 

PMSM considering the same type of faults, both amplitude and phase modulations 

appear in stator current signal. To offer further improvement from the conventional 

derivations, this section derives a motor current model of a PMSM under time-

varying speed conditions considering fault-induced effects.  

The acceleration of a PMSM rotor as a function of time t can be expressed as: 

e L

1
( ) [ ( ) ( )]a t T t T t

J
= −  (5.1) 

where J is the inertia of a rotating system; Te(t) is the electromagnetic torque; and 
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TL(t) is the load torque. Considering the load torque TL(t) as a combination of the 

average load torque TL0(t) and fault-induced load torque oscillation Tf(t), it can be 

written as [99]: 

L L0 f f f
0

( ) ( ) ( )sin ( )
t

T t T t T t d d     = + +
    (5.2) 

where τ is the time variable; and ωf(τ) and φf are the fault-related frequency and phase, 

respectively. Then, the rotor speed of the PMSM ωr(t) can be derived with the 

integral of (5.1) as: 

r r0 f f f
0 0

1
( ) ( ) ( )sin ( )

t

t t T d d
J



        = + +
     (5.3) 

where ωr0(t) is the instantaneous average rotor speed; and υ is the time variable. The 

rotor angular position of the PMSM θr(t) can be calculated as the integral of (5.3) 

over time as: 

r r0 f f f
0 0 0 0

1
( ) ( ) ( )sin ( )

t t

t d T d d d
J

 

           = + +
       (5.4) 

where ν is the time variable. Based on (2.11), the total magnetomotive force (MMF) 

of the PMSM F(θ, t) can be expressed, using (2.12), as:  

s s e r s r re
0 0

( , ) sin ( ) sin ( ) ( )
t t

F t F p d F p p t d            = − + − −
         (5.5) 

where p is the pole pair number of the PMSM; ωe(τ) is the power supply speed; and 

ωre(τ) is the excitation current of the permanent magnet rotor, unlike the rotor of an 

induction motor is indirectly excited from the stator [100]. 

Even though the airgap flux density can be calculated as the product of F(θ, t) 

and the airgap permeance, for simplicity, the airgap permeance is usually assumed 

to be constant. airgap eccentricity is inevitable due to manufacturing and assembling 

errors. Considering the amplitude modulation effect that the airgap eccentricity 
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induces, the total airgap flux of PMSM Φ(t), which can be calculated by integrating 

the airgap flux density with respect to the winding structure, is expressed as:  

 r
0

s e r e f f f re
0 0 0 0 0 0

( ) 1 cos ( )

sin ( ) sin ( ) ( )sin ( ) ( )

t

t t t t

t d

p
d d T d d d d

J

 

    

               

  = − + 
  

      + + + +          



     

 
(5.6) 

where Φs and Φr are the amplitudes of the airgap flux caused by the stator and rotor 

MMFs, respectively; α is a modulation index representing the degree of dynamic 

eccentricity; and η is the initial phase. To simplify the equations, the instantaneous 

speed term W(t), the instantaneous rotor excitation speed term Wre(t), the amplitude 

modulation term AM(t), and the phase modulation term PM(t) are defined, 

respectively, as: 

r
0

re re
0

M r
0

M f f f
0 0 0

( ) ( ) ,

( ) ( ) ,

( ) 1 cos ( ) ,

( ) ( )sin ( )

t

t

t

t

W t d

W t d

A t d

p
P t T d d d

J

 

  

  

    

      

=

=

 = − +
  

 = +
  







  

 (5.7) 

According to a motor stator voltage equation (see (2.6)), the motor stator current x(t) 

can be described as: 
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 (5.8) 

where V(t) is the power supply voltage; Rs is the stator resistance; and Is0 is the 

amplitude of the motor stator current flowing the stator resistance. Denoting Is=Φs/Rs 

and Ir=Φr/Rs, (5.8) can be rewritten as: 
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(5.9) 

where the overdot appearing above AM(t) and PM(t) is used to indicate a derivative 

taken with respect to time.  

It can be confirmed from (5.9) that the motor stator current exhibits both phase 

as well as amplitude modulations in a faulty state. In addition, operating conditions 

(i.e., the power supply speed ωe(t) and the instantaneous speed W(t)) significantly 

affect the motor stator current signal. For accurate fault diagnosis for a PMSM under 

variable-speed conditions, it is thus of great importance to accomplish feature 

engineering that highlights fault-induced amplitude and phase modulations while 

eliminating the effect of variable operating conditions. There has been an attempt to 

develop a health feature that considers a drive-related component in the 

instantaneous amplitude of a motor stator current signal under variable-speed and 

load torque conditions [69]; however, to the best of the authors’ knowledge, there is 

no health feature that considers fault-induced phase as well as amplitude modulations 

in a motor stator current signal measured from a PMSM under variable operating 

conditions.  

 

5.2 Proposed ICRM Method 

This section explains how to construct ICRM as the input image to a CNN model for 

fault diagnosis of a PMSM under variable-speed profiles and load torque conditions. 
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Figure 5-1 shows a framework of ICRM and the following subsections provide the 

details of each step. 

 

5.2.1 Step 1: Calculation of Current Residuals 

First, a motor stator current signal is converted to an analytic signal using Hilbert 

transform. Considering that the main power supply frequency is predominant in the 

motor stator current signal, the discrete analytic signal of the motor stator current, 

denoted by xa[n], can be expressed as: 

 
Figure 5-1 The framework of the proposed ICRM method 
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[ ]

a[ ] [ ] j nx I en n =  (5.10) 

where I[n] and ψ[n] are the instantaneous amplitude (i.e., the envelope) and 

instantaneous phase of the motor stator current, respectively; and n is positive 

integers for discrete time. 

Then, the phase and envelop residuals, denoted by PR, and ER, are calculated in 

the time domain, respectively. To calculate the phase residual PR[n], the unit 

instantaneous phase of the motor stator current signal is determined from –π to π. 

Then, the ideal phase, which is a linear shape from –π to π, is subtracted from the 

instantaneous phase as: 

R

2
[ ] [ ]P n n n

M


 

 
= − − 

 
 (5.11) 

where the bracket term on the right-hand side is the ideal phase. Note that the data 

length M changes with the speed of the unit instantaneous phase. Thus, the physical 

meaning of the phase residual is a degree of phase irregularity without regard for the 

speed variation. 

To calculate the envelop residual ER, the drive-related component is subtracted 

from the envelop of the motor stator current signal. Since the magnitude of the 

envelop is proportional to that of the electromagnetic torque, which drives the 

rotating system, the dominant trend of the envelop can thus be assumed to contain 

the drive-related component [69]. Considering the electromechanical torque 

equation with the envelop, the drive-related component D[n] can be described as: 

r

r L0

[ ]
[ ] [ ]

d n
D n J B n T

dt


 + +  (5.12) 

where B is the friction coefficient; ωr is the rotating speed; and TL0 is the constant 

load torque. Then, the envelop residual is computed as: 
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R [ ] [ ] [ ]E n I n D n= −  (5.13) 

The physical meaning of the envelop residual is a degree of amplitude irregularity, 

which is less dependent on the variable speed and load torque conditions.  

Since the phase and envelop residuals are obtained from the motor stator current, 

here and hereafter, they are called current residuals (CRs) in this study. The 

schematic procedure of calculating the CRs is described in Figure 5-2. It is worth 

pointing out that, by subtracting the ideal phase and the drive-related component 

from the instantaneous phase and the envelop of the motor stator current signal, 

respectively, the CRs can highlight the fault-related information while suppressing 

the influence of variable-speed and load torque conditions. 
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Figure 5-2 The schematic procedure of calculating ICRM using the stator current 

signal 
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5.2.2 Step 2: Transformation of the Current Residuals to a Health 

Image 

The CRs (i.e., the envelop and phase residuals, ER and PR) calculated in Step 1 are 

scaled and spread into a 2D matrix. For scaling, a tanh activation function is used to 

scale each residual from -1 to 1 in this study; however, any activation function can 

be adopted, according to the distribution of the residuals. After the scaled CRs are 

paired up in the time domain, the size of the 2D matrix (N×N) is determined, and its 

rows and columns are assigned with a range from -1 to 1, divided by N, respectively. 

Since each entity of the 2D matrix is the cumulative number of the scaled CR pairs 

in the assigned range, every scaled CR pair is distributed into the 2D matrix. In 

principle, if there are neither fault-induced amplitude nor phase modulations in a 

motor stator current signal, the values of the scaled CRs are nearly zero because the 

CRs indicate a degree of irregularity. This implies that most of the scaled CR pairs 

are expected to be concentrated around the center of ICRM in a normal state, while 

they will spread in faulty states (see the ICRM part of Figure 5-2). The scaled CR 

pairs are likely to spread along the center horizontal direction of ICRM in a faulty 

state giving rise to amplitude modulation, while they would be distributed along the 

vertical direction in a faulty state affecting phase modulation. For instance, 

amplitude modulation of the motor stator current can be induced when the amplitude 

of airgap flux waves is modulated by a stator inter-turn short (electrical fault) [80]; 

whereas, a misalignment (mechanical fault) may cause phase and amplitude 

modulations due to the load torque oscillation and subordinate eccentricity, 

respectively [99], [100]. Therefore, a type of faults can be figured out qualitatively 

by analyzing a degree or shape of spreading in ICRM. Then, ICRM is used as the 

2D input image to train a CNN model for learning boundaries between faulty states, 
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thereby quantitatively identifying a health state. 

 

5.3 Experimental Validation 

To validate the effectiveness of ICRM for CNN-based fault diagnosis under variable 

operating conditions, the experimental dataset which was explained in Chapter 3, 

was examined. 

 

5.3.1 CNN Architecture for Fault Diagnosis 

To fairly compare the performance of each input, the same CNN model was used. 

The architecture of the CNN model was comprised with three residual blocks, a 

global average pooling layer (GAP), and a fully connected layer (FC), as described 

in Figure 5-3, which was inspired by [101]. The hyper-parameters of convolutional 

layers (CONV) and batch normalization layers (BN) in the CNN model are 

summarized in Table 5-1. Also, the specific information of the CNN model including 

output shape and the number of parameters is described in Table 5-2, which were 

applied identically to all types of inputs at comparative analysis. 

 

 

Figure 5-3 The CNN architecture used in the case study 
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Table 5-1 The model parameters of the CNN architecture 

Layer Abbreviation Parameter 

Convolutional layer 

CONV0 
kernel size: 11, number of filters: 16,

 stride: 2, padding: 5 

CONV1,  

CONV2, 

CONV3 

kernel size: 11, number of filters: 32,

 stride: 2, padding: 5 

Batch normalization 

layers 

BN1, 

BN2, BN3 
Momentum=0.1 

ReLU activation 
ReLU1,  

ReLU2, ReLU3 
None 

 

Table 5-2 The specific information of the CNN architecture 

Type Output shape Number of parameters 

Input [1x50x50]  

CONV0 [16x25x25] 1,952 

Residual block 1 [32x13x13] 62,016 

Residual block 2 [32x7x7] 124,000 

Residual block 3 [32x4x4] 124,000 

GAP, FC [32x3] 99 

Total  312,067 

 

5.3.2 Fault Diagnosis Results Using ICRM 

Figure 5-4 shows the ICRM results for each health state in various operating 

conditions. While the differences of the ICRM results with different speed profiles 

and load torque conditions are marginal, the differences of ICRM according to health 

state are significant. This was confirmed by comparing the distributions of the 

normal state and other faults; where CRs of the normal state were concentrated on 
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the center, without regard to the operating condition and those of faulty states were 

extended out horizontally. In particular, the significant vertical spread of CRs in a 

misalignment state indicates a large amount of PR. According to the explanation in 

Section 2.3.2, electrical faults (e.g. stator inter-turn shorts) increase the AM of the 

currents; further, mechanical faults (e.g. misalignment) affect the PM of the current. 

From this point of view, the ICRM approach was confirmed to follow the previous 

physical inspection of the current in faulty states, and was not affected by the 

operating conditions. 
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(a) 

 

(b) 

 

(c) 

Figure 5-4 ICRM results: (a) Normal, (b) Stator inter-turn short and (c) Misalignment 
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Using the ICRMs as the input, the CNN model was trained with 3000 epochs 

with 64 mini-batch, where the learning rate was 1e-4. Figure 5-5 visualizes the input 

ICRM and the convolutional layers in each residual block using test data from t-

stochastic neighbor embedding (t-SNE). The health state was already divided in 

rough form by the ICRM itself (see Figure 5-5 (a)) and then gradually clustered by 

fault type as the ICRMs passed through the residual blocks (see Figure 5-5 (b) to (e)). 

It can be inferred that the ICRM could perform as a fault indicator and the CNN 

model which trained ICRM could exploit more elaborate fault-related features.  

Furthermore, the intensely activated weights of the first convolutional layer of the 

trained CNN model were visualized using gradient-weighted class activation 

mapping (Grad-CAM), as can be seen in Figure 5-6. Since the first convolutional 

layer is expected to learn the broad characteristics of the input data, the majority 

results of Grad-CAM highlighted the most noticeable part of the ICRM. The center 

was strongly dominant in the normal case, while the horizontal parts were 

highlighted in the case of a stator inter-turn short. For misalignment, the vertical 

parts were also accentuated, along with the horizontal parts. These results show that 

the Grad-CAM spotlighted the expected part of the ICRM, in which the CRs of the 

faulty state are located. Thus, the CNN model was confirmed to properly train ICRM 

for fault diagnosis.  
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Figure 5-5 t-SNE result of input and convolutional layers using test dataset: (a) Input, 

(b) CONV0, (c) Residual block 1, (d) Residual block 2 and (e) Residual block 3 
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(a) 

 

(b) 

 

(c) 

Figure 5-6 GradCAM result of CONV0 layer in the CNN model using test dataset: (a) 

Normal, (b) Stator inter-turn short and (c) Misalignment 



70 

 

 

5.3.3 Comparative Analysis  

To demonstrate the superiority of the proposed ICRM for CNN-based fault diagnosis, 

it was compared by other methods that generate the input image, including a TFR-

based image (i.e., spectrogram using STFT, window size 64, overlap 0.5), two 

image-encoding techniques (i.e., GAF and MTF) and a stacked matrix. As the first 

comparative analysis, GAF, MTF, and the stacked matrix were configured with the 

raw current signal. In Figure 5-7, the average accuracy of the fault diagnosis with 

standard deviation bars, where the results are displayed on top of the bar chart; each 

accuracy was calculated with 10 repetitions. For every case, the fault diagnosis 

accuracy when ICRM was provided as input in the same CNN model outperformed 

than any other inputs. Since the TFR-based image contains the physical information 

(i.e. spectral component according to time), the performance with TFR-based image 

was better than the other image input using image-encoding techniques. The 

accuracy of image-encoding inputs varied greatly depending on which techniques 

was adopted, as shown at the accuracy of MTF and GAF in. A possible reason for 

the better result with MTF input than GAF can be inferred that the Markov transition 

matrix calculated by discrete stator currents was appropriate to abstract the 

characteristics of stator currents.  

As can be seen in Figure 5-8, the performance of CNN-based fault diagnosis was 

evaluated for every input case using the test data under the other operating conditions 

that were not trained. As can be seen in Figure 5-8 and Table 5-3, the accuracy at 

which ICRM was used as the input image to the same CNN model was higher and 

its overall standard deviations were smaller than any other methods. It can be 

inferred that the CRs in ICRM exert an influence on the performance of CNN-based 

fault diagnosis for the surface-mounted PMSM. This is because all the other input 
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images were configured with the raw current signal but ICRM was composed of the 

CRs that can capture the physical fault-related signatures of the motor stator current. 

Additionally, the TFR-based image showed the better performance than GAF, MTF, 

and the stacked matrix, as can be seen in Figure 5-8 (b). This can be attributed to the 

fact that GAF and MTF mainly extracted time-domain features; instead, TFR 

presented the spectral information with the time. In Figure 5-8 (a), on the other hand, 

TFR showed the lower performance than GAF, MTF, and the stack. The reason might 

be due to an excessive change in the current signal according to the speed profile 

variation. The effect of the speed profile variation in the current signal would be 

more remarkable in TFR, rather than GAF, MTF, and the stack, because the main 

frequency of the current signal is determined dominantly by the speed. On the other 

hand, the difference according to the operating conditions were obviously confirmed 

by which representatively shows the input image of normal state using GAF, MTF, 

respectively. In Figure 5-9, while all the images were normal state, they varied 

according to the operating conditions. Therefore, these results suggested that the 

effects of the variable operating conditions have to be suppressed to properly capture 

the fault-related characteristics. 
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Figure 5-7 The fault diagnosis accuracy with comparative methods using raw current 

signal 
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Figure 5-8 The fault diagnosis accuracy with comparative methods using raw current 

signals under testing different operating conditions: (a) speed profile and (b) load 

torque 
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 (a) (b) 

Figure 5-9 Image encoding result of normal state using: (a) Markov transition field 

(MTF), (b) Gramian angular field (GAF) 
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As the second comparative study, GAF, MTF, and the stacked matrix generated 

the input image by converting ER and PR individually; for instance, GAF_ER, 

GAF_PR, MTF_ER, MTF_PR, Stack_ER, and Stack_PR. As can be seen in Figure 

5-10, the performances of comparative methods which trained the inputs made by 

ER and PR were broadly better than those of comparative methods which trained the 

inputs made by raw data. Especially, the comparative methods that learned the input 

made by ER were better than those that learned the input made with PR. A possible 

reason for the superiority with ER is that ER is a more proactive and sensitive 

component to the health state than PR. The comparative methods which trained the 

inputs made by ER and PR were also tested with the data under other operating 

conditions as shown in Figure 5-11. Compared to Figure 5-9, the performance was 

improved because the effects of operating conditions were suppressed in ER and PR.  

The overall performance of ICRM was better than those of other image 

generation methods. As can be seen in Figure 5-11 (b), the accuracy of TFR_ER was 

relatively high under different load torque conditions. The fault-related information 

in ER tends to be included in the high-frequency region. This implies that it could be 

difficult to capture the fault-related signature, if one investigates ER in only the time 

domain under the high load torque condition in which the amount of noise is large. 

In this respect, TFR_ER seemed to perform well because the frequency part of TFR 

could present the high-frequency region of ER obviously. It is worth pointing out that 

ICRM demonstrated superior performance under different speed profile conditions, 

as can be seen in Figure 5-11 (a). This implies that the combined use of ER and PR 

helps to provide the critical fault-related information under variable speed conditions. 

When the instantaneous phase reveals the signal characteristics under speed 
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variations, PR could play a role as a sensitive indicator to capture the fault-related 

irregularities of the current signal [102]. Therefore, it is suggested that the combined 

use of ER and PR in ICRM contributes to the better performance on fault diagnosis 

under different speed profile conditions. 

In summary, the proposed ICRM showed outstanding performance for CNN-

based fault diagnosis, even under various operating conditions that were not trained. 

Table 5-3 summarized the fault diagnosis accuracy with standard deviations under 

variable operating conditions, including the comparative methods with raw current 

signals, ER and PR, respectively. Further, the proposed method was able to determine 

that the CNN model learned reasonable features of CRs by visualizing the activated 

weights of the trained model. It is worth pointing out that ICRM is designed for 

giving physics-guided current characteristics to the 2D input image to the CNN 

model, which will serve as a benefit when the feasibility of ICRM is extended to 

other systems.  
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1. ICRM (Proposed), 2. TFR_ER, 3. MTF_ER, 4. GAF_ER, 5. Stack_ER, 

6. TFR_PR, 7. MTF_PR, 8. GAF_PR, 9. Stack_PR 

Figure 5-10 The fault diagnosis accuracy with comparative methods using ER and 

PR 
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(a) 

 

 
(b) 

Figure 5-11 The fault diagnosis accuracy with comparative methods using ER and 

PR under testing different operating conditions: (a) speed profile and (b) load torque 
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Table 5-3 Fault diagnosis accuracy under variable operating conditions, including the comparative methods with raw data, ER 

and PR, respectively. 

Input 

Different operating conditions for test 

Test different speed profile Test different load torque 

Trapezoidal Triangle Low (30%, 50%) Medium (50, 70%) High (70, 100%) 

ICRM (Proposed) 99.1±0.2 90.2±1.9 94.5±0.7 95.6±2.2 90.3±0.4 

TFR 48.2±6.8 40.0±6.9 64.5±3.6 70.1±8.0 65.0±11.1 

MTF 42.1±2.7 44.2±1.5 46.5±3.0 49.5±1.8 39.8±4.1 

GAF 45.7±1.2 39.3±1.3 52.9±0.9 52.8±1.1 51.9±0.9 

Stack 53.4±3.6 57.5±3.9 59.2±1.2 62.9±1.5 62.9±1.4 

TFR_ER 89.6±1.8 85.8±1.4 95.6±1.3 96.9±1.4 93.5±0.5 

MTF_ER 47.5±3.2 47.3±4.8 58.3±2.2 63.2±1.8 67.2±2.2 

GAF_ER 42.4±2.5 37.3±4.5 52.0±1.7 68.3±3.6 59.7±2.1 

Stack_ER 44.9±1.2 45.6±1.4 37.9±2.4 47.7±1.1 43.0±1.7 

TFR_PR 60.6±2.8 55.4±1.3 43.5±1.5 50.2±2.3 63.1±0.7 

MTF_PR 40.3±2.3 49.4±2.1 49.1±1.4 49.3±1.7 51.2±2.3 

GAF_PR 39.7±0.7 40.4±1.6 41.0±1.6 41.3±1.4 39.4±1.2 

Stack_PR 44.8±2.6 48.9±1.5 45.0±1.1 47.6±1.6 57.2±1.4 
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5.4 Summary and Discussion 

This section proposed a novel, instantaneous current residual map (ICRM) for convolutional 

neural network (CNN)-based fault diagnosis using motor stator current signals; this approach 

is applicable for variable operating conditions. The proposed ICRM approach consists of the 

set of the phase and envelop residuals, denoted by PR and ER, pairs extracted from the fault 

information from the instantaneous phase and amplitude, respectively, of the motor stator 

current. Using the proposed ICRM, a fault can be discerned by investigating the degree or 

shape of spreading of the scaled current residuals (CRs) in the ICRM, and precise fault 

diagnosis is available by making the CNN model learn the ICRM. Through the experimental 

study that examined the surface-mounted permanent magnet synchronous motor (PMSM), 

the proposed ICRM was confirmed to outperform the other image-encoding and TFR-based 

inputs when applied as the input to the CNN model for fault diagnosis, even under various 

operating conditions that were not trained. The primary benefits of the proposed method are 

that physics-informed CNN for fault diagnosis is available owing to putting the physical 

meaning of motor stator current signals to a 2D input image to a CNN model. Moreover, the 

ICRM is applicable under variable operating conditions, because the procedure of calculating 

PR and ER contains the repression of influences on the operating conditions. Future work can 

be conducted to improve the fault diagnosis method using the ICRM to be applied to a broad 

range of motor types and various operating conditions. 
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Chapter 6 Fault Severity Estimation with Feature Inherited Hierarchical Convolutional Neural Network (FI-HCNN) 

 

Fault Severity Estimation with 

Feature Inherited Hierarchical 

Convolutional Neural Network (FI-

HCNN)  

 

6.1 Review of the Hierarchical Network for Fault Diagnosis 

A hierarchical network consists of a parent and two or more child modules. In image 

classification, several hierarchical models have been proven effective by 

categorizing the superclass in the parent module and classifying the fine classes in 

the child modules. Figure 6-1 depicts the schematic of a hierarchical network, where 

the total number of classes is N1+ N2+…+Nk; these can be categorized into k 

superclasses. For example, when the superclasses are set to “animal” and “building” 

the possible fine classes could include “cat” and “dog” for the former, and “schools” 

and “hospitals” for the latter. In the field of computer vision, several studies have 

developed algorithms to construct appropriate superclasses and classify images. In 

[30], the tree-based priors encouraged transfer of the input to the related classes. The 

hierarchical exclusive graphs in [31] classified the large-scale objects with 

theoretical interpretations. In [32], the algorithm was able to pretrain the fine classes 
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independently by using a combination of shared low-level features and additional 

input. 

 

6.2 The Proposed FI-HCNN Method  

This section details the proposed feature inherited hierarchical CNN (FI-HCNN) 

method. First, the special connected architecture of the hierarchical learning model 

is explained and the overall hierarchical structure, which consists of an FD module 

and several SE modules, is described. 

 

Figure 6-1 The schematic of a hierarchical neural network for fault diagnosis 
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6.2.1 Feature Inheritance Architecture  

When the hierarchical network is applied for machinery health monitoring, the 

parent module can be matched to FD, and the child modules matched to SE for each 

fault mode. When the FD module and SE modules are deployed in the hierarchy, 

they reflect two different objectives, respectively: first, classifying a particular fault 

mode and then estimating its severity. In contrast to the ordinary hierarchical 

architecture, the proposed FI-HCNN delivers the latent features �̂� from the FD to 

the SE module. This concept is called feature inheritance. As shown in Figure 6-2, 

the input data x evolves into learned representations that contain rich characteristics 

for the particular fault mode (Ck) in the FD module. These representations refer to �̂�. 

�̂� are used as the input to the SE module of Ck; they are learned to be regressed to 

the severity of Ck (𝑆𝐶𝑘
) through Ck’s SE module. 

Specifically, �̂� are the values calculated from the last pooling layer in the FD 

module. When the filters of the FD module are trained to highlight the characteristics 

of the fault based on the input data, �̂� – by passing through these filters – they are 

expected to develop into the features that contain significant and intensive 

abstractions about the particular fault mode. By extending without discarding �̂�, the 

learning of the SE modules can be more focused on capturing higher-level features; 

this can support the regression of fault severity. Therefore, the transmission of �̂� 

helps learn the degree of a specific fault and leads to enhanced SE performance. 
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6.2.2 A Hierarchical Structure for Fault Diagnosis and Severity 

Estimation 

Using feature inheritance, which is the key idea of FI-HCNN, the overall hierarchical 

structure is configured as shown in Figure 6-3. The proposed FI-HCNN method 

consists of three parts: 1) preprocessing, 2) fault diagnosis, and 3) severity estimation. 

Each fault mode has its own SE module, while the normal state does not go through 

any additional modules. x denotes the pre-processed current data, �̂� signifies the 

latent features, WFD and WSE are the weight matrices of the FD and SE modules, 

respectively, C is the fault mode, and S is the severity of each fault mode. The 

severity ranges from 0 to 1. 

 

 

 

Figure 6-2 The concept of feature inheritance 



85 

 

 

 

Figure 6-3 The schematic of the proposed FI-HCNN method 
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6.2.2.1. Part 1: Preprocessing 

Before the hierarchical network starts learning, four steps of preprocessing 

(resampling, augmentation, normalization, and scaling) are executed on the raw 

current signals. First, the resampling adjusts all data by interpolation to have the 

same amount of information under the same operating conditions; this makes each 

datum unit have the same points in a revolution. Second, data augmentation is 

conducted by overlapping the amount of data of one revolution. This augmentation, 

which conserves the periodic characteristic of the current signal, not only has a 

positive effect on performance, it can also help the filters in the model to learn the 

relevant features. Third, normalization, which subtracts the self-mean and divides 

the total standard deviation, is used to homogenize the data of each experiment. 

Finally, the amplitudes of the current signals are scaled from -1 to 1. The scaling of 

current signals allows expandability to signals from different sized motors and a 

decrement in the uncertain effects of the load torque condition. 

 

6.2.2.2. Part 2: Fault Diagnosis (FD) 

After preprocessing, the refined current data enters the FD module. The FD module 

consists of three convolution layers, max-pooling layers, and one FC layer. Through 

the three convolution and max-pooling layers, the input data can be formulated as 

the features that reveal the fault characteristics. The FC layer is learned to classify 

the features to the fault mode. The task of the FD module can be explained as 

𝑝(�̂�|𝐱, 𝐖𝐅𝐃)~𝑝(𝐶|𝐱). The optimum can be achieved by minimizing the loss of the 

FD module (LFD), given as: 
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𝐿FD(𝐖𝐅𝐃) = 𝛽1‖𝐖𝐅𝐃‖2 − 𝐸�̂�~𝑝𝑑𝑎𝑡𝑎
log 𝑝(�̂�|𝐱, 𝐖𝐅𝐃) (6.1) 

where 𝛽1  is a coefficient of the L2-normalization and the loss is computed via 

cross-entropy; this is because the FD module tackles the problem of discrete 

classification. While the dimensions of the features decrease as they pass through the 

pooling layers, the number of features increases due to the increased filters as the 

layer becomes deeper. In addition, ELU activation is used in all convolutional layers 

to encourage the information under 0 to be conserved; this is defined as: 

𝑓(𝑥) = {
𝑥 (𝑥 ≥ 0)

exp(𝑥) − 1 (𝑥 < 0)
 (6.2) 

Both the ELU activation function and the increase in the number of filters according 

to the layer depth can compensate for the possibility of information that may be lost 

due to the stacked layers. As the weights of the filters are updated in the direction of 

minimizing (1), the input data passing through the updated filters formulates the 

features distinguishable to the fault modes. The features just before being flattened, 

which are denoted as �̂� in, are then transferred to the subsequent SE module.  

 

6.2.2.3. Part 3: Severity Estimation (SE) 

An SE module for each fault mode learns the severity of each corresponding fault 

mode. Each SE module consists of two convolution layers, followed by max-pooling 

layers and one FC layer. The two convolutional layers of the SE module, which have 

a larger number of filters than the preceding FD module, extract the more 

sophisticated features associated with the fault severity. The elaborate features are 

flattened and computed with the FC layer and then regressed to determine the fault 

severity. The task of an SE module can be explained as 𝑝(�̂�|�̂�, 𝐖𝐒𝐄)~𝑝(𝑆|𝐱). The 

latent features �̂�, provide significant information about the corresponding fault mode 
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to the SE module when LFD is sufficiently decreased. Then, �̂� are used to learn the 

WSE of the SE model by transferring the information to the SE module of the 

corresponding fault mode. The delivery of �̂� is expected to concentrate on learning 

the specific characteristics to assess the severity of each fault by minimizing the loss 

of the SE module (LSE), described as:  

𝐿SE(𝐂) = 𝛽2‖𝐖𝐒𝐄‖2 +
1

2
𝐸�̂�~𝑝𝑑𝑎𝑡𝑎

‖�̂� − 𝑓2(�̂�, 𝐖𝐒𝐄)‖
2
 (6.3) 

where 𝛽2  denotes a coefficient of L2 normalization and 𝑓2  is the estimated 

severity, as calculated from latent feature �̂� and WSE of an SE module. Since fault 

severity is the continuous variable, the loss is computed by mean squared error 

(MSE). 

The hierarchical structure of the proposed method is illustrated in detail in Fig. 

The FD module used to identify the fault mode and three SE modules for assessing 

the fault severity are hierarchically associated. The numbers in square brackets 

indicate the dimensions of the data passed through the layer. The numbers in 

parentheses refer to the number of filters, and the size of the filters is set to nine for 

all convolution layers. The pooling size is set to four for all pooling layers. The 

structure of the proposed FI-HCNN is designed based on the motor current signals 

described in this study, but it can be generally applied with minor adjustments 

depending on the amount and the type of data. In Figure 6-4, the blue arrow 

represents an example flow of a test data sample. When the test data is classified as 

Fault 1, the latent features of the test data transfer to the SE module of Fault 1 and 

develop into features that indicate the severity of Fault 1.  
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Figure 6-4 The structure of the proposed FI-HCNN method 
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6.3 Case Studies 

In this section, the proposed FI-HCNN method is validated using experimental data. 

There are two case studies; first, the experimental After an explanation of the data, 

the results of the proposed FI-HCNN are discussed. Then, the performance of FI-

HCNN is compared to that of traditional MCSA methods and other DL methods, of 

which the structures are related to the proposed FI-HCNN. 

 

6.3.1 Case Study 1: Stationary Condition 

6.3.1.1. Data Description  

First, the dataset acquired under stationary condition is described. A dataset from a 

160kW, 2-pole induction motor was used to analyze the performance of the proposed 

method. In the experiment, one phase of the stator current signal was acquired at 

3600 revolutions per minute (RPM) with no load. There were a total of three 

mechanical faults with multiple severity levels, respectively: eccentricity, unbalance, 

and a broken rotor bar. These faults and severity levels are illustrated in Figure 6-5. 

The severity was defined based on the degree of experimental settings that caused 

the severe conditions of the motor. A higher severity level means that the health state 

of a motor is more deteriorated. Eccentricity, which indicates an uneven air gap 

between the rotor and stator, was introduced at three different levels by moving the 

rotor 10%, 30%, and 50% of the original air-gap length from the center. The severity 

of eccentricity was denoted as 10%, 30%, and 50%. For example, 30% eccentricity 

is described in Figure 6-5 (a). The broken rotor bar, which was emulated by drilling 

rotor slots to create a half and a whole break, had the severity of 50% and 100%, 
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respectively. Unbalance was created by attaching weights to the rotor. According to 

ISO21940-11, the health state is balanced at a vibration of 2.5 mm/s, marked as G2.5; 

G40 is treated as a failure. The severity of unbalance was set to the ratio of the 

unbalance level, 16% and 40%; these values indicate G6.3 and G16, respectively. 

All specific conditions, such as the severity level and abbreviations used, are shown 

in Table 6-1. Figure 6-6 shows an example of raw stator current signals from each 

health state. The magnitudes at 60Hz and its harmonics were large in the frequency 

domain (see Figure 6-6 (b)) because the supply frequency and the rotating frequency 

were the same. Although the current signals of the ROTOR stood out, as the broken 

rotor bar itself highly affected the motor compared to other fault modes, the current 

signals of each health state (except those of the broken rotor bar) were not readily 

distinguishable in either the time- or frequency-domain. 

 

 

   

(a) (b) (c) 

Figure 6-5 The illustration of mechanical motor faults: (a) eccentricity, (b) broken 

rotor bar, and (c) unbalance 
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Table 6-1 Description of motor health states 

Class States Abbreviation Severity 

1 Normal NOR 0 

2 Eccentricity ECC 0.50/0.30/0.10 

3 Broken rotor bar ROTOR 1.00/0.50 

4 Unbalance UNB 0.40/0.16 
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(a) (b) 

Figure 6-6 Example of raw stator current signals from each health state: (a) time 

domain, (b) frequency domain 
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6.3.1.2. Result of FI-HCNN  

Since FI-HCNN solves a classification problem in the FD module and a regression 

problem in the SE modules, the accuracy of FI-HCNN is defined separately for each 

module. In the case of the FD module, the error is calculated as the summation of 

the incorrect samples divided by the number of total samples. Then, the accuracy is 

calculated by subtracting the error from one. The accuracy of each SE module is 

evaluated by calculating the root mean squared error (RMSE) between the prediction 

and actual fault severity. For example, 2% of RMSE means that the fault severity 

deviates by an average of 2% from the true severity. All of the methods examined in 

Section are evaluated with this metric. 

For preprocessing, all raw stator current signals were resampled at 120 points 

per revolution, and one sample was defined to include two revolutions and 

augmented with one revolution overlapped. The length of each sample was 240. 

Normalization and scaling were then conducted in sequence. The total number of 

data in the set was 3776, as each class has 472 data. The network was trained using 

75% of the data set and tested with the remaining 25% of the data set. 4-fold cross-

validation was conducted. The entire training and test procedure were run 10 times 

with randomly selected data sets to study repeatability by investigating a 95% 

confidence interval. The model parameters of FI-HCNN architecture, as shown in 

Figure 6-4, were described in Table 6-2. The specific information of the FI-HCNN 

architecture according to the pre-processed input data was summarized in  

Table 6-3. The other hyper-parameters, which are adaptive to learn the modules 

using the given data sets, are detailed in Table 6-4. The variables of the SE modules 

were determined to be smaller because the subsequent SE modules conduct elaborate 

training with the down-scaled data set.  
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Table 6-2 The model parameters for FI-HCNN architecture 

Layer Abbreviation Parameter 

Convolutional layer 

CONV1 
kernel size: 9, number of filters: 6, 
stride: 1, padding: 4 

CONV2, CONV3 
kernel size: 9, number of filters: 16, 
stride: 1, padding: 5 

CONV4, CONV5 
kernel size: 9, number of filters: 32, 

stride: 1, padding: 5 

Max pooling layer POOL1 ~ POOL5 None 

Fully connected 

layer 

FC1 Node: 500 

FC2 Node: 400 

 

Table 6-3 The specific information of FI-HCNN architecture 

FD module Output shape Number of parameters 

Input [1x240]  

CONV1 [6x240] 60 

CONV2 [16x120] 880 

CONV3 [16x60] 2,320 

FC1 [500x4] 242504 

Total  245,764 

SE module Output shape Number of parameters 

Input [32x30]  

CONV4 [32x15] 4,640 

CONV5 [32x7] 9,248 

FC2 [400x1] 90,401 

Total  104,289 
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Table 6-4 Hyperparameters for training FI-HCNN  

Module Learning rate Batch size Epoch Drop out 
L2-norm 

coefficient 

FD 0.001 500 3000 0.7 0.001 

SE 0.0001 50 3000 0.7 0.0001 

The test accuracy of the FD module was 99.70±0.11 % and the three faults were 

distinguishable, as shown in (a). The false negative error of ECC was understandable 

because – as compared to other fault modes, such as a broken rotor bar – the 

influence of an ECC-related fault in the current signal can be weak at first [103]. 

Thus, it is probable that an ECC might be determined to normal at the incipient stage 

because the effect of an incipient ECC on the current signal is small. The FD 

performance can be confirmed by investigating the latent feature space, as shown in 

Figure 6-8 The test data set was used to demonstrate the latent feature spaces of each 

pooling layer in the FD module. The latent space of POOL3 (Figure 6-8 (c)), which 

is �̂�, had more condensed clusters, compared to that of POOL1 and POOL2 (Figure 

6-8 (a) and Figure 6-8 (b), respectively). In Figure 6-8 (c), the NOR was formulated 

into one cluster, and the other health states appeared to be more distinguishable. The 

performance of each SE module was evaluated using RMSE; 0.61±0.05% for ECC, 

0.54±0.05% for ROTOR, and 0.65±0.04% for UNB, respectively (Table 6-5). The 

learning feasibility of the SE module was confirmed by analyzing the change of the 

estimation result depending on the loss. For example, the trend of the loss and its SE 

results are demonstrated in the case of UNB in Figure 6-9. While the bias and 

variance error of the FI-HCNN method showed improvement in the final output, the 

errors remained in the common hierarchical model in which the input was used 

repetitively. Moreover, the RMSE result of FI-HCNN in the early stage of SE was 
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smaller than that of the comparative HCNN, which reuses the raw data; this shows 

the effect of latent features in SE. These RMSE results are discussed more 

specifically in the following subsection by comparing them with the results derived 

from other methods. 
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Table 6-5 Summary of results for FD and SE using FI-HCNN, spectral feature-based, and PCA feature-based metho

ds at stationary condition 

Methods FD Accuracy [%] 

SE RMSE [%] 

ECC ROTOR UNB 

FI-HCNN (Proposed) 99.70±0.11 0.61±0.05 0.54±0.05 0.65±0.04 

Spectral features (Physics-based) 97.22±0.20 6.63±0.14 3.11±0.06 5.64±0.09 

PCA features (Data-driven) 97.39±0.22 5.39±0.07 2.97±0.06 5.43±0.11 
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(a) (b) (c) 

Figure 6-7 Comparison of a confusion matrix of FD modules: (a) FI-HCNN method (b) spectral features-based method, 

and (c) the principal components-based method 

 

 
(a) (b) (c) 

Figure 6-8 The latent feature spaces of each health state using t-SNE with respect to the test data: (a) after POOL1, (b) 

after POOL2, and (c) after POOL3 
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6.3.1.3. Comparison with Conventional Methods 

This section aims to investigate the performance of FI-HCNN, as compared to 

existing methods. Two studies were conducted to represent conventional MCSA 

methods; one was based on physics-based spectral features, the other was based on 

data-driven features computed with principal component analysis (PCA) of the 

magnitude of fast Fourier transform (FFT). The spectral features that were developed 

separately for each fault mode through theoretical analysis are summarized in Figure 

6-11; these results are based on [104], [105]. nb is the number of rotor bars, s is the 

slip, p is the number of pole pairs, 𝑓𝑠 is the supplied frequency, 𝑓𝑟 is the rotating 

frequency, n and λ are positive integers, and 𝜁 is the arbitrary odd number. For the 

data-driven features, the principal components (PCs) of the FFT magnitudes are 

 

Figure 6-9 The example of UNB SE result, depending on the loss: (a) RMSE early 

stage test result, (b) RMSE final stage test result, (c) loss 
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calculated. Instead of selecting the specific FFT magnitudes based on domain 

knowledge, PCA reduced the original FFT magnitude set (consisting of 120 data 

points), to a 22 PC set with 99% explained variance. After extracting the features 

using both physics and data-driven methods, the features were fed into SVM for FD 

and into support vector regression (SVR) for SE in common. The SVM and SVR 

methods both use quadratic polynomial kernels. The results of these two methods 

are summarized in Table 6-5. FI-HCNN shows about 2% better FD accuracy than 

other methods. As shown in Figure 6-7, both conventional methods had more false 

alarms that indicate normal to faulty. In addition, the RMSEs of SE using the 

conventional methods were about 10 times worse than those of FI-HCNN, as shown 

in Figure 6-10.  
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Table 6-6 The spectral features of induction motors based on MCSA 

Fault mode Spectral feature Details 

Eccentricity 
𝑓ecc,SE(DE) = (

𝜆𝑛𝑏 ± 𝑛𝑑

𝑝
(1 − 𝑠) ± 𝜁) 𝑓𝑠 

Static / Dynamic 

(𝑛𝑑=0 / 𝑛𝑑=1,2) 

𝑓mix = 𝑓𝑠 ± 𝑛𝑓𝑟  Static+ Dynamic 

Broken rotor bar 

𝑓rbb = (1 ± 2𝑠)𝑓𝑠  Low-frequency range 

𝑓rbb = (
𝑛

𝑝
(1 − 𝑠) ± 𝑠) 𝑓𝑠  High-frequency range 

Unbalance 𝑓𝑢𝑛𝑏 = 𝑓𝑠 ± 𝑓𝑟   
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Figure 6-10 Bar chart comparing SE results using FI-HCNN and the conventional 

methods at stationary conditions 

 

Specifically, the reason for the low performance of both conventional methods 

can be described in terms of the extracted features; these features do not demonstrate 

the apparent trends of fault deterioration. In fact, the spectral features were 

overlapped, depending on the parameters, even though they are defined separately. 

For example, the similarity between eccentricity and other mechanical faults, such 

as a bearing inner race fault and a broken rotor bar [8], [9] are revealed. Therefore, 

it is hard to declare that one spectral feature reflects only the effect of a particular 

fault mode. This is because the three fault modes (ECC, ROTOR, and UNB) share 

the relative characteristics that belong to mechanical failure and affect each other. 

Figure 6-11 shows the fault characteristic frequencies under a 3600RPM constant-

speed condition. Most frequencies were overlapped because the supply frequency 

was the same as the rotating frequency and there was no slip at the constant-speed 

condition. Figure 6-12 shows some spectral features labeled by the fault modes; the 

number next to each fault mode refers to the fault severity. It is difficult to readily 
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discriminate the fault modes and their severity because a significant amount of the 

feature values were overlapped. Also, the two main PCs of the FFT magnitudes are 

plotted in Figure 6-13. The PCs of faults (except UNB) are hard to distinguish from 

NOR, and the overlap of PCs between severities interrupts the distinction in each of 

the fault cases. The weak performance of the conventional features thus yields 

inadequate results. Compared to conventional features, FI-HCNN is capable of 

learning the enhanced features to adapt and estimate the fault severity, thereby 

arriving at improved results, as shown in Figure 6-14. 
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Figure 6-11 Fault characteristic frequency under 60Hz constant speed condition 

 

  

  
(a) (b) 

Figure 6-12 Comparison of spectral features according to the fault modes: (a) is 

the FFT magnitude at 60 Hz, indicating ECC and ROTOR faults, and (b) is the 

FFT magnitude at 300Hz, indicating all of the fault modes 
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Figure 6-13 The results of principal component analysis using the FFT magnitude 

of the stator current signals 
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(a) (b) (c) 

Figure 6-14 Comparison of SE results using FI-HCNN and the conventional methods at stationary condition: (a) ECC, 

(b) ROTOR, and (c) UNB 
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Then, the performance of the FI-HCNN was confirmed by comparing it with 

other HCNN architectures. Two concept models were constructed with HCNN with 

a repetitive hierarchical structure in which the input data is re-used in the child 

modules based on previous research [106]–[108]. The structures of all of the 

comparative HCNN models are described in Figure 6-15. Figure 6-15 (a) is the 

proposed FI-HCNN. Figure 6-15 (b) is one of the repetitive HCNN (Rep-HCNN1) 

models. where the child modules are modified from the parent module. The child 

modules of Rep-HCNN1 have the same structure as that of FI-HCNN. Figure 6-15 

(c) is the other repetitive HCNN (Rep-HCNN2), where the structure of the parent 

module and the child module are identical; as outlined in [107], [108]. The notations 

in Figure 6-15 are the same as those in Figure 6-3. The hyper-parameters (e.g., 

learning rate, batch size, drop-out rate, and L2-norm coefficient) were set equal to 

the values used in FI-HCNN; however, the epoch was adjusted to a value at which 

the model could be trained sufficiently. 

The SE results of all of the comparative methods using the above models are 

summarized in Table 6-7; FI-HCNN showed the best performance among all results. 

The RMSEs of all of the fault conditions using FI-HCNN were about half of those 

observed for the other HCNN methods, as shown in Figure 6-16. We can also 

confirm that FI-HCNN has a lower variance error compared to both Rep-HCNN1 

and 2, as shown in Figure 6-17. 
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(a) 

 

(b) 

 

(c) 

Figure 6-15 The structures of comparison in the HCNN models: (a) FI-HCNN, (b) 

Rep-HCNN1, and (c) Rep-HCNN2 
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Figure 6-16 Bar chart comparing SE results using FI-HCNN and the other 

hierarchical CNN methods in stationary condition 

Table 6-7 Summary results of SE using FI-HCNN and other HCNN methods at 

stationary condition 

Methods 
SE RMSE [%] 

ECC ROTOR UNB 

FI-HCNN 

(Proposed) 
0.61±0.05 0.54±0.05 0.65±0.04 

Rep-HCNN1 1.41±0.10 1.08±0.07 1.13±0.09 

Rep-HCNN2 1.17±0.08 0.71±0.05 1.05±0.05 
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(a) (b) (c) 

Figure 6-17 Comparison of SE results using FI-HCNN and the repetitive HCNN methods in stationary condition: (a) 

ECC, (b) ROTOR, and (c) UNB 
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To be specific, the superior results of FI-HCNN, as compared to Rep-HCNN1, 

support the idea that the propagation of the latent features is effective to enhance SE. 

The structures of Rep-HCNN1 and Rep-HCNN2, which receive the raw input data 

in common, have different filter designs; Rep-HCNN1 extracts lots of features at the 

beginning, while Rep-HCNN2 extracts an increasing number of features through 

stacked layers. A possible reason for the slight improvement in Rep-HCNN2, as 

compared to Rep-HCNN1, is that the gradual learning by the stacked layers is more 

effective for training the raw input data. Through these comparative studies, we 

can confirm that the pre-trained latent features that learn the characteristics o

f the fault mode result in positive effects in the SE modules. There is also 

abundant room for further progress, by examining additional data in various 

fault conditions. 

 

6.3.2 Case Study 2: Variable Operating Condition 

To investigate the effectiveness of the proposed FI-HCNN under variable operating 

conditions, the dataset which was described in Chapter 3 was used. Figure 6-18 

shows the architecture of FI-HCNN using ICRM as input. The model parameters of 

the FI-HCNN with ICRM input architecture were described in Table 6-8 and the 

specific information according to the ICRM input was summarized in Table 6-9. For 

comparative methods, two repetitive HCNN models were adopted, similarly to 

Figure 6-15, which were illustrated in Figure 6-19. Since the physics-based or data-

driven feature extraction is difficult without proper pre-processing of reducing the 

effect of variable operating conditions, the repetitive HCNN models were only 

compared in this case study. The accuracy of fault diagnosis was 98.93±0.82 % in 
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common, because the fault diagnosis module was the same for FI-HCNN and the 

two Rep-HCNN models. However, the RMSE of severity estimation showed a 

significant difference as described in Figure 6-20. The specific RMSE results of SE 

modules are summarized in Table 6-10. The RMSE of the proposed FI-HCNN was 

4 times (SE module of stator inter turn short) and 3 times (SE module of 

misalignment) better than that of the other two Rep-HCNN models, respectively. 

 

 

 

 

Figure 6-18 The structure of the FI-HCNN using ICRM as input  
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Table 6-8 Hyperparameters for the FI-HCNN using ICRM as input 

Layer Abbreviation Parameter 

Convolutional layer 

CONV1, 

CONV2, 

CONV3 

kernel size: 15, number of filters: 16, 

stride: 2, padding: 7 

CONV4, 

CONV5 

kernel size: 5, number of filters: 16, 

stride: 2, padding: 2 

Batch normalization layers BN1 Momentum=0.1 

Global average pooling GAP1, GAP2 None 

 

Table 6-9 The specific information of FI-HCNN using ICRM as input 

FD Module Output shape Number of parameters 

Input [1x50x50]   

CONV1 [16x25x25] 3,616 

BN1 [16x25x25] 32 

CONV2 [16x13x13] 57,616 

CONV3 [16x7x7] 57,616 

GAP1, FC1 [16x4] 51 

Total   118,931 

SE Module Output shape Number of parameters 

Input [16x7x7]   

CONV4 [16x4x4] 6,416 

CONV5 [16x2x2] 6,416 

GAP2, FC2 [16x1] 17 

Total   12,849 
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(a) 

 

(b) 

 

(c) 

Figure 6-19 The structures of comparison in the HCNN models using ICRM as 

input under variable operating conditions: (a) FI-HCNN, (b) Rep-HCNN1, and (c) 

Rep-HCNN2 
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Table 6-10 Summary results of SE using FI-HCNN and other HCNN methods in 

variable operating condition 

Methods 
SE RMSE [%] 

Stator inter-turn short Misalignment 

FI-HCNN (Proposed) 0.06±0.01 0.06±0.01 

Rep-HCNN1 0.25±0.02 0.17±0.01 

Rep-HCNN2 0.24±0.01 0.18±0.01 

 

 

Figure 6-20 Bar chart comparing SE results using FI-HCNN and the conventional 

methods in variable operating conditions 
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To sum up, the proposed FI-HCNN was confirmed to enhance the estimation of 

fault severity by utilizing the latent features generated in the fault diagnosis module 

into the corresponding severity estimation module. Also, the proposed FI-HCNN 

method was validated under both stationary and variable operating conditions. In 

addition, multi-task learning that utilizes shared features to solve various tasks has 

been aroused recently, however, the setting of hyper-parameters for learning each 

task is a critical issue[109]–[112]. FI-HCNN has the merit of avoiding this parameter 

setting issue in that it can learn the FD and SE modules step by step in hierarchical 

order.  

 

6.4 Summary and Discussion 

In this study, a new method – FI-HCNN – was proposed to identify the faults of 

induction motors and to calculate the fault severity. The structure of FI-HCNN was 

hierarchically composed to lead to an FD module that can learn the types of faults 

and an SE module that is able to estimate their severity. Fault severity was more 

accurately estimated in the proposed method, as compared to conventional methods, 

because the latent features, which contain the representations of the fault modes, are 

propagated from the FD module to the SE module to support the learning of severity. 

First, the performance of HCNN was confirmed by comparison with conventional 

MCSA methods. Specifically, spectral features and PCs of FFT magnitude from 

stator current signals were used with SVM for FD and with SVR for SE. In addition, 

two conventional HCNN models whose structures are similar to that of FI-HCNN 

were examined to confirm the superiority of the feature inherited structure of the 
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proposed method. Through the experimental studies, FI-HCNN was proven to 

provide enhanced features that are more suitable for accurate estimation of fault 

severity, without the need for significant domain knowledge. FI-HCNN has the 

potential to learn more robust features through extended training that is available 

from the pretrained weights when additional fault mode data is included. Then, the 

latent features that are generated from the more sophisticated FD module can be 

applied to improve the SE performance. FI-HCNN was confirmed to be applied with 

stator current signals under both stationary and various operating conditions; further, 

it showed better SE performance compared to other HCNN models. In future work, 

the training step can be enhanced by improving the loss function of FI-HCNN. 

Moreover, further study of FI-HCNN can be conducted in the presence of unknown 

faults. 

 

 

Sections of this chapter have been published or submitted as the following journal 

articles:  

1) C. H. Park, J. Lee, H. Kim, G. Ahn, M. Youn, and B. D. Youn, " Feature 

Inherited Hierarchical Convolutional Neural Network (FI-HCNN) for Motor 

Fault Severity Estimation Using Stator Current Signal," International Journal 

of Precision Engineering and Manufacturing-Green Technology, vol. 8, no. 4, 

pp. 1253-1266, 2021 
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Chapter 7 Conclusion 

 

Conclusion 

 

7.1 Contributions and Significance 

In this dissertation, I proposed fault diagnosis methods for industrial motors under 

variable operating conditions using stator current signals. This research is composed 

of three parts: 1) Drive-tolerant current residual variance (DTCRV) which reduces 

the effect of operating conditions with minimal parameter settings for fault detection, 

2) Instantaneous current residual map (ICRM) for physics-informed health image 

feature to identify the fault modes, 3) Feature-inherited hierarchical convolutional 

neural network (FI-HCNN) for deep learning-based fault severity estimation. The 

contribution and significance of the proposed research can be highlighted as follows. 

First, the proposed method, called a drive-tolerant current residual variance 

(DTCRV), could detect a motor fault by reducing the effects of operating conditions 

embedded in stator current signals with minimal parameter settings. In the proposed 

method, the drive-related components are subtracted from the envelope of the stator 

current signal; thereby, the fault-induced oscillations are highlighted. Then, the 

variance of the current residual is determined as a representative. Although the 
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conventional methods could detect a fault by investigating the particular parts of the 

stator current, the motor specific or diagnostic knowledge for determining the 

meaningful part is essential. However, the proposed DTCRV could be readily 

calculated with minimal parameter settings. 

Second, the physics-informed health image feature, namely an instantaneous 

current residual map (ICRM), could identify the fault modes. Although the phase 

and amplitude modulations of stator current signals were revealed to have a physical 

relationship with the fault modes, there are few attempts to reflect the findings on 

the feature. Therefore, the current residuals which contain the fault-induced 

components of instantaneous amplitude and phase are calculated and construct the 

proposed ICRM by spread into a two-dimensional matrix. A type of fault can be 

determined by investigating the shape of spreading of the scaled current residual 

pairs in ICRM. A convolutional neural network (CNN) can be applied to learn the 

proposed ICRM for fault diagnosis, the investigation of the trained CNN model is 

also available with several visualization techniques including t-sne and CAM 

methods. 

Third, the deep learning based fault severity estimation methods, called as a 

feature-inherited hierarchical CNN (FI-HCNN), was proposed. Through the special 

inherited structure between the hierarchy in FI-HCNN, the latent features which 

exploit the fault-related information in the fault diagnosis task could be re-utilized 

in the severity estimation tasks. Since the level-specific abstraction is supported by 

the latent features, FI-HCNN could improve the accuracy of the fault severity 

estimation. 



121 

 

 

In this dissertation, I proposed three different methods for monitoring the states 

of industrial motors under variable operating conditions. The DTCRV could detect 

a fault with minimal parameter settings. The ICRM could visualize the degree of 

deformation in instantaneous amplitude and phase that the effects of variable 

operating conditions are suppressed; thereby, the intuitive inspection of ICRM can 

infer the state of a motor. Moreover, the advanced fault diagnosis is available when 

a CNN model learns the shape of distribution in ICRM. Finally, the FI-HCNN could 

estimate the fault severity by utilizing the latent features in the upper fault diagnosis 

module. To sum up, the overall framework which cover from fault detection to 

severity estimation was developed for industrial motors under variable operating 

conditions using only stator current signals.  

 

7.2 Suggestions for Future Research 

This dissertation proposed three fault diagnosis methods for industrial motors 

under variable operating conditions. However, there are several remaining points 

which can be improved in future research.  

⚫ The proposed methods were validated with confined speed profiles and load 

torque levels. Although most of speed profiles in the industrial field consist 

of uniformly acceleration motion that controlled by a servo driver, we cannot 

certain that the highly non-linear speed profiles never occur in real-field. Also, 

the load torque can be time-varying in real-world situations. Therefore, the 

proposed methods are necessary to be improved to handle highly non-

stationary conditions. 
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⚫ The features which were proposed in the first and second research have a 

basis on the modulation behaviors of stator currents. However, the proposed 

methods are difficult to catch the genuine fault-induced modulations when 

the raw stator current signals are contaminated by the environmental noise in 

real-field. Therefore, the effective noise cancellation techniques for standing 

out the fault-induced modulations should be developed.  

⚫ In the third research, the proposed FI-HCNN method was validated with test-

bed data sets of which all fault severity were manually determined. The 

severity was calculated in accordance with the official regulation if it exists; 

otherwise, the severity was determined proportional to the fault injection 

level for experiment. Since the real fault severity has a gap with the 

experimental value, the proposed method need to be validated under more 

various fault severity conditions.  

⚫ The proposed methods were mainly derived by the fault-related 

characteristics of stator current signals. In fact, the analysis of stator currents 

in the case of mechanical motor fault can be similarly extended to that in the 

mechanical faults of a rotating system. Therefore, the proposed methods in 

this dissertation could be applied to other fault modes including bearings and 

the fault of load components such as a gearbox, wheel, and belt.  

⚫ The proposed methods were mainly validated using the stator current signals 

acquired from the surface-mounted permanent magnet synchronous motor 

controlled by a servo drive. In this regard, the stator current signals can show 

different behaviors depending on the specification of servo drive, such as 
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types of filters, control logic, and the setting value of parameters. Therefore, 

the proposed methods should be investigated its robustness with a variety of 

stator current signals acquired from different servo drives; and should be 

enhanced to take the variations into account if necessary. 

⚫ The proposed methods were mainly validated with the stator current signals 

acquired from a surface permanent mounted synchronous motor test-bed. 

However, there are numerous types of motors and operating conditions in 

practical applications. Moreover, the type of faults could be different. In fact, 

it is a significant challenge to make a method to cover lots of general 

environments. Recently, domain adaptation techniques in transfer learning 

have been arisen for applying a deep learning model to other new datasets. 

Therefore, the proposed methods that utilize a deep learning model could be 

improved by combining the methods with domain adaptation techniques. 
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국문 초록 

 

가변운행조건 산업용 모터의  

고장 진단을 위한 상전류 

물리지식착안 딥러닝 연구  
 

서울대학교 대학원 

기계항공공학부 

박 찬 희 

 

모터는 산업용 로봇, 전기자동차, 펌프, 공기순환장치 등 산업 전반에 

널리 사용된다. 사용 범위가 방대한 만큼 모터는 높은 신뢰도를 갖도록 

생산되지만, 현장의 가혹한 환경과 사용 중 예기치 못한 요인들로부터 

고장이 발생하면 짧은 작동 중지 시간 대비 막대한 경제적·사회적 

손실을 유발한다. 따라서 모터의 고장 진단을 위한 연구들이 수행되어 

왔고, 취득이 용이한 상전류 신호 분석을 바탕으로 한 연구가 

보편적이다. 최근에는 모터의 운행 조건이 복잡해지면서, 다양한 운행 

환경에서도 적용 가능한 고장 진단 방법 개발이 필수적이다. 하지만, 

기존의 연구들은 1) 상당한 양의 파라미터 설정, 2) 고장 분류의 

어려움, 3) 불균일한 심각도 추정이라는 난제가 있다. 본 논문에서는 

위의 난제들을 극복하기 위한 세 가지 연구를 제안한다.  

첫 번째 연구에서는 상전류신호에서 다양한 운행 속도와 부하의 

영향을 줄임으로써 고장 민감도를 향상시킨 고장 감지 인자를 제안한다. 

이때, 모터나 고장 관련 파라미터 및 진단학적 파라미터 설정을 
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최소화하였다. 또한, 전 과정이 시간도메인에서 계산되기 때문에 기존 

기술 대비 빠른 속도로 낮은 신호취득 수준에서도 이상 감지가 가능함을 

확인하였다. 두 번째 연구에서는 상전류 신호의 순시 진폭과 

위상으로부터 고장연관 성분을 추출하여 2차원 행렬에 분포한 건전성 

이미지를 제안한다. 가변 운행 환경 상전류신호의 순시 진폭과 

위상에서는 각각 운행연관 성분과 고장연관 성분이 발현된다. 제안 

방법은 순시진폭과 위상의 물리적 성질을 바탕으로 운행 연관 성분을 

억제한 잔여 포락선과 잔여 위상을 켤레 형태로 추출한 다음, 2차원 

행렬에 조정 배치함으로써 이미지형태의 건전성 인자를 도출한다. 제안 

방법은 상전류 순시 진폭과 위상에서 고장 관련 정보를 함께 고려한 

이미지 형태의 건전성 인자를 개발했다는 점에서 선구적 기여와 

독창성을 가진다. 제안한 건전성 이미지는 정성적 분석을 통한 고장진단 

뿐만 아니라, 딥러닝 모델의 입력으로 학습시켜 가변운행환경에서 

정량적인 고장 분류 방법을 제시하는 데 활용된다. 세 번째 연구에서는 

상전류 신호를 사용한 딥러닝기반 고장 심각도 추정 모델을 제안한다. 

제안 방법은 위계형 딥러닝 모델에서 상위모듈에 고장 진단, 하위모듈에 

심각도 추정 역할을 부여한 다음, 상위 모듈의 잠재특징 활용도를 

하위모듈로 전이시켜 학습을 이어감으로써 잠재특징의 활용도를 높였다. 

이는 심각도 추정 모듈이 특정 고장의 세부 특성을 학습하는데 

집중하도록 유도한 것이다. 이를 통해 제안 방법의 심각도 추정 성능은 

기존 기술 및 유사 위계형 딥러닝 모델 대비 향상될 수 있었다.  

세 가지 연구를 종합하면 다양한 운행조건의 상전류 신호를 

활용한 모터의 고장 진단 프레임워크 개발이라고 할 수 있으며, 각 

연구들은 긴밀히 연결되어 있다. 첫 번째, 두 번째 연구의 제안방법은 

고장 발현 시 변조되는 상전류의 물리적 특성에 근거하였는데, 첫번째 

연구 산출물인 고장감지 인자가 주목하는 상전류의 진폭 변조는 두 번째 

연구 산출물인 건전성 이미지의 잔여 포락선과 연결된다. 그리고, 

두번째 연구 산출물인 건전성 이미지를 세번째 딥러닝 기반 심각도 추정 

모델의 입력으로 활용하여 가변운행환경의 상전류신호에 대해서 심각도 

추정을 수행할 수 있다. 또한, 본 논문에서 제안한 고장감지, 고장진단, 

심각도 추정으로 연결되는 고장 진단 프레임워크는 상전류의 물리적 

특성을 근거로 한 특질 인자와 딥러닝기반 고장진단 기술이 융합적으로 

활용되기 때문에 물리지식에 착안한 딥러닝 연구라고 할 수 있다.  
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