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Abstract 

 

Investigation on Statistical Model 

Calibration and Updating of  

Physics and Data-driven Modeling for 

Hybrid Digital Twin 
 

Wongon Kim 

Department of Mechanical and Aerospace Engineering 

The Graduate School 

Seoul National University 

 

Digital Twin technology, a virtual representation of the physical entity, has been 

explored toward providing a solution that could support engineering decisions, such as 

design, manufacturing, and system health management. Digital twin approaches can be 

divided into three categories: 1) data-driven, 2) physics-based, and 3) hybrid 

approaches. The hybrid digital twin is recognized as a promising solution for reliable 

engineering decisions based on the observed data because it utilizes both the data-

driven and physics-based models to overcome the disadvantages of these two 

approaches. However, the applicability of the digital twin approach has been limited 

by a lack of prior information. The prior information includes the statistics of model 

input parameters, required information for (data-driven, physics-based, and hybrid) 
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modeling, and prior knowledge about system failure. 

Now, a question of fundamental importance arises how to help decision-making 

using a digital twin under a given insufficient prior information. Statistical model 

calibration and updating can be used to validate the digital twin analysis under 

insufficient prior information. In order to build a hybrid digital twin under insufficient 

prior information, this doctoral dissertation aims the investigation on three co-related 

research areas in model calibration and updating: 

Research Thrust 1 – Data-driven dynamic model updating for anomaly detection 

with an insufficient prior information 

Research Thrust 2 – A new calibration metric formulation considering statistical 

correlation 

Research Thrust 3 – Hybrid model calibration and updating considering system 

failure 

A sufficient prior knowledge such as observed data in various conditions, 

geometry, material properties, and operating conditions for data-driven / physics-based 

modeling are required to build a valid digital twin model. However, the prior 

information for modeling is hard to obtain for complex engineering system. Research 

Thrust 1 proposes Data-driven dynamic model updating for anomaly detection with 

insufficient prior knowledge. The time-frequency domain features are extracted from 

the observed signal using signal pre-processing. The state-space model is driven by a 

numerical algorithm for subspace state-space system identification (N4SID) to predict 

the extracted features under different operating conditions. In the model, the operating 



iii 

 

condition is defined as a parameterized input signal of a system model. Next, the input 

signal parameters are updated to minimize the prediction error that quantify the 

discrepancy between the target observed signal and reference model prediction. 

Optimization-based statistical model calibration (OBSMC) can be applied to 

estimate unknown input parameters of the digital twin. In OBSMC, the unknown 

statistical parameters of input variables associated with a digital twin model are inferred 

by maximizing the statistical similarity between predicted and observed output 

responses. A calibration metric is defined as the objective function to be maximized 

that quantifies statistical similarity. Research Thrust 2 proposes a new calibration 

metric: Marginal Probability and Correlation Residual (MPCR), to improve the 

accuracy and efficiency of model calibration considering statistical correlation. The 

foundational idea of the MPCR is to decompose a multivariate joint probability 

distribution into multiple marginal probability distributions while considering the 

statistical correlation between output responses. 

In order to diagnose and predict the system failure of a complex engineering 

system without prior knowledge about system failure using the digital twin, 

uncertainties in manufacturing and test conditions must be taken into account. Research 

Thrust 3 proposed a hybrid digital twin approach for estimating fatigue crack initiation 

and growth considering those uncertainties. The proposed approach for estimating 

fatigue crack initiation and growth is based on two techniques; (i) statistical model 

calibration and (ii) probabilistic element updating. In statistical model calibration, 

statistical parameters of input variables that indicate uncertainties in manufacturing and 

test conditions are estimated based on the observed response related to the crack 

initiation condition. Further, probabilistic analysis using estimated statistical 
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parameters can predict possible critical elements that indicate crack initiation and 

growth. In probabilistic element updating procedures, the possible crack initiation and 

growth element is updated based on the Bayesian criteria using observed responses 

related to the crack growth condition. 
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Model Validation & Verification 

Optimization-based Statistical Model Calibration 

Parameter Estimation 
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Chapter 1  Introduction 

 

Introduction 

 

1.1 Motivation 

A digital twin connects physical entities in the real world and a computational model 

in the virtual world using the observed response from a real system to help make an 

engineering decision for design, maintenance, and control. However, the 

applicability of the digital twin approach has been limited by a lack of data and 

computational power until the last few years. Today, sensor and data acquisition and 

data processing systems are getting more reliable and affordable. Thus, the digital 

twin approach has gained more attention for design, control, and maintenance of 

physical entities. 

In digital twin approaches, the simulation model must be improved using the 

observed response. Simulation models used in digital twin approaches can be 

categorized into 1) data-driven and 2) physics-based models. Data-driven models, 

such as classical machine learning [1]–[3] and deep-learning using neural networks 

[4], [5] have been proposed to diagnose and design of the system using an 

experimentally observed response. Data-driven models rest on past experimental 
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data to predict the performance or condition of the engineered system. However, the 

methods require enough data to predict the performance or condition of the 

engineered system of interest. Further, the results of data-driven models are less 

interpretable than those of physics-based models. Physics-based models, such as 

finite element-based models [6]–[10] and dynamic system models [11], have been 

used to simulate the physical process of system behavior. However, due to the 

uncertainties in modeling and simulation, it is challenging to predict system behavior 

with high accuracy using physics-based models. In addition, the expensive 

computational cost is a constraint of physics-based models. The hybrid digital twin 

approach uses both data-driven and physics-based models simultaneously to 

capitalize on the advantages of each method while minimizing the disadvantages of 

each method. 

It requires sufficient prior information to build valid digital twin model. The 

prior information includes 1) required information for (data-driven, physics-based, 

and, hybrid) modeling, 2) the statistics of model input variables, and 3) prior 

knowledge about system failure.  

Even though the IoT sensor and data-acquisition system getting affordable, 

most of the data from the system are unlabeled and not informative for training the 

data-driven model. And the physics-based model with a lack of information such as 

geometry, operating condition, and test condition is in-valid as a digital twin. So, the 

digital twin method with insufficient prior information for modeling is required. And 

the input variables in digital twin models have a certain amount of physical 

uncertainty, such as inherent variability in material properties and manufacturing 

tolerances. A digital twin model that uses a deterministic form fails to analyze an 
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engineered system accurately. The effects of physical uncertainty thus have to be 

taken into account to improve the predictive capability of digital twins. To conduct 

accurate statistical analysis considering the uncertainty, the statistical information of 

physical uncertainty should be appropriately estimated. The various physical status 

of the system should be identified and represented by the digital twin. However, the 

prior knowledge of system failure, such as the failure location and severity, is quite 

uncertain and unidentifiable. So, the statistical and probabilistic prognostics and 

diagnostics of system failure using the digital twin method are required. 

To deal with those issues, many research efforts have been made to develop 

digital twin approach with insufficient prior information. However, there is still a 

great need for a hybrid digital twin approach to elaborate on analyzing the 

engineering system. First, whereas a significant number of studies have focused on 

the improvements of data-driven modeling using imbalanced data set such as auto-

encoder [12] and physics-guided machine learning [13], [14], relatively little 

attention has been paid to investigating model updating. Model updating can 

improve the accuracy of a digital twin for target engineered system. And updated 

model and prediction results can be used to detect anomaly conditions. The data-

driven model with a large number of parameters is not efficient for model updating. 

So, the efficient model updating method with insufficient prior information needs to 

be researched. Second, many research focusing on the statistical model calibration 

to estimate the statistical parameter of model input variables [15]–[23]. 

Optimization-based statistical model calibration is formulated as an unconstrained 

optimization problem that infers the unknown statistical parameters of input 

variables associated with a digital twin model by maximizing the statistical similarity 
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between predicted and observed output responses [20], [23]–[25]. A calibration 

metric is defined as the objective function to be maximized that quantifies statistical 

similarity. A critical challenge in formulating a calibration metric is appropriate 

considering the statistical correlation in output responses. Third, the digital twin 

needs to be updated under system failure without prior information about system 

failure. And updating accuracy under system failure is sensitive to uncertainties in 

manufacturing and test conditions. So, the uncertainties have to be taken into account 

to update the digital twin under system failure. However, probabilistic analysis 

considering the uncertainty needs expensive computational cost. Therefore, the 

above three technical challenges should be properly addressed to realize digital twin 

in reality successfully. 

 

1.2 Research Scope and Overview 

This doctoral dissertation aims at advancing three essential and co-related research 

areas in statistical model calibration & updating for hybrid digital twin: (1) Research 

Thrust 1 – Data-driven Dynamic Model Updating for Anomaly Detection ; (2) 

Research Thrust 2 – A New Calibration Metric that Considers Statistical Correlation; 

and (3) Research Thrust 3 – Hybrid Model Calibration and Updating For Estimating 

System Failure. The research scope in this doctoral dissertation is to develop 

technical advances in the following three research thrusts: 
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Research Thrust 1: Data-driven Dynamic Model Updating for Anomaly 

Detection 

Research Thrust 1 proposes Data-driven dynamic model updating for anomaly 

detection with insufficient prior knowledge. The time-frequency domain features are 

extracted from the observed response using signal pre-processing. The state-space 

dynamic model is driven by the system identification method, a numerical algorithm 

for subspace state-space system identification (N4SID). In the model, the operating 

condition is defined as a parameterized input excitation force of the dynamic model. 

Next, the amplitude and phase modulation parameter of excitation force are updated 

to minimize the prediction error that can quantify the discrepancy between the 

reference model prediction and target observed response in different operating 

condition and system state. An optimization-based parameter tuning was originally 

applied to estimate the operating condition of the engineering system. Health indices, 

such as time delay of operation, prediction error by anomaly system operation, can 

be derived from the digital twin analysis using the proposed method. 

 

Research Thrust 2:  A New Calibration Metric that Considers Statistical 

Correlation 

In optimization-based statistical model calibration, a calibration metric, which is 

defined as an objective function to be minimized (or to be maximized), is used to 

quantify the statistical dissimilarity (or similarity) between the predicted and 

observed output responses. If the statistical correlation between multivariate output 
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responses is not properly considered, some calibration parameters could converge to 

physically unreasonable values, even if the optimal set of the calibration parameters 

is mathematically valid. Research Thrust 2 proposes a new calibration metric 

considering statistical correlation: Marginal Probability and Correlation Residual 

(MPCR). The foundational idea of the MPCR is to decompose a multivariate joint 

probability distribution into multiple marginal probability distributions, while 

considering the statistical correlation between output responses. The MPCR has 

favorable properties, such as normalization, boundedness, and marginalization. Two 

mathematical and two engineering examples are presented to demonstrate the 

effectiveness and potential benefits of the MPCR. 

 

Research Thrust 3:  Hybrid Model Calibration and Updating considering 

System Failure 

Maintaining high predictive capability of a digital twin model under system failure 

is of great concern to the engineers who make design decisions at the early stages of 

product development. The predictive capability of the digital twin approach is 

improved by considering uncertainties in manufacturing and test conditions. 

Research Thrust 3 proposed hybrid digital twin approach for estimating system 

failure considering the uncertainties. The proposed approach for estimating system 

failure is based on two techniques; (i) statistical model calibration and (ii) 

probabilistic element updating. In statistical model calibration, statistical parameters 

of input variables are estimated based on the observed response related to the failure 

initiation condition. Further, probabilistic analysis using estimated statistical 
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parameters can predict possible critical elements that indicate failure location and 

severity. In probabilistic element updating procedures, the possible failure location 

and growth element is updated based on the observed response related to the failure 

severity condition. 

As shown in Figure 1-1, valid hybrid digital twin can be formulated using 

proposed methods in this doctoral dissertation. The data-driven and physics-based 

model can be calibrated and updated with insufficient prior knowledge using 

proposed methods. The egineering decisions such as design, diagnostics, prognostics 

and control of the system can be made with valid hybrid digital twin analysis. 

 

Figure 1-1 Proposed hybrid digital twin framework 

1.3 Dissertation Layout 

This doctoral dissertation is organized as follows. Chapter 2 reviews the current state 

of knowledge regarding digital twin and statistical model calibration. Chapter 3 

presents an data-driven model updating for anomaly detection with an insufficient 
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prior information for modeling (Research Thrust 1). Chapter 4 propose a new 

calibration metric considering statistical correlation: Marginal Probability and 

Correlation Residuals (MPCR) (Research Thrust 2). Chapter 5 addresses hybrid 

digital twin approach to estimate the system failure and severity. Finally, Chapter 6 

summarizes the doctoral dissertation with its contributions and suggests future 

research directions. 
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Chapter 2  Literature Review 

 

Literature Review 

 

To provide readers with sufficient background information, this chapter is designated 

to present the literature reviews of the knowledge within the scope of this doctoral 

dissertation: (1) Digital Twin Formulation: 1) Data-driven, 2) Physics-based and 3) 

Hybrid Digital Twin; (2) Digital Twin Calibration & Updating; Literatures on each 

of these aspects are discussed in subsection and challenges are address. Since this 

doctoral dissertation focuses on how to calibrate and update the hybrid digital twin 

under in-sufficient prior knowledge, perspectives of data-driven and physics-based 

digital twin model are not reviewed here in detail. 

 

2.1 Digital Twin Formulation 

A digital twin is numerical model in virtual world to mimic and simulate the physical 

system in real world as shown in Figure 2-1. A conventional simulation model with 

non-real time modeling data gives a weak engineering intuition to an engineer. On 

the other hand, the digital twin which mimics operating systems using real time gives 

a strong engineering decision support in real time. Depending on the given prior 

information, digital twin can be formulated in various type :1) Data-driven, 2) 
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Physics-based and 3) Hybrid digital twin. The characteristics and example of each 

method will be briefly explained in following subsection.  

2.1.1 Data-driven Digital Twin 

The data-driven digital twin is statistically trained and validated using machine 

learning & deep-learning method. As shown in Figure 2-2, the data-driven model 

have a pros and cons. Further, the data-driven digital twin is widely applicable for 

various fields. Meraghni et al. (2021) proposed a deep-learning based digital twin 

framework for proton exchange membrane fuel cell remaining useful life prediction. 

The stacked de-noising auto encoders are proposed to capture the degradation 

behavior of fuel cell [26]. Wang et al. (2020) proposed a digital twin approach for 

visualized weld joint growth monitoring and penetration control. Convolutional 

neural network model estimate the welding quality and geometry using the 

 

Figure 2-1 Digital twin for engineering decision support 
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information available directly from sensors including weld pool images, arc images, 

welding current and arc voltage [27].  

 To train the data-driven model, sufficient data including the status and label 

of the target system is required. However, it is suffer from lack of the data and 

information in most engineering system. To overcome those situation, many research 

focusing on the transfer-learning and data-augmentation [4], [12], [28]–[31].  

Transfer learning is a set of methods that enhance learning target domain based 

upon previously acquired knowledge in source domain. Here, knowledge is 

transferred from source domain to another target domain in order to reduce the 

amount of data or time needed to train a machine learning algorithm. Xu et al. (2019) 

proposed a digital-twin for fault diagnosis using deep transfer learning [4]. The 

proposed method combines advantages of both deep learning and transfer learning. 

It trains the deep-learning model to extract high level knowledge in the source 

domain where there is a huge amount of data available, and then transfer it to the 

target domain which has different data distributions. Li et al. (2021) proposed the 

wind turbine fault diagnosis based on transfer learning and convolutional auto 

encoder with small-scale data [12]. The convolutional auto encoder network with 

 

Figure 2-2 Pros and Cons of data-driven digital twin approach. 

 



12 

 

parameter-based transfer learning is proposed. Parameter-based transfer learning 

employs a neural network to transfer knowledge between domains by sharing 

parameters and fine tuning.  

The data-driven model trained with small number of training data can suffer 

from over-fitting and invalid model prediction. To overcome the lack of the data, 

data-augmentation method applied to increase the training data. There are various 

augmentation method including data driven and physics based method. Data driven 

method includes traditional signal processing (e.g. additional Gaussian noise, signal 

 

(a) Convolution-neural network based transfer learning 

 

(b) Generative adversarial network based data-augmentation 

Figure 2-3 Examples of data-driven digital twin: (a) transfer learning, (b) data-

augmentation. 
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translation, amplitude shifting and time stretching) and deep learning based data-

augmentation (e.g. generative adversarial network) [28]–[30]. Generative 

adversarial networks (GANs) have been proved to be able to produce artificial data 

that are alike the real data, and have been successfully applied to various image 

generation tasks as a useful tool for data augmentation. Shao et al. (2019) developed 

auxiliary classifier GAN to learn from mechanical sensor signals and generate 

realistic one-dimensional raw data [29]. K. Yu et al. (2020) proposed a multi-stage 

semi-supervised learning (SSL) approach for fault diagnosis of rolling bearing using 

data augmentation and metric learning [30]. In the proposed SSL, small number of 

labeled data were randomly augmented using 7 traditional signal processing 

augmentation strategies. Then, semi-supervised learning using clustering were 

conducted to diagnose the bearing faults.  

However, the data-driven model with insufficient information still require 

enough data and prior information about data. And It is hard to explain the analysis 

results and ensure the prediction accuracy in unknown operating and exploration 

domains. 

2.1.2 Physics-based Digital Twin  

A physics-based digital twin – such as a finite element model or a system dynamic 

model – has been widely used for design and control. Figure 2-4 shows pros and 

cons of physics-based digital twin. Physics-based model analysis is less dependent 

on data and is physically interpretable. Guivarch et al. (2019) applied multibody 

simulation to digital twin modeling of a helicopter [32]. Jain et al. (2019) proposed 

a dynamic model of a distributed photovoltaic energy conversion unit (PVECU); the 

error residual was calculated to diagnose the PVECU [33]. However, a physical 
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digital twin model can be invalid due to improper physical assumptions. Further, 

physics-based model analysis is often numerically expensive for complex and large-

scale engineered systems. 

As the relevant physical phenomena taking place in an engineered system 

become more complex, a physics-based model needs to be more sophisticated. 

However, it is not easy to fully characterize the physics in the real system using 

physics-based model due to limited resources (e.g., time, budget, and computation 

costs). To overcome those situation, many research focusing on the model 

verification & validation (V&V) and model refinement (including non-linear 

analysis).  

V&V activities include model verification and model validation. According to 

the ASME and AIAA guides [34], [35], model verification is defined as the process 

of determining whether a model’s implementation accurately represents the 

developer’s conceptual description of the model. Model validation is defined as the 

process of determining the degree to which a model is an accurate representation of 

the real phenomenon from the perspective of the intended uses of the model. It is 

 

 

Figure 2-4 Pros and Cons of physics-based digital twin approach. 
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important that the model validation is including both a process of assessing the 

accuracy of a computational model and a process of improving the model based on 

the validation results.  

For the model calibration, deterministic methods were proposed in several 

studies [36], [37]. Although the deterministic methods effectively reduce the 

discrepancy between observed and predicted responses, deterministic adjustment of 

model parameters can significantly degrade the predictive capability of the digital 

twin in statistical sense [35], [38]. Recently, for this reason, statistical methods have 

received significant attention [39]–[41]. However, it is hard to conduct statistical 

model validation because of several existing issues, including uncertainty 

quantification, uncertainties in model variables and statistical model validation, etc. 

Statistical methods are superior to deterministic methods since they attempt to 

enhance the digital twin's predictive capability by thoroughly addressing 

uncertainties in a real system and digital twin. The sources of uncertainties in digital 

twin should be properly investigated in the statistical model validation. 

In most engineering problems, the sources of uncertainties can be divided into 

three sources: (1) physical, (2) modeling, and (3) statistical uncertainties [42]–[44]. 

The physical uncertainty comes from inherent uncertatinty in physical quantities, 

whereas the modeling uncertainty is from inadequate or erroneous models. The 

statistical uncertainty is attributed to the lack of prior information about uncertainties. 

In principle, the existence of these uncertainties in engineering systems can be either 

recognized, unrecognized or a combination of both. Numerous studies attempted to 

effectively incorporate various aspects of uncertainty in statistical model validation.  
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Figure 2-5 describes a framework of statistical model validation, which consists 

of the sequentially-executed three procedures: 1) model calibration, 2) validity check, 

and 3) model refinement. Statistical model calibration refers to an activity that infers 

the statistical parameters of unknown model input variables. Validity check is an 

activity to quantitatively determine the degree of the validity of a digital twin model 

by comparing the observed output response with predicted ones. Representative 

methods for validity check includes generalized u-pooling method considering 

correlation [45], [46] and Bayesian hypothesis test [47]. If validity check turns out 

to be invalid, model refinement should be performed by revisiting the physical 

behavior of a digital twin model [24], [25]. The uncertainties of output response 

propagated from the aleatory uncertainties are quantified in forward problem. And 

to reduce uncertainty in epistemic variable, the unknown statistical parameters are 

 

Figure 2-5 Framework of statistical model verification and validation 
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inferred using inverse problem which is statistical model calibration.  

2.1.3 Hybrid Digital Twin  

To overcome the disadvantages of data-driven and physics-based approaches, the 

hybrid digital twin simultaneously utilizes both the physics-based and the data-

driven model. Li et al. (2017) proposed a hybrid digital twin using an airplane wing 

finite element model and a Bayesian network approach, considering uncertainty 

sources such as material properties and manufacturing tolerance in the system [48]. 

Roohi et al. (2019) proposed state estimation approaches using state observers for 

assessment of instrumented wood-frame buildings [49]. Wang. B et al. (2021) 

suggested data-driven digital twin of proton exchange membrane fuel cells to 

overcome the computation cost of multi-physics-analysis as shown in Figure 2-6 (a) 

[50]. The previous hybrid digital twin approach uses the predicted data from a 

physics-based model as training data for a data-driven model to overcome a lack of 

data. However, an invalid physics-based model prediction that is based on unknown 

input variables and invalid assumptions can result in poor data-driven model 

performance.  

To overcome this problem in the hybrid digital twin model, statistical model 

updating can be a good strategy for improvement. Xia et al. (2021) proposed hybrid 

digital twin approach which is digital twin-assisted deep transfer learning as shown 

in Figure 2-6 (b) [51]. In this work, the de-noising auto-encoder is pre-trained using 

the data generated from physics-based model and update the model using transfer 

learning method. Yu et al. (2021) proposed hybrid digital twin model based on 

nonparametric Bayesian network and real-time model updating based on the 

Gaussian particle filter and dirichlet process mixture model [52].  
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However, the computation cost to update the large number of parameter in data-

driven model of hybrid digital twin is expensive for real-time updating and 

prediction. And the updated results such as parameter variation in network, 

prediction error are not physically interpretable.  

2.2 Digital Twin Calibration & Updating 

Compared with conventional simulation models, a distinct characteristic of a digital 

twin is its ability to update predicted performances simultaneously with a real system 

change. The system change can be reflected in digital twin by calibrating digital twin 

 

(a) 

 

(b)  

Figure 2-6 Examples of hybrid digital twin: (a) Multi-Physics-Resolved digital 

twin, (b) Intelligent fault diagnosis of machinery 
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input parameters and updating digital twin model structure. Statistical model 

calibration and updating is thus of great importance as a strategy to improve the 

predictive capability of a digital twin model [15], [17], [20]–[23], [53], [54]. 

Representative methods for statistical model calibration and updating include 

optimization-based statistical model calibration approaches [20], [23], [24] and 

parameter estimation using Kalman/ Particle based filter [55]. These methods were 

developed with different backgrounds and philosophies. The characteristics and 

example of each method will be briefly explained in following subsection. 

 

2.2.1 Optimization-based Statistical Model Calibration 

From the frequentist perspective, a PDF is an effective way to statistically 

characterize the inherent variability in input variables and output responses. The PDF 

can be parameterized by statistical parameters. For instance, a normal distribution is 

fully characterized by the mean and standard deviation. In practice, however, some 

statistical parameters are unknown due to a lack of data. Therefore, optimization-

based statistical model calibration inversely estimates the unknown statistical 

parameters, which are defined as calibration parameters, by maximizing the 

agreement (or minimizing the disagreement) between the two probability 

distributions of the predicted and observed output responses. 

Optimization-based statistical model calibration can be formulated as a design 

problem without constraint function as: 

Minimize
𝛉

 or Maximize
𝛉

 𝑓CM(𝐘̂pre(𝛉), 𝐘obs) (2.1) 
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where 𝛉 denotes a calibration parameter vector; and 𝑓CM(𝐘pre(𝛉), 𝐘obs) denotes 

a calibration metric, which is defined as an objective function to be maximized or 

minimized. The lower and upper bounds of the calibration parameters, denoted by 

𝛉L and 𝛉U, can be determined based on prior information. Calibration metrics can 

quantify statistical similarity or dissimilarity between the predicted and observed 

output responses. To find the optimal set of the calibration parameters, a sequential 

quadratic programming, genetic algorithms, or another advanced optimization solver 

can be used as a searching algorithm [23], [56]. Selecting a proper optimizer is 

important to improve the accuracy of optimization-based statistical model 

calibration. There might be several local minimums in a solution space because of 

the nonlinearity between the input variables and output responses. As such, a global 

optimization solver such as a genetic algorithm and multi-start gradient method is 

preferred. Figure 2-7 describes the procedure for optimization-based statistical 

model calibration, which is summarized as follows: 

• Step 1. Identify the unknown input variables that contribute significantly to 

the output response. The number of calibration parameters in an 

unconstrained optimization problem can be reduced through variable 

screening.  

• Step 2. Assume the probability distribution type of each model input variable 

identified in Step 1. The type of the probability distribution can be 

decided based on prior information such as an expert’s opinion. 

• Step 3. Initialize the calibration parameters 𝛉𝑖=1 and their lower and upper 
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bounds 𝛉L and 𝛉U. 

• Step 4. Perform uncertainty propagation (UP) analysis to probabilistically 

quantify the uncertainties in the output response that are propagated 

from the variability in the model input variables through a CAE model. 

Since a common challenge in UP analysis is a multidimensional 

integration to quantify the probabilistic nature of the output responses, 

many research efforts have been made to develop UP methods, such 

as 1) sampling methods, 2) expansion methods, 3) response surface 

approximate methods, and 4) approximate integration methods. 

Applying sampling methods directly would be not affordable due to 

its considerable computational cost. However, once an accurate 

surrogate model is available, the Monte Carlo simulation can be 

applied to the accurate surrogate model to perform the uncertainty 

propagation with affordable computational burden. Since UP analysis 

is required for every iteration in optimization-based statistical model 

calibration, an appropriate method should be selected with 

consideration of accuracy and efficiency. 

• Step 5. Calculate the calibration metric to quantify the statistical similarity (or 

dissimilarity) between the observed and predicted output responses. 
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• Step 6. Update the calibration parameters until the calibration metric is 

maximized or minimized. If the convergence criterion is satisfied, 

stop the iteration; otherwise set i=i+1 and repeat Steps 4 to 6. 

In optimization-based statistical model calibration, a calibration metric, which is 

defined as an objective function to be minimized (or to be maximized), is used to 

quantify the statistical dissimilarity (or similarity) between the predicted and 

 

Figure 2-7 Procedure for optimization-based statistical model calibration 
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observed output responses. This implies that the effectiveness of optimization-based 

statistical model calibration strongly depends on how the calibration metric is 

formulated. If a calibration metric is not well-defined, optimization-based statistical 

model calibration could fail to accurately infer the calibration parameters. There 

have been several calibration metrics proposed in the literature, including the 

marginal likelihood (ML) metric [53], the joint likelihood (JL) metric [17], the 

moment matching metric [57], and statistical distance based metrics [58]. Since 

optimization-based statistical model calibration inversely estimates the calibration 

parameters by maximizing the agreement (or minimizing the disagreement) between 

the two probability distributions of the predicted and observed output responses, the 

calibration metric should be carefully formulated to properly account for the 

information obtained from the output responses. It has been reported that the use of 

multiple output responses as additional information can improve identifiability in 

statistical model calibration, thereby better inferring the calibration parameters [59], 

[60]. It is worth pointing out that the statistical correlation between multivariate 

output responses is not to be overlooked in optimization-based statistical model 

calibration [46]. Based on the authors’ experiences, if the statistical correlation 

between multivariate output responses is not properly considered, some calibration 

parameters could converge to physically unreasonable values, even if the optimal set 

of the calibration parameters is mathematically valid. In other words, neglecting the 

statistical correlation might lead to arriving at a physically unreasonable solution in 

optimization-based statistical model calibration. For the ML metric, since 

multivariate output responses are assumed to be statistically independent of each 

other, the ML metric cannot consider the statistical correlation between them. The 

statistical distance-based metrics such as the Bhattacharyya distance and 
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Mahalanobis distance have the limitation similar to the likelihood metric, including 

un-boundedness and joint PDF modeling issues. Even though the moment matching 

and JL metrics are able to quantify the statistical correlation for the purpose of model 

calibration, those metrics have their own limitations that will be discussed in Section 

4. This drives research interest in developing a new calibration metric that is able to 

consider the statistical correlation between multivariate output responses. 

 

2.2.2 Parameter Estimation using Kalman/ Particle filter 

To update the digital twin model using the observed time varying (dynamic) signal 

with a physics-based model, parameter estimation is conducted using an Kalman-

based filter. The model parameter θ is modeled as a Gaussian Markov process as: 

𝛉𝑘+1 = 𝛉𝑘 + 𝜸𝑘 (2.2) 

where 𝜸𝑘  denotes parameter noise that follows a normal distribution with zero 

mean and covariance (𝐐𝑘). The system model output is modeled as 

𝐲𝑘+1 = 𝒉𝑘+1(𝛉𝑘, [𝒇]𝑘+1, 𝒖0, 𝒖̇0) + 𝒗𝑘+1 (2.3) 

where ℎ𝑘+1 is the k+1-th time step acceleration response function of the proposed 

dynamic model; [𝒇]𝑘+1 denotes the input excitation time history from time t1 to tk+1. 

The terms 𝒖0  and 𝒖̇0  are the initial nodal displacement and velocity vector, 

respectively. The initial condition is assumed as at rest (that is, 𝒖0 = 𝒖̇0 = 0). 

Further, 𝒗𝑘+1denotes measurement noise, which follows a normal distribution with 

zero mean and covariance (𝐑𝑘+1 ). The initial model parameter and covariance 

matrix is assumed as 
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𝛉̂+
0 = 𝐸[𝛉0]  (2.4) 

𝑷𝜽,𝟎
+ = 𝐄[(𝛉0 − 𝛉̂0)(𝛉0 − 𝛉̂0)] (2.5) 

The prior parameter and covariance matrix is estimated as 

𝛉̂−
𝑘+1 = 𝛉̂+

𝑘 (2.6) 

𝑷𝜽,𝒌+𝟏
− = 𝑷𝜽,𝒌+𝟏

+ + 𝐐𝒌 (2.7) 

The response sensitivity with respect to the parameter is calculated as 

𝐂𝑘+1 =
𝜕𝒉𝑘+1(𝛉𝑘, [𝒇]𝑘+1)

𝜕𝛉𝑻
 (2.8) 

where the response sensitivity can be calculated using finite difference methods. The 

Kalman gain matrix is calculated as 

𝐊𝑘+1 = 𝑷𝛉𝒚,𝒌+𝟏
− (𝑷𝒚,𝒌+𝟏

− )
−1

 

where 𝑷𝛉𝒚,𝒌+𝟏
− = 𝑷𝜽,𝒌+𝟏

− 𝐂𝑘+1
𝑇 , 𝑷𝒚,𝒌+𝟏

− = 𝐂𝑘+1𝑷𝜽,𝒌+𝟏
− 𝐂𝑘+1

𝑇 + 𝐑𝑘+1 

(2.9) 

where 𝑷𝛉𝒚,𝒌+𝟏
−  denotes the estimated parameter response cross-covariance matrix; 

𝑷𝒚,𝒌+𝟏
−  denotes the estimated response covariance matrix. The posterior parameter 

is estimated as 

𝛉𝒌+𝟏
+ = 𝛉𝒌+𝟏

− + 𝐊𝒌+𝟏(𝒚𝒌+𝟏 − 𝒚̂𝒌+𝟏) (2.10) 

where 𝒚𝒌+𝟏 and 𝒚̂𝒌+𝟏 denote the observed and predicted output response at tk+1, 

respectively. The posterior covariance matrix is estimated as 

𝑷𝜽,𝒌+𝟏
+ = (𝑰 − 𝐊𝒌+𝟏𝐂𝒌+𝟏)𝑷𝜽,𝒌+𝟏

−  (2.11) 
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The Particle-filter is sampling based method using Monte-Carlo simulation. The sets 

of parameter is sampled based on given parameter noise and the variation of output 

response (𝒚̂𝒌+𝟏) is estimated with sample points. The most probable and possible 

parameter (𝛉𝒌+𝟏
+ ) is resampled based on the weight calculation using observed 

response (𝒚̂𝒌+𝟏). And the covariance of matrix of parameter is updated.  

The parameter estimation using Kalman/ Particle based is efficient and straight 

forward. There are several study to enhance the Kalman filter approach for digital 

twin updating and calibration. Branlard et al. (2020) proposed the Augmented 

Kalman filter with a reduced mechanical model to estimate tower loads on a land-

based wind turbine [55]. The approach combines a mechanical model and a set of 

measurements to estimate responses that are not available in the measurements, such 

as wind speed, thrust, tower position, and tower loads.  

The input-excitation ( 𝒇 ) can be estimated using the system matrixes and 

Kalman based filter approaches. Azam et al. (2015) proposed a dual Kalman filter 

approach for input and state estimation using output-only measurements [61]. 

Shrivastava et al. (2019) applied the joint-input state estimation method for 

estimation of unbalance parameters of rotor-bearing systems [62]. 

However, The parameter estimation using Kalman/ Particle based filter 

approach require proper dynamics model and estimation accuracy is affected by the 

covariance matrix of the measurement and parameter noise (Q, R). Also the input 

excitation of the system is hard to measure for most engineering case study. So, It is 

hard to apply the method for digital twin updating with an insufficient prior 

information. This drives research interest in developing a new data-driven dynamic 
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model updating that is able to apply without prior information such as dynamic 

model, input excitation and statistical information of noise. 

2.2.3 Summary and Discussion 

Whereas significant efforts have been made to develop digital twin with enough data 

and prior information about system, relatively little attention has been paid to 

investigating hybrid digital twin approach with an insufficient prior information. In 

the small number of existing works based on data-driven and hybrid approaches, it 

is assumed that lack of data or imbalanced data sets. 

However, it should be noted that the characteristics of the system may change 

corresponding system failure or operating condition, thereby resulting in invalid 

model prediction by a transition of the observed output response. Therefore, an 

model calibration and updating considering system failure and anomaly condition 

must be developed to help engineering decisions using digital twin analysis. 
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Chapter 3 Data-driven Dynamic Model Updating for Anomaly Detection with an Insufficient Prior Information 

 

Data-driven Dynamic Model 

Updating for Anomaly Detection 

with an Insufficient Prior 

Information 

 

The data-driven digital twin is statistically trained and validated using the machine 

learning & deep-learning method. The data-driven digital twin can be used for real-

time analysis because of its efficiency. Further, the data-driven digital twin is widely 

applicable for various fields because of its flexibility. To train the data-driven model, 

sufficient data, including the status and label of the target system, is required. 

However, it suffers from a lack of data and information in the most engineering 

system. 

Whereas significant efforts have been made to enhance the data-driven model 

with imbalanced and insufficient data set (i.e., transfer-learning or data-

augmentation), relatively little attention has been paid to investigating data-driven 

dynamic model updating method. In the small amount of existing works based on 

the Kalman/Particle filter based model updating, it is assumed that the observable 
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operation condition and valid physics-based model. However, it should be noted that 

the prior knowledge for physics-based modelling is not available for complex 

engineering system. 

The chapter thus proposes data-driven dynamic model updating for anomaly 

detection with insufficient prior knowledge. The time-frequency domain features are 

extracted from the observed response using signal pre-processing. The state-space 

model is driven by numerical algorithm for subspace state-space system 

identification (N4SID) to predict the extracted features under different operating 

condition. In the model, the operating condition that arises from the operation are 

defined as a parameterized input excitation force of a system model. Next, the phase 

and amplitude modulation of input excitation force are updated to minimize the 

prediction error that quantify the discrepancy between the observed and predicted 

time- and frequency-domain features. An optimization-based parameter tuning was 

originally applied to estimate operating condition of engineering system. Using the 

proposed method, health indices, such as time delay of operation, prediction error by 

anomaly system operation can be derived from the digital twin analysis. 

The remainder of Chapter 3 is organized as follows. Section 3.1 describes the 

target system which is suffering from lack of prior knowledge for digital twin. 

Section 3.2 address the data-driven dynamic model updating to detect anomaly 

condition with insufficient data. In Section 3.3, numerical and engineering example 

are demonstrated. Finally, the conclusions of this work are provided in Section 3.4. 
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3.1 System Description of On-Load Tap Changer 

Power transformers are essential equipment for the transmission and distribution of 

alternating electric current. Power transformers are made up of several key 

components, including the core, winding, bushing and an on-load tap changer 

(OLTC). The voltage ratio between the input and the output voltage of the power 

transformer is decided by the winding turns ratio. An OLTC is a sequential shift 

mechanism that allows the variable turns ratio to be selected to regulate the output 

voltage of the power transformer. The turn ratio is decided by the OLTC connecting 

to one of a number of access points (known as taps) along either the primary or 

secondary winding. The OLTC mechanically changes the turn ratio without stopping 

the operation of the power transformer. Figure 3-1 shows the internal components of 

a widely used three-phase OLTC, specifically, the MR-MIII 350. The OLTC 

mechanically operates 10-15 times per day. Due to its frequent operation, it is 

vulnerable to mechanical faults. Mechanical faults cause other electrical and thermal 

faults. To prevent OLTC failure, time-based maintenance is typically carried out. 

The maintenance overhaul of an OLTC should be conducted after 6-7 years of 

operation or 20,000-100,000 iterations of the tap changing operation. However, the 

traditional time-based overhaul strategy can cause unnecessary inspection costs, and 

can lead to human error, such as incorrect assembly or visual inspection error. To 

overcome the disadvantages of time-based maintenance, several studies have been 

carried out to diagnose OLTC health using measurable data without the need for 

overhaul. These studies have examined the 1) OLTC vibration signal [63]–[67], 2) 

OLTC motor current [68], [69], 3) High Frequency Current Transformer (HFCT) 

sensor signal for Partial Discharge (PD) measurements [63], and 4) Dynamic 



31 

 

Resistance Measurement (DRM) [70]. 

Erbrink et al. (2010) showed that the electrical and mechanical health state 

transition of an OLTC results in variation in DRM. However, the DRM is not 

measurable during power-transformer operation [70]. Seo et al. (2017) proposed a 

joint measurement system that simultaneously observes three types of measurable 

data during power transformer operation: 1) the HFCT signal from the grounding 

cable, 2) the OLTC motor current, and 3) the vibration signal [68]. Further, Seo et 

al. (2018) applied the Savitzky-Golay filter to extract health features from PD 

measurements and the vibration envelope signal [63]. However, the complementary 

effect of each type of data is not shown in this previous study. For reasons outlined 

herein, the study described in this paper focuses on using the vibration signal to 

estimate the mechanical state of an OLTC. 

The vibration signal is caused by the OLTC’s sequential mechanical operation. 

Mechanical faults of an OLTC can be detected using the vibration signal.  Rivas et 

al. (2010) showed that the characteristics of the vibration signal, such as its 

magnitude and time of burst signal, depend on the mechanical health state of the 

OLTC, such as spring looseness, damaged tap selector contacts, or a broken output 

contact bar [71]. Qingmin et al. (2012) proposed a Hidden Markov Model based fault 

diagnosis model using frequency domain features from the vibration signal [67]. 

Duan et al. (2016) applied Empirical Mode Decomposition to fault/normal vibration 

signals of an OLTC to extract health features and calculated the Lorenz information 

measure to show the difference between a faulty and normal-state signal [65]. Liu et 

al. (2017) applied variational mode decomposition to extract features and trained a 

relevance vector machine diagnostic model [72]. Yang et al. (2019) applied dynamic 
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time warping for mechanical fault diagnosis of an OLTC [73]. Signal processing and 

statistical diagnostic methods were applied to experimentally observed fault and 

normal-state vibration signals in these previous studies. 

In most previous studies, artificial faults were applied to the OLTC in 

experimental conditions to create a fault vibration signal. However, this approach 

can require significant experimental costs and effort to derive artificial faults. Further, 

performing experiments to create a fault vibration signal is not possible during power 

transformer operation. Thus, most real-world applications suffer from a lack of fault 

vibration signal data. Statistical diagnostic methods, such as machine-learning and 

deep-learning with insufficient fault signals, cannot guarantee accuracy and 

efficiency. In the study described in this paper, to overcome this problem, we 

 

(a)                         (b) 

Figure 3-1 The internal components of an OLTC : (a)  MR-MIII 350 and (b) 

general schematic representation 
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propose a digital twin approach for mechanical state estimation of an OLTC. The 

mechanical state of an OLTC affects the vibration signal in both the time and 

frequency domains. The proposed digital twin approach can infer the transition of 

the health state of an OLTC using the features in the time-frequency domain of an 

observed vibration signal. The proposed method consists of 1) pre-processing of the 

vibration signal to extract features in time-frequency domain, 2) OLTC digital twin 

modeling to simulate the vibration signal, and 3) model updating using observed 

features in the time-frequency domain to infer the mechanical operating condition 

and health state of the OLTC. 

Figure 3-2 (a) shows the OLTC’s operation and vibration signal when operating 

in three phase diverter switch. The operation sequence of the internal components, 

such as tap selectors and contact points in the diverter switch, causes a burst vibration 

signal. The OLTC operates 10-15 times per day, which – over time – causes 

mechanical faults in the OLTC, such as spring failure, contact point wear, incomplete 

contact of the tap-selector, and time delay of the switching sequence. In turn, those 

mechanical faults result in electrical and thermal faults in the OLTC. Figure 3-2 (b) 

shows a schematic representation of the time delay of diverter switch operation 

between phases, which causes circular current. The mechanical faults can cause 

delays in the tap-selector and diverter-switch operation that result in a severe circular 

current. Using the observed vibration signal, the delay of the diverter switch and tap 

changer operation can be quantified. In this paper, we propose a digital twin 

approach to estimate the mechanical state of an OLTC using its vibration signal. 
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3.2 Data-driven Dynamic Model Updating for Anomaly 

Detection with an Insufficient Prior Information 

The following section outlines the proposed digital twin approach. Figure 3-3 

describes the procedure for the proposed digital twin approach. The proposed 

method consists of 1) pre-processing the response using minimum entropy 

deconvolution (MED) filtering to extract the impulsive target system operation 

response and short-time Fourier transform (STFT) to extract the time-frequency 

 

Figure 3-2 OLTC operation sequence: (a) Schematic representation of diverter 

switch operating sequence and (b) the time delay of the diverter switch operation 
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domain features, 2) target system dynamic model formulation using numerical 

algorithm for subspace state-space system identification (N4SID), and 3) 

optimization-based model updating using time-frequency domain features to infer 

the OLTC’s operating condition. This method is applicable to all sequential 

operating OLTCs that generate a vibration signal. The mechanical state of the OLTC, 

including spring force magnitude and time delay between diverter contact and the 

tap selector can be analyzed from the updated input parameters. 
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Figure 3-3 Procedure for the proposed digital twin approach to estimate the mechanical health state of target system. 
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3.2.1 Preprocessing of Vibration Signal 

Measurement of the vibration signal is available during power transformer operation. 

The observed vibration signal during power transformer operation includes vibration 

from sources such as 1) vibration due to the mechanical OLTC operation, 2) 

vibration from the electromagnetic force of the winding and core, and 3) external 

noise. To diagnose the OLTC using the vibration signal, the mechanical vibration 

from the OLTC operation should be extracted from the raw vibration signal. The 

mechanical vibration from OLTC operation is caused by impulsive force during 

OLTC operation. In 1978, Wiggins proposed a minimum entropy deconvolution 

(MED) method that derives a linear filter to minimize entropy of a signal [74]. MED 

filtering is widely used to extract an impulsive signal to diagnose mechanical 

components, such as gears [75] and bearings [76]. In this study, we applied MED 

filtering to extract the impulsive vibration from OLTC operation. 

The vibration signal can be analyzed in both the time and frequency domains 

using STFT and Wavelet Transform (WT). The OLTC health state affects the 

vibration in both the time and frequency domains [65], [73]. Further, the mechanical 

health information of the OLTC temporarily is concentrated in the vibration signal 

during tap-selector and diverter switch operation. Park et al. (2019) found that the 

“WT process requires lengthy computational time…”(p. 253) and proposed using 

the variance of energy residual for gear fault detection based on the STFT [77]. In 

our approach, STFT is applied to extract vibration features in the time-frequency 

domain. Discrete-time STFT for a discrete vibration signal can be mathematically 

formulated as: 
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Y(𝑡, 𝑓) = ∑ 𝑦[𝜏]𝑤[𝜏 − 𝑡]𝑒−𝑗𝑓𝜏

∞

𝜏=−∞

 (3.1) 

where t and f denote the time step and frequency, respectively; 𝑤(𝜏)  is the window 

function;  𝑦(𝜏)  denotes vibration signal at time step 𝜏  ; and Y(𝑡, 𝑓)  denotes  

amplitude in time step t and frequency f. In this study, a uniform window is applied 

because the vibration signal from the OLTC is an impulsive and transient signal. The 

length of widow can be adjusted depending on the signal acquisition condition. STFT 

with high frequency and time resolution is computationally expensive. The STFT for 

the predicted vibration signal is required for every update iteration. Thus, the 

resolution of the STFT should be properly selected to consider computational cost. 

The numerical options of STFT, such as window and overlap size, are discussed in 

Section 3.3.  

To formulate state space model simulating the vibration signal, the input signal 

of the system is required.  To extract the pseudo OLTC input excitation force, the 

STFT signal is marginalized as: 

Y̅(𝑡) = ∫ Y(𝑡, 𝑓)
𝑓𝑚𝑎𝑥

𝑓𝑚𝑖𝑛

𝑑𝑓 (3.2) 

where 𝑓𝑚𝑖𝑛 and 𝑓𝑚𝑎𝑥 denote the minimum and maximum frequency value of the 

STFT signal, respectively. To extract operating features that occurred during an 

operation sequence, the peaks of marginalized STFT signals (𝑑j = {Y̅𝑗, tj}) are find 

using peak finding algorithm. The initial input excitation force is defined as:  
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𝑢intial = {

Y̅𝑗

max (Y̅𝑗)

0 

   
𝑡 = 𝑡𝑗

𝑡 ≠ 𝑡𝑗
  (3.3) 

where Y̅𝑗 , 𝑡𝑗  denote amplitude, time of peaks in marginalized STFT signal, 

respectively. The normalized initial input excitation force have amplitude values 

from 0 to 1.  

 

3.2.2 Reference Model Formulation using N4SID 

This study applied a simplified, state space model formulation method using 

numerical algorithm for subspace state-space system identification (N4SID) to 

simulate the vibration signal of an OLTC. Liu et al. (2019) proposed a simplified FE 

model that requires 48.8 seconds to run the simulation while requiring a lot of 

unknown model parameters (i.e., spring constant, contact model parameters, material 

properties) [78]. In contrast, the proposed state space model requires only a few 

milliseconds to simulate the given force parameter. The state space model can be 

generally formulated as: 

[𝑿̇] = 𝑨[𝑿] + 𝑩[𝑼] 

𝑌𝑝𝑟𝑒 = 𝐶[𝑋] + 𝐷[𝑈] 

(3.4) 

where A, B, C, and D denote system, input, output and feedthrough matrix, 

respectively. The 𝑋 ,  𝑌𝑝𝑟𝑒   and 𝑈  denote state, output, and input vector, 

respectively. The matrix can be derived physically using Finite Element Method [78] 

and lumped dynamic model [79]. However, it requires prior knowledge of the system 

such as geometry, material properties and operating condition. It is not easy to get 
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prior knowledge with respect to various OLTC and power transformer. To build the 

valid state space model, we applied the N4SID method. In N4SID method, it requires 

3 assumptions as: 

1) Assumption 1: States visit every dimension. 

2) Assumption 2: Persistently exciting inputs. 

3) Assumption 3: No linear state feedback 

The N4SID method requires the sets of input and output vectors as: 

 

(3.5) 

 

(3.6) 

where Up and Yp denote past input and past output matrix, respectively. where N is 

assumed large integer. The past data matrix is formulated as: 

 

(3.7) 

Similarly, the future output and input matrix defined as: 

 

(3.8) 
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(3.9) 

The future input-output relationship can be expressed as:  

 
(3.10) 

were Ok and Ψk denote observability, block Toeplitz matrix, respectively. Those 

matrices can be derived from state space representation as: 

   

(3.11) 

The combined data matrix can be decomposed into L (lower triangular matrix) 

and Q (orthogonal matrix) as: 

  

(3.12) 

where the Lij (i,j=1,2,3) are blocks of lower triangular matrix. The L33 should be zero, 

because all the inputs of both past and future times are zero and the outputs were 0 

in the past time. The three equations can be obtained from above equations as: 

 
(3.13) 

 
(3.14) 
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 (3.15) 

Then, the output matrix can be derived as: 

 

(3.16) 

where L22
# denote pseudoinverse of L22 because L22 is rank deficit. From the equation 

(3.8), (3.9) and assumption 2 and 3, the following equation derived as: 

 
(3.17) 

where the U1, V1 and Σ1 are singular value decomposition of L32L22
#Wp. The results 

can be split between Ok and Xf  as: 

 
(3.18) 

Based on the series of states (Xf ) and the input-output data (Uf , Yf), we can form the 

following 4 matrices (A,B,C and D) as: 
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Xk+1 is the series of state at time k+1 to k+N-1. For valid model formulation, accurate 

output and input data is required. However, the input excitation force cannot be 

measured for OLTC vibration signal. So we proposed pseudo input excitation force 

using pre-processing. Figure 3-4 (a) shows an initial pseudo excitation force. 
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However, the operating condition can be varying for each operation. So, 

optimization –based tuning is applied for reference model formulation and operating 

condition estimation using reference model.   

 

3.2.3 Optimization-based Parameter Updating 

The optimization-based parameter updating is applied to update the input excitation 

force using the observed vibration signal. In this approach, the parameters of input 

force are updated to minimize the L2-norm error of the frequency and time domain 

features of signal. The optimization-based tuning is defined as: 

minimize
𝛉

 L2(𝛉) (3.20) 

where  𝛉  denotes an updating parameter vector; and 𝛉  includes the set of 

parameters, such as phase modulation (sn) and amplitude modulation (Pn) parameters 

of n-th impulse input; Figure 3-4 (b) represents the parameter of input excitation 

 

Figure 3-4 Model Input: (a) Initial pseudo input excitation force, (b) the parameter 

of input signal 
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force.  L2 (Y(𝑡, 𝑓), Ŷ(𝑡, 𝑓|𝛉)) denotes the L2 norm metric value using observed 

and time-frequency features. The L2 norm metric is formulated as: 

L2 =
∬‖Y(𝑡, 𝑓) − Ŷ(𝑡, 𝑓|𝛉)‖ 𝑑𝑡𝑑𝑓

∬‖Y(𝑡, 𝑓)‖ 𝑑𝑡𝑑𝑓
 (3.21) 

where Y(𝑡, 𝑓), Ŷ(𝑡, 𝑓|𝛉) denote the amplitude of Discrete-time STFT of observed 

and predicted signal, respectively. To solve the optimization problem, sequential 

quadratic programming, genetic algorithms, or another advanced optimization solver 

can be used as a searching algorithm. There might be several local minimums in a 

solution space because of the discrete signal. As such, a global optimization solver, 

such as a genetic algorithm (GA), and a multi-start gradient method are preferred. In 

this study, GA is applied for the case study. The 𝛉, which includes the phase and 

amplitude modulation parameters of the impulse input forces (sn, Pn), is updated to 

estimate the operating condition of an OLTC using the observed signal at each 

operation. The updated model prediction accuracy and parameters can represent the 

mechanical health state and operating condition of the observed OLTC. To quantify 

the mechanical state of an OLTC, health indices – including time delay of operation 

– can be derived using updated model parameters. If enough data is observed from 

both faulty and healthy state vibration signals, data-driven approaches – including 

support vector machine and deep learning algorithms (including Convolution Neural 

Network, Recurrent Neural Network) – can be used to distinguish the faulty and 

healthy states of an OLTC. However, as we introduced, it is difficult to obtain faulty 

state OLTC vibration signals for an active power transformer to train or use a data-

driven model. If the proposed indices accumulate data over time (i.e., until failure), 

the health indices can show degradation of the OLTC’s mechanical state. Rule-based 
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diagnosis based on the observed health indices can also be proposed. 

  

3.3 Case Study 

In this section, numerical and engineering examples are demonstrated to verify the 

effectiveness of the proposed digital twin approach. In the numerical example, the 

sets of vibration signal are generated in normal and anomaly operating condition in 

different noise level using physics-based simulation model. And the analysis results 

are compared to identify the effectiveness of proposed method in different noise 

level. In engineering example, the proposed digital twin approach is applied to 

estimate the mechanical state of an observed OLTC, specifically an MR-MIII 350. 

The MR-MIII 350 is a three-phase OLTC made by Maschinenfabrik Reinhausen 

(MR). 

3.3.1 Case Study 1: (Numerical) Vibration Analysis using Parameter 

Varying Cantilever Beam and Multi-DOF model 

 

In this example, the sets of vibration signal are generated using numerical model. 

The physics-based model using a finite element (FE) method was constructed to 

perform dynamic analysis. Figure 3-5 shows a numerical model consists of Euler-

Bernoulli beam and lumped parameter model and parameterized impulsive 

excitation force. The observed output response is acceleration at the six-th node of 

the beam element. Each mass (mi) is loaded by the impulse force which defined by 

two parameters: amplitude (Pi) and time (ti). Each mass is heated in three different 
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period and magnitude. To consider uncertain operating condition of OLTC, the three 

different period of impulse force are assumed to follow normal distributions 

(𝑡𝑖~𝑁(𝜇𝑖, 𝜎𝑖), i=1,2,3).  The statistical parameter vector of three different periods 

is that [μ1, σ1, μ2, σ2, μ3, σ3] = [0.04, 8e-04, 0.05, 8e-04, 0.06, 8e-04]. The model 

parameter is summarized in Table 3-1.  

The large and small-time scale are assumed as day and second. The response is 

simulated for ten days and 0.2 seconds long vibration signal using Monter Carlo 

simulation. The vibration signal of anomaly operating condition is simulated with 

change of system parameter in large time scale. The standard deviation which 

indicates time delay of system operation is increased in anomaly operating condition. 

 

(a) 

 

(b) 

Figure 3-5 (a) The computational model for generating vibration signal and (b) 

parameterized impulsive excitation force 
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Figure 3-6 (a) shows assumed system parameter and standard deviation in normal 

and anomaly operating condition in large time scale. To consider different sensor 

noise condition, white Gaussian with two different noise level is added in simulated 

response. The peak signal noise ratio (PSNR) is defined using ratio of maximum 

magnitude of signal to standard deviation of noise. Figure 3-6 (b) shows example of 

observed vibration signal with two different noise level. 

Table 3-1 Model Parameter (Normal Operating Condition) 

Symbol Quantity Value 

E Young’s Modulus of Beam 210 GPa  

𝜌  Density of Beam 7860 kg/m3 

w Width of Beam 0.1 m 

t Thickness of Beam 0.03 m 

l Length of Beam 1.2 m 

M1 Mass of m1 100.5
 kg 

mp Mass of m2, m3, m4 100.2
 kg 

M5 Mass of m5 100.5
 kg 

K1 Stiffness of k1 1010 N/m 

kp Stiffness of k21,p, k22,p, k31,p, k32,p, k41,p, k42,p 107 

C1 Damping Coefficient of c1 108 Ns/m 

cp Damping Coefficient of c21,p, c22,p, c31,p, c32,p, c41,p, c42,p 105 Ns/m 
 

 
(a)                           (b) 

Figure 3-6 Uncertain operating and data measurement condition: (a) model 

parameter (b) measurement noise 
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The proposed digital twin approach is utilizing the system identification 

method to formulate reference dynamic model. Instead of data-driven method, the 

reference dynamic model can be formulated into simplified physics-based model 

because of in-sufficient prior information about geometry and modeling. To 

compare the effectiveness of the proposed method, the results using system 

identification method and simplified physics-based model are compared. The three 

degrees of freedom lumped parameter model is used to formulate the reference 

dynamic model as shown in Figure 3-7. To calibrate the model parameter of 

simplified model using observed vibration signal, the optimization-based model 

calibration is formulated as: 

minimize
𝛉

 L2(𝛉) (3.22) 

where  𝛉  denotes an updating parameter vector; and 𝛉  includes the set of 

parameters, such as phase modulation (sn) and amplitude modulation (Pn) 

parameters of n-th impulse input and mass, stiffness, and damping coefficients (mi, 

ci, and ki) of simplified physics based model; The reference simulation model are 

formulated using observed signals in initial large time scale. The phase modulation 

(sn) and amplitude modulation (Pn) are updated using targe signal in different time  

 

Figure 3-7 Simplified 3-DOF reference model 
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to minimize the L2 norm metric. 

Figure 3-8 shows the variation trend of L2 norm error metric which indicates 

prediction error and estimated phase modulation parameter in large time scale. The 

analysis results using simplified physics based model shows larger prediction error 

in both anomaly and normal operating condition compared to the proposed method. 

And the differences between anomaly and normal operating condition cannot be 

identified in the results using simplified physics based model. On the other hand, 

the difference such as the increasing L2 norm error metric in large time scale and 

the larger variation in phase modulation parameter for anomaly case can be 

 
                   (a)                        (b) 

Figure 3-8 Analysis results in large time scale using different reference model 

formulation: (a) simplified physics-based model, (b) system identification 

methods 
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identified in the results using proposed method. 

Figure 3-9 shows detailed analysis results in small time scale. The predicted 

response using simplified physics-based twin cannot represents frequency and 

time characteristic of the observed vibration signal. On the other hand, the 

predicted response using proposed method can represent frequency characteristics 

of observed response in normal condition. The updated response using reference 

model can represents the time delay of impulse response in anomaly case. The 

frequency modulation in anomaly condition can be identified in comparison of 

   
                   (a)                        (b) 

Figure 3-9 Detailed analysis results in small time scale using different reference 

model formulation: (a) simplified physics-based model (b) system identification 

methods 
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predicted response using reference model. Those modulation induce the increasing 

the L2 norm error metric in time-frequency for anomaly operating condition. 

Table 3-2 shows prediction accuracy & computational cost comparison 

between simplified physics-based model and proposed system identification 

methods. Even though, the proposed reference model formulation using system 

identification methods requires more computation cost than the in-valid physics-

based model, the response prediction accuracy of the proposed method is higher 

than that of in-valid physics-based model.  

The proposed digital twin approach is utilizing the optimization-based 

parameter updating to estimate uncertain input excitation force. Instead of the 

proposed method, the input excitation force can be estimated using joint-input 

state estimation method using the reference dynamic model from system 

identification method [79]. To compare the effectiveness of the proposed method, 

the estimated results using proposed method and joint-input state estimation 

method are compared. 

Table 3-2 Prediction accuracy & computational cost comparison between (a) 

simplified physics-based model and (b) system identification methods 

 Computation Time (s) Response Accuracy (%) 

(Proposed) N4SID based 

Reference Model 

Formulation 

716.54 87.00 

In-valid Physics-based 

Reference Model 

Formulation 

47.84 13.83 
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 Figure 3-10 shows analysis results using two method. The predicted 

response using both methods can represent characteristics of observed response in 

time and frequency domain in normal condition. However, the estimated force 

using joint-input state estimation method is non-informative because of overfitting 

problem. Even though, the model from system identification method has 

modelling error because of measurement noise and estimated inaccurate excitation 

force. The joint-input estimation method estimates the force magnitude at every 

time step to minimize prediction accuracy with model error and induces overfitting 

problem. On the other hand, the estimated force using proposed method can give 

an information such as the delay of operation and magnitude of impulse force. 

 
(a)                        (b) 

Figure 3-10 Analysis results and estimated excitation force: (a)optimization-based 

parameter updating and (b)Joint-input state estimation method 
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The proposed method is applied to observed vibration signals with the high 

noise level to identify the proposed method's effectiveness in different noise levels. 

As shown in Figure 3-11, even though prediction accuracy decreases because of 

high noise levels, the difference between normal and anomaly conditions can be 

identified even with a high noise level. It can be concluded that the proposed idea 

can be applied in different measurement noise conditions with insufficient prior 

information of modeling and operating condition. 

Table 3-3 shows prediction accuracy & computational cost comparison 

between optimization-based parameter updating and joint-input state estimation 

method. Even though the response prediction accuracy of the joint input state 

 
         (a)                               (b) 

Figure 3-11 Analysis results in large measurement noise: (a) simplified physics-

based model (b) system identification methods 

Table 3-3 Prediction accuracy & computational cost comparison between (a) 

optimization-based parameter updating and (b) Joint-input state estimation 

method 

 Computation Time (s) Response Accuracy (%) 

(Proposed) 

Optimization-based 

Parameter Updating 

52.22 71.28 

Joint-Input State 

Estimation Method 
1099.07 96.47 
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estimation is higher than that of proposed optimization-based parameter tuning, 

the required computation cost of the proposed methods is much less than that of 

joint input state estimation. And the estimated input force using the joint-input 

state estimation method is non-informative because of the overfitting problem. So, 

the proposed method can be more suitable in engineering examples with 

insufficient prior knowledge. 

3.3.2 Case Study 2: Vibration Signal of On Load Tap Changer in Power 

Transformer 

The proposed method was applied to an MR-MIII 350 model OLTC. The MR-MIII 

350 is a 3-phase, oil-insulated OLTC with a tap selector. Figure 3-12 shows the 

experimental condition and the attached position of the accelerometer (PCB 

Piezotronics, 352C34). Study of the OLTC in active power transformer operation is 

limited. Thus, we measured two different power transformers. One was in-active; 

the other was an active power transformer. The active power transformer was 

changed only one tap level up and down at the 6th tap (tap changing sequence: 6th 

Tap  7th Tap , 7th Tap  6th Tap, 6th Tap  5th Tap , 5th Tap  6th Tap). The 

       
(a)                (b)                         (c) 

Figure 3-12  Experimental condition: (a) in-active and (b) active, and (c) 

observed vibration signal before filtering (in-active power transformer) 

:Signal

:Noise

Observed vibration signal 
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in-active power transformer was operated same sequence as active one. The 

vibration signal was measured at a sampling frequency of 10,240 Hz using DAQ 

(LMS SCADAS Mobile). The bursts of the vibration signal during tap change and 

diverter switching were caused by the OLTC operation sequence. A vibration signal 

caused by diverter switch operation with a 0.2-second time length was analyzed. The 

diverter switch operation generated the maximum amplitude burst signal. The signal 

is truncated by 0.1 seconds forward and 0.1 seconds backward, based on the 

maximum burst vibration signal. Figure 3-13 shows the measured original (raw) 

vibration signal when the tap changed from the sixth to the seventh tap position in 

the in-active and active power-transformer. The noise signal can be induced by 

external noise and vibration from the electromagnetic force of the winding and core. 

  
(a)                                 (c) 

       
(b)                                 (d) 

Figure 3-13 Observed vibration signal: (a) before filtering (in-active power 

transformer) (b) after filtering, (c) STFT feature, and (d) peaks in marginalized 

:Signal

:Noise

Observed vibration signal 
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An MED filter was applied to the measured raw vibration signal (sixth to 

seventh tap position) to extract the mechanical vibration from OLTC operation in 

both the active and non-active power transformers. As shown in Figure 3-13 (b), the 

MED filter can extract the vibration signal from OLTC operation, except the noise 

signal, both in the active and non-active settings. STFT with high resolution is 

computationally expensive; thus, for predicted signals, a uniform window size was 

defined as 400 sampling lengths. Figure 3-13 (c) shows the extracted time-frequency 

features of original and MED filtered signals. The extracted features from the 

original signal include noise components around 2 seconds and 4 kHz. The MED 

filters can extract the features from OLTC operation signal, except the features from 

the noise signal. The initial pseudo excitation force is defined using amplitude, time 

of peaks in marginalized STFT signal, as shown in Figure 3-13 (d). 

Using a GA algorithm, the phase and amplitude modulation parameter were 

searched to minimize the L2 norm metric using STFT features of the predicted 

signals by reference model. Figure 3-14 shows the variation trend of L2 norm error 

metric and estimated phase modulation parameter in large time scale. The analysis 

results in active operating condition shows larger prediction error compared to the 

in-active case. Because the vibration signal includes the higher noise by vibration 

from the electromagnetic force of the winding and core. And the variation of 

estimated phase modulation is similar in both analysis results in active and in-active 

condition. Figure 3-15 shows detailed analysis results in small time scale. The 

predicted vibration signal can represent characteristics of observed response in time 

and frequency domain.  

STFT signal 
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To diagnose OLTC, Dynamic Resistance Measurement (DRM) can be 

measured in each phase during diverter switch operation [70], [80], [81]. The DRM 

represents the resistance transition in diverter switch operation. However, the DRM 

is only measurable in in-active power transformers one at a time for each phase. Here, 

we simultaneously measure dynamic resistance and vibration signal in an in-active 

power transformer one tap level up and down up (tap changing sequence: 16th Tap 

 

Figure 3-14 Analysis results in large time scale  

       
(a)                                  (b) 

Figure 3-15 Detailed analysis results in small time scale: (a) In-active (b) Active 
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<=>17th Tap). Figure 3-16 shows the experimental conditions and a schematic 

representation of DRM measurement, the diverter switch operation sequence, and a 

DRM graph. When performing the DRM, the measurement system injects a DC 

current in each phase and records the transition of the current signal during the 

diverter switch operation. Each inflection point in the DRM graph indicates the 

contact point operation in the diverter switch that causes the impulsive vibration 

signal. To validate the proposed method, in this study, the model updating results 

were compared against estimated excitation force using proposed method. 

Figure 3-17 shows the synchronization between the estimated excitation forces 

and the dynamic resistance for each phase. The estimated time of impulsive force 

using proposed method exhibits good agreement with the inflection point in the 

DRM graph. Based on the results, the variation of estimated phase modulation can 

       
(a)                                  (b) 

Figure 3-16 (a) Schematic representation of diverter switch operation sequence 

and DRM graph and (b) Experimental condition 
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represent delay of diverter switch operation, which cause a circular current. The 

circular current degrades the transition resistor/reactor which makes an electrical 

fault or can even result in explosion of the OLTC.  

3.4 Summary and Discussion 

This study proposed a new digital twin approach for OLTC with an insufficient prior 

knowledge. The foundational idea of the proposed approach is to update a dynamic 

model using an observed vibration signal to estimate the uncertain operating 

condition and prediction error. Next, the health indices, such as time delay by 

switching fault, prediction error by system transition can be derived from the digital 

      

 
(a)                                  (b) 

Figure 3-17 Synchronization between updated input forces and dynamic 

resistance : (a) 1617Tap Changing Sequence, (b) 1716Tap Changing Seq

uence 
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twin analysis. The digital twin analysis results for numerical and engineering 

example were demonstrated to verify the effectiveness of the proposed approach. To 

validate the proposed method, the estimated parameters are compared with dynamic 

resistance measurement which represents actual OLTC working status. The physical 

health index can be calculated from the updated model parameter to estimate the 

time delay of the OLTC operation. 

The proposed digital twin has many favorable properties as a diagnostic method, 

including 1) no need for accurate physics-based model, and 2) a physical health 

index that uses an updated model parameter. Previously studied statistical methods, 

such as deep learning and machine learning, require a known fault vibration signal. 

However, the proposed method only requires an understanding of the OLTC 

operation sequence. This method is much more efficient than the earlier in-valid 

finite element method. Finally, the physical health indices that represent the 

mechanical health state of an OLTC can be derived using the updated model 

parameter. 

 

 

 

 

Sections of this chapter have been published or submitted as the following journal 

articles:  

1) Wongon Kim, Sunuwe Kim, Jingyo Jeong, Hyunjae Kim, and Byeng D. Youn , “A 

Digital Twin Approach for On-Load Tap Changers with an Insufficient Prior 

Knowledge,” Mechanical Systems and Signal Processing, submitted. 
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Chapter 4 A New Calibration Metric that Considers Statistical Correlation : Marginal Probability and Correlation Residuals 

 

A New Calibration Metric that 

Considers Statistical Correlation : 

Marginal Probability and 

Correlation Residuals 

 

Chapter 3 was devoted entirely to the derivation of the data-driven dynamic model 

updating based on the system identification method by assuming that all the 

parameters are exactly determined. In other words, the loading parameters (i.e., t

he time and amplitude of impulsive excitation force) and the system paramet

ers (i.e., the material properties and the geometry)  were considered to be 

deterministic. However, most input parameters in digital twin models have a certain 

amount of physical uncertainty, such as inherent variability in material properties 

and manufacturing tolerances, a digital twin model that uses a deterministic form 

fails to accurately analyze an engineered system. But, it is not easy to fully 

characterize the variability in the model input variables due to limited resources. 

Statistical model calibration is thus of great importance as a strategy to improve the 



62 

 

predictive capability of a digital twin model. Optimization-based statistical model 

calibration is formulated as an unconstrained optimization problem that infers the 

unknown statistical parameters of input variables associated with a digital twin 

model by maximizing statistical similarity between predicted and observed output 

responses. A calibration metric is defined as the objective function to be maximized 

that quantifies statistical similarity. One important challenge in formulating a 

calibration metric is how to properly consider the statistical correlation in output 

responses. Thus, this study proposes a new calibration metric, namely the Marginal 

Probability and Correlation Residuals metric. The foundational idea of the MPCR 

metric is to decompose a multivariate joint probability distribution into multiple 

marginal probability distributions while considering the statistical correlation 

between output responses. The three-fold novel aspects of this study include: 

• This study thoroughly examines what happens if the statistical correlation is 

neglected in model calibration. In addition, three existing calibration metrics 

(marginal likelihood, joint likelihood, and moment matching) are reviewed 

from the perspective of their ability to address the statistical correlation between 

multivariate output responses. 

• The MPCR metric allows consideration of the statistical correlation effectively; 

thus physically reasonable solutions can be confined. Consequently, accurate 

optimization-based statistical model calibration is enabled. 

• The MPCR metric has favorable properties including normalization, 

boundedness, and marginalization; thereby, limitations of three existing 
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calibration metrics are overcome in this method. 

Chapter 4 is organized as follows. Section 4.1 addresses the statistical correlation 

issue in optimization-based statistical model calibration and presents the proposed 

MPCR metric and its favorable properties. Section 4.2 presents proposed method:

 marginal probability and correlation residuals (MPCR). Two mathematical 

examples and one engineering example are demonstrated in Section 4.3. Finally, the 

conclusions of this work are outlined in Section 4.4. 

 

4.1 Statistical correlation issue in calibration metric 

formulation 

Section 4.1 underscores the importance of considering the statistical correlation 

when formulating a calibration metric in optimization-based statistical model 

calibration. Section 4.1.1 explains what happens if the statistical correlation is 

neglected in model calibration. A brief review of existing calibration metrics - 

specifically in terms of the statistical correlation is provided in Section 4.1.2. 

 

4.1.1 What happens if the statistical correlation is neglected in model 

calibration? 

 

It is common that the predicted output response 𝐘pre  can be represented as a 

function of the input variables 𝐗  that are embedded in a CAE model. In this 
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subsection, the output response 𝐘pre is assumed to be obtained through a bivariate 

model. One response is a quadratic equation and the other is a linear equation as: 

𝑦1 = 𝑎𝑥1
2 + 𝑏𝑥1 (4.1) 

𝑦2 = 𝑐𝑥1 + 𝑑𝑥2 (4.2) 

The quadratic equation can be linearized by using the Taylor series expansion, at 

least in the neighborhood of the mean value of 𝐗, as: 

𝑦1 ≅ (2𝑎𝜇1 + 𝑏)(𝑥1 − 𝜇1) + 𝑎𝜇1
2 + 𝑏𝜇1 = (2𝑎𝜇1 + 𝑏)𝑥1 − 𝑎𝜇1

2 (4.3) 

It is assumed that the two input variables follow normal distributions and are 

independent from each other; 𝑥1~𝑁(𝜇1, 𝜎1
2) and 𝑥2~𝑁(𝜇2, 𝜎2

2). Here, the means 

and standard deviations of the input variables, denoted by 𝜇1, 𝜇2, 𝜎1, and 𝜎2, are 

unknown; these form the calibration parameter set 𝛉. Then, the statistical parameters 

of the predicted output responses can be expressed in terms of the statistical 

parameters of the input variables as: 

𝝁𝐘̂ = {𝑎𝜇1
2 + 𝑏𝜇1  𝑐𝜇1 + 𝑑𝜇2}T (4.4) 

𝐂𝐎𝐕𝐘̂ = [
(2𝑎𝜇1 + 𝑏)2𝜎1

2 (2𝑎𝑐𝜇1 + 𝑏𝑐)𝜎1
2

sym. 𝑐2𝜎1
2 + 𝑑2𝜎2

2 ] (4.5) 

where 𝝁𝐘̂  and 𝐂𝐎𝐕𝐘̂  denote the mean vector and covariance matrix of the 

predicted output response, respectively. When the observed output responses 𝐘obs 

follow normal distributions, the statistical parameters of the observed output 

response includes the mean vector and covariance matrix, denoted by 𝝁𝐘  and 

𝐂𝐎𝐕𝐘, respectively, as: 
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𝝁𝐘 = {𝑚1  𝑚2}T (4.6) 

𝐂𝐎𝐕𝐘 = [
𝑐𝑣11 𝑐𝑣12

sym. 𝑐𝑣22
] (4.7) 

The calibration parameter set can be inferred by comparing the statistics of the 

predicted output responses with those of the observed output responses. This 

calibration procedure can be considered as an inverse problem, which can be 

formulated as nonlinear simultaneous implicit equations as: 

𝑎𝜇1
2 + 𝑏𝜇1 = 𝑚1 (4.8) 

𝑐𝜇1 + 𝑑𝜇2 = 𝑚2 (4.9) 

(2𝑎𝜇1 + 𝑏)2𝜎1
2 = 𝑐𝑣11 (4.10) 

𝑐2𝜎1
2 + 𝑑2𝜎2

2 = 𝑐𝑣22 (4.11) 

(2𝑎𝑐𝜇1 + 𝑏𝑐)𝜎1
2 = 𝑐𝑣12 (4.12) 

Technically, since four unknowns and four equations are involved in Eqs. (4.8) to 

(4.12), the calibration parameter set 𝛉  can be found by solving these equations 

simultaneously. The solution of the mean values 𝜇1  and 𝜇2  can be obtained by 

simultaneously solving the quadratic equation in Eq. (4.8) and the linear equation in 

Eq. (4.9) as: 

𝜇1 =
−𝑏 ± √𝑏2 + 4𝑎𝑚1

2𝑎
 (4.13) 

𝜇2 =
𝑚2

𝑑
+

𝑏𝑐 ± 𝑐√𝑏2 + 4𝑎𝑚1

2𝑎𝑑
 (4.14) 

There are two pairs of solutions for the mean values 𝜇1 and 𝜇2. These mean values 

obtained from Eqs. (4.13) and (4.14) are the mathematically valid solutions; however, 

it is not guaranteed that every solution is physically reasonable. Examples of 

physically unreasonable solutions of the calibration parameter include those with 

biased mean values or a large standard deviation. In addition, the existence of two 
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pairs of solutions implies that an optimization algorithm could lead to different 

solutions depending on the initial guess (the starting value) of the calibration 

parameters, rather than the physically reasonable solution. It is thus required to 

confine one pair of solutions for the mean values 𝜇1 and 𝜇2 for the CAE model. 

This solution conformity issue can be resolved by additionally considering Eq. (4.12). 

It is worth pointing out that Eq. (4.12) corresponds to the statistical correlation 

between the bivariate output responses. The value of the statistical correlation 𝑐𝑣12 

between the bivariate output responses can confine the solution of the calibration 

parameter 𝜇1, as: 

𝜇1 =
1

2𝑎𝑐
(

𝑐𝑣12

𝜎1
2 − 𝑏𝑐) (4.15) 

It can thus be concluded that the consideration of the statistical correlation helps 

provide a physically reasonable solution to statistical model calibration. In other 

words, ignoring the statistical correlation in Eq. (4.12) could result in an inaccurate 

solution. This drives research interest in developing a calibration metric that 

considers the statistical correlation between multivariate output responses. 

 

4.1.2  Comments on existing calibration metrics in terms of the 

statistical correlation 

This subsection briefly summarizes three existing calibration metrics in terms of the 

statistical correlation between multivariate output responses, including: (i) the 

marginal likelihood metric [53], (ii) the joint likelihood metric [59], and (iii) the 

moment matching metric [57]. 
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First, the marginal likelihood metric is formulated as: 

ML(𝛉|𝐘) = − ∑ ∑ log10 𝑓𝒚̂𝒊
(𝑦𝑖,𝑗|𝛉)

𝑛

𝑗=1

𝑑

𝑖=1

 (4.16) 

where Y is the d-dimensional observed (experimental) multivariate output response 

of an n-sample size; 𝑦𝑖,𝑗 is the component of Y; the indices i and j represent the 

dimension and sequence of the sample, respectively; and 𝑓𝒚̂𝒊
 denotes the marginal 

probability density function of the ith-dimensional predicted (model) output 

response. In the ML metric, it is assumed that multivariate output responses are 

statistically independent from each other . This implies that the ML metric neglects 

the statistical correlation between output responses. 

Second, the joint likelihood is formulated as: 

JL(𝛉|𝐘) = − ∑ log10 𝑓𝒚̂(𝑦1,𝑗, 𝑦2,𝑗, … , 𝑦𝑑,𝑗|𝛉)

𝑛

𝑗=1

 (4.17) 

where 𝑦𝑑,𝑗 denotes a d-dimensional multivariate observed output response at the 

jth sampling sequence; and 𝑓𝒚̂  denotes the joint PDF of the d-dimensional 

multivariate predicted output response. It should be noted that the calculation of the 

JL metric requires the modeling of the joint PDF at every iteration of the 

optimization-based statistical model calibration. Copula, Nataf distribution, and 

kernel density estimation (KDE) can be used to estimate the joint PDF of the 

predicted output response [82], [83]. Even though the joint PDF contains the 

information on the statistical correlation, the estimation of the joint distribution can 

be inaccurate and less inefficient than that of the marginal PDF because of the curse 

of dimensionality. The curse of dimensionality means that a (nonparametric) density 
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estimator converges more slowly to the true PDF as the dimension increases due to 

data sparseness. Nagler et al. showed that a kernel density estimator requires 50 

observations to accurately estimate an underlying univariate distribution, while 106 

observations are required for a ten-dimensional multivariate joint PDF [84]. This 

indicates that – to accurately estimate the joint PDF – the required sample size for 

sampling-based uncertainty propagation (e.g., Monte Carlo simulation) increases 

rapidly as the dimension of the output response increases. Furthermore, the value of 

the JL metric is not bounded; thereby, it could have a numerically infinite value. If a 

calibration metric has an infinite value in optimization-based statistical model 

calibration, a gradient information-based searching algorithm would give an error at 

the starting point because it is impossible to calculate the numerical gradient.  

Third, the moment matching metric (MM) [57] quantifies the difference 

between the statistical moments obtained by experiments and prediction. The 

moment matching metric is formulated as the weighted sum of the two functional: 

MM(𝐲, 𝐲̂(𝛉)) = 𝒘𝑚𝑒𝑎𝑛‖𝝁𝑦 − 𝝁𝑦̂‖
2

2
+ 𝒘𝑐𝑜𝑣‖𝒘𝑣(∆𝐶𝑜𝑣(𝐲, 𝐲̂))𝒘𝑣

𝑻‖
𝐹

2
 (4.18) 

where 𝝁𝑦 and 𝝁𝑦̂ denote the mean vector of the observed and predicted output 

responses, respectively; ∆Cov(𝐲, 𝒚̂)  denotes the covariance matrix difference 

between the observed and predicted output responses; and w denotes the weighting 

vector (𝒘𝑚𝑒𝑎𝑛 and 𝒘𝑐𝑜𝑣) and matrices (𝒘𝑣) that depend on the test data. In Eq. 

(4.18), the first term on the right-hand side is the 2-norm of the mean vector 

difference, while the second term is the Frobenius norm of the covariance matrix 

difference. This means that the second term on the right-hand side in Eq. (4.18) is in 
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charge of handling the statistical correlation between multivariate output responses. 

The advantage of the moment matching metric is that it can be efficiently calculated. 

However, due to experimental errors or lack of data, it is not guaranteed that the 

sample mean and standard deviation are not the true value. This implies that simply 

minimizing the mean vector and covariance matrix differences may lead to an 

inaccurate result. In addition, the weighting vector and matrix should be carefully 

chosen when the multivariate output responses have a different unit and scale. If the 

observed output responses have the same unit, the weighting matrix and vector can 

be set as an identity matrix and a ones-vector [57]. 

Therefore, it can be concluded from this brief review of existing calibration 

metrics that a calibration metric should be carefully formulated to properly quantify 

the statistical correlation between multivariate output responses; otherwise, it could 

give a poor calibration result. To overcome the limitations of existing calibration 

metrics, this study proposes a new calibration metric, this new metric is described in 

Section 4.2. 

 

4.2 Proposed Method: Marginal probability and correlation 

residuals (MPCR) 

The foundational idea of the MPCR metric is to decompose a multivariate joint 

probability distribution into multiple marginal probability distributions while 

considering the statistical correlation between the multivariate output responses. The 

MPCR metric is formulated as the sum of two normalized functionals, the Marginal 
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Probability Residual (MPR) and the Correlation Coefficient Residual (CCR): 

MPCR =
1

2
∑ MPR𝑖

𝑑

𝑖=1

+
1

𝑑 − 1
∑  

𝑑

𝑗<𝑘

CCR𝑗,𝑘 , (0 < MPCR < 2𝑑) (4.19) 

where d denotes the dimension of the multivariate output response. The value of the 

MPCR metric ranges from 0 to 2d.  

In Eq. (4.19), the MPR𝑖  quantifies the statistical difference between the 

predicted and observed output responses by using the marginal PDFs of the ith output 

response, which is formulated as: 

MPR𝑖 = ∫ |𝑓𝑦̂𝑖
(𝑦|𝛉) − 𝑓𝑦𝒊

(𝑦)|
𝑢𝑏

𝑙𝑏

𝑑𝑦, (0 < MPR𝑖 < 2) 

{𝑢𝑏  𝑙𝑏} = { max(𝑦̂𝑖,:, 𝑦𝑖,:)  min(𝑦̂𝑖,:, 𝑦𝑖,:) } 

(4.20) 

where 𝑓𝑦̂𝒊
 and 𝑓𝑦𝑖

 denote the marginal PDFs of the predicted and observed output 

responses, respectively; and 𝑦𝑖  denotes the ith output response. The physical 

meaning of the MPR𝑖 is a residual between the areas of the marginal PDFs of the 

ith predicted and observed output responses. The integration ranges from the lower 

to the upper bounds can be decided based on the min-max value of the output 

responses. The value of the MPR𝑖 is bounded from 0 to 2. Figure 4-1 describes 𝑓𝑦̂𝒊
 

and 𝑓𝑦𝑖
  for before and after calibration. To evaluate the MPR𝑖 , marginal PDF 

estimation and numerical integration are required. In this study, KDE, which is a 

non-parametric PDF estimation method, is incorporated into the univariate PDF 

modeling. The Gaussian kernel is used as a basis function and the bandwidth is 

calculated by using the estimator proposed by Silverman [85]. 
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Compared to joint probability distributions, marginal probability distributions 

can be accurately modeled with computationally affordable efforts. However, the 

marginal probability distribution cannot capture the statistical correlation between 

the multivariate output responses. The CCR𝑗,𝑘  in Eq. (4.19) allows the MPCR 

metric to consider the statistical correlation, which is formulated as: 

CCR𝑗,𝑘 = |𝜌pre(𝑦̂𝑗,𝑘|𝛉) − 𝜌obs(𝑦𝑗,𝑘)|, (0 < CCR𝑗,𝑘 < 2) (4.21) 

where 𝜌pre(𝑦̂𝑗,𝑘|𝛉) and 𝜌obs(𝑦𝑗,𝑘) denote the correlation coefficients between the 

jth and kth output responses from model prediction and experimental observation, 

respectively. The correlation coefficient can be calculated as: 

𝜌(𝑦𝑗,𝑘) =
1

𝜎𝑦𝑗
𝜎𝑦𝑘

𝐸 [(𝑦𝑗 − 𝜇𝑦𝑗
) (𝑦𝑘 − 𝜇𝑦𝑘

)] (4.22) 

The physical meaning of the CCR is the absolute difference between the correlation 

coefficients between the jth and kth output responses from the model prediction and 

the experimental observation. This implies that the value of CCR𝑗,𝑘 is bounded from 

0 to 2. In this study, the formulation of the Pearson correlation coefficient was used 

to quantify the statistical correlation between the multivariate output responses. 

    
(a)                            (b) 

Figure 4-1 Marginal PDFs of the predicted and observed output responses: (a) 

before calibration and (b) after calibration  
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The MPCR metric has many favorable properties as a calibration metric, such 

as (i) marginalization, (ii) normalization, and (iii) boundedness. First, the MPCR 

metric decomposes a multivariate joint probability distribution into multiple 

marginal probability distributions. The estimation of the marginal PDFs does not 

suffer from the curse of dimensionality, even for high-dimensional multivariate 

output responses. Second, ∑ MPR𝑖
𝑑
𝑖=1  is bounded from 0 to 2𝑑 and ∑  𝑑

𝑗<𝑘 CCR𝑗,𝑘 

is bounded form 0 to 𝑑(𝑑 − 1), where 𝑑 is the dimension of the multivariate output 

responses. To normalize the MPR and CCR, they are divided by 2 and (𝑑 − 1), 

respectively. Due to normalization, the MPCR metric can provide an accurate 

calibration result even when the multivariate output responses have a different unit 

and/or scale. Third, since the value of the MPCR metric is bounded from 0 to 2𝑑, 

the MPCR metric can directly describe the statistical similarity or dissimilarity 

between the predicted and observed output responses. For instance, if the value of 

the MPCR metric is close to 0, it can be concluded that the two probability 

distributions of the predicted and observed output responses are perfectly matched 

to each other. Conversely, if the value of the MPCR metric is close to 2𝑑, the two 

probability distributions do not coincide with each other.  

The following section will demonstrate three case studies to show the outstanding 

performances of the proposed MPCR metric, as compared to existing calibration 

metrics, with respect to its ability to effectively consider the statistical correlation 

between multivariate output responses in optimization-based statistical model 

calibration. 
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4.3  Case Studies 

In this section, two mathematical and two engineering examples are demonstrated to 

verify the effectiveness of the proposed MPCR metric. Here, the multi-start method, 

which is global optimization algorithm using multiple start points, was used as an 

optimizer. The initial points were sampled by using Latin hypercube sampling (LHS). 

The sequential quadratic programing was applied to all the initial points for each 

method. The computational cost and accuracy of each calibration metric are 

compared in each case study.  

In the first mathematical example, the correlated bivariate output responses are 

considered to investigate the statistical correlation; in the second mathematical 

example, the correlated multivariate output responses are considered to investigate 

the curse of dimensionality. The first engineering example considers modal analysis 

of a beam structure with uncertain rotational stiffness boundary conditions to 

investigate scale issue. The second engineering example considers crashworthiness 

of vehicle side impact to demonstrate the effectiveness of the proposed method in a 

high dimensional and nonlinear problem. The calibration parameters of the input 

variables were inversely inferred by using optimization-based statistical model 

calibration. For the JL metric, the multivariate KDE and Gaussian copula are used 

to model the joint PDF; here, the former is called the JLKDE and the latter is called 

the JLCopula. The results are compared, with consideration of calibration metric 

properties. 

4.3.1 Mathematical example 1: Bivariate output responses (Statistical 

correlation issue 
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In this example, the bivariate output responses are considered; one is a quadratic 

equation and the other is a linear equation. The functional relations between the input 

variables and the output responses are defined as: 

𝑦̂1(𝑥) = 𝐛1𝐗 + 𝐗𝐓𝐇1𝐗 

𝑦̂2(𝑥) = 𝐛2𝐗 
(4.23) 

where X=[x1 x2]T; b1=[1 0]; H1=[0.2 0; 0 0]; and b2=[1 -2]. The notions b and H are 

linear coefficients and Hessian matrices, respectively. Here, the input variables X 

are assumed to follow normal distributions. Then, the statistical parameters (the 

mean and standard deviation) of the input variables are assigned to be calibration 

parameters in the optimization-based statistical model calibration. The true statistical 

parameter vector of the input variables, denoted by 𝛉∗, is that [μ1, σ1, μ2, σ2]= [-6, 

0.2, -3, 0.2]. The observed bivariate output responses are given with 100 samples, as 

shown in Figure 4-2. 

The number of runs for the Monte Carlo simulation (MCS) was 10,000 in this 

example. The marginal PDFs of the predicted output responses after optimization-

 

 

Figure 4-2 Observed correlated bivariate output responses (mathematical example 

1) 
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based statistical model calibration are estimated by using the KDE with 10,000 

samples, as shown in Figure 4-3. For each of the calibration metrics, the marginal 

PDFs of the predicted output responses after optimization-based statistical model 

calibration are in a very good agreement with the histograms of the observed ones. 

However, it is worth pointing out that even though the marginal PDFs of the 

predicted output responses are well matched with the histograms of the observed 

ones, the marginal PDFs of the input variables calibrated by the ML are invalid, as 

shown in Figure 4-4. This implies that the ML was failed to correctly infer the mean 

values of the input variables in Eq. (4.23). The other calibration metrics (the MPCR, 

the MM, the JLKDE, and the JLCopula), which are formulated considering statistical 

correlation, gave the valid results. This is attributed to the fact that optimization-

based statistical model calibration inversely estimates the calibration parameters by 

maximizing the agreement (or minimizing the disagreement) between the two 

probability distributions of the predicted and observed output responses.  

The joint PDF contours of the predicted output response calibrated by the 

MPCR and ML were drawn in Figure 4-5, respectively. The joint PDF contours were 

obtained by using the multivariate KDE from 10,000 samples. The scatters indicate 

the observed output response. It is interesting that the predicted output response 

calibrated by the ML exhibits totally opposite statistical correlation, as compared to 

the observed one. This is because the ML is formulated with an assumption that the 

bivariate output responses are not statistically correlated to each other. It can be thus 

concluded that even though the predicted marginal PDF of the output response after 

calibration matches well with the observed one, inaccurate solutions could be 

obtained if the statistical correlation between the output responses is not properly 
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considered in formulating a calibration metric. 

Table 4-1 summarizes the estimated calibration parameters, relative errors, 

iterations, and function calls for optimization-based statistical model calibration. 

Except for the ML, the relative errors of the estimated calibration parameters are 

below 10 % which are acceptable. It is worth noticing that the iteration and function 

 
Figure 4-3 Calibrated marginal PDFs of the output responses (mathematical 

example 1) 

 
 

Figure 4-4 Calibrated marginal PDFs of the input variables (mathematical 

example 2) 

 

 
Figure 4-5 The joint PDFs of the output responses calibrated by the MPCR and 

ML 
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calls for calibration using the ML is the highest; even its accuracy is poor. In general, 

the computational cost of optimization-based statistical model calibration is 

proportional to the function calls. Since each function call requires UP analysis, 

therefore, it can be concluded that the proposed MPCR is efficient as well as accurate 

for optimization-based statistical model calibration in the first mathematical example.  

 

 

Table 4-1 The estimated statistical parameters, relative errors, iterations, and 

function calls (Mathematical example 1) 

Calibration metric 
Calibration parameters 

Iterations 
Function 

calls 𝜇1 𝜎1 𝜇2 𝜎2 

Exact solution -6.00 0.20 -3.00 0.20 - - 

MPCR 
Estimate -6.03 0.18 -3.03 0.22 

22 142 
Error (%) 0.53 -9.11 1.16 8.28 

ML 
Estimate 1.03 0.19 0.50 0.19 

54 290 
Error (%) -117.09 -4.94 -116.56 -6.59 

MM 
Estimate -6.03 0.16 -3.04 0.20 

26 181 
Error (%) 0.50 -19.76 1.24 -1.59 

JL  

(KDE)  

Estimate -6.03 0.19 -3.03 0.19 
21 171 

Error (%) 0.46 -7.40 1.04 -4.89 

JL  

(Gaussian 

copula) 

Estimate -6.02 0.19 -3.03 0.20 
22 143 

Error (%) 0.37 -6.71 1.18 1.36 

MPCR: Marginal probability correlation residual 

ML: Marginal likelihood metric 

MM: Moment matching metric 

JL: Joint likelihood metric 

Error = 100 × (𝑠 − 𝑠̂)/𝑠 (%), 𝑠 is the exact value and 𝑠̂ is an estimate 
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4.3.2 Mathematical example 2: Multivariate output responses (Curse 

of dimensionality issue) 

The first example considered two correlated output responses. However, when the 

output responses are involved more, the curse of dimensionality issue could arise in 

optimization-based statistical model calibration. The second mathematical example 

thus considers five correlated output responses to investigate the curse of 

dimensionality issue; all the functional relations between the input variables and 

output responses are linear equations as: 

𝑦̂𝑖(𝑥) = c𝑖 + 𝐛𝑖𝐗 (𝑖 = 1, 2, … , 5) (4.24) 

where X=[x1 x2 x3 x4 x5]T; b1=[0 9 3 -8 -2]; b2=[5 -1 3 3 9]; b3=[9 -6 8 5 0]; b4=[-5 -

6 7 5 -2]; b5=[-2 8 1 4 2]; and [c1 c2 c3 c4 c5] = [2 7 8 2 2]. The notations b and c are 

linear coefficients and constants, respectively. Here, the input variables X are 

assumed to follow normal distributions. Then, the statistical parameters (the mean 

and standard deviation) of the input variables are assigned to be calibration 

parameters in optimization-based statistical model calibration. The true statistical 

parameter vector of the input variables, denoted by 𝛉∗, is that [μ1, σ1, μ2, σ2, μ3, σ3, 

μ4, σ4, μ5, σ5] = [2, 0.5, 4, 0.3, 1, 0.6, 5, 0.7, 2, 0.4]. 

To investigate how the curse of dimensionality affects optimization-based 

statistical model calibration, the number of runs for the MCS varies from one 

hundred to ten thousands in this example. The marginal PDFs of the predicted output 

responses after optimization-based statistical model calibration are estimated by 

using the KDE with 10,000 samples, as shown in Figure 4-6. For the remaining four 

different calibration metrics excepting the ML, the marginal PDFs of the predicted 

output responses after optimization-based statistical model calibration are in a good 
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agreement with the histograms of the observed ones. 

As shown in Figure 4-7, the marginal PDFs of the input variables calibrated by 

the ML are inaccurate regardless of the MCS sampling size; this is, because it does 

not consider the statistical correlation between the multivariate output responses. It 

is worth noting that the calibration results of the JLKDE become increasingly accurate, 

as the number of MCS runs is increased. This is due to the curse of dimensionality 

that causes the inaccurate estimation of the joint PDF when the number of runs for 

the MCS is relatively small. In general, because of data sparseness, the multivariate 

KDE requires larger sample sizes, as the dimension of the output responses increases. 

On the other hand, the number of MCS runs has little influence on the marginal 

PDFs of the input variables calibrated by the MPCR and JLCopula, as shown in Figure 

4-7. The MPCR metric does not suffer from the curse of dimensionality, since it 

incorporates the univariate KDE into the modeling of the marginal PDF. Even 

though JLCopula requires joint PDF modeling, it is known that the Gaussian copula 

does not suffer from the curse of dimensionality. However, use of the Gaussian 

copula will cause the improper modeling of the joint PDF when the assumed 

distribution of the input variable differs from the true distribution. 

The joint PDF contours of the first and second predicted output responses (y1-

y2 and y4-y5) after calibration when the number of MCS runs is 10,000 were drawn 

in Figure 4-8. The joint PDF contours were obtained by using the multivariate KDE 

from 10,000 samples. The scatters indicate the observed output response. It is 

interesting that the predicted output responses calibrated by the ML exhibit totally 

opposite statistical correlation, as compared to the observed one. It can be concluded 
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from the results that the proposed MPCR can improve the accuracy of optimization-

based statistical model calibration even for a high-dimensional problem. 

 

 (a) (b) (c) 

Figure 4-6 Calibrated marginal PDFs of the output response with the number of 

MCS runs of: (a) 100, (b) 1,000, and (c) 10,000 (mathematical example 2) 
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 (a) (b) (c) 

Figure 4-7 Calibrated marginal PDFs of the input variables with the number of 

MCS runs of: (a) 100, (b) 1,000, and (c) 10,000 (mathematical example 2) 
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Table 4-2,4-2 and 4-3 summarize the estimated calibration parameters, relative 

errors, iterations, and function call for optimization-based statistical model 

calibration, which depend on the number of MCS runs. The relative error of the 

estimated calibration parameters by using the ML are not acceptable regardless of 

 

(a) The join PDF and scatter plot of y1 and y2 

 

(b) The join PDF and scatter plot of y4 and y5 

Figure 4-8 Calibrated joint PDFs of the output responses (mathematical example 

2) 
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the number of MCS runs. In addition, the relative errors of the JLKDE decrease, as the 

number of MCS runs increases. The relative errors of the MPCR, JLCopula, and MM 

are less than 40 %, regardless of the number of MCS runs. Even though the function 

call of the MPCR is relatively high compared to the other calibration metric, it can 

lead to an accurate solution regardless of the number of MCS runs in this example. 
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Table 4-2 The estimated calibration parameters, relative errors, iterations, and function calls (Mathematical example 2: the number of MCS 

runs is 100) 

Calibration metric 
Calibration parameters 

Iterations 
Function 

calls 𝜇1 𝜎1 𝜇2 𝜎2 𝜇3 𝜎3 𝜇4 𝜎4 𝜇5 𝜎5 

Exact solution 2.00 0.50 4.00 0.30 1.00 0.60 5.00 0.70 2.00 0.40 - - 

MPCR 
Estimate 1.99 0.56 3.96 0.29 0.89 0.61 4.94 0.89 2.10 0.44 

58 725 
Error (%) -0.40 11.48 -1.09 -3.78 -10.50 1.62 -1.20 27.36 5.19 8.99 

ML 
Estimate 1.78 0.10 3.83 0.12 0.65 0.45 4.95 0.70 2.64 0.77 

37 511 
Error (%) -10.98 -80.00 -4.36 -58.60 -34.60 -25.77 -0.96 0.67 32.05 92.05 

MM 
Estimate 1.90 0.45 4.04 0.20 0.84 0.47 4.92 0.77 2.05 0.33 

53 701 
Error (%) -5.06 -9.06 1.04 -33.26 -16.04 -22.12 -1.52 10.52 2.29 -18.08 

JL  

(KDE) 

Estimate 1.67 0.49 4.01 0.17 1.00 0.28 4.83 1.30 2.18 0.10 
38 522 

Error (%) -16.54 -1.52 0.22 -41.94 0.04 -53.62 -3.42 85.85 8.76 -75.00 

JL 

(Gaussian 

copula) 

Estimate 1.90 0.51 3.98 0.30 0.92 0.53 5.04 0.86 1.97 0.31 

51 664 
Error (%) -4.88 2.26 -0.51 -0.35 -8.43 -11.54 0.74 23.14 -1.38 -21.43 

MPCR: Marginal probability correlation residual 

ML: Marginal likelihood metric 

MM: Moment matching metric 

JL: Joint likelihood metric 

Error = 100 × (𝑠 − 𝑠̂)/𝑠 (%), 𝑠 is the exact value and 𝑠̂ is an estimate 
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Table 4-3 The estimated calibration parameters, relative errors, iterations, and function calls using (Mathematical example 2: the number 

of MCS runs is 1,000) 

Calibration metric 
Calibration parameters 

Iterations 
Function 

calls 𝜇1 𝜎1 𝜇2 𝜎2 𝜇3 𝜎3 𝜇4 𝜎4 𝜇5 𝜎5 

Exact solution 2.00 0.50 4.00 0.30 1.00 0.60 5.00 0.70 2.00 0.40 - - 

MPCR 
Estimate 1.92 0.54 3.98 0.31 0.89 0.62 5.06 0.86 2.09 0.38 

50 646 
Error (%) -3.81 8.33 -0.39 2.86 -10.84 2.57 1.13 22.33 4.35 -4.20 

ML 
Estimate 0.77 0.23 3.63 0.38 1.49 1.76 4.38 0.31 2.81 0.10 

54 702 
Error (%) -61.25 -54.90 -9.25 25.63 49.20 192.64 -12.39 -56.02 40.38 -75.00 

MM 
Estimate 1.95 0.47 4.03 0.25 0.89 0.50 5.00 0.84 2.01 0.35 

42 593 
Error (%) -2.45 -6.56 0.66 -17.32 -10.87 -16.53 -0.07 20.59 0.29 -12.42 

JL  

(KDE) 

Estimate 1.70 0.46 4.00 0.14 1.01 0.41 4.33 1.44 2.13 0.14 
44 584 

Error (%) -15.13 -7.56 -0.01 -51.79 0.65 -31.61 -13.35 105.90 6.58 -65.80 

JL 

(Gaussian 

copula) 

Estimate 1.96 0.50 4.01 0.29 0.88 0.57 5.06 0.83 2.04 0.36 

33 478 
Error (%) -2.22 -0.51 0.15 -2.40 -11.59 -5.00 1.12 19.01 1.91 -11.15 

MPCR: Marginal probability correlation residual 

ML: Marginal likelihood metric 

MM: Moment matching metric 

JL: Joint likelihood metric 

Error = 100 × (𝑠 − 𝑠̂)/𝑠 (%), 𝑠 is the exact value and 𝑠̂ is an estimate 
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Table 4-4 The estimated calibration parameters, relative errors, iterations, and function calls using (Mathematical example 2: the number 

of the MCS is 10,000) 

Calibration metric 
Calibration parameters 

Iterations 
Function 

calls 𝜇1 𝜎1 𝜇2 𝜎2 𝜇3 𝜎3 𝜇4 𝜎4 𝜇5 𝜎5 

Exact Solution 2.00 0.50 4.00 0.30 1.00 0.60 5.00 0.70 2.00 0.40 - - 

MPCR 
Estimate 1.92 0.56 3.99 0.33 0.91 0.61 4.98 0.92 2.03 0.39 

55 688 
Error (%) -3.95 12.09 -0.21 9.69 -9.40 2.30 -0.32 31.49 1.64 -3.25 

ML 
Estimate 2.80 1.34 4.30 0.10 0.62 1.73 5.62 0.62 0.84 0.10 

39 514 
Error (%) 40.02 167.85 7.46 -66.67 -38.21 188.15 12.33 -10.99 -58.15 -75.00 

MM 
Estimate 1.94 0.46 4.01 0.26 0.89 0.52 5.00 0.84 2.03 0.34 

49 666 
Error (%) -2.87 -8.10 0.27 -12.66 -10.94 -13.40 -0.02 20.20 1.43 -15.05 

JL  

(KDE) 

Estimate 2.03 0.41 4.01 0.25 1.27 0.72 4.91 0.86 2.18 0.43 
40 546 

Error (%) 1.73 -18.39 0.36 -16.68 27.43 20.52 -1.84 23.50 8.79 7.39 

JL 

(Gaussian 

copula) 

Estimate 1.95 0.50 4.01 0.29 0.89 0.58 5.01 0.84 2.03 0.35 

54 713 
Error (%) -2.68 0.74 0.14 -4.16 -11.09 -3.56 0.13 20.42 1.72 -13.00 

MPCR: Marginal probability correlation residual 

ML: Marginal likelihood metric 

MM: Moment matching metric 

JL: Joint likelihood metric 

Error = 100 × (𝑠 − 𝑠̂)/𝑠 (%), 𝑠 is the exact value and 𝑠̂ is an estimate 
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4.3.3 Engineering example 1: Modal analysis of a beam structure with 

uncertain rotational stiffness boundary conditions (Scale issue) 

The boundaries of beam structures can be theoretically described as simply-

supported or fixed conditions. However, in practice, the boundaries of beam 

structures might be clamped with joining processes, such as bolting, welding, or 

riveting. In this situation, the boundary condition of a beam structure cannot be 

exactly described as either having a simply-supported or a fixed condition. Therefore, 

the stiffness of the boundary conditions is uncertain, and decreases with time due to 

wear and/or looseness. In this example, optimization-based statistical model 

calibration is performed to infer the unknown statistical parameters of the rotational 

stiffness of the boundary condition of a beam structure. 

The beam structure, which consists of six elements and seven nodes, was 

described in Figure 4-9. The boundary condition of the beam structure is modeled as 

the rotational stiffness connected between the rigid wall and the boundary nodes. 

The displacement in the y-direction is fixed at the end nodes 1 and 7. In Figure 4-9, 

𝑘𝑟  and 𝑘𝑙  denote the rotational stiffness at the left and right ends of the beam, 

respectively. In this study, the bivariate output responses include the 3rd natural 

frequency of the beam, and the 3rd mode shape value ratio in the y-direction of the 

4th and 6th nodes. In real experiments, the natural frequency and corresponding 

mode shape can be measured by a modal test. In this study, a computational model 

using a finite element method (FEM) was constructed to perform modal analysis. 

The Euler-Bernoulli beam theory is incorporated into the FEM to simulate the 

behavior of the beam. 
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The displacement of the Euler-Bernoulli beam can be mathematically described 

by a partial differential equation (PDE) as: 

𝑢 = −𝑦
𝑑𝑣

𝑑𝑥
  (4.25) 

where 𝑢 and 𝑣 denote the displacement in the 𝑥- and 𝑦-directions, respectively. 

Based on the FEM, the equation of motion can be expressed as:  

𝐌𝑎𝐔̈ + 𝐊𝑎𝐔 = 𝐅 (4.26) 

where 𝐌𝑎 and 𝐊𝑎 denote the assembled mass and stiffness matrices, respectively; 

and the U and F denote the state (degree of freedom) and force vectors, respectively. 

The state and force vectors of the ith element are defined, respectively, as: 

𝐮𝑖 = {

𝑣𝑖

𝜃𝑖

𝑣𝑖+1

𝜃𝑖+1

} , 𝐟𝑖 = {

𝑓𝑖

𝑚𝑖

𝑓𝑖+1

𝑚𝑖+1

} (𝑖 = 1, … ,6) (4.27) 

The beam element mass and stiffness matrices are defined, respectively, as: 

𝐌𝑒 =
𝜌𝑑𝐴𝑙

420
[

156 22𝑙 54 −13𝑙
22𝑙 4𝑙2 13𝑙 −3𝑙2

54 13𝑙 156 −22𝑙
−13𝑙 −3𝑙2 −22𝑙 4𝑙2

] , 𝐊𝑒 =
𝐸𝐼

𝑙3 [

12 6𝑙 −12 6𝑙
6𝑙 4𝑙2 −6𝑙 2𝑙2

−12 −6𝑙 12 −6𝑙
6𝑙 2𝑙2 −6𝑙 4𝑙2

] (4.28) 

where E denotes the Young’s modulus; 𝜌𝑑 denotes the density; 𝐼 and 𝐴 denote 

the moment of inertia and cross-sectional area of the beam, respectively; and 𝑙 

denotes the beam length. In this example, it is assumed the beam is made of 

 

Figure 4-9 Schematic representation of the beam structure 
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aluminum (E = 70 GPa and 𝜌𝑑 = 2760 kg/m3). The width, thickness, and length of 

the beam are 15 mm, 1.5 mm, and 240 mm, respectively; the shape of the cross-

section is rectangular. 

It is assumed that the rotation spring constant at the left and right ends of the 

beam, denoted by 𝑘𝑙  and 𝑘𝑟 , follow normal distributions. Here, the calibration 

parameter is the normalized statistical parameter (𝛉/𝑘𝑟), where 𝑘𝑟,0 is the nominal 

value of the rotational stiffness (𝑘𝑟,0 = 400 N∙m). The true statistical parameters of 

the input variables, denoted by 𝛉∗ , is that [μ1, σ1, μ2, σ2] = [0.10𝑘𝑟,0 , 0.05𝑘𝑟,0 , 

0.70𝑘𝑟,0 , 0.03𝑘𝑟,0]. The observed bivariate output responses are given with 100 

samples, as shown in Figure 4-10. It should be noted that there is a scale difference 

between the 3rd natural frequency and the mode shape value ratio. 

The number of MCS runs was 10,000 in this example. The marginal PDFs of 

the predicted output responses after optimization-based statistical model calibration 

are estimated using the KDE with 10,000 samples, as shown in Figure 4-11. For the 

remaining three different calibration metrics, excepting the ML and MM, the 

marginal PDFs of the predicted output responses after optimization-based statistical 

 

Figure 4-10 Observed correlated bivariate output responses (engineering example 

1) 
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model calibration are in a good agreement with the histograms of the observed ones. 

For both 𝑘𝑙  and 𝑘𝑟 , the predicted marginal PDFs of the input variables 

calibrated by the MPCR (red color) are in a very good agreement with the exact ones, 

as shown in Figure 4-12. However, both the ML and MM failed to correctly estimate 

the calibration parameters. As explained in Section 4.1.2, the MM requires the 

weighting matrix and vector to aggregate the mean vector and covariance matrix 

differences as one scalar value. In this example, the weighting matrix and vector 

were set as the identity matrix and ones-vector, respectively. However, the weighting 

matrix and vector should be carefully chosen when the output responses have a 

different unit and scale. Therefore, since there is a scale difference between the 3rd 

natural frequency and mode shape value ratio, the MM provided inaccurate 

calibration results. For the rotation spring constant at the left 𝑘𝑙 , the JLKDE and 

JLCopula provide valid calibration results. However, for the rotation spring constant at 

the right 𝑘𝑟 , the predicted marginal PDF calibrated by the JLCopula is inaccurate, 

especially in terms of standard deviation. The JLCopula is formulated with an 

assumption that the output responses follow Gaussian distributions. In this example, 

even though the input variables follow a Gaussian distribution, the bivariate output 

responses do not; thereby, the calibration result of the JLCopula for 𝑘𝑟 is not valid. 

This issue is related to the flexibility of the Gaussian copula. 
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The joint PDF contours of the predicted output responses were drawn in Figure 

4-13. The joint PDF contours were obtained by using the multivariate KDE from 

 

Figure 4-11 Calibrated marginal PDFs of the output responses (engineering 

example 1) 

 
Figure 4-12 Calibrated marginal PDFs of the input variables (engineering example 

1) 

 
Figure 4-13 Calibrated joint PDFs of the output responses (engineering example 

1) 
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10,000 samples. The scatters indicate the observed output response. The predicted 

joint PDFs calibrated by the MM and ML are somewhat distorted and have opposite 

statistical correlation, as compared to the scatters. It can be thus concluded from the 

results that it is better to normalize a calibration metric to avoid the scale issue while 

considering the statistical correlation. 

Table 4-5 The estimated statistical parameters, relative errors, iterations, and 

function calls (Mathematical example 1) 

Calibration metric 

Calibration parameters 

Iterations 
Function 

calls 
𝜇1

𝑘𝑟,0
 

𝜎1

𝑘𝑟,0
 

𝜇2

𝑘𝑟,0
 

𝜎2

𝑘𝑟,0
 

Exact solution 0.10 0.05 0.70 0.03 - - 

MPCR 

Estimate 0.10 0.06 0.70 0.03 

17 119 Error 

(%) 
0.01 10.67 -0.47 -14.02 

ML 

Estimate 0.36 0.10 0.17 0.06 

15 119 Error 

(%) 
259.84 100.12 -76.23 91.65 

MM 

Estimate 0.26 0.07 0.33 0.06 

8 82 Error 

(%) 
163.26 32.71 -52.39 93.45 

JL  

(KDE)  

Estimate 0.12 0.04 0.73 0.02 

15 121 Error 

(%) 
16.83 -13.53 4.12 -24.94 

JL  

(Gaussian 

copula) 

Estimate 0.11 0.05 0.69 0.01 

17 108 Error 

(%) 
5.37 -3.09 -1.52 -66.67 

MPCR: Marginal probability correlation residual 

ML: Marginal likelihood metric 

MM: Moment matching metric 

JL: Joint likelihood metric 

Error = 100 × (𝑠 − 𝑠̂)/𝑠 (%), 𝑠 is the exact value and 𝑠̂ is an estimate 
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Table 4-5 shows the estimated calibration parameters, relative errors, iterations, 

and function call for optimization based statistical model calibration. It is worth 

pointing out that the relative errors of the estimated calibration parameters obtained 

by the proposed MPCR is the smallest compared to the other calibration metrics.  

 

4.3.4  Engineering example 2: Crashworthiness of vehicle side impact 

(High dimensional & nonlinear problem) 

In this example, a model for crashworthiness analysis of vehicle side impact 

[86] is statistically calibrated, which is high dimensional and nonlinear problem. The 

predictive capability of a model for crashworthiness analysis is important in reliable 

vehicle design. Statistical model calibration can be used to improve the credibility 

of crashworthiness analysis. In this study, it is assumed that the multivariate output 

responses can be measured by sensor attached to a dummy and a vehicle during side 

impact testing. The multivariate output responses include the abdomen load (y1); the 

upper, middle, and lower rib deflections (y2, y3, y4); the upper, middle, and lower 

viscous criteria (y5, y6, y7); the public symphysis force (y8); the velocity of the B-

pillar (y9); and the velocity of the front door (y10). Due to the expense of a full-vehicle 

FE structural model, this study used the global response surface model generated 

using the quadratic backward-Stepwise Regression (SR), which was employed by 

Youn at el [] as: 

𝑦1 = 1.16 − 0.3717𝑥2𝑥4 − 0.00931𝑥2𝑥10 − 0.484𝑥3𝑥9 + 0.01343𝑥6𝑥10  (4.29) 

𝑦2 = 28.98 + 3.818𝑥3 − 4.2𝑥1𝑥2 + 0.0207𝑥5𝑥10 + 6.63𝑥6𝑥9 

−7.7𝑥7𝑥8 + 0.32𝑥9𝑥10  
(4.30) 
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𝑦3 = 33.86 + 2.95𝑥3 + 0.1792𝑥10 − 5.057𝑥1𝑥2 − 11.0𝑥2𝑥8 − 0.0215𝑥5𝑥10 

−9.98𝑥7𝑥8 + 22.0𝑥8𝑥9 
(4.31) 

𝑦4 = 46.36 − 9.9𝑥2 − 12.9𝑥1𝑥8 + 0.1107𝑥3𝑥10  (4.32) 

𝑦5 = 0.261 − 0.0159𝑥1𝑥2 − 0.188𝑥1𝑥8 − 0.019𝑥2𝑥7 + 0.0144𝑥3𝑥5 

+0.0008757𝑥5𝑥10 + 0.08045𝑥6𝑥9 + 0.00139𝑥8𝑥11 + 0.00001575𝑥10𝑥11  
(4.33) 

𝑦6 = 0.214 + 0.00817𝑥5 − 0.131𝑥1𝑥8 − 0.0704𝑥1𝑥9 + 0.03099𝑥2𝑥6 

−0.018𝑥2𝑥7 + 0.0208𝑥3𝑥8 + 0.121𝑥3𝑥9 − 0.00364𝑥5𝑥6 

+0.0007715𝑥5𝑥10 − 0.0005354𝑥6𝑥10 + 0.00121𝑥8𝑥11 

(4.34) 

𝑦7 = 0.74 − 0.061𝑥2 − 0.163𝑥3𝑥8 + 0.001232𝑥3𝑥10 − 0.166𝑥7𝑥9 

+0.227𝑥2
2  

(4.35) 

𝑦8 = 4.72 − 0.5𝑥4 − 0.19𝑥2𝑥3 − 0.0122𝑥4𝑥10 + 0.009325𝑥6𝑥10 

+0.000191𝑥11
2   

(4.36) 

𝑦9 = 10.58 − 0.674𝑥1𝑥2 − 1.95𝑥2𝑥8 + 0.02054𝑥3𝑥10 

−0.0198𝑥4𝑥10 + 0.028𝑥6𝑥10  
(4.37) 

𝑦10 = 16.45 − 0.489𝑥3𝑥7 − 0.843𝑥5𝑥6 + 0.0432𝑥9𝑥10 

−0.0556𝑥9𝑥11 − 0.000786𝑥11
2   

(4.38) 

where x1 to x7 denote the thickness of B-pillar inner (x1), B-pillar reinforce (x2), Floor 

side inner (x3), Cross member (x4), Door beam (x5), Door belt line (x6), and Roof rail 

(x7), respectively; x8 and x9 denote the Young’s modulus of B-pillar inner (x8), and 

floor side inner (x9), respectively; x10 and x11 denote barrier height (x10), and hitting 

position (x11), respectively. he input variables, x1 to x7 are assumed to follow 

lognormal distributions, while x8 and x9 are assumed to follow normal distributions. 

Then, the statistical parameters (the mean and standard deviation) of x1 to x9 are 

assigned to be calibration parameters in optimization-based statistical model 

calibration. The true statistical parameter vector of the input variables, denoted by 

θ∗, is that [μ1, σ1, μ2, σ2, μ3, σ3, μ4, σ4, μ5, σ5, μ6, σ6, μ7, σ7, μ8, σ8, μ9, σ9] = [0.51, 0.22, 

1.42, 0.19, 0.49, 0.17, 1.34, 0.30, 0.69, 0.22, 1.49, 0.32, 0.50, 0.11, 0.36, 0.06, 0.20, 

0.06]. Table 4-6 summarizes the information of the input variables, x1 to x9. In this 
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study, x10 and x11 are considered as known input variables with uniform distributions. 

The mean and standard deviation of x10 and x11 are defined as [μ10, σ10, μ11, σ11] = 

[0.00, 1.00, 0.00, 1.00]. 

The number of MCS runs was 10,000 in this example. The marginal PDFs of 

the predicted output responses after optimization-based statistical model calibration 

are estimated by using the KDE with 10,000 samples, as shown in Figure 4-14. For 

the remaining four different calibration metrics excepting the MM, the marginal 

PDFs of the predicted output responses after optimization-based statistical model 

calibration are in a good agreement with the histograms of the observed ones. 

The predicted marginal PDFs of the input variables calibrated by the MPCR 

(red solid line) and JLCopula (green dashed line) are in a very good agreement with the 

exact ones, as shown in Figure 4-15. However, the ML, MM, and JLKDE fail to 

correctly estimate the calibration parameters due to their own limitation, as explained 

Table 4-6 Information of the input variables of the vehicle side impact model 

Category (Unit) 
Input 

Variables 

Vehicle 

Component 

Distribution 

Type 

Thickness (mm) 

x1 B-pillar inner Lognormal 

x2 B-pillar reinforce Lognormal 

x3 Floor side inner Lognormal 

x4 Cross member Lognormal 

x5 Door beam Lognormal 

x6 Door belt line Lognormal 

x7 Roof rail Lognormal 

Young’s modulus  

(GPa) 

x8 B-pillar inner Normal 

x9 floor side inner Normal 
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in Sections 4.1.1 and 4.1.2. the ML does not consider the statistical correlation 

between the multivariate output responses; the JLKDE suffers from curse of 

dimensionality that causes the inaccurate estimation of the joint PDF in high 

dimensional problems; the MM could lead to an inaccurate solution when there is 

large scale difference in multivariate output responses. Table 4-7 summarizes the 

estimated calibration parameters, relative errors, required iterations, function calls, 

and computation time for calibration. It is worth noticing that the relative errors of 

the estimated calibration parameters by the MPCR are relatively small, compared to 

the other calibration metrics. 

The joint PDF contours of the first and second predicted output responses (y1, 

y2) after calibration were drawn in Figure 4-16. The joint PDF contours were 

obtained by using the multivariate KDE from 10,000 samples. The scatters indicate 

the observed output response. The predicted joint PDFs calibrated by the MM is 

somewhat distorted, compared to the scatters. 
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Figure 4-14 Calibrated marginal PDFs of the output responses (engineering 

example 2) 
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Figure 4-15 Calibrated marginal PDFs of the input variables (engineering example 

2) 
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(a) The join PDF and scatter plot of y1 and y2 

 

 (b) The join PDF and scatter plot of y9 and y10 

Figure 4-16 Calibrated joint PDFs of the output responses (engineering example 

2) 
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Table 4-7 The estimated calibration parameters, relative errors, iterations, and function calls (Engineering example 2) 

Calibration metric 
Calibration parameters 

Iter. F.C 
𝜇1 𝜎1 𝜇2 𝜎2 𝜇3 𝜎3 𝜇4 𝜎4 𝜇5 𝜎5 𝜇6 𝜎6 𝜇7 𝜎7 𝜇8 𝜎8 𝜇9 𝜎9 

Exact solution 0.51 0.22 1.42 0.19 0.49 0.17 1.34 0.30 0.69 0.22 1.49 0.32 0.50 0.11 0.36 0.06 0.20 0.06 - - 

MPCR 
Estimation 0.49 0.21 1.40 0.18 0.46 0.10 1.28 0.28 0.73 0.27 1.41 0.19 0.51 0.10 0.36 0.07 0.20 0.05 

52 1107 
Error (%) -3.30 -1.31 -1.47 -1.32 -6.43 -39.59 -4.42 -6.71 6.40 25.60 -5.04 -41.65 3.35 -12.73 1.27 25.77 3.72 -15.55 

ML 
Estimation 0.33 0.22 1.46 0.18 0.73 0.19 1.17 0.25 0.76 0.51 1.19 0.22 0.85 0.10 0.38 0.04 0.17 0.05 

83 1811 
Error (%) -35.84 0.38 2.63 -4.98 47.46 12.86 -12.83 -16.16 10.70 133.48 -19.66 -33.30 71.15 -12.73 8.14 -26.79 -14.54 -21.35 

MM 
Estimation 0.82 0.18 1.31 0.20 0.93 0.15 1.17 0.10 0.77 0.13 1.24 0.36 0.87 0.17 0.30 0.07 0.27 0.01 

56 1242 
Error (%) 60.04 -17.22 -7.68 8.21 87.41 11.47 -12.30 -66.98 12.25 -42.52 -16.69 12.17 74.60 48.52 -15.00 26.68 35.51 -84.30 

JL  
(KDE)  

Estimation 0.47 0.19 1.42 0.15 0.54 0.10 1.25 0.24 0.75 0.35 1.35 0.15 0.61 0.10 0.37 0.03 0.19 0.01 
42 983 

Error (%) -7.12 -13.62 -0.36 -19.95 8.47 39.59 -7.01 -21.84 9.34 61.32 -8.91 -52.34 22.56 -12.73 4.58 -53.13 -4.82 -84.30 

JL 

(Gaussian 

copula) 

Estimation 0.52 0.27 1.38 0.21 0.52 0.18 1.26 0.28 0.77 0.30 1.40 0.39 0.55 0.10 0.36 0.06 0.21 0.07 

46 1080 
Error (%) 1.85 25.91 -3.23 10.94 4.60 8.61 -6.06 -6.28 12.14 35.57 -5.76 20.60 10.40 -12.73 1.59 4.12 6.67 9.48 

MPCR: Marginal probability correlation residual 
ML: Marginal likelihood metric 

MM: Moment matching metric 
JL: Joint likelihood metric 

Iter.: Iteration 

F.C.: Function calls 

Error = 100 × (𝑠 − 𝑠̂)/𝑠 (%), 𝑠 is the exact value and 𝑠̂ is an estimate 
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4.4 Summary and Discussion 

This study proposed a new calibration metric, namely Marginal Probability and 

Correlation Residuals (MPCR), to properly consider the statistical correlation 

between multivariate output responses in optimization-based statistical model 

calibration. The foundational idea of the proposed MPCR metric is to decompose a 

multivariate joint probability distribution into multiple marginal probability 

distributions, while considering the statistical correlation between output responses. 

Two mathematical and two engineering examples were demonstrated to verify the 

effectiveness of the MPCR metric. It can be concluded from the results that even 

though the predicted marginal PDF of the output response after calibration matches 

well with the observed one, inaccurate solutions may be obtained if the statistical 

correlation between the output responses is not properly considered when 

formulating a calibration metric. 

The MPCR metric has many favorable properties as a calibration metric, such 

as 1) marginalization, 2) normalization, and 3) boundedness. Owing to 

marginalization, the MPCR metric does not suffer from curse of dimensionality, 

since it incorporates the univariate KDE into the modeling of the marginal PDF. 

Owing to normalization, the MPCR metric can provide accurate calibration results 

even when there is a scale difference between the output responses. In addition, since 

the value of the MPCR metric is bounded, it can directly inform the statistical 

similarity or dissimilarity between the predicted and observed output responses. It is 

thus believed that the proposed MPCR metric will be very helpful for improving the 

accuracy and robustness of optimization-based statistical model calibration when the 

multivariate output responses are statistically correlated. 
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Chapter 5 Hybrid Model Calibration and Updating for Estimating System Failure  

 

Hybrid Model Calibration and 

Updating  

For Estimating System Failure 

 

In Chapter 4, the statistical correlation in output response was taken to estimate the 

uncertainty in the model input parameter. The predictive capability of the digital twin 

approach is improved by considering uncertainties in manufacturing and test 

conditions using statistical model calibration. Maintaining the high predictive 

capability of a digital twin model under system failure is of great concern to the 

engineers who make design decisions at the early stages of product development. 

The physics-based digital twin can give a physical intuition such as prognosis and 

diagnosis of system failure. However, it hard to apply the physics-based digital twin 

approach to estimate system failure by the computational cost and lack of 

information. There is thus an urgent need to develop hybrid digital twin approach for 

evaluating system failure under physical uncertainty.  

Crack initiation and growth are common failure mechanisms in engineered 

products. To verify the structural reliability and durability of engineered products, 
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engineers have tried to predict fatigue characteristics using an empirical crack 

growth model [87], [88] and advanced physics-based simulation [8], [10] in 

engineering product development. However, the predictive capability of a simulation 

model can be degraded by physical uncertainty in model formulation and test 

conditions. The digital twin approach, which is updated in this research to consider 

these uncertainties, can be an attractive substitute for conventional simulation 

models. 

 This study proposes a hybrid digital twin approach to estimate uncertain crack 

initiation and growth. The proposed improved digital twin approach for estimating 

fatigue crack initiation and growth can be used in a variety of product development 

settings. The proposed idea takes advantage of hybrid digital twin approaches, using 

both data-driven and physics-based approaches. The proposed approach for 

estimating fatigue crack initiation and growth is based on two techniques; (i) 

statistical model calibration and (ii) probabilistic element updating. In statistical 

model calibration, statistical parameters of input variables are estimated based on the 

observed response related to the crack initiation condition. Further, probabilistic 

analysis using estimated statistical parameters can predict possible critical elements 

that indicate crack initiation and growth. In probabilistic element updating 

procedures, the possible crack initiation and growth element is updated based on the 

observed response related to the crack growth condition. The validity of the proposed 

method is demonstrated using a case study of an automotive sub-frame fatigue test. 

The proposed idea is applied to estimate crack initiation and growth in the fatigue 

test. From the results, we conclude that the proposed digital twin approach can 

accurately estimate crack initiation and growth of an automotive structure under 
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uncertain loading conditions and material properties. 

Chapter 5 is organized as follows. Section 5.1 provides a brief review of digital 

twin approach for estimating crack initiation and growth. The proposed hybrid 

digital twin approach is explained in Section 5.2. The application of the proposed 

method is demonstrated in Section 5.3. Finally, the conclusions of this work are 

outlined in Section 5.4. 

 

5.1 Brief Review of Digital Twin Approaches for Estimating 

Crack Initiation & Growth 

Crack initiation and growth are common failure mechanisms in engineered products. 

To verify the structural reliability and durability of engineered products, engineers 

have tried to predict fatigue characteristics using an empirical crack growth model 

[87], [88] and advanced physics-based simulation [8], [10] in engineering product 

development. However, the predictive capability of a simulation model can be 

degraded by physical uncertainty in model formulation and test conditions. For 

example, the geometry and boundary conditions in the model formulation may differ 

from the physical test conditions. In addition, the manufacturing tolerance and 

uncertain nonlinear effects during crack initiation in the physical test condition are 

also difficult to consider in the model analysis. The effects of physical uncertainty 

in model formulation and test conditions thus have to be taken into account to 

improve the predictive capability of simulation models. The digital twin approach, 

which is updated in this research to consider these uncertainties, can be an attractive 
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substitute for conventional simulation models. 

A digital twin combines the observed response from a physical system in real 

space with a simulation model in cyberspace to support engineering decisions. In 

digital twin approaches, the simulation model must be improved using the observed 

response. Simulation models used in digital twin approaches can be categorized into 

1) data-driven and 2) physics-based models. Data-driven models, such as relevance 

vector machine [3] and artificial neural networks [1], have been proposed to estimate 

crack initiation and growth using an experimentally observed response. Data-driven 

approaches rest on past experimental data to predict fatigue behavior. However, 

these methods require enough data to predict the fatigue crack behavior of the 

engineered product of interest. Further, the results of data-driven models are less 

interpretable than those from physics-based models. Physics-based models, such as 

finite element based models [89]–[92] and material models [93], [94], have been 

used to simulate the physical process of crack initiation and growth. However, due 

to the uncertainties in modeling and simulation, it is challenging to predict fatigue 

behavior with high accuracy using simulation models. In addition, expensive 

computational cost is a constraint of physics-based models. The proposed hybrid 

digital twin approach uses both data-driven and physics-based models 

simultaneously to capitalize on the advantages of each approach, while minimizing 

the disadvantages of each method. Hybrid approaches seek to estimate structural 

health monitoring and crack growth accurately and efficiently. 

Li and Mahadevan et al. (2017) proposed a hybrid digital twin approach for 

aircraft wing health monitoring based on a dynamic Bayesian network and a physics-

based model without crack geometry [48]. Their proposed method integrates 
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heterogeneous information – including test data, mathematical models, and expert 

opinions – to estimate crack length using a Bayesian network. However, their 

method requires past crack length data in various conditions; further, it is inefficient 

for construction of a crack growth model for each initiation point. Eder et al. (2020) 

proposed a hybrid digital twin approach using an FEA model with crack geometry 

based on the Virtual Crack Closure Technique (VCCT) [95]. This method was 

applied for predicting the fatigue cracks in the adhesive trailing edge joint of a full 

3D finite element wind turbine blade model. The results show a robust and 

computationally efficient prediction by decoupling the computationally demanding 

finite element analysis from the discrete fatigue crack growth analysis. However, use 

of VCCT with a deterministic crack growth criterion makes it difficult to estimate 

the uncertain crack growth. The crack growth simulation needs to be 

probabilistically conducted to estimate the uncertain crack growth of the physical 

system. In other work, M. Karve et al. (2020) proposed a digital twin approach for 

performing mission optimization under uncertainty, aimed at ensuring system safety 

with respect to fatigue cracking [96]. In the Karve et al. study, a Bayesian damage 

diagnosis method was proposed by fusing homogeneous sources of data, including 

piezo-sensor data and a physics-based model. This method did not take uncertain 

crack initiation and growth into account. 

Therefore, to consider both the initiation and growth of fatigue cracks, the 

present work takes advantage of hybrid digital twin approaches that utilize both data-

driven and physics-based approaches. The proposed approach includes two 

techniques: (i) statistical model calibration using a data-driven model and (ii) 

probabilistic element updating using a physics-based model. In statistical model 
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calibration, statistical parameters of input variables can be estimated based on the 

observed response related to the crack initiation and growth condition. Further, the 

probabilistic analysis using estimated statistical parameters can predict possible 

critical elements that indicate crack initiation and growth. In the probabilistic 

element updating procedures, the possible crack initiation and growth element is 

updated based on the observed response. The three-fold novel aspects of this study 

include: 

• This study proposes a hybrid digital twin approach to estimate uncertain 

crack initiation and growth, by incorporating two techniques: (i) 

statistical model calibration using a data-driven model and (ii) 

probabilistic element updating using a physics-based model.  

• The validity and efficiency of the proposed methodology is verified 

through digital twin updating of an automotive sub-frame, by using the 

observed response related to crack initiation and growth from a fatigue 

test. 

• The updated model, which is validated quantitatively and qualitatively, 

is compared with fatigue test results, such as displacements and fatigue 

crack initiation and growth points.  
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5.2 Proposed Digital Twin Approach : Hybrid Model 

Calibration & Updating 

This section outlines the proposed hybrid digital twin approach. Figure 5-1  

describes the procedure for the proposed hybrid digital twin approach. The first step 

is data-driven statistical model calibration. In statistical model calibration, the 

unknown input variables of a data-driven model, representing uncertainties in 

experiments and manufacturing, are estimated using the observed response. The 

data-driven model relieves the computational cost of a physics-based twin in the 

 

 

Figure 5-1 Procedure for the proposed hybrid-digital twin approach to estimate 

fatigue initiation and growth 
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model calibration. The estimated input variables of a data-driven model in the model 

calibration step can improve model prediction accuracy and validity of the physics-

based twin in element updating. The second step is the probabilistic element updating. 

In element updating, the critical element of the physics-based model representing 

crack initiation and propagation is estimated using observed responses related to the 

crack initiation and growth condition. The proposed method can be applied to 

estimate uncertain and unidentifiable crack initiation and growth that arise because 

of the uncertainties in the manufacturing and test conditions. To help readers 

understand the proposed method, section 5.2.1 will explain optimization-based 

statistical model calibration procedures using a data-driven twin and section 5.2.2 

will introduce element updating procedures using a physics-based twin. 

 

5.2.1  Statistical Model Calibration using a Data-driven Twin 

A physics-based model is necessary for virtual fatigue analysis in product 

development. However, it is not easy to use simulation models to predict physical 

behavior with high accuracy. Most input variables in physics-based models have a 

certain amount of physical uncertainty, such as inherent variability in material 

properties, manufacturing tolerances, and operating (loading) conditions. This input 

variable can be assumed as a random variable (Xunknown) that is defined by the type 

of distribution and statistical parameter (θ). 

To estimate an uncertain crack initiation point, probabilistic analysis that 

considers uncertainty in model formulation and test conditions is required. The 

proper statistical parameters of the input variables are needed for probabilistic 
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analysis. However, it is not easy to fully quantify the variability in the input variables 

due to limited resources (e.g., time, budget, and facilities); thereby, the statistical 

parameters of the model input variables are often unknown. Statistical model 

calibration is thus of great importance as a strategy to improve the predictive 

capability of a digital twin model [97], [98]. Representative methods for statistical 

model calibration include Bayesian approaches, maximum likelihood estimation 

(MLE)-based model updating approaches, Markov Chain Monte Carlo (MCMC) 

approaches, and optimization-based statistical model calibration approaches [19], 

[20], [97], [99]. Optimization-based model calibration can be an excellent strategy 

to calibrate a digital twin, considering the correlated output response [100]. 

However, it is hard to effectively calibrate these models because most physics-

based analysis is computationally expensive. A data-driven twin (𝐘DT) can be used 

in statistical model calibration as a surrogate model [101], [102]. Figure 5-2 

describes the procedure of statistical model calibration using a data-driven twin. The 

study described in this paper uses a Gaussian process model to substitute for the 

physics-based model. The Latin-hyper-cube sampling method is applied to construct 

the design of experiment (DoE) for data-driven twin construction.  

To estimate the input variables in a physics-based model, optimization-based 

statistical model calibration can be formulated as: 

minimize
𝛉

 𝑓CM(𝐘̂𝐷𝑇(𝛉), 𝐘obs,𝑁) (5.1) 

where θ denotes a statistical parameter vector of unknown input variables and fCM 

denotes a calibration metric that quantifies the statistical dissimilarity between the 



112 

 

predicted (𝐘𝐷𝑇(𝛉)) and observed (𝐘obs,𝑁) output responses related to crack initiation. 

Monte Carlo simulation (MCS) is applied as an uncertainty propagation (UP) 

approach to quantify the output response uncertainties for a given statistical 

parameter (θ), using the constructed data-driven model. In optimization-based 

statistical model calibration, the calibration metric, which is defined as an objective 

function, must be formulated considering the statistical correlation between 

multivariate output responses. Kim et al. proposed the Marginal Probability 

Correlation Residual (MPCR) as a calibration metric to consider statistical 

correlation [100]. The MPCR is adopted as a calibration metric in this study for this 

same purpose. The kernel density estimation (KDE) estimates the probability density 

function of the response using the sets of responses from the Monte Carlo simulation. 

After statistical model calibration, physics-based analysis can statistically 

predict possible crack initiation points where the maximum stress occurs. The 

calibrated model can be quantitatively and qualitatively validated. A hypothesis test 

using an area-metric is used as a quantitative method and crack initiation points are 

also validated qualitatively.  
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Figure 5-2 Statistical model calibration using a data-driven twin 
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5.2.2 Probabilistic Element Updating with a Physics-based Twin 

Statistical model calibration can improve the model prediction accuracy of the 

physics-based twin using the observed response. The calibrated physics-based twin 

can predict possible critical elements where a crack is initiated. Crack initiation and 

growth in a physical system induce a transition of the observed response. In the 

digital twin approach, the digital twin needs to be updated to represent the fault state 

of a physical system in real space. In this study, probabilistic element updating is 

used to estimate crack initiation and growth of real physical entities, based on the 

observed response. Figure 5-3 represents the proposed element updating procedures. 

• Step 2-1. Physics-based analysis using calibrated statistical parameters is used to 

estimate possible state transition, considering various uncertainties in test 

conditions. The candidate elements where maximum von-misses stress 

occurs are selected as deletion candidates (en). 

• Step 2-2. UP analysis, with deletion of each candidate element, is conducted to 

construct the probability density function of the response transition 

(∆𝐘𝑐𝑟𝑎𝑐𝑘 ). The most probable deletion element among candidates is 

selected based on the likelihood evaluation with observed response 

transition in a fault state (∆𝐘obs,𝐹). 

• Step 2-3. The Bayes factor, which is an updating criterion, is calculated as the 

maximum likelihood ratios between the current and previous step from 

among candidate elements. The elements are deleted until the Bayes 

factor is positive. If the Bayes factor is negative, stop the iteration.  

 

Simulation strategies have been developed to predict crack initiation and 
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growth, including finite element based methods like Virtual Crack Closure 

Techniques (VCCT), Cohesive Zone Model (CZM), and the element deletion 

method [7], [8], [10], [92]. However, VCCT requires a specified crack initiation 

point and mesh correction around the crack tip. CZM requires traction-separation 

law for specified crack interface elements, which need to be specified for each 

different material. The element deletion method can be utilized to simulate crack 

initiation and growth without mesh correction and a defined crack interface [103]–

[105]. However, sophisticated element deletion criteria are required to simulate 

crack initiation and growth [105]. The likelihood function based on the observed 

response can be used as an updating (element deletion) criterion to overcome this 

issue. The likelihood of physics-based analysis with this n-th candidate element (en) 

deletion based on a fault-observed response at the i-th updating iteration is found by: 

𝐿𝑖(𝑒𝑛) = ∑ 𝑙𝑜𝑔10 𝑓∆𝒀̂𝐶𝑟𝑎𝑐𝑘
(∆𝒀𝑗,𝐹𝑎𝑢𝑙𝑡|𝑒𝑛)

𝑛𝑒𝑥𝑝

𝑗=1

 (5.2) 

where ∆𝐘𝑗,𝐹𝑎𝑢𝑙𝑡 denotes the j-th observed response transition vector in a fault state 

and 𝑓∆𝐘̂𝐶𝑟𝑎𝑐𝑘
(. |𝑒𝑛)  denotes the joint PDF of the predicted response transition 

(∆𝐘̂𝐶𝑟𝑎𝑐𝑘) with the n-th candidate element (en,i) deletion. The response transition is 

formulated as: 

∆𝐘̂𝐶𝑟𝑎𝑐𝑘(𝑒𝑛) = 𝐘̂𝐶𝑟𝑎𝑐𝑘(𝐗(𝛉∗)|𝑒𝑛) − 𝐘̂𝑁𝑜𝑟𝑚𝑎𝑙(𝐗(𝛉∗)) (5.3) 

where 𝐘𝑪𝒓𝒂𝒄𝒌(𝐗(𝛉∗)|𝒆𝒏)  denotes the predicted response with n-th candidate 

element (en) deletion and 𝐘𝑵𝒐𝒓𝒎𝒂𝒍(𝐗(𝛉∗)) denotes the predicted response without 

element updating. The most probable elements from among the candidates can be 

selected based on the likelihood function. The model updating criterion using the 
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Bayes factor can be formulated as: 

𝐾𝑖 = 𝑙𝑜𝑔
𝑚𝑎𝑥

𝑛
𝐿𝑖(𝑒𝑛)

𝑚𝑎𝑥
𝑛

𝐿𝑖−1(𝑒𝑛)
 (5.4) 

where 𝑚𝑎𝑥
𝑛

𝐿𝑖(𝑒𝑛) denotes the maximum likelihood function value from among 

deletion candidates at the i-th iteration; the Bayes factor (𝐾𝑖) is the likelihood ratio 

between the current and previous updating iteration. A positive value of the Bayes 

factor indicates that the updated element model is more agreeable than the previous 

model, based on the observed response in the crack growth condition. Thus, the 

updating procedures are continued until the Bayes factor changes into a negative 

value. 

Element size and density of the computation model affects computation cost of 

element updating and accuracy of digital twin analysis. G, Ljustina et al. showed the 

Johnson-Cook (JC) dynamic failure model results depending on element size [106]. 

Even though dense and fine mesh can represent detailed crack progress in real 

systems, the computation cost is incrased by a larger system matrix and matrix 

computation. 
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Figure 5-3 Probabilistic element updating with a physics-based twin 
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5.3 Case Study: Automotive Sub-Frame Structure 

An automotive sub-frame is a structural component of a vehicle that sustains the 

wheels and tires during acceleration, driving, and deceleration. Fatigue 

characteristics of the sub-frame affect the ride comport of a car. The proposed 

method is applied to estimate the sub-frame’s fatigue crack initiation and growth 

using the experimentally observed response. The commercial finite element analysis 

tool, Nastran, was used for the physics-based digital twin analysis. 

 

5.3.1  Experimental Fatigue Test 

In the experiments, the specimen is the suspension member that sustains a lower arm. 

The experiment aims to measure the displacement and principal strains during the 

quasi-static and cycling loading test. In this section, the test setups and results are 

described. 

The sub-frame consists of a suspension member and a control arm. The load is 

applied to the suspension member at a joint connected to a control arm in the 

experiments. The principal strains were measured by attaching tri-axial strain gauges 

at the top surface of the structure. Strain measurement locations were selected based 

on sensitivity analysis with respect to the unknown input variables. The four 

measured strain points were selected as shown in Figure 5-4 (a). The specimen was 

fixed at four points and a load applied with the MTS Model 252-25G-01 fatigue test 

rig, as shown in Figure 5-4 (b). 

Two types of loading conditions: 1) quasi-static and 2) cyclic load, are 
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considered, as shown in Figure 5-5. In the quasi-static load test, the principal strains 

were observed in four points under twelve load steps. The maximum magnitude of 

the quasi-static load was 14.7 kN. Three specimens were tested to evaluate the 

physical uncertainty and the manufacturing errors. The cyclic load was applied to 

one of the specimens in the fatigue test until a visually identifiable crack occurred. 

The maximum magnitude of cyclic load was 17.64 kN. 

In the cyclic loading test, the measured strain in the cyclic load test showed a 

significant change at around 20,670 cycles, as shown in Figure 5-5 (c). Even with 

the response transition, there was no visible change in the specimen. It was found 

that the change was caused by an invisible internal crack. The observed deformation 

 

   
            (a)                            (b) 

Figure 5-4 Experimental condition : (a) strain measured points, (b) test rig 
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was assumed as the linear elastic phenomenon. The principal strain and displacement 

under twelve different load steps from quasi-static loads were linearly extrapolated 

at a maximum level of cyclic load, as shown in Figure 5-6. 

 

 
(a)                             (b) 

 
(c) 

Figure 5-5 Loading condition : (a) quasi-static load, (b) cyclic load, (c) observed 

principal strain during cyclic load test 
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5.3.2  Statistical Model Calibration using a Data-driven Twin 

 

5.3.2.1.  Physics-based Model of Suspension Members 

The physics-based model was constructed with shell elements to evaluate the 

suspension member. The jig is connected to the suspension member using a rigid 

body element (RBE2) at the joint node. The load was applied to the point where a 

ball joint connects the actuator. The loading condition and boundary condition are 

shown in Figure 5-7 (a). The analysis was conducted using a commercial FE solution, 

Nastran. The steel plates with different metal properties are connected by three 

different weld types. Figure 5-7 (b) shows finite elements consisting of the physics-

based model. The numeric value of the material properties is described as a non-

dimensional value normalized by the initial reference value. 

  
(a)                                  (b)  

Figure 5-6 Extrapolated experimental output response: (a) displacement (b) 

principal strains 
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5.3.2.2.   Unknown Input Variables 

The suspension member consists of plates connected by welds. The welds are 

divided into three types (T1, T2, and T3) depending on the bead size. During the 

welding procedure, various defects are generated due to residual thermal stress and 

manufacturing tolerances. Therefore, the thicknesses of the weld components are 

considered as unknown input variables. The material properties of the plate also have 

uncertainty. In particular, Young's Modulus (E) is an important property of the 

elastomer, which defines the ratio between stress and strain. As the steel plates are 

deformed and machined, plastic deformation or an inner crack can occur during the 

manufacturing process. The defects can deteriorate or reinforce the stiffness of the 

plate by stress concentration or plastic hardening. Thus, the Young’s Modulus values 

of the three different steel materials (A, B, and C) are considered as unknown input 

variables. The ball joints that connect the jig and actuator induce an uncertain loading 

direction; thus, the two loading direction parameters ( 𝜃𝑧, 𝜃𝑌 ) are regarded as 

unknown input variables. Unknown model input variables and measured output 

responses are summarized in Table 5-1. In optimization-based statistical model 

 
(a)                             (b) 

Figure 5-7 Analysis condition: (a) loading and boundary conditions (b) model 

components 
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calibration, the distribution type of a random variable should be assumed based on 

prior information. The thickness value must have a positive value; thus, it is assumed 

that weld thickness follows a log-normal distribution. Further, it is assumed that the 

Young’s Modulus and force direction parameters follow a normal distribution. 

 

5.3.2.3.   Calibration Problem Formulation using a Data-driven Twin 

The calibration problem is formulated as 

 Find 𝛉 = [𝝁 , 𝝈] 

 to minimize 𝐌𝐏𝐂𝐑(𝐘𝐩𝐫𝐞(𝛉), 𝐘𝐨𝐛𝐬) (5.5) 

 subject to 𝛉𝐋 ≤ 𝛉 ≤ 𝛉𝐔 

where θ denotes the statistical parameters of the unknown input variables; θ consists 

of the mean and standard deviation vector, and; θL and θU, respectively, denote the 

lower and upper bounds of the statistical parameters. The lower and upper bounds 

are summarized in Table 5-2. 

X
unknown

 Y 

Force Rotation Angle  

(x
1
,x

2
: 𝜃𝑧, 𝜃𝑌) 

Major/ Minor Principal 

Strain 

@ Point 1 (y
1
, y

2
) 

@ Point 2 (y
3
, y

4
) 

@ Point 3 (y
5,

 y
6
) 

@ Point 4 (y
7,

 y
8
) 

Weld Thickness 

(x
3
,x

4
,x

5
: T1, T2, T3) 

Young′ s Modulus 

(x
6
,x

7
,x

8
:EA, EB, EC) 

Table 5-1 Unknown model input variables and measured output responses 
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The Gaussian process (kriging) based data-driven model was adopted to replace 

the expensive physics-based model; the design matrix of DOE was generated by the 

Optimal Latin Hypercube approach. A Gaussian process-based surrogate model was 

trained using the DOE. The accuracy of the surrogate model was validated before 

calibration. The Root Mean Squared Error (RMSE) of the kriging surrogate model 

was evaluated using one-hundred sample points. The value of error is less than 5% 

for each response model. The optimal parameter vector that minimizes the 

calibration metric was searched using a genetic algorithm. Monte-Carlo simulation 

with 104 sample points was run on the efficient surrogate model. Finally, kernel 

density estimation was used as PDF modeling.  

 

5.3.2.4.   Calibration Results 

Table 5-3 summarizes the inferred statistical parameters of the unknown input 

variables. From the calibration results, the following observations are made. The 

force direction had bias and variability compared to the initial guess. In addition, the 

force rotation angle in the Z-axis has a negative bias. Further, the mean of Young’s 

Modulus (E) changed up to 30% of the initial mean value. The thickness of the weld 

is divided into three types, depending on the bead size (T1, T2, and T3). Most of the 

 x1 x2 x3 

(mm) 

x4 

(mm) 

x5 

(mm) 

x6 

(GPa) 

x7 

(GPa) 

x8 

(GPa) 

𝜇U 10° 10° 1.4A 1.4B 1.4C 1.4D 1.4E 1.4F 

𝜇L -10° -10° 0.4A 0.4B 0.4C 0.7D 0.7E 0.7F 

𝜎U 2° 2° 0.4A 0.4B 0.4C 0.04D 0.04E 0.04F 

𝜎L 0.01° 0.01° 0.001A 0.001B 0.001C 0.001D 0.001E 0.001F 

Table 5-2 Lower and upper bounds of statistical parameters 
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welds belong to two types of welds, specifically T1 and T2. The mean values of T1 

and T2 were inferred as one-third of the original thickness mean value. This indicates 

that the weld stiffness was overestimated before calibration. Monte Carlo Simulation 

with 102 sample points was conducted using finite element analysis, rather than the 

kriging surrogate model. After calibration, the predicted output response had good 

agreement with the observed output response, as shown in Figure 5-8. 

Unknown Input 

Variables 
Initial MPCR 

Mean Std. Mean Std. 
𝜃𝑧 0 0 -4.70 1.97 
𝜃𝑌 0 0 -0.88 1.44 

Weld 

Thickness 

T1 (mm) A 0.08A 0.45A 0.332A 
T2 (mm) B 0.08B 0.45B 0.359B 
T3 (mm) C 0.08C 1.21C 0.310C 

Young’s 

Modulus 

E
A
 (GPa) D 0.07D 1.03D 0.022D 

E
B
 (GPa) E 0.07E 0.74E 0.024E 

E
C
 (GPa) F 0.07F 1.29F 0.021F 

Table 5-3 Calibration results of the automotive structural model 

 

Figure 5-8 The updated output strain 
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5.3.2.5.    Validity Check 

The calibration results were validated quantitatively and qualitatively. The validity 

checks examine whether statistical calibration can improve the predictive capability 

of a physics-based model in an output response domain not used in calibration. In 

the quantitative validity check, the loading point displacement was used for 

validation. In this study, area metrics using the u-pooling method and hypothesis test 

were used as a validity check. The area metric measures the area difference between 

the cumulative distribution function (CDF) of the predicted output response and the 

empirical CDF of the experimental output response. As shown in Figure 5-9, the area 

metrics of the updated output response were smaller than the threshold (i.e., 0.1051) 

with a sample size of thirty-six and a significance level of 5. 

The calibrated physics-based model analysis statistically predicts three possible 

crack initiation points, where the maximum von-Misses stress occurs, as shown in 

Figure 5-10 (a). The PDF of stress occurred in the possible crack initiation candidate 

shown in Figure 5-10 (b). Candidate 1 shows the most critical stress level compared 

to other candidates. After the cyclic loading test, an internal crack was found around 

the predicted possible crack initiation point. Thus, it can be concluded that statistical 

calibration can improve the predictive capability of a physics-based model. 
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5.3.3  Element Updating with a Physics-based Twin 

The UP analysis (MCS using a physics-based twin) with deletion of each candidate 

element was conducted and the response transition is as shown in Figure 5-11. The 

likelihood function for each candidate was calculated using the observed response 

transition (∆𝐘𝑗,𝐹𝑎𝑢𝑙𝑡), as shown in Table 5-4. The model prediction with candidate 1 

gives a maximum likelihood compared to other candidate elements. The updating 

procedures were conducted based on the proposed methods. 

 
  (a)                     (b) 

Figure 5-9 (a) Displacement prediction after calibration (b) hypothesis testing 

using an area metric 

  
 

 (a)                                  (b)  

Figure 5-10 (a) The candidates of crack initiation points (b) PDF of Von-misses 

stress at each candidate element 
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At every element updating iteration, three candidate elements were selected 

based on the von-misses stress criterion. The most probable crack growth element 

was selected using the likelihood value. The Bayes factor, the likelihood ratio 

between the previous and current updated model, was calculated at each iteration. 

The updating procedure was continued until the Bayes factor changed into a negative 

value. The element updated models for each updating iteration are as shown in 

Figure 5-12. The updated model shows crack propagation as observed internal crack 

propagation in the fatigue test. 

Figure 5-13 shows a transition of response in experiments and element updating. 

The response transition trend of the updated model follows well the observed 

response transition, except at point 1. Point 1 is far from the crack initiation points, 

and the response sensitivity is lower than other points in the model. The element 

deletion candidates predicted by the last updated model show good agreement with 

the observed external and internal cracks from the experiments, as shown in Figure 

5-14 (a). The Bayes factor for each iteration was calculated, as shown in Figure 5-14 

(b). The Bayes factor is exponentially decaying to a negative value. After the cyclic 

loading test, the internal crack is found around the predicted possible crack initiation 

and growth point, as shown in Figure 5-14 (c). It can be concluded that element 

updating can estimate crack initiation and growth. 
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Figure 5-11 Response transition for each crack initiation candidate 

 

𝐿𝑖=1(𝑒𝑛,𝑖) 
Candidate 1 

(190767) 

Candidate 2 

(101380) 

Candidate 3 

(100768) 

∑ log10 𝑓∆Ŷ𝐶𝑟𝑎𝑐𝑘
(∆Y𝑗,𝐹𝑎𝑢𝑙𝑡|𝑒𝑖)

𝑛𝑒𝑥𝑝

𝑗=1

 -3.2082e+10 -1.3775e+12 -1.7165e+14 

Table 5-4 Likelihood evaluation for each candidate 



130 

 

 

Figure 5-12 Updated models for each iteration 

 

Figure 5-13 Transition of the updated and observed responses 
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5.4 Summary and Discussion 

In this study, a hybrid digital twin approach was proposed to estimate the crack 

initiation and growth using the observed response. The proposed digital twin 

approach is based on two techniques; (i) statistical model calibration using a data-

driven twin and (ii) element updating with a physics-based twin. Marginal 

Probability & Correlation Residuals (MPCR) were selected as calibration metrics to 

consider the statistical correlation between output responses. The Gaussian process 

model was used as a data-driven model to substitute the physics-based twin for 

uncertainty propagation analysis using Monte Carlo simulation. Statistical model 

calibration can improve the validity of digital twins by considering uncertainty in the 

test conditions. Based on the observed response related to crack growth, the element 

  
(a)                           (b)  

   
(c) 

Figure 5-14 Element updating results : (a) candidate crack growth points (b) 

Bayes factor convergence plot  (c) observed internal crack location 
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of the digital twin was updated using the element deletion method. The predicted 

critical elements that indicate crack initiation and growth were deleted to calculate 

the likelihood for each possible element. The Bayes factor, which is the updating 

criterion, was computed using the likelihood ratio at each updating iteration. 

The proposed method was applied to an industrial problem to show the 

effectiveness of the method. In the experiments, the principal strains were measured 

on the surface of automotive structures at four points under quasi-static and cycling 

load. The statistical parameters of unknown input variables were inferred using 

observed output responses in a quasi-static load. The updated output response shows 

good agreement with the experimentally observed response. A validity check was 

quantitatively conducted to validate the calibration results. The crack initiation and 

growth in the fatigue test were predicted using element updating based on the 

observed response-related crack initiation and growth. The updated model was 

qualitatively validated by comparison with fatigue test results.  

 

  

Sections of this chapter have been published or submitted as the following journal 

articles:  

1) Wongon Kim, Guesuk Lee, Hyejeong Son, Hyunhee Choi, and Byeng D. Youn, 

“Estimation of Fatigue Crack Initiation and Growth in Engineering Product 

Development using a Digital Twin Approach,”  Reliability Engineering & System 

Safety, Submitted, 2021. 
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Chapter 6  Conclusions  

 

Conclusions 

 

6.1 Contributions and Significance  

The proposed research in this doctoral dissertation aims at advancing model 

calibration and updating to build hybrid digital twin under insufficient prior 

information. This doctoral dissertation is composed of three research thrusts: (1) 

data-driven dynamic model updating for anomaly detection with an insufficient prior 

knowledge for modeling; (2) a new calibration metric formulation considering 

statistical correlation; and (3) hybrid model calibration and updating considering 

system failure. It is expected that the proposed research offers the following potential 

contributions and broader impacts in digital twin. 

 

Contribution 1: Dynamic Model Updating Framework with Insufficient Prior 

Information for Physics-based and Data-driven Modeling 

This doctoral dissertation proposes an dynamic model updating framework for 

anomaly detection under insufficient prior information for modeling. To the best of 

the author’s knowledge, previous research has not addressed data driven dynamic 
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model updating to estimate uncertain operating condition under different noise level. 

 

Contribution 2: Improving Optimization-based Statistical Model Calibration 

considering Statistical Correlation among Output Response 

This study thoroughly examines what happens if the statistical correlation is 

neglected in model calibration. In addition, three existing calibration metrics 

(marginal likelihood, joint likelihood, and moment matching) are reviewed from the 

perspective of their ability to address the statistical correlation between multivariate 

output responses. To overcome the issues, a new calibration metric considering 

statistical correlation: Marginal Probability and Correlation Residual (MPCR) was 

proposed. MPCR metric has favorable properties including normalization, 

boundedness, and marginalization; thereby, limitations of three existing calibration 

metrics are overcome in this method. The proposed method allows consideration of 

the statistical correlation effectively; thus physically reasonable solutions can be 

confined. Consequently, accurate optimization-based statistical model calibration is 

enabled. 

 

Contribution 3: A New Hybrid Digital Twin Approach to Estimate Fatigue 

Crack Initiation and Growth 

To verify the structural reliability and durability of engineered products, engineers 

have tried to predict fatigue characteristics using an data-driven and physics-based 
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digital twin in engineering product development. However, the predictive capability 

of a digital twin model can be degraded by physical uncertainty in model formulation 

and test conditions. This work takes advantage of hybrid digital twin approaches that 

utilize both data-driven and physics-based approaches. The proposed approach 

includes two techniques: (i) statistical model calibration using a data-driven model 

and (ii) probabilistic element updating using a physics-based model. In statistical 

model calibration, statistical parameters of input variables can be estimated based on 

the observed response related to the crack initiation and growth condition. Further, 

the probabilistic analysis using estimated statistical parameters can predict possible 

critical elements that indicate crack initiation and growth. In the probabilistic 

element updating procedures, the possible crack initiation and growth element is 

updated based on the observed response. The validity and efficiency of the proposed 

methodology is verified through digital twin updating of an automotive sub-frame, 

by using the observed response related to crack initiation and growth from a fatigue 

test. 

 

6.2 Suggestions for Future Research 

Although the technical advances proposed in this doctoral dissertation successfully 

address some challenges in digital twin approach in both data-driven and physics-

based approach, there are still several research topics that further investigations and 

developments are required to bring hybrid digital twin into an alternative solution 

for engineering decision support. Specific suggestions for future research are listed 

as follows. 



136 

 

 

Suggestion 1: Deep Learning-based Hybrid Digital Twin considering 

Modeling Error 

As the relevant physical phenomena in an engineered system become more complex, 

a physics-based model needs to be more sophisticated. However, it is not easy to 

fully characterize the physics in the real system using a physics-based model due to 

limited resources (e.g., time, budget, and computation costs). The physics-based 

model with insufficient prior information includes various modeling errors. The 

engineering decisions should be made considering the error and uncertainties in the 

model. However, the model error and uncertainties are hard to be quantified using a 

small number of data and computation costs. To overcome the issue, the modeling 

errors can be quantified and formulated with a data-driven approach. Especially, the 

deep learning method can be used to integrate various error causes such as 

discretization and spatial and temporal uncertainty in modeling. Therefore, this issue 

highlights one research need of deep learning-based hybrid digital twin considering 

modeling error. 

 

Suggestion 2: Experimental Design For Physically Feasible & Mathematically 

Unique Solution in Statistical Model Calibration 

Most calibration solutions are questioned about solution uniqueness and physical 

feasibility. However, the model calibration, which is the inverse problem, cannot 

guarantee solution uniqueness and physical feasibility because of the ill-posedness 
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of an inverse problem. In this study, statistical correlation among output responses 

was considered to constraints the calibration solution. However, the solution's 

uniqueness and physical feasibility require a more sophisticated model calibration 

strategy. The sensitivity of response and uncertainty in data acquisition conditions 

can affect the solution convergence and uniqueness. Therefore, the experimental 

design for the sensor network and data acquisition should be considered to formulate 

statistical model calibration.  

 

Suggestion 3: Hybrid Digital Twin Approach Including Non-linear Physics-

based Model (Fluid, Battery) 

As the relevant physical phenomena in an engineered system become more complex, 

a physics-based model includes non-linear analysis. The computation cost of non-

linear analysis makes it hard to apply the digital twin approach for engineering 

systems with non-linear physics. Various engineering systems include non-linear 

physics such as a battery and energy facility with fluid flow, which must be operated 

and maintained using a digital twin approach. It is thus required to develop a hybrid 

digital twin approach including non-linear physics. Therefore, future work will 

include investigating the digital twin approach to deal with computationally 

expensive non-linear analysis while maintaining non-linear characteristics.    
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국문 초록 

 

융합 디지털 트윈을 위한 물리-

데이터 기반 모델의 통계적 모델 

보정 및 갱신 방법 연구 

 

실제 운행중인 공학 시스템의 가상 디지털 객체를 구축하여 

시스템의 관측 데이터를 기반으로 실제 시스템의 다양한 상황을 모사할 

수 있는 디지털 트윈 기술은 설계, 제조 및 시스템 상태 관리와 같은 

공학적 의사 결정을 지원할 수 있는 솔루션을 제공합니다. 디지털 트윈 

접근 방식은 1) 데이터 기반 접근 방식, 2) 물리 기반 접근 방식, 3) 

융합형 접근 방식의 세 가지 범주로 나눌 수 있습니다. 융합형 디지털 

트윈은 데이터 기반 모델과 물리 기반 모델을 모두 활용하여 이 두 가지 

접근 방식의 단점을 극복하기 때문에 관찰된 데이터를 바탕으로 신뢰할 

수 있는 공학적 의사 결정을 가능하게 합니다. 그러나 이를 적용하기 

위해 필요한 시스템에 대한 사전 정보들은 대부분의 공학 시스템에서 

제한적으로 이용 가능합니다. 이러한 사전 정보에는 모델 입력 변수의 

통계적 정보, 데이터 기반 혹은 물리 기반 모델링에 필요한 모델링 

정보, 시스템 이상 상태에 대한 물리적 사전 지식이 포함됩니다.  

많은 경우, 주어진 사전 정보가 충분하지 않은 상황에서 디지털 

트윈을 활용한 의사 결정의 신뢰성 문제가 발생합니다. 통계적 모델 
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보정 및 갱신 방법은 불충분한 사전 정보 하에서 디지털 트윈 분석을 

검증 및 고도화하는 데 사용할 수 있습니다. 본 박사 학위 논문은 사전 

정보가 부족한 상황에서 융합형 디지털 트윈을 구축하기 위해 모델 보정 

및 갱신에서 세 가지 필수 및 관련 연구 분야를 발전시키는 것을 목표로 

합니다. 

유효한 디지털 트윈 모델을 구축하기 위해서는 다양한 운행 

조건에서 충분한 관측 데이터와 시스템 형상, 재료 속성, 작동 조건과 

같은 사전 지식이 필요합니다. 그러나 복잡한 엔지니어링 시스템에서는 

모델 구축을 위한 사전 정보를 얻기가 어렵습니다. 첫번째 연구에서는 

모델 구축에 필요한 사전 지식 부족 시에도 활용 가능한 데이터 기반 

동적 모델 갱신 방법을 제안합니다. 제안된 신호 전 처리를 사용하여 

관측된 신호에서 시스템 이상 감지를 위한 시간-주파수 영역 특성을 

추출합니다. 다양한 작동 조건에서의 시스템 구동 상태를 예측하기 위해 

부분 공간 상태 공간 시스템 식별 방법을 이용하여 상태 공간 모델을 

구축합니다. 시스템 작동 조건은 시스템 모델의 매개변수화된 입력 

신호로 정의됩니다. 다음으로, 신호 관측 시점에서의 시스템 작동 

조건과 이상 상태를 추정하기 위해 입력 신호 매개변수는 기준 신호와 

관측 신호의 오차를 최소화하도록 갱신됩니다. 

모델 입력 변수의 통계적 정보 부족할 경우 최적화 기반 통계 모델 

보정을 통해 미지 입력 변수를 추정하여 모델의 예측 능력을 향상시킬 

수 있습니다. 최적화 기반 통계 모델 보정은 가상 모델의 예측 응답과 

실제 시스템의 관측 응답 간의 통계적 유사성을 최대화하여 모델에 

존재하는 미지 입력 변수의 통계적 모수를 추정하는 최적화 문제로 

공식화 됩니다. 이때 보정 척도는 통계적 유사성을 정량화하는 목적 

함수로 정의됩니다. 두 번째 연구에서는 모델 보정의 정확도와 효율성을 
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높이기 위해 통계적 상관관계를 고려한 새로운 보정 메트릭인 Marginal 

Probability and Correlation Residual (MPCR)을 제안합니다. MPCR의 

기본 아이디어는 출력 응답 간의 통계적 상관 관계를 고려하면서 다 

변량 결합 확률 분포를 수치적 계산 비용이 낮은 다중 주변 확률 분포로 

분해하는 것입니다. 

디지털 트윈을 이용하여 고장 상태에 대한 사전 지식 부재한 공학 

시스템의 고장 상태를 예측하기 위해, 제조 및 실험 조건의 

불확실성들이 고려되어야 합니다. 세 번째 연구 방향은 고장 상태에 

대한 사전 지식이 부재한 시스템의 피로 균열 시작 및 성장을 추정하기 

위한 융합형 디지털 트윈 접근 방식을 제안하였습니다. 본 연구에서는 

피로 균열의 시작과 성장을 추정하기 위해 두 가지 기술: (i) 통계적 

모델 보정과 (ii) 확률적 요소 갱신을 제안합니다. 통계 모델 보정에서는 

균열 시작 조건과 관련된 관찰된 응답을 기반으로 제조 및 실험 조건의 

불확실성을 나타내는 입력 변수의 통계적 매개변수를 추정합니다. 

통계적 보정을 통해 불확실성을 고려한 확률론적 물리 기반 해석을 통해 

균열 시작 및 성장을 나타내는 주요 취약 요소를 예측할 수 있습니다. 

확률적 요소 갱신에서는 시스템의 피로 균열 시작 및 성장을 추정하기 

위해 균열 성장 조건에서 관찰된 응답을 이용한 최대 우도 법을 갱신 

기준으로 모델을 갱신합니다. 

주요어:  디지털 트윈 

 모델 검증 및 보증 

 최적화 기반 통계적 모델 보정 

 변수 추정 
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