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Abstract

Investigation on Statistical Model
Calibration and Updating of
Physics and Data-driven Modeling for
Hybrid Digital Twin

Wongon Kim

Department of Mechanical and Aerospace Engineering
The Graduate School

Seoul National University

Digital Twin technology, a virtual representation of the physical entity, has been
explored toward providing a solution that could support engineering decisions, such as
design, manufacturing, and system health management. Digital twin approaches can be
divided into three categories: 1) data-driven, 2) physics-based, and 3) hybrid
approaches. The hybrid digital twin is recognized as a promising solution for reliable
engineering decisions based on the observed data because it utilizes both the data-
driven and physics-based models to overcome the disadvantages of these two
approaches. However, the applicability of the digital twin approach has been limited
by a lack of prior information. The prior information includes the statistics of model

input parameters, required information for (data-driven, physics-based, and hybrid)



modeling, and prior knowledge about system failure.

Now, a question of fundamental importance arises how to help decision-making
using a digital twin under a given insufficient prior information. Statistical model
calibration and updating can be used to validate the digital twin analysis under
insufficient prior information. In order to build a hybrid digital twin under insufficient
prior information, this doctoral dissertation aims the investigation on three co-related

research areas in model calibration and updating:

Research Thrust 1 — Data-driven dynamic model updating for anomaly detection

with an insufficient prior information

Research Thrust 2 — A new calibration metric formulation considering statistical

correlation

Research Thrust 3 — Hybrid model calibration and updating considering system

failure

A sufficient prior knowledge such as observed data in various conditions,
geometry, material properties, and operating conditions for data-driven / physics-based
modeling are required to build a valid digital twin model. However, the prior
information for modeling is hard to obtain for complex engineering system. Research
Thrust 1 proposes Data-driven dynamic model updating for anomaly detection with
insufficient prior knowledge. The time-frequency domain features are extracted from
the observed signal using signal pre-processing. The state-space model is driven by a
numerical algorithm for subspace state-space system identification (N4SID) to predict

the extracted features under different operating conditions. In the model, the operating



condition is defined as a parameterized input signal of a system model. Next, the input
signal parameters are updated to minimize the prediction error that quantify the

discrepancy between the target observed signal and reference model prediction.

Optimization-based statistical model calibration (OBSMC) can be applied to
estimate unknown input parameters of the digital twin. In OBSMC, the unknown
statistical parameters of input variables associated with a digital twin model are inferred
by maximizing the statistical similarity between predicted and observed output
responses. A calibration metric is defined as the objective function to be maximized
that quantifies statistical similarity. Research Thrust 2 proposes a new calibration
metric: Marginal Probability and Correlation Residual (MPCR), to improve the
accuracy and efficiency of model calibration considering statistical correlation. The
foundational idea of the MPCR is to decompose a multivariate joint probability
distribution into multiple marginal probability distributions while considering the

statistical correlation between output responses.

In order to diagnose and predict the system failure of a complex engineering
system without prior knowledge about system failure using the digital twin,
uncertainties in manufacturing and test conditions must be taken into account. Research
Thrust 3 proposed a hybrid digital twin approach for estimating fatigue crack initiation
and growth considering those uncertainties. The proposed approach for estimating
fatigue crack initiation and growth is based on two techniques; (i) statistical model
calibration and (ii) probabilistic element updating. In statistical model calibration,
statistical parameters of input variables that indicate uncertainties in manufacturing and
test conditions are estimated based on the observed response related to the crack

initiation condition. Further, probabilistic analysis using estimated statistical



parameters can predict possible critical elements that indicate crack initiation and
growth. In probabilistic element updating procedures, the possible crack initiation and
growth element is updated based on the Bayesian criteria using observed responses

related to the crack growth condition.

Keywords: Digital Twin
Model Validation & Verification
Optimization-based Statistical Model Calibration

Parameter Estimation

Student Number: 2015-22710
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Chapter 1

Introduction

1.1 Motivation

A digital twin connects physical entities in the real world and a computational model
in the virtual world using the observed response from a real system to help make an
engineering decision for design, maintenance, and control. However, the
applicability of the digital twin approach has been limited by a lack of data and
computational power until the last few years. Today, sensor and data acquisition and
data processing systems are getting more reliable and affordable. Thus, the digital
twin approach has gained more attention for design, control, and maintenance of

physical entities.

In digital twin approaches, the simulation model must be improved using the
observed response. Simulation models used in digital twin approaches can be
categorized into 1) data-driven and 2) physics-based models. Data-driven models,
such as classical machine learning [1]-[3] and deep-learning using neural networks
[4], [5] have been proposed to diagnose and design of the system using an

experimentally observed response. Data-driven models rest on past experimental



data to predict the performance or condition of the engineered system. However, the
methods require enough data to predict the performance or condition of the
engineered system of interest. Further, the results of data-driven models are less
interpretable than those of physics-based models. Physics-based models, such as
finite element-based models [6]-[10] and dynamic system models [11], have been
used to simulate the physical process of system behavior. However, due to the
uncertainties in modeling and simulation, it is challenging to predict system behavior
with high accuracy using physics-based models. In addition, the expensive
computational cost is a constraint of physics-based models. The hybrid digital twin
approach uses both data-driven and physics-based models simultaneously to
capitalize on the advantages of each method while minimizing the disadvantages of

each method.

It requires sufficient prior information to build valid digital twin model. The
prior information includes 1) required information for (data-driven, physics-based,
and, hybrid) modeling, 2) the statistics of model input variables, and 3) prior

knowledge about system failure.

Even though the loT sensor and data-acquisition system getting affordable,
most of the data from the system are unlabeled and not informative for training the
data-driven model. And the physics-based model with a lack of information such as
geometry, operating condition, and test condition is in-valid as a digital twin. So, the
digital twin method with insufficient prior information for modeling is required. And
the input variables in digital twin models have a certain amount of physical
uncertainty, such as inherent variability in material properties and manufacturing

tolerances. A digital twin model that uses a deterministic form fails to analyze an



engineered system accurately. The effects of physical uncertainty thus have to be
taken into account to improve the predictive capability of digital twins. To conduct
accurate statistical analysis considering the uncertainty, the statistical information of
physical uncertainty should be appropriately estimated. The various physical status
of the system should be identified and represented by the digital twin. However, the
prior knowledge of system failure, such as the failure location and severity, is quite
uncertain and unidentifiable. So, the statistical and probabilistic prognostics and

diagnostics of system failure using the digital twin method are required.

To deal with those issues, many research efforts have been made to develop
digital twin approach with insufficient prior information. However, there is still a
great need for a hybrid digital twin approach to elaborate on analyzing the
engineering system. First, whereas a significant number of studies have focused on
the improvements of data-driven modeling using imbalanced data set such as auto-
encoder [12] and physics-guided machine learning [13], [14], relatively little
attention has been paid to investigating model updating. Model updating can
improve the accuracy of a digital twin for target engineered system. And updated
model and prediction results can be used to detect anomaly conditions. The data-
driven model with a large number of parameters is not efficient for model updating.
So, the efficient model updating method with insufficient prior information needs to
be researched. Second, many research focusing on the statistical model calibration
to estimate the statistical parameter of model input variables [15]-[23].
Optimization-based statistical model calibration is formulated as an unconstrained
optimization problem that infers the unknown statistical parameters of input

variables associated with a digital twin model by maximizing the statistical similarity



between predicted and observed output responses [20], [23]-[25]. A calibration
metric is defined as the objective function to be maximized that quantifies statistical
similarity. A critical challenge in formulating a calibration metric is appropriate
considering the statistical correlation in output responses. Third, the digital twin
needs to be updated under system failure without prior information about system
failure. And updating accuracy under system failure is sensitive to uncertainties in
manufacturing and test conditions. So, the uncertainties have to be taken into account
to update the digital twin under system failure. However, probabilistic analysis
considering the uncertainty needs expensive computational cost. Therefore, the
above three technical challenges should be properly addressed to realize digital twin

in reality successfully.

1.2 Research Scope and Overview

This doctoral dissertation aims at advancing three essential and co-related research
areas in statistical model calibration & updating for hybrid digital twin: (1) Research
Thrust 1 — Data-driven Dynamic Model Updating for Anomaly Detection ; (2)
Research Thrust 2 — A New Calibration Metric that Considers Statistical Correlation;
and (3) Research Thrust 3 — Hybrid Model Calibration and Updating For Estimating
System Failure. The research scope in this doctoral dissertation is to develop

technical advances in the following three research thrusts:



Research Thrust 1: Data-driven Dynamic Model Updating for Anomaly

Detection

Research Thrust 1 proposes Data-driven dynamic model updating for anomaly
detection with insufficient prior knowledge. The time-frequency domain features are
extracted from the observed response using signal pre-processing. The state-space
dynamic model is driven by the system identification method, a numerical algorithm
for subspace state-space system identification (N4SID). In the model, the operating
condition is defined as a parameterized input excitation force of the dynamic model.
Next, the amplitude and phase modulation parameter of excitation force are updated
to minimize the prediction error that can quantify the discrepancy between the
reference model prediction and target observed response in different operating
condition and system state. An optimization-based parameter tuning was originally
applied to estimate the operating condition of the engineering system. Health indices,
such as time delay of operation, prediction error by anomaly system operation, can

be derived from the digital twin analysis using the proposed method.

Research Thrust 2: A New Calibration Metric that Considers Statistical

Correlation

In optimization-based statistical model calibration, a calibration metric, which is
defined as an objective function to be minimized (or to be maximized), is used to
quantify the statistical dissimilarity (or similarity) between the predicted and

observed output responses. If the statistical correlation between multivariate output



responses is not properly considered, some calibration parameters could converge to
physically unreasonable values, even if the optimal set of the calibration parameters
is mathematically valid. Research Thrust 2 proposes a new calibration metric
considering statistical correlation: Marginal Probability and Correlation Residual
(MPCR). The foundational idea of the MPCR is to decompose a multivariate joint
probability distribution into multiple marginal probability distributions, while
considering the statistical correlation between output responses. The MPCR has
favorable properties, such as normalization, boundedness, and marginalization. Two
mathematical and two engineering examples are presented to demonstrate the

effectiveness and potential benefits of the MPCR.

Research Thrust 3: Hybrid Model Calibration and Updating considering

System Failure

Maintaining high predictive capability of a digital twin model under system failure
is of great concern to the engineers who make design decisions at the early stages of
product development. The predictive capability of the digital twin approach is
improved by considering uncertainties in manufacturing and test conditions.
Research Thrust 3 proposed hybrid digital twin approach for estimating system
failure considering the uncertainties. The proposed approach for estimating system
failure is based on two techniques; (i) statistical model calibration and (ii)
probabilistic element updating. In statistical model calibration, statistical parameters
of input variables are estimated based on the observed response related to the failure

initiation condition. Further, probabilistic analysis using estimated statistical



parameters can predict possible critical elements that indicate failure location and
severity. In probabilistic element updating procedures, the possible failure location
and growth element is updated based on the observed response related to the failure

severity condition.

As shown in Figure 1-1, valid hybrid digital twin can be formulated using
proposed methods in this doctoral dissertation. The data-driven and physics-based
model can be calibrated and updated with insufficient prior knowledge using
proposed methods. The egineering decisions such as design, diagnostics, prognostics

and control of the system can be made with valid hybrid digital twin analysis.

Data-driven Modeling Physics-based Model Calibration Hybrid Model Updating #;
i for Anomaly Detection Considering Statistical Correlation to Estimate System Failure v °
Observed Physical Quantity Valid Digital Twin Analysis
Data-driven Dynamic Model A Calibration Metric Formulation Hybrid Model Calibration and
Updating for Anomaly Detection considering Statistical Correlation Updating to Estimate Fatigue Failure

VT ¥28) Model prediction Error gt o e Find 0
tominimize  Metric ¥ore(8), Yops)
subjectto 0F <0< 0"

Statistical correlation among Model Calibration Results Considering

multivariate output responses Statistical Correlation
) n
5 & Ermw] i emm ks
) 1 System -} e Hybrid Model Calibration
\ | gy | Modd G I Upcaing and Updting
Data-driven Dynamic ﬁ“‘ | <] R\ S

Model Updating  L,(y,7) ‘WT,"_, o, R :

Figure 1-1 Proposed hybrid digital twin framework
1.3 Dissertation Layout

This doctoral dissertation is organized as follows. Chapter 2 reviews the current state
of knowledge regarding digital twin and statistical model calibration. Chapter 3

presents an data-driven model updating for anomaly detection with an insufficient



prior information for modeling (Research Thrust 1). Chapter 4 propose a new
calibration metric considering statistical correlation: Marginal Probability and
Correlation Residuals (MPCR) (Research Thrust 2). Chapter 5 addresses hybrid
digital twin approach to estimate the system failure and severity. Finally, Chapter 6
summarizes the doctoral dissertation with its contributions and suggests future

research directions.



Chapter 2

Literature Review

To provide readers with sufficient background information, this chapter is designated
to present the literature reviews of the knowledge within the scope of this doctoral
dissertation: (1) Digital Twin Formulation: 1) Data-driven, 2) Physics-based and 3)
Hybrid Digital Twin; (2) Digital Twin Calibration & Updating; Literatures on each
of these aspects are discussed in subsection and challenges are address. Since this
doctoral dissertation focuses on how to calibrate and update the hybrid digital twin
under in-sufficient prior knowledge, perspectives of data-driven and physics-based

digital twin model are not reviewed here in detail.

2.1 Digital Twin Formulation

A digital twin is numerical model in virtual world to mimic and simulate the physical
system in real world as shown in Figure 2-1. A conventional simulation model with
non-real time modeling data gives a weak engineering intuition to an engineer. On
the other hand, the digital twin which mimics operating systems using real time gives
a strong engineering decision support in real time. Depending on the given prior

information, digital twin can be formulated in various type :1) Data-driven, 2)
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Figure 2-1 Digital twin for engineering decision support

Physics-based and 3) Hybrid digital twin. The characteristics and example of each

method will be briefly explained in following subsection.

2.1.1 Data-driven Digital Twin

The data-driven digital twin is statistically trained and validated using machine
learning & deep-learning method. As shown in Figure 2-2, the data-driven model
have a pros and cons. Further, the data-driven digital twin is widely applicable for
various fields. Meraghni et al. (2021) proposed a deep-learning based digital twin
framework for proton exchange membrane fuel cell remaining useful life prediction.
The stacked de-noising auto encoders are proposed to capture the degradation
behavior of fuel cell [26]. Wang et al. (2020) proposed a digital twin approach for
visualized weld joint growth monitoring and penetration control. Convolutional

neural network model estimate the welding quality and geometry using the
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Pros
- Statistically valid method
- Model prediction is numerically efficient

High dependence on quality and quantity of data

Cons
|7— Difficulty in physical interpretation

Figure 2-2 Pros and Cons of data-driven digital twin approach.

information available directly from sensors including weld pool images, arc images,

welding current and arc voltage [27].

To train the data-driven model, sufficient data including the status and label
of the target system is required. However, it is suffer from lack of the data and
information in most engineering system. To overcome those situation, many research

focusing on the transfer-learning and data-augmentation [4], [12], [28]-[31].

Transfer learning is a set of methods that enhance learning target domain based
upon previously acquired knowledge in source domain. Here, knowledge is
transferred from source domain to another target domain in order to reduce the
amount of data or time needed to train a machine learning algorithm. Xu et al. (2019)
proposed a digital-twin for fault diagnosis using deep transfer learning [4]. The
proposed method combines advantages of both deep learning and transfer learning.
It trains the deep-learning model to extract high level knowledge in the source
domain where there is a huge amount of data available, and then transfer it to the
target domain which has different data distributions. Li et al. (2021) proposed the
wind turbine fault diagnosis based on transfer learning and convolutional auto

encoder with small-scale data [12]. The convolutional auto encoder network with
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Figure 2-3 Examples of data-driven digital twin: (a) transfer learning, (b) data-

augmentation.

parameter-based transfer learning is proposed. Parameter-based transfer learning
employs a neural network to transfer knowledge between domains by sharing

parameters and fine tuning.

The data-driven model trained with small number of training data can suffer
from over-fitting and invalid model prediction. To overcome the lack of the data,
data-augmentation method applied to increase the training data. There are various
augmentation method including data driven and physics based method. Data driven

method includes traditional signal processing (e.g. additional Gaussian noise, signal
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translation, amplitude shifting and time stretching) and deep learning based data-
augmentation (e.g. generative adversarial network) [28]-[30]. Generative
adversarial networks (GANSs) have been proved to be able to produce artificial data
that are alike the real data, and have been successfully applied to various image
generation tasks as a useful tool for data augmentation. Shao et al. (2019) developed
auxiliary classifier GAN to learn from mechanical sensor signals and generate
realistic one-dimensional raw data [29]. K. Yu et al. (2020) proposed a multi-stage
semi-supervised learning (SSL) approach for fault diagnosis of rolling bearing using
data augmentation and metric learning [30]. In the proposed SSL, small number of
labeled data were randomly augmented using 7 traditional signal processing
augmentation strategies. Then, semi-supervised learning using clustering were

conducted to diagnose the bearing faults.

However, the data-driven model with insufficient information still require
enough data and prior information about data. And It is hard to explain the analysis
results and ensure the prediction accuracy in unknown operating and exploration

domains.

2.1.2 Physics-based Digital Twin

A physics-based digital twin — such as a finite element model or a system dynamic
model — has been widely used for design and control. Figure 2-4 shows pros and
cons of physics-based digital twin. Physics-based model analysis is less dependent
on data and is physically interpretable. Guivarch et al. (2019) applied multibody
simulation to digital twin modeling of a helicopter [32]. Jain et al. (2019) proposed
a dynamic model of a distributed photovoltaic energy conversion unit (PVECU); the

error residual was calculated to diagnose the PVECU [33]. However, a physical
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Figure 2-4 Pros and Cons of physics-based digital twin approach.

digital twin model can be invalid due to improper physical assumptions. Further,
physics-based model analysis is often numerically expensive for complex and large-

scale engineered systems.

As the relevant physical phenomena taking place in an engineered system
become more complex, a physics-based model needs to be more sophisticated.
However, it is not easy to fully characterize the physics in the real system using
physics-based model due to limited resources (e.g., time, budget, and computation
costs). To overcome those situation, many research focusing on the model
verification & validation (V&V) and model refinement (including non-linear

analysis).

V&YV activities include model verification and model validation. According to
the ASME and AIAA guides [34], [35], model verification is defined as the process
of determining whether a model’s implementation accurately represents the
developer’s conceptual description of the model. Model validation is defined as the
process of determining the degree to which a model is an accurate representation of

the real phenomenon from the perspective of the intended uses of the model. It is
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important that the model validation is including both a process of assessing the
accuracy of a computational model and a process of improving the model based on

the validation results.

For the model calibration, deterministic methods were proposed in several
studies [36], [37]. Although the deterministic methods effectively reduce the
discrepancy between observed and predicted responses, deterministic adjustment of
model parameters can significantly degrade the predictive capability of the digital
twin in statistical sense [35], [38]. Recently, for this reason, statistical methods have
received significant attention [39]-[41]. However, it is hard to conduct statistical
model validation because of several existing issues, including uncertainty
guantification, uncertainties in model variables and statistical model validation, etc.
Statistical methods are superior to deterministic methods since they attempt to
enhance the digital twin's predictive capability by thoroughly addressing
uncertainties in a real system and digital twin. The sources of uncertainties in digital

twin should be properly investigated in the statistical model validation.

In most engineering problems, the sources of uncertainties can be divided into
three sources: (1) physical, (2) modeling, and (3) statistical uncertainties [42]-[44].
The physical uncertainty comes from inherent uncertatinty in physical quantities,
whereas the modeling uncertainty is from inadequate or erroneous models. The
statistical uncertainty is attributed to the lack of prior information about uncertainties.
In principle, the existence of these uncertainties in engineering systems can be either
recognized, unrecognized or a combination of both. Numerous studies attempted to

effectively incorporate various aspects of uncertainty in statistical model validation.
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Figure 2-5 describes a framework of statistical model validation, which consists
of the sequentially-executed three procedures: 1) model calibration, 2) validity check,
and 3) model refinement. Statistical model calibration refers to an activity that infers
the statistical parameters of unknown model input variables. Validity check is an
activity to quantitatively determine the degree of the validity of a digital twin model
by comparing the observed output response with predicted ones. Representative
methods for validity check includes generalized u-pooling method considering
correlation [45], [46] and Bayesian hypothesis test [47]. If validity check turns out
to be invalid, model refinement should be performed by revisiting the physical
behavior of a digital twin model [24], [25]. The uncertainties of output response
propagated from the aleatory uncertainties are quantified in forward problem. And

to reduce uncertainty in epistemic variable, the unknown statistical parameters are
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Figure 2-5 Framework of statistical model verification and validation
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inferred using inverse problem which is statistical model calibration.

2.1.3 Hybrid Digital Twin

To overcome the disadvantages of data-driven and physics-based approaches, the
hybrid digital twin simultaneously utilizes both the physics-based and the data-
driven model. Li et al. (2017) proposed a hybrid digital twin using an airplane wing
finite element model and a Bayesian network approach, considering uncertainty
sources such as material properties and manufacturing tolerance in the system [48].
Roohi et al. (2019) proposed state estimation approaches using state observers for
assessment of instrumented wood-frame buildings [49]. Wang. B et al. (2021)
suggested data-driven digital twin of proton exchange membrane fuel cells to
overcome the computation cost of multi-physics-analysis as shown in Figure 2-6 (a)
[50]. The previous hybrid digital twin approach uses the predicted data from a
physics-based model as training data for a data-driven model to overcome a lack of
data. However, an invalid physics-based model prediction that is based on unknown
input variables and invalid assumptions can result in poor data-driven model

performance.

To overcome this problem in the hybrid digital twin model, statistical model
updating can be a good strategy for improvement. Xia et al. (2021) proposed hybrid
digital twin approach which is digital twin-assisted deep transfer learning as shown
in Figure 2-6 (b) [51]. In this work, the de-noising auto-encoder is pre-trained using
the data generated from physics-based model and update the model using transfer
learning method. Yu et al. (2021) proposed hybrid digital twin model based on
nonparametric Bayesian network and real-time model updating based on the

Gaussian particle filter and dirichlet process mixture model [52].

17



Multi-Physics-
Resolved Digital
Tvrin

Physics-based

Data-driven
Surrogate Model

O

Data-Generation

(a)
Physics-based Simulate and Transfer
Model Measured Fault Learning

Condition Data

¢ +Simulate Prre-Trai

re Fipe-T

Digital twin

Real machine

(b)
Figure 2-6 Examples of hybrid digital twin: (a) Multi-Physics-Resolved digital

twin, (b) Intelligent fault diagnosis of machinery

However, the computation cost to update the large number of parameter in data-
driven model of hybrid digital twin is expensive for real-time updating and
prediction. And the updated results such as parameter variation in network,

prediction error are not physically interpretable.

2.2 Digital Twin Calibration & Updating

Compared with conventional simulation models, a distinct characteristic of a digital
twin is its ability to update predicted performances simultaneously with a real system

change. The system change can be reflected in digital twin by calibrating digital twin
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input parameters and updating digital twin model structure. Statistical model
calibration and updating is thus of great importance as a strategy to improve the
predictive capability of a digital twin model [15], [17], [20]-[23], [53], [54].
Representative methods for statistical model calibration and updating include
optimization-based statistical model calibration approaches [20], [23], [24] and
parameter estimation using Kalman/ Particle based filter [55]. These methods were
developed with different backgrounds and philosophies. The characteristics and

example of each method will be briefly explained in following subsection.

2.2.1 Optimization-based Statistical Model Calibration

From the frequentist perspective, a PDF is an effective way to statistically
characterize the inherent variability in input variables and output responses. The PDF
can be parameterized by statistical parameters. For instance, a normal distribution is
fully characterized by the mean and standard deviation. In practice, however, some
statistical parameters are unknown due to a lack of data. Therefore, optimization-
based statistical model calibration inversely estimates the unknown statistical
parameters, which are defined as calibration parameters, by maximizing the
agreement (or minimizing the disagreement) between the two probability

distributions of the predicted and observed output responses.

Optimization-based statistical model calibration can be formulated as a design

problem without constraint function as:

Miniemize or Maxiemize fCM(T(pre((-)),YobS) (2.1)
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where 0 denotes a calibration parameter vector; and fCM(?pre(e),Yobs) denotes
a calibration metric, which is defined as an objective function to be maximized or
minimized. The lower and upper bounds of the calibration parameters, denoted by
6% and @Y, can be determined based on prior information. Calibration metrics can
quantify statistical similarity or dissimilarity between the predicted and observed
output responses. To find the optimal set of the calibration parameters, a sequential
quadratic programming, genetic algorithms, or another advanced optimization solver
can be used as a searching algorithm [23], [56]. Selecting a proper optimizer is
important to improve the accuracy of optimization-based statistical model
calibration. There might be several local minimums in a solution space because of
the nonlinearity between the input variables and output responses. As such, a global
optimization solver such as a genetic algorithm and multi-start gradient method is
preferred. Figure 2-7 describes the procedure for optimization-based statistical

model calibration, which is summarized as follows:

e Step 1. Identify the unknown input variables that contribute significantly to

the output response. The number of calibration parameters in an
unconstrained optimization problem can be reduced through variable

screening.

e Step 2. Assume the probability distribution type of each model input variable

identified in Step 1. The type of the probability distribution can be

decided based on prior information such as an expert’s opinion.

o Step 3. Initialize the calibration parameters 0;_; and their lower and upper
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Step 4.

Step 5.

bounds O and @Y.

Perform uncertainty propagation (UP) analysis to probabilistically

quantify the uncertainties in the output response that are propagated
from the variability in the model input variables through a CAE model.
Since a common challenge in UP analysis is a multidimensional
integration to quantify the probabilistic nature of the output responses,
many research efforts have been made to develop UP methods, such
as 1) sampling methods, 2) expansion methods, 3) response surface
approximate methods, and 4) approximate integration methods.
Applying sampling methods directly would be not affordable due to
its considerable computational cost. However, once an accurate
surrogate model is available, the Monte Carlo simulation can be
applied to the accurate surrogate model to perform the uncertainty
propagation with affordable computational burden. Since UP analysis
is required for every iteration in optimization-based statistical model
calibration, an appropriate method should be selected with

consideration of accuracy and efficiency.

Calculate the calibration metric to quantify the statistical similarity (or

dissimilarity) between the observed and predicted output responses.
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» Step 6. Update the calibration parameters until the calibration metric is

maximized or minimized. If the convergence criterion is satisfied,

stop the iteration; otherwise set i=i+/ and repeat Steps 4 to 6.

In optimization-based statistical model calibration, a calibration metric, which is
defined as an objective function to be minimized (or to be maximized), is used to

quantify the statistical dissimilarity (or similarity) between the predicted and

Step 1: Sensitivity analysis for variable screening

|
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for Xunknown (Bi)

Step 3: Initialize calibration parameter vector (8;-;)

l

Step 4: Uncertainty PN Computational
propagation analysis model
PDF of predicted Experimental
response (Y, e) data (Yy,s)
Updated 0; l — ==
i=i+1
A Step 5: Calibration metric

Step 6: Converged ?

[ Calibrated model ]

Figure 2-7 Procedure for optimization-based statistical model calibration
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observed output responses. This implies that the effectiveness of optimization-based
statistical model calibration strongly depends on how the calibration metric is
formulated. If a calibration metric is not well-defined, optimization-based statistical
model calibration could fail to accurately infer the calibration parameters. There
have been several calibration metrics proposed in the literature, including the
marginal likelihood (ML) metric [53], the joint likelihood (JL) metric [17], the
moment matching metric [57], and statistical distance based metrics [58]. Since
optimization-based statistical model calibration inversely estimates the calibration
parameters by maximizing the agreement (or minimizing the disagreement) between
the two probability distributions of the predicted and observed output responses, the
calibration metric should be carefully formulated to properly account for the
information obtained from the output responses. It has been reported that the use of
multiple output responses as additional information can improve identifiability in
statistical model calibration, thereby better inferring the calibration parameters [59],
[60]. It is worth pointing out that the statistical correlation between multivariate
output responses is not to be overlooked in optimization-based statistical model
calibration [46]. Based on the authors’ experiences, if the statistical correlation
between multivariate output responses is not properly considered, some calibration
parameters could converge to physically unreasonable values, even if the optimal set
of the calibration parameters is mathematically valid. In other words, neglecting the
statistical correlation might lead to arriving at a physically unreasonable solution in
optimization-based statistical model calibration. For the ML metric, since
multivariate output responses are assumed to be statistically independent of each
other, the ML metric cannot consider the statistical correlation between them. The

statistical distance-based metrics such as the Bhattacharyya distance and
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Mahalanobis distance have the limitation similar to the likelihood metric, including
un-boundedness and joint PDF modeling issues. Even though the moment matching
and JL metrics are able to quantify the statistical correlation for the purpose of model
calibration, those metrics have their own limitations that will be discussed in Section
4. This drives research interest in developing a new calibration metric that is able to

consider the statistical correlation between multivariate output responses.

2.2.2 Parameter Estimation using Kalman/ Particle filter

To update the digital twin model using the observed time varying (dynamic) signal
with a physics-based model, parameter estimation is conducted using an Kalman-

based filter. The model parameter 0 is modeled as a Gaussian Markov process as:
Ok+1 =0, + Vi (2.2)

where y, denotes parameter noise that follows a normal distribution with zero

mean and covariance (Qy). The system model output is modeled as

Vi+1 = Rier1 (O, [Flis1, o, Uo) + Viyq (2.3)

where hy., is the k+1-th time step acceleration response function of the proposed
dynamic model; [f]x+1 denotes the input excitation time history from time t; to ti.
The terms u, and 1, are the initial nodal displacement and velocity vector,
respectively. The initial condition is assumed as at rest (that is, uy = i, = 0).
Further, v, ,denotes measurement noise, which follows a normal distribution with
zero mean and covariance (Ryyq). The initial model parameter and covariance

matrix is assumed as
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§+0 = E[eo] (24)

Pgo =E[(8, — 00)(8, — 8] (2.5)

The prior parameter and covariance matrix is estimated as
07 ke =07 (2.6)

Pa,k+1 = P;,k+1 + Qi (2.7)

The response sensitivity with respect to the parameter is calculated as

_ Ohyey 1Ok, [fli+1)
k+1 — aeT

(2.8)

where the response sensitivity can be calculated using finite difference methods. The

Kalman gain matrix is calculated as

— _ -1
Kir1 = Poyir1(Pyrs1)
2.9)

- _ p- T - _ - T
where Pgy i1 = Pois1Cir1r Pyisr1 = Chr1Pors1Crsr + Risr

where Py, ;.1 denotes the estimated parameter response cross-covariance matrix;
Py .1 denotes the estimated response covariance matrix. The posterior parameter

is estimated as
elt+1 = 0p1 + Kkt 1 Vk+1 — Vie+1) (2.10)

where y,,1 and y,,, denote the observed and predicted output response at ty.1,

respectively. The posterior covariance matrix is estimated as

Pgii1 = (I = Ki11Cii1)Popiq (2.11)
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The Particle-filter is sampling based method using Monte-Carlo simulation. The sets
of parameter is sampled based on given parameter noise and the variation of output
response (y.41) is estimated with sample points. The most probable and possible
parameter (0j,,) is resampled based on the weight calculation using observed

response (¥x.1)- And the covariance of matrix of parameter is updated.

The parameter estimation using Kalman/ Particle based is efficient and straight
forward. There are several study to enhance the Kalman filter approach for digital
twin updating and calibration. Branlard et al. (2020) proposed the Augmented
Kalman filter with a reduced mechanical model to estimate tower loads on a land-
based wind turbine [55]. The approach combines a mechanical model and a set of
measurements to estimate responses that are not available in the measurements, such

as wind speed, thrust, tower position, and tower loads.

The input-excitation (f) can be estimated using the system matrixes and
Kalman based filter approaches. Azam et al. (2015) proposed a dual Kalman filter
approach for input and state estimation using output-only measurements [61].
Shrivastava et al. (2019) applied the joint-input state estimation method for

estimation of unbalance parameters of rotor-bearing systems [62].

However, The parameter estimation using Kalman/ Particle based filter
approach require proper dynamics model and estimation accuracy is affected by the
covariance matrix of the measurement and parameter noise (Q, R). Also the input
excitation of the system is hard to measure for most engineering case study. So, It is
hard to apply the method for digital twin updating with an insufficient prior

information. This drives research interest in developing a new data-driven dynamic
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model updating that is able to apply without prior information such as dynamic

model, input excitation and statistical information of noise.

2.2.3 Summary and Discussion

Whereas significant efforts have been made to develop digital twin with enough data
and prior information about system, relatively little attention has been paid to
investigating hybrid digital twin approach with an insufficient prior information. In
the small number of existing works based on data-driven and hybrid approaches, it

is assumed that lack of data or imbalanced data sets.

However, it should be noted that the characteristics of the system may change
corresponding system failure or operating condition, thereby resulting in invalid
model prediction by a transition of the observed output response. Therefore, an
model calibration and updating considering system failure and anomaly condition

must be developed to help engineering decisions using digital twin analysis.
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Chapter 3

Data-driven Dynamic Model
Updating for Anomaly Detection
withan Insufficient Prior
Information

The data-driven digital twin is statistically trained and validated using the machine
learning & deep-learning method. The data-driven digital twin can be used for real-
time analysis because of its efficiency. Further, the data-driven digital twin is widely
applicable for various fields because of its flexibility. To train the data-driven model,
sufficient data, including the status and label of the target system, is required.
However, it suffers from a lack of data and information in the most engineering

system.

Whereas significant efforts have been made to enhance the data-driven model
with imbalanced and insufficient data set (i.e., transfer-learning or data-
augmentation), relatively little attention has been paid to investigating data-driven
dynamic model updating method. In the small amount of existing works based on

the Kalman/Particle filter based model updating, it is assumed that the observable
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operation condition and valid physics-based model. However, it should be noted that
the prior knowledge for physics-based modelling is not available for complex

engineering system.

The chapter thus proposes data-driven dynamic model updating for anomaly
detection with insufficient prior knowledge. The time-frequency domain features are
extracted from the observed response using signal pre-processing. The state-space
model is driven by numerical algorithm for subspace state-space system
identification (N4SID) to predict the extracted features under different operating
condition. In the model, the operating condition that arises from the operation are
defined as a parameterized input excitation force of a system model. Next, the phase
and amplitude modulation of input excitation force are updated to minimize the
prediction error that quantify the discrepancy between the observed and predicted
time- and frequency-domain features. An optimization-based parameter tuning was
originally applied to estimate operating condition of engineering system. Using the
proposed method, health indices, such as time delay of operation, prediction error by

anomaly system operation can be derived from the digital twin analysis.

The remainder of Chapter 3 is organized as follows. Section 3.1 describes the
target system which is suffering from lack of prior knowledge for digital twin.
Section 3.2 address the data-driven dynamic model updating to detect anomaly
condition with insufficient data. In Section 3.3, numerical and engineering example

are demonstrated. Finally, the conclusions of this work are provided in Section 3.4.
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3.1 System Description of On-Load Tap Changer

Power transformers are essential equipment for the transmission and distribution of
alternating electric current. Power transformers are made up of several key
components, including the core, winding, bushing and an on-load tap changer
(OLTC). The voltage ratio between the input and the output voltage of the power
transformer is decided by the winding turns ratio. An OLTC is a sequential shift
mechanism that allows the variable turns ratio to be selected to regulate the output
voltage of the power transformer. The turn ratio is decided by the OLTC connecting
to one of a number of access points (known as taps) along either the primary or
secondary winding. The OLTC mechanically changes the turn ratio without stopping
the operation of the power transformer. Figure 3-1 shows the internal components of
a widely used three-phase OLTC, specifically, the MR-MIIlI 350. The OLTC
mechanically operates 10-15 times per day. Due to its frequent operation, it is
vulnerable to mechanical faults. Mechanical faults cause other electrical and thermal
faults. To prevent OLTC failure, time-based maintenance is typically carried out.
The maintenance overhaul of an OLTC should be conducted after 6-7 years of
operation or 20,000-100,000 iterations of the tap changing operation. However, the
traditional time-based overhaul strategy can cause unnecessary inspection costs, and
can lead to human error, such as incorrect assembly or visual inspection error. To
overcome the disadvantages of time-based maintenance, several studies have been
carried out to diagnose OLTC health using measurable data without the need for
overhaul. These studies have examined the 1) OLTC vibration signal [63]-[67], 2)
OLTC motor current [68], [69], 3) High Frequency Current Transformer (HFCT)

sensor signal for Partial Discharge (PD) measurements [63], and 4) Dynamic
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Resistance Measurement (DRM) [70].

Erbrink et al. (2010) showed that the electrical and mechanical health state
transition of an OLTC results in variation in DRM. However, the DRM is not
measurable during power-transformer operation [70]. Seo et al. (2017) proposed a
joint measurement system that simultaneously observes three types of measurable
data during power transformer operation: 1) the HFCT signal from the grounding
cable, 2) the OLTC motor current, and 3) the vibration signal [68]. Further, Seo et
al. (2018) applied the Savitzky-Golay filter to extract health features from PD
measurements and the vibration envelope signal [63]. However, the complementary
effect of each type of data is not shown in this previous study. For reasons outlined
herein, the study described in this paper focuses on using the vibration signal to

estimate the mechanical state of an OLTC.

The vibration signal is caused by the OLTC’s sequential mechanical operation.
Mechanical faults of an OLTC can be detected using the vibration signal. Rivas et
al. (2010) showed that the characteristics of the vibration signal, such as its
magnitude and time of burst signal, depend on the mechanical health state of the
OLTC, such as spring looseness, damaged tap selector contacts, or a broken output
contact bar [71]. Qingmin et al. (2012) proposed a Hidden Markov Model based fault
diagnosis model using frequency domain features from the vibration signal [67].
Duan et al. (2016) applied Empirical Mode Decomposition to fault/normal vibration
signals of an OLTC to extract health features and calculated the Lorenz information
measure to show the difference between a faulty and normal-state signal [65]. Liu et
al. (2017) applied variational mode decomposition to extract features and trained a

relevance vector machine diagnostic model [72]. Yang et al. (2019) applied dynamic
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time warping for mechanical fault diagnosis of an OLTC [73]. Signal processing and
statistical diagnostic methods were applied to experimentally observed fault and

normal-state vibration signals in these previous studies.

In most previous studies, artificial faults were applied to the OLTC in
experimental conditions to create a fault vibration signal. However, this approach
can require significant experimental costs and effort to derive artificial faults. Further,
performing experiments to create a fault vibration signal is not possible during power
transformer operation. Thus, most real-world applications suffer from a lack of fault
vibration signal data. Statistical diagnostic methods, such as machine-learning and
deep-learning with insufficient fault signals, cannot guarantee accuracy and

efficiency. In the study described in this paper, to overcome this problem, we

Transition Resistor
Tap Selector > ANp %
A

(a) (b)

Figure 3-1 The internal components of an OLTC : (a) MR-MIII 350 and (b)

general schematic representation
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propose a digital twin approach for mechanical state estimation of an OLTC. The
mechanical state of an OLTC affects the vibration signal in both the time and
frequency domains. The proposed digital twin approach can infer the transition of
the health state of an OLTC using the features in the time-frequency domain of an
observed vibration signal. The proposed method consists of 1) pre-processing of the
vibration signal to extract features in time-frequency domain, 2) OLTC digital twin
modeling to simulate the vibration signal, and 3) model updating using observed
features in the time-frequency domain to infer the mechanical operating condition

and health state of the OLTC.

Figure 3-2 (a) shows the OLTC’s operation and vibration signal when operating
in three phase diverter switch. The operation sequence of the internal components,
such as tap selectors and contact points in the diverter switch, causes a burst vibration
signal. The OLTC operates 10-15 times per day, which — over time — causes
mechanical faults in the OLTC, such as spring failure, contact point wear, incomplete
contact of the tap-selector, and time delay of the switching sequence. In turn, those
mechanical faults result in electrical and thermal faults in the OLTC. Figure 3-2 (b)
shows a schematic representation of the time delay of diverter switch operation
between phases, which causes circular current. The mechanical faults can cause
delays in the tap-selector and diverter-switch operation that result in a severe circular
current. Using the observed vibration signal, the delay of the diverter switch and tap
changer operation can be quantified. In this paper, we propose a digital twin

approach to estimate the mechanical state of an OLTC using its vibration signal.
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Figure 3-2 OLTC operation sequence: (a) Schematic representation of diverter

switch operating sequence and (b) the time delay of the diverter switch operation

3.2 Data-driven Dynamic Model Updating for Anomaly
Detection with an Insufficient Prior Information

The following section outlines the proposed digital twin approach. Figure 3-3
describes the procedure for the proposed digital twin approach. The proposed
method consists of 1) pre-processing the response using minimum entropy
deconvolution (MED) filtering to extract the impulsive target system operation

response and short-time Fourier transform (STFT) to extract the time-frequency
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domain features, 2) target system dynamic model formulation using numerical
algorithm for subspace state-space system identification (N4SID), and 3)
optimization-based model updating using time-frequency domain features to infer
the OLTC’s operating condition. This method is applicable to all sequential
operating OLTCs that generate a vibration signal. The mechanical state of the OLTC,
including spring force magnitude and time delay between diverter contact and the

tap selector can be analyzed from the updated input parameters.
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Figure 3-3 Procedure for the proposed digital twin approach to estimate the mechanical health state of target system.
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3.2.1 Preprocessing of Vibration Signal

Measurement of the vibration signal is available during power transformer operation.
The observed vibration signal during power transformer operation includes vibration
from sources such as 1) vibration due to the mechanical OLTC operation, 2)
vibration from the electromagnetic force of the winding and core, and 3) external
noise. To diagnose the OLTC using the vibration signal, the mechanical vibration
from the OLTC operation should be extracted from the raw vibration signal. The
mechanical vibration from OLTC operation is caused by impulsive force during
OLTC operation. In 1978, Wiggins proposed a minimum entropy deconvolution
(MED) method that derives a linear filter to minimize entropy of a signal [74]. MED
filtering is widely used to extract an impulsive signal to diagnose mechanical
components, such as gears [75] and bearings [76]. In this study, we applied MED

filtering to extract the impulsive vibration from OLTC operation.

The vibration signal can be analyzed in both the time and frequency domains
using STFT and Wavelet Transform (WT). The OLTC health state affects the
vibration in both the time and frequency domains [65], [73]. Further, the mechanical
health information of the OLTC temporarily is concentrated in the vibration signal
during tap-selector and diverter switch operation. Park et al. (2019) found that the
“WT process requires lengthy computational time...”(p. 253) and proposed using
the variance of energy residual for gear fault detection based on the STFT [77]. In
our approach, STFT is applied to extract vibration features in the time-frequency
domain. Discrete-time STFT for a discrete vibration signal can be mathematically

formulated as:
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Y(t.f)= ) ylelwle - tle it (3.0)

T=—00

where ¢ and f'denote the time step and frequency, respectively; w(t) isthe window
function; y(t) denotes vibration signal at time step 7 ; and Y(t, f) denotes
amplitude in time step ¢ and frequency f. In this study, a uniform window is applied
because the vibration signal from the OLTC is an impulsive and transient signal. The
length of widow can be adjusted depending on the signal acquisition condition. STFT
with high frequency and time resolution is computationally expensive. The STFT for
the predicted vibration signal is required for every update iteration. Thus, the
resolution of the STFT should be properly selected to consider computational cost.
The numerical options of STFT, such as window and overlap size, are discussed in

Section 3.3.

To formulate state space model simulating the vibration signal, the input signal
of the system is required. To extract the pseudo OLTC input excitation force, the

STFT signal is marginalized as:

_ fmax

V0= [ 32)
fmin

where fiuin and fipq, denote the minimum and maximum frequency value of the

STFT signal, respectively. To extract operating features that occurred during an

operation sequence, the peaks of marginalized STFT signals (d; = {?j, t;}) are find

using peak finding algorithm. The initial input excitation force is defined as:

1 O
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Uintial = ymax(Y;) ¢« t; (3.3)
0

where Yj,tj denote amplitude, time of peaks in marginalized STFT signal,

respectively. The normalized initial input excitation force have amplitude values

fromO0to 1.

3.2.2 Reference Model Formulation using N4SID

This study applied a simplified, state space model formulation method using
numerical algorithm for subspace state-space system identification (N4SID) to
simulate the vibration signal of an OLTC. Liu et al. (2019) proposed a simplified FE
model that requires 48.8 seconds to run the simulation while requiring a lot of
unknown model parameters (i.e., spring constant, contact model parameters, material
properties) [78]. In contrast, the proposed state space model requires only a few
milliseconds to simulate the given force parameter. The state space model can be

generally formulated as:

[X] = AlX] + B[U] (3.4)
Ypre = C[X] + D[U]

where A, B, C, and D denote system, input, output and feedthrough matrix,
respectively. The X, Y, and U denote state, output, and input vector,
respectively. The matrix can be derived physically using Finite Element Method [78]
and lumped dynamic model [79]. However, it requires prior knowledge of the system

such as geometry, material properties and operating condition. It is not easy to get
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prior knowledge with respect to various OLTC and power transformer. To build the

valid state space model, we applied the N4SID method. In N4SID method, it requires

3 assumptions as:

1) Assumption 1: States visit every dimension.
2) Assumption 2: Persistently exciting inputs.

3) Assumption 3: No linear state feedback

The N4SID method requires the sets of input and output vectors as:

u@© u@ -+ u(N-1
U, Uy, = u(:l) u(2) u(:N)
uk-1) uk) - uk+N-2)
yO y@® - y(N-D
Y, Yo, - yfl) y(2) y(:N)

yk=1 yk) - y(k+N-2)

(3.5)

(3.6)

where U, and Y, denote past input and past output matrix, respectively. where N is

assumed large integer. The past data matrix is formulated as:

u
W, { mkl}
YO\k—l

Similarly, the future output and input matrix defined as:

u(k)  uk+l) - uk+N-1)
U, Uy, = u(k:+1) u(k +2) u(ker)
u(k-1) u(k) - u(k+N-2)
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y(k)  yk+D - y(k+N-1)
y(k+1) yk+2) --- y(k+N)

Yq :Yk|2k71 = : ) : (39)
y(2k-1) y(2k) - y(2k+N-2)
The future input-output relationship can be expressed as:
Y, =0 X +¥ U, (3.10)

were Oy and W, denote observability, block Toeplitz matrix, respectively. Those

matrices can be derived from state space representation as:

C D 0 0
CA CB D - 0

Oc=| . Y= L (3.11)
CA*? CA*?B ... CB D

The combined data matrix can be decomposed into L (lower triangular matrix)

and Q (orthogonal matrix) as:
Uf |-11 0 0 QlT

Wol=|Li L, 0||Q] (3.12)
Yi Ly L, 0]|Q

where the L (i,j=1,2,3) are blocks of lower triangular matrix. The Lz should be zero,
because all the inputs of both past and future times are zero and the outputs were 0

in the past time. The three equations can be obtained from above equations as:
U, =L,Q’ (3.13)

W, = L,,Q" +L,,Q; (3.14)
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Y= L31Q1T + L32Q2T (3.15)

Then, the output matrix can be derived as:

Yf = L31L1171Uf + Lsz I-zz# (va - L21L1171U f)

= (I-sl - I-sz Lzz# I-21) LnilU i+ Lsz LZZ#\Np (3.16)

where L2," denote pseudoinverse of Ly, because L. is rank deficit. From the equation

(3.8), (3.9) and assumption 2 and 3, the following equation derived as:

Ok X =L, LZZ#VVp = UlzlvlT (3.17)

where the Uy, Vi and X are singular value decomposition of LzoL,,"W,. The results
can be split between Oy and X; as:

X, =T A

3.18
ok — U1211/2T ( )

Based on the series of states (Xt ) and the input-output data (Us, Ys), we can form the

following 4 matrices (A,B,C and D) as:
A B XL T T TY
2 SV EIEIT)
where Xk, Yk and Uy are the series of state, output and input data at time k to k+N-2.
Xk+1 18 the series of state at time k+1 to k+N-1. For valid model formulation, accurate
output and input data is required. However, the input excitation force cannot be

measured for OLTC vibration signal. So we proposed pseudo input excitation force

using pre-processing. Figure 3-4 (a) shows an initial pseudo excitation force.
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Figure 3-4 Model Input: (a) Initial pseudo input excitation force, (b) the parameter

of input signal

However, the operating condition can be varying for each operation. So,
optimization —based tuning is applied for reference model formulation and operating

condition estimation using reference model.

3.2.3 Optimization-based Parameter Updating

The optimization-based parameter updating is applied to update the input excitation
force using the observed vibration signal. In this approach, the parameters of input
force are updated to minimize the L,-norm error of the frequency and time domain

features of signal. The optimization-based tuning is defined as:

miniemize L,(0) (3.20)

where O denotes an updating parameter vector; and O includes the set of
parameters, such as phase modulation (s») and amplitude modulation (P,) parameters

of n-th impulse input; Figure 3-4 (b) represents the parameter of input excitation

43 Al =TH



force. L, (Y(t, NG f |(-))) denotes the L, norm metric value using observed

and time-frequency features. The L, norm metric is formulated as:

_ Y& ) - Y, £18)|| deaf
’ TG Ol dedf

(3.21)

where Y(t,f), Y(t,f|0) denote the amplitude of Discrete-time STFT of observed
and predicted signal, respectively. To solve the optimization problem, sequential
quadratic programming, genetic algorithms, or another advanced optimization solver
can be used as a searching algorithm. There might be several local minimums in a
solution space because of the discrete signal. As such, a global optimization solver,
such as a genetic algorithm (GA), and a multi-start gradient method are preferred. In
this study, GA is applied for the case study. The 0, which includes the phase and
amplitude modulation parameters of the impulse input forces (sn, Pn), is updated to
estimate the operating condition of an OLTC using the observed signal at each
operation. The updated model prediction accuracy and parameters can represent the
mechanical health state and operating condition of the observed OLTC. To quantify
the mechanical state of an OLTC, health indices — including time delay of operation
— can be derived using updated model parameters. If enough data is observed from
both faulty and healthy state vibration signals, data-driven approaches — including
support vector machine and deep learning algorithms (including Convolution Neural
Network, Recurrent Neural Network) — can be used to distinguish the faulty and
healthy states of an OLTC. However, as we introduced, it is difficult to obtain faulty
state OLTC vibration signals for an active power transformer to train or use a data-
driven model. If the proposed indices accumulate data over time (i.e., until failure),

the health indices can show degradation of the OLTC’s mechanical state. Rule-based
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diagnosis based on the observed health indices can also be proposed.

3.3 Case Study

In this section, numerical and engineering examples are demonstrated to verify the
effectiveness of the proposed digital twin approach. In the numerical example, the
sets of vibration signal are generated in normal and anomaly operating condition in
different noise level using physics-based simulation model. And the analysis results
are compared to identify the effectiveness of proposed method in different noise
level. In engineering example, the proposed digital twin approach is applied to
estimate the mechanical state of an observed OLTC, specifically an MR-MIII 350.
The MR-MIII 350 is a three-phase OLTC made by Maschinenfabrik Reinhausen
(MR).

3.3.1 Case Study 1: (Numerical) Vibration Analysis using Parameter

Varying Cantilever Beam and Multi-DOF model

In this example, the sets of vibration signal are generated using numerical model.
The physics-based model using a finite element (FE) method was constructed to
perform dynamic analysis. Figure 3-5 shows a numerical model consists of Euler-
Bernoulli beam and lumped parameter model and parameterized impulsive
excitation force. The observed output response is acceleration at the six-th node of
the beam element. Each mass (m;) is loaded by the impulse force which defined by

two parameters: amplitude (P;) and time (t;). Each mass is heated in three different
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period and magnitude. To consider uncertain operating condition of OLTC, the three
different period of impulse force are assumed to follow normal distributions
(ti~N(u;, 07), 1I=1,2,3). The statistical parameter vector of three different periods
is that [ua, o1, 2, 02, us, as] = [0.04, 8e-04, 0.05, 8e-04, 0.06, 8e-04]. The model

parameter is summarized in Table 3-1.

The large and small-time scale are assumed as day and second. The response is
simulated for ten days and 0.2 seconds long vibration signal using Monter Carlo
simulation. The vibration signal of anomaly operating condition is simulated with
change of system parameter in large time scale. The standard deviation which

indicates time delay of system operation is increased in anomaly operating condition.
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Figure 3-5 (a) The computational model for generating vibration signal and (b)

parameterized impulsive excitation force
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Table 3-1 Model Parameter (Normal Operating Condition)

Symbol Quantity Value
E Young’s Modulus of Beam 210 GPa
0 Density of Beam 7860 kg/m3
w Width of Beam 0.1 m

t Thickness of Beam 0.03 m

/ Length of Beam 1.2m

M; Mass of m; 10%°kg
m, Mass of mo, ms, my 10%%kg
M Mass of m; 10%°kg
K Stiffness of &; 10'° N/m
k, Stiftness of k21, kazp, k31p, k32p, kaip, kazp 107

C; Damping Coefficient of ¢, 108 Ns/m
Cp Damping Coefficient of c2;,, €22, C31.p, C32pr Ca1p, C42p 10° Ns/m

Figure 3-6 (a) shows assumed system parameter and standard deviation in normal

and anomaly operating condition in large time scale. To consider different sensor

noise condition, white Gaussian with two different noise level is added in simulated

response. The peak signal noise ratio (PSNR) is defined using ratio of maximum

magnitude of signal to standard deviation of noise. Figure 3-6 (b) shows example of

observed vibration signal with two different noise level.
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The proposed digital twin approach is utilizing the system identification
method to formulate reference dynamic model. Instead of data-driven method, the
reference dynamic model can be formulated into simplified physics-based model
because of in-sufficient prior information about geometry and modeling. To
compare the effectiveness of the proposed method, the results using system
identification method and simplified physics-based model are compared. The three
degrees of freedom lumped parameter model is used to formulate the reference
dynamic model as shown in Figure 3-7. To calibrate the model parameter of
simplified model using observed vibration signal, the optimization-based model

calibration is formulated as:

miniemize L,(0) (3.22)

where 0 denotes an updating parameter vector; and 0 includes the set of
parameters, such as phase modulation (s,) and amplitude modulation (Py)
parameters of n-th impulse input and mass, stiffness, and damping coefficients (m;,
ci, and k;) of simplified physics based model; The reference simulation model are
formulated using observed signals in initial large time scale. The phase modulation

(sn) and amplitude modulation (P,) are updated using targe signal in different time
—

m

R

kl% Ellzlc1

Figure 3-7 Simplified 3-DOF reference model
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to minimize the Lz norm metric.

Figure 3-8 shows the variation trend of L, norm error metric which indicates
prediction error and estimated phase modulation parameter in large time scale. The
analysis results using simplified physics based model shows larger prediction error
in both anomaly and normal operating condition compared to the proposed method.
And the differences between anomaly and normal operating condition cannot be
identified in the results using simplified physics based model. On the other hand,
the difference such as the increasing L, norm error metric in large time scale and

the larger variation in phase modulation parameter for anomaly case can be
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Figure 3-8 Analysis results in large time scale using different reference model
formulation: (a) simplified physics-based model, (b) system identification

methods
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identified in the results using proposed method.

Figure 3-9 shows detailed analysis results in small time scale. The predicted
response using simplified physics-based twin cannot represents frequency and
time characteristic of the observed vibration signal. On the other hand, the
predicted response using proposed method can represent frequency characteristics
of observed response in normal condition. The updated response using reference
model can represents the time delay of impulse response in anomaly case. The

frequency modulation in anomaly condition can be identified in comparison of
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Figure 3-9 Detailed analysis results in small time scale using different reference
model formulation: (a) simplified physics-based model (b) system identification

methods
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Table 3-2 Prediction accuracy & computational cost comparison between (a)
simplified physics-based model and (b) system identification methods

Computation Time (s)  Response Accuracy (%)

(Proposed) N4SID based
Reference Model 716.54 87.00
Formulation
In-valid Physics-based
Reference Model 47.84 13.83
Formulation

predicted response using reference model. Those modulation induce the increasing

the L, norm error metric in time-frequency for anomaly operating condition.

Table 3-2 shows prediction accuracy & computational cost comparison
between simplified physics-based model and proposed system identification
methods. Even though, the proposed reference model formulation using system
identification methods requires more computation cost than the in-valid physics-
based model, the response prediction accuracy of the proposed method is higher

than that of in-valid physics-based model.

The proposed digital twin approach is utilizing the optimization-based
parameter updating to estimate uncertain input excitation force. Instead of the
proposed method, the input excitation force can be estimated using joint-input
state estimation method using the reference dynamic model from system
identification method [79]. To compare the effectiveness of the proposed method,
the estimated results using proposed method and joint-input state estimation

method are compared.
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Figure 3-10 shows analysis results using two method. The predicted
response using both methods can represent characteristics of observed response in
time and frequency domain in normal condition. However, the estimated force
using joint-input state estimation method is non-informative because of overfitting
problem. Even though, the model from system identification method has
modelling error because of measurement noise and estimated inaccurate excitation
force. The joint-input estimation method estimates the force magnitude at every
time step to minimize prediction accuracy with model error and induces overfitting
problem. On the other hand, the estimated force using proposed method can give

an information such as the delay of operation and magnitude of impulse force.
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Figure 3-10 Analysis results and estimated excitation force: (a)optimization-based

parameter updating and (b)Joint-input state estimation method
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Table 3-3 Prediction accuracy & computational cost comparison between (a)
optimization-based parameter updating and (b) Joint-input state estimation
method

Computation Time (s)  Response Accuracy (%)

(Proposed)
Optimization-based 52.22 71.28
Parameter Updating

Joint-Input State

Estimation Method 1099.07 96.47

The proposed method is applied to observed vibration signals with the high
noise level to identify the proposed method's effectiveness in different noise levels.
As shown in Figure 3-11, even though prediction accuracy decreases because of
high noise levels, the difference between normal and anomaly conditions can be
identified even with a high noise level. It can be concluded that the proposed idea
can be applied in different measurement noise conditions with insufficient prior

information of modeling and operating condition.

Table 3-3 shows prediction accuracy & computational cost comparison
between optimization-based parameter updating and joint-input state estimation

method. Even though the response prediction accuracy of the joint input state
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Figure 3-11 Analysis results in large measurement noise: (a) simplified physics-

based model (b) system identification methods
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estimation is higher than that of proposed optimization-based parameter tuning,
the required computation cost of the proposed methods is much less than that of
joint input state estimation. And the estimated input force using the joint-input
state estimation method is non-informative because of the overfitting problem. So,
the proposed method can be more suitable in engineering examples with

insufficient prior knowledge.

3.3.2 Case Study 2: Vibration Signal of On Load Tap Changer in Power
Transformer
The proposed method was applied to an MR-MII1 350 model OLTC. The MR-MIII
350 is a 3-phase, oil-insulated OLTC with a tap selector. Figure 3-12 shows the
experimental condition and the attached position of the accelerometer (PCB
Piezotronics, 352C34). Study of the OLTC in active power transformer operation is
limited. Thus, we measured two different power transformers. One was in-active;
the other was an active power transformer. The active power transformer was
changed only one tap level up and down at the 6th tap (tap changing sequence: 6th

Tap - 7th Tap, 7th Tap - 6th Tap, 6th Tap - 5th Tap , 5th Tap - 6th Tap). The

Observed vibration signal

:Noise < -0-3
04

52 \—OSO—I—Z 3 4 5
(©

Figure 3-12  Experimental condition: (a) in-active and (b) active, and (c)

observed vibration signal before filtering (in-active power transformer)
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in-active power transformer was operated same sequence as active one. The
vibration signal was measured at a sampling frequency of 10,240 Hz using DAQ
(LMS SCADAS Mobile). The bursts of the vibration signal during tap change and
diverter switching were caused by the OLTC operation sequence. A vibration signal
caused by diverter switch operation with a 0.2-second time length was analyzed. The
diverter switch operation generated the maximum amplitude burst signal. The signal
is truncated by 0.1 seconds forward and 0.1 seconds backward, based on the
maximum burst vibration signal. Figure 3-13 shows the measured original (raw)
vibration signal when the tap changed from the sixth to the seventh tap position in
the in-active and active power-transformer. The noise signal can be induced by

external noise and vibration from the electromagnetic force of the winding and core.

STFT feature of MED filtered signal
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Figure 3-13 Observed vibration signal: (a) before filtering (in-active power

transformer) (b) after filtering, (c) STFT feature, and (d) peaks in marginalized
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STFT signal

An MED filter was applied to the measured raw vibration signal (sixth to
seventh tap position) to extract the mechanical vibration from OLTC operation in
both the active and non-active power transformers. As shown in Figure 3-13 (b), the
MED filter can extract the vibration signal from OLTC operation, except the noise
signal, both in the active and non-active settings. STFT with high resolution is
computationally expensive; thus, for predicted signals, a uniform window size was
defined as 400 sampling lengths. Figure 3-13 (c) shows the extracted time-frequency
features of original and MED filtered signals. The extracted features from the
original signal include noise components around 2 seconds and 4 kHz. The MED
filters can extract the features from OLTC operation signal, except the features from
the noise signal. The initial pseudo excitation force is defined using amplitude, time

of peaks in marginalized STFT signal, as shown in Figure 3-13 (d).

Using a GA algorithm, the phase and amplitude modulation parameter were
searched to minimize the L, norm metric using STFT features of the predicted
signals by reference model. Figure 3-14 shows the variation trend of L, norm error
metric and estimated phase modulation parameter in large time scale. The analysis
results in active operating condition shows larger prediction error compared to the
in-active case. Because the vibration signal includes the higher noise by vibration
from the electromagnetic force of the winding and core. And the variation of
estimated phase modulation is similar in both analysis results in active and in-active
condition. Figure 3-15 shows detailed analysis results in small time scale. The
predicted vibration signal can represent characteristics of observed response in time

and frequency domain.
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Figure 3-14 Analysis results in large time scale

To diagnose OLTC, Dynamic Resistance Measurement (DRM) can be

measured in each phase during diverter switch operation [70], [80], [81]. The DRM

represents the resistance transition in diverter switch operation. However, the DRM

is only measurable in in-active power transformers one at a time for each phase. Here,

we simultaneously measure dynamic resistance and vibration signal in an in-active

power transformer one tap level up and down up (tap changing sequence: 16th Tap
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<=>17th Tap). Figure 3-16 shows the experimental conditions and a schematic
representation of DRM measurement, the diverter switch operation sequence, and a
DRM graph. When performing the DRM, the measurement system injects a DC
current in each phase and records the transition of the current signal during the
diverter switch operation. Each inflection point in the DRM graph indicates the
contact point operation in the diverter switch that causes the impulsive vibration
signal. To validate the proposed method, in this study, the model updating results

were compared against estimated excitation force using proposed method.

Figure 3-17 shows the synchronization between the estimated excitation forces
and the dynamic resistance for each phase. The estimated time of impulsive force
using proposed method exhibits good agreement with the inflection point in the

DRM graph. Based on the results, the variation of estimated phase modulation can

Figure 3-16 (a) Schematic representation of diverter switch operation sequence

and DRM graph and (b) Experimental condition
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represent delay of diverter switch operation, which cause a circular current. The
circular current degrades the transition resistor/reactor which makes an electrical

fault or can even result in explosion of the OLTC.

3.4 Summary and Discussion

This study proposed a new digital twin approach for OLTC with an insufficient prior
knowledge. The foundational idea of the proposed approach is to update a dynamic
model using an observed vibration signal to estimate the uncertain operating
condition and prediction error. Next, the health indices, such as time delay by

switching fault, prediction error by system transition can be derived from the digital

0 05 " i OI 0.2 0

R B Phase

C Phase

C Phase

(a) (b)
Figure 3-17 Synchronization between updated input forces and dynamic

resistance : (a) 16>17Tap Changing Sequence, (b) 17->16Tap Changing Seq

uence
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twin analysis. The digital twin analysis results for numerical and engineering
example were demonstrated to verify the effectiveness of the proposed approach. To
validate the proposed method, the estimated parameters are compared with dynamic
resistance measurement which represents actual OLTC working status. The physical
health index can be calculated from the updated model parameter to estimate the

time delay of the OLTC operation.

The proposed digital twin has many favorable properties as a diagnostic method,
including 1) no need for accurate physics-based model, and 2) a physical health
index that uses an updated model parameter. Previously studied statistical methods,
such as deep learning and machine learning, require a known fault vibration signal.
However, the proposed method only requires an understanding of the OLTC
operation sequence. This method is much more efficient than the earlier in-valid
finite element method. Finally, the physical health indices that represent the
mechanical health state of an OLTC can be derived using the updated model

parameter.

Sections of this chapter have been published or submitted as the following journal

articles:

1) Wongon Kim, Sunuwe Kim, Jingyo Jeong, Hyunjae Kim, and Byeng D. Youn , “A
Digital Twin Approach for On-Load Tap Changers with an Insufficient Prior
Knowledge,” Mechanical Systems and Signal Processing, submitted.
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Chapter 4

A New Calibration Metric that
Considers Statistical Correlation :
Marginal Probability and
Correlation Residuals

Chapter 3 was devoted entirely to the derivation of the data-driven dynamic model
updating based on the system identification method by assuming that all the
parameters are exactly determined. In other words, the loading parameters (i.e., t
he time and amplitude of impulsive excitation force) and the system paramet
ers (i.e., the material properties and the geometry) were considered to be
deterministic. However, most input parameters in digital twin models have a certain
amount of physical uncertainty, such as inherent variability in material properties
and manufacturing tolerances, a digital twin model that uses a deterministic form
fails to accurately analyze an engineered system. But, it is not easy to fully
characterize the variability in the model input variables due to limited resources.

Statistical model calibration is thus of great importance as a strategy to improve the
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predictive capability of a digital twin model. Optimization-based statistical model
calibration is formulated as an unconstrained optimization problem that infers the
unknown statistical parameters of input variables associated with a digital twin
model by maximizing statistical similarity between predicted and observed output
responses. A calibration metric is defined as the objective function to be maximized
that quantifies statistical similarity. One important challenge in formulating a
calibration metric is how to properly consider the statistical correlation in output
responses. Thus, this study proposes a new calibration metric, namely the Marginal
Probability and Correlation Residuals metric. The foundational idea of the MPCR
metric is to decompose a multivariate joint probability distribution into multiple
marginal probability distributions while considering the statistical correlation

between output responses. The three-fold novel aspects of this study include:

» This study thoroughly examines what happens if the statistical correlation is

neglected in model calibration. In addition, three existing calibration metrics
(marginal likelihood, joint likelihood, and moment matching) are reviewed
from the perspective of their ability to address the statistical correlation between

multivariate output responses.

* The MPCR metric allows consideration of the statistical correlation effectively;

thus physically reasonable solutions can be confined. Consequently, accurate

optimization-based statistical model calibration is enabled.

e The MPCR metric has favorable properties including normalization,

boundedness, and marginalization; thereby, limitations of three existing
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calibration metrics are overcome in this method.

Chapter 4 is organized as follows. Section 4.1 addresses the statistical correlation
issue in optimization-based statistical model calibration and presents the proposed
MPCR metric and its favorable properties. Section 4.2 presents proposed method:
marginal probability and correlation residuals (MPCR). Two mathematical
examples and one engineering example are demonstrated in Section 4.3. Finally, the

conclusions of this work are outlined in Section 4.4.

4.1 Statistical correlation issue in calibration metric
formulation

Section 4.1 underscores the importance of considering the statistical correlation
when formulating a calibration metric in optimization-based statistical model
calibration. Section 4.1.1 explains what happens if the statistical correlation is
neglected in model calibration. A brief review of existing calibration metrics -

specifically in terms of the statistical correlation is provided in Section 4.1.2.

4.1.1 What happens if the statistical correlation is neglected in model

calibration?

It is common that the predicted output response ?pre can be represented as a

function of the input variables X that are embedded in a CAE model. In this
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subsection, the output response ?pre is assumed to be obtained through a bivariate

model. One response is a quadratic equation and the other is a linear equation as:

y1 = ax? + bx; (4.1)
Yy = cx1 +dx; (4.2)

The quadratic equation can be linearized by using the Taylor series expansion, at

least in the neighborhood of the mean value of X, as:

y1 = apy +b)(xy — wy) + apf + buy = Qapy + b)x; — auf (4.3)

It is assumed that the two input variables follow normal distributions and are
independent from each other; x;~N(uy,02) and x,~N(uy, 02). Here, the means
and standard deviations of the input variables, denoted by w4, y,, o4, and o5, are
unknown; these form the calibration parameter set 0. Then, the statistical parameters
of the predicted output responses can be expressed in terms of the statistical

parameters of the input variables as:

py ={ap? + buy  cpy +dpy}’ (4.4)

_|Qapy + b)?0f  (2acpy + be)of

4.5
sym. c?0? + d?*c? (+3)

COVy

where pg and COVy denote the mean vector and covariance matrix of the
predicted output response, respectively. When the observed output responses Yyps
follow normal distributions, the statistical parameters of the observed output
response includes the mean vector and covariance matrix, denoted by py and

COVy, respectively, as:

] '.._.
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py = {my mz}T (4.6)

V11 CVq2
COVy = [oym  cvr ] (4.7)

The calibration parameter set can be inferred by comparing the statistics of the
predicted output responses with those of the observed output responses. This
calibration procedure can be considered as an inverse problem, which can be

formulated as nonlinear simultaneous implicit equations as:

au? + bu; = my (4.8)
cuy +du, =m, (4.9)
(2au, + b)%0? = cvyy (4.10)
c?0f + d%0? = cvy, 4.11)
(2acuy + bc)a? = cvy, (4.12)

Technically, since four unknowns and four equations are involved in Egs. (4.8) to
(4.12), the calibration parameter set © can be found by solving these equations
simultaneously. The solution of the mean values u; and p, can be obtained by

simultaneously solving the quadratic equation in Eq. (4.8) and the linear equation in

Eq. (4.9) as:
—b +./b?+ 4am
My = > ! (4.13)
a
m, bc+cyb?+ 4amy (4.14)
=gt 2ad |

There are two pairs of solutions for the mean values p; and p,. These mean values
obtained from Egs. (4.13) and (4.14) are the mathematically valid solutions; however,
it is not guaranteed that every solution is physically reasonable. Examples of
physically unreasonable solutions of the calibration parameter include those with

biased mean values or a large standard deviation. In addition, the existence of two

1 O
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pairs of solutions implies that an optimization algorithm could lead to different
solutions depending on the initial guess (the starting value) of the calibration
parameters, rather than the physically reasonable solution. It is thus required to
confine one pair of solutions for the mean values p; and p, for the CAE model.
This solution conformity issue can be resolved by additionally considering Eq. (4.12).
It is worth pointing out that Eq. (4.12) corresponds to the statistical correlation
between the bivariate output responses. The value of the statistical correlation cv;,
between the bivariate output responses can confine the solution of the calibration
parameter [,, as:
= 2—; <% - bc> (4.15)

It can thus be concluded that the consideration of the statistical correlation helps
provide a physically reasonable solution to statistical model calibration. In other
words, ignoring the statistical correlation in Eq. (4.12) could result in an inaccurate
solution. This drives research interest in developing a calibration metric that

considers the statistical correlation between multivariate output responses.

412 Comments on existing calibration metrics in terms of the
statistical correlation

This subsection briefly summarizes three existing calibration metrics in terms of the

statistical correlation between multivariate output responses, including: (i) the

marginal likelihood metric [53], (ii) the joint likelihood metric [59], and (iii) the

moment matching metric [57].
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First, the marginal likelihood metric is formulated as:

d n
ML(6]Y) = Zz 0810 f5,(21,116) (4.16)

i=1j=1
where Y is the d-dimensional observed (experimental) multivariate output response
of an n-sample size; y; ; is the component of Y; the indices i and j represent the
dimension and sequence of the sample, respectively; and f;, denotes the marginal
probability density function of the ith-dimensional predicted (model) output
response. In the ML metric, it is assumed that multivariate output responses are
statistically independent from each other . This implies that the ML metric neglects

the statistical correlation between output responses.

Second, the joint likelihood is formulated as:

n
LOIV) = = > 1og1g fy(72,:¥2 - Va110) @.17)
j=1

where y, ; denotes a d-dimensional multivariate observed output response at the
jth sampling sequence; and f; denotes the joint PDF of the d-dimensional
multivariate predicted output response. It should be noted that the calculation of the
JL metric requires the modeling of the joint PDF at every iteration of the
optimization-based statistical model calibration. Copula, Nataf distribution, and
kernel density estimation (KDE) can be used to estimate the joint PDF of the
predicted output response [82], [83]. Even though the joint PDF contains the
information on the statistical correlation, the estimation of the joint distribution can
be inaccurate and less inefficient than that of the marginal PDF because of the curse

of dimensionality. The curse of dimensionality means that a (nonparametric) density
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estimator converges more slowly to the true PDF as the dimension increases due to
data sparseness. Nagler et al. showed that a kernel density estimator requires 50
observations to accurately estimate an underlying univariate distribution, while 106
observations are required for a ten-dimensional multivariate joint PDF [84]. This
indicates that — to accurately estimate the joint PDF — the required sample size for
sampling-based uncertainty propagation (e.g., Monte Carlo simulation) increases
rapidly as the dimension of the output response increases. Furthermore, the value of
the JL metric is not bounded; thereby, it could have a numerically infinite value. If a
calibration metric has an infinite value in optimization-based statistical model
calibration, a gradient information-based searching algorithm would give an error at

the starting point because it is impossible to calculate the numerical gradient.

Third, the moment matching metric (MM) [57] quantifies the difference
between the statistical moments obtained by experiments and prediction. The

moment matching metric is formulated as the weighted sum of the two functional:

MM(Y, 5;(9)) = Wmean“”y - ”37”2 + Wcov”Wv(ACOU(y' 9))“’11;‘”:« (4-18)

where w, and py denote the mean vector of the observed and predicted output
responses, respectively; ACov(y,y) denotes the covariance matrix difference
between the observed and predicted output responses; and w denotes the weighting
vector (Wopeqn and w,,,,) and matrices (w,,) that depend on the test data. In Eq.
(4.18), the first term on the right-hand side is the 2-norm of the mean vector
difference, while the second term is the Frobenius norm of the covariance matrix

difference. This means that the second term on the right-hand side in Eq. (4.18) is in



charge of handling the statistical correlation between multivariate output responses.
The advantage of the moment matching metric is that it can be efficiently calculated.
However, due to experimental errors or lack of data, it is not guaranteed that the
sample mean and standard deviation are not the true value. This implies that simply
minimizing the mean vector and covariance matrix differences may lead to an
inaccurate result. In addition, the weighting vector and matrix should be carefully
chosen when the multivariate output responses have a different unit and scale. If the
observed output responses have the same unit, the weighting matrix and vector can

be set as an identity matrix and a ones-vector [57].

Therefore, it can be concluded from this brief review of existing calibration
metrics that a calibration metric should be carefully formulated to properly quantify
the statistical correlation between multivariate output responses; otherwise, it could
give a poor calibration result. To overcome the limitations of existing calibration
metrics, this study proposes a new calibration metric, this new metric is described in

Section 4.2.

4.2 Proposed Method: Marginal probability and correlation
residuals (MPCR)

The foundational idea of the MPCR metric is to decompose a multivariate joint
probability distribution into multiple marginal probability distributions while
considering the statistical correlation between the multivariate output responses. The

MPCR metric is formulated as the sum of two normalized functionals, the Marginal
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Probability Residual (MPR) and the Correlation Coefficient Residual (CCR):

d d
1 1
MPCR = Ez MPR; + mz CCRjx, (0 < MPCR < 2d) (4.19)

i=1 j<k
where d denotes the dimension of the multivariate output response. The value of the

MPCR metric ranges from 0 to 2d.

In Eq. (4.19), the MPR; quantifies the statistical difference between the
predicted and observed output responses by using the marginal PDFs of the ith output

response, which is formulated as:

ub
MPR, = jl B0~ f0dy, 0 <MPR <2)

{ub lb} = { max(f/i':, yi,:) min(yi,:'yi,:) }

(4.20)

where f;, and f,, denote the marginal PDFs of the predicted and observed output
responses, respectively; and y; denotes the ith output response. The physical
meaning of the MPR; is a residual between the areas of the marginal PDFs of the
ith predicted and observed output responses. The integration ranges from the lower
to the upper bounds can be decided based on the min-max value of the output
responses. The value of the MPR; is bounded from 0 to 2. Figure 4-1 describes 5,
and f, for before and after calibration. To evaluate the MPR;, marginal PDF
estimation and numerical integration are required. In this study, KDE, which is a
non-parametric PDF estimation method, is incorporated into the univariate PDF
modeling. The Gaussian kernel is used as a basis function and the bandwidth is

calculated by using the estimator proposed by Silverman [85].

] O
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Figure 4-1 Marginal PDFs of the predicted and observed output responses: (a)
before calibration and (b) after calibration

Compared to joint probability distributions, marginal probability distributions
can be accurately modeled with computationally affordable efforts. However, the
marginal probability distribution cannot capture the statistical correlation between
the multivariate output responses. The CCR;; in Eq. (4.19) allows the MPCR

metric to consider the statistical correlation, which is formulated as:
CCR;k = |ppre(Pj k]0) — PobsWji) |, (0 <CCRj; <2) (4.21)

where ppre (ﬁj’k | 9) and pops(Vjk) denote the correlation coefficients between the
jth and kth output responses from model prediction and experimental observation,

respectively. The correlation coefficient can be calculated as:

1

p(yjx) = E [(yj - uy]-) i = iy, (4.22)

Oy;Oyy
The physical meaning of the CCR is the absolute difference between the correlation
coefficients between the jth and kth output responses from the model prediction and
the experimental observation. This implies that the value of CCR; ) is bounded from
0 to 2. In this study, the formulation of the Pearson correlation coefficient was used

to quantify the statistical correlation between the multivariate output responses.
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The MPCR metric has many favorable properties as a calibration metric, such
as (i) marginalization, (ii) normalization, and (iii) boundedness. First, the MPCR
metric decomposes a multivariate joint probability distribution into multiple
marginal probability distributions. The estimation of the marginal PDFs does not
suffer from the curse of dimensionality, even for high-dimensional multivariate
output responses. Second, Y%, MPR; is bounded from 0 to 2d and Zﬁk CCRjk
isbounded formO0to d(d — 1), where d is the dimension of the multivariate output
responses. To normalize the MPR and CCR, they are divided by 2 and (d — 1),
respectively. Due to normalization, the MPCR metric can provide an accurate
calibration result even when the multivariate output responses have a different unit
and/or scale. Third, since the value of the MPCR metric is bounded from 0 to 2d,
the MPCR metric can directly describe the statistical similarity or dissimilarity
between the predicted and observed output responses. For instance, if the value of
the MPCR metric is close to 0, it can be concluded that the two probability
distributions of the predicted and observed output responses are perfectly matched
to each other. Conversely, if the value of the MPCR metric is close to 2d, the two

probability distributions do not coincide with each other.

The following section will demonstrate three case studies to show the outstanding
performances of the proposed MPCR metric, as compared to existing calibration
metrics, with respect to its ability to effectively consider the statistical correlation
between multivariate output responses in optimization-based statistical model

calibration.
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4.3 Case Studies

In this section, two mathematical and two engineering examples are demonstrated to
verify the effectiveness of the proposed MPCR metric. Here, the multi-start method,
which is global optimization algorithm using multiple start points, was used as an
optimizer. The initial points were sampled by using Latin hypercube sampling (LHS).
The sequential quadratic programing was applied to all the initial points for each
method. The computational cost and accuracy of each calibration metric are

compared in each case study.

In the first mathematical example, the correlated bivariate output responses are
considered to investigate the statistical correlation; in the second mathematical
example, the correlated multivariate output responses are considered to investigate
the curse of dimensionality. The first engineering example considers modal analysis
of a beam structure with uncertain rotational stiffness boundary conditions to
investigate scale issue. The second engineering example considers crashworthiness
of vehicle side impact to demonstrate the effectiveness of the proposed method in a
high dimensional and nonlinear problem. The calibration parameters of the input
variables were inversely inferred by using optimization-based statistical model
calibration. For the JL metric, the multivariate KDE and Gaussian copula are used
to model the joint PDF; here, the former is called the JLkpe and the latter is called
the JLcopua. The results are compared, with consideration of calibration metric

properties.

4.3.1 Mathematical example 1: Bivariate output responses (Statistical

correlation issue
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In this example, the bivariate output responses are considered; one is a quadratic
equation and the other is a linear equation. The functional relations between the input
variables and the output responses are defined as:

9,(x) = b; X+ XTH; X

92(x) = byX (4-23)

where X=[x1 x2]"; b1=[1 0]; H1=[0.2 0; 0 0]; and b,=[1 -2]. The notions b and H are
linear coefficients and Hessian matrices, respectively. Here, the input variables X
are assumed to follow normal distributions. Then, the statistical parameters (the
mean and standard deviation) of the input variables are assigned to be calibration
parameters in the optimization-based statistical model calibration. The true statistical
parameter vector of the input variables, denoted by 0, is that [u1, o1, w2, 62]= [-6,
0.2, -3, 0.2]. The observed bivariate output responses are given with 100 samples, as

shown in Figure 4-2.

The number of runs for the Monte Carlo simulation (MCS) was 10,000 in this

example. The marginal PDFs of the predicted output responses after optimization-
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Figure 4-2 Observed correlated bivariate output responses (mathematical example

1)
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based statistical model calibration are estimated by using the KDE with 10,000
samples, as shown in Figure 4-3. For each of the calibration metrics, the marginal
PDFs of the predicted output responses after optimization-based statistical model
calibration are in a very good agreement with the histograms of the observed ones.
However, it is worth pointing out that even though the marginal PDFs of the
predicted output responses are well matched with the histograms of the observed
ones, the marginal PDFs of the input variables calibrated by the ML are invalid, as
shown in Figure 4-4. This implies that the ML was failed to correctly infer the mean
values of the input variables in Eq. (4.23). The other calibration metrics (the MPCR,
the MM, the JLkoe, and the JLcopua), Which are formulated considering statistical
correlation, gave the valid results. This is attributed to the fact that optimization-
based statistical model calibration inversely estimates the calibration parameters by
maximizing the agreement (or minimizing the disagreement) between the two

probability distributions of the predicted and observed output responses.

The joint PDF contours of the predicted output response calibrated by the
MPCR and ML were drawn in Figure 4-5, respectively. The joint PDF contours were
obtained by using the multivariate KDE from 10,000 samples. The scatters indicate
the observed output response. It is interesting that the predicted output response
calibrated by the ML exhibits totally opposite statistical correlation, as compared to
the observed one. This is because the ML is formulated with an assumption that the
bivariate output responses are not statistically correlated to each other. It can be thus
concluded that even though the predicted marginal PDF of the output response after
calibration matches well with the observed one, inaccurate solutions could be

obtained if the statistical correlation between the output responses is not properly
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Figure 4-3 Calibrated marginal PDFs of the output responses (mathematical
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Figure 4-4 Calibrated marginal PDFs of the input variables (mathematical
example 2)
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Figure 4-5 The joint PDFs of the output responses calibrated by the MPCR and
ML

considered in formulating a calibration metric.

Table 4-1 summarizes the estimated calibration parameters, relative errors,
iterations, and function calls for optimization-based statistical model calibration.
Except for the ML, the relative errors of the estimated calibration parameters are

below 10 % which are acceptable. It is worth noticing that the iteration and function
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Table 4-1 The estimated statistical parameters, relative errors, iterations, and
function calls (Mathematical example 1)

Calibration parameters Function
Calibration metric Iterations calls
H1 01 H2 )
Exact solution -6.00 0.20 -3.00 0.20 - -

Estimate -6.03 0.18 -3.03 0.22

MPCR 22 142
Error (%) 0.53 -9.11 1.16 8.28
Estimate 1.03 0.19 0.50 0.19

ML 54 290
Error (%)  -117.09 -4.94 -116.56 -6.59
Estimate -6.03 0.16 -3.04 0.20

MM 26 181
Error (%) 0.50 -19.76 1.24 -1.59
L Estimate -6.03 0.19 -3.03 0.19

21 171
(KDE) Error (%)  0.46 -7.40 1.04 -4.89
JL Estimate -6.02 0.19 -3.03 0.20

(Gaussian 22 143
copu]a) Error (%) 0.37 -6.71 1.18 1.36

MPCR: Marginal probability correlation residual

ML.: Marginal likelihood metric

MM: Moment matching metric

JL: Joint likelihood metric

Error =100 X (s —$)/s (%), s isthe exact value and § is an estimate

calls for calibration using the ML is the highest; even its accuracy is poor. In general,
the computational cost of optimization-based statistical model calibration is
proportional to the function calls. Since each function call requires UP analysis,
therefore, it can be concluded that the proposed MPCR is efficient as well as accurate

for optimization-based statistical model calibration in the first mathematical example.
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4.3.2 Mathematical example 2: Multivariate output responses (Curse

of dimensionality issue)

The first example considered two correlated output responses. However, when the
output responses are involved more, the curse of dimensionality issue could arise in
optimization-based statistical model calibration. The second mathematical example
thus considers five correlated output responses to investigate the curse of
dimensionality issue; all the functional relations between the input variables and

output responses are linear equations as:

9(x)=c;+bX (i=1,2,..5) (4.24)
where X=[x1 X2 X3 X4 Xs]"; b1=[0 9 3 -8 -2]; b,=[5 -1 3 3 9]; bs=[9 -6 8 5 0]; bs=[-5 -
675-2]; bs=[-28 14 2]; and [c1 C2 C3Ca Cs] = [2 7 8 2 2]. The notations b and ¢ are
linear coefficients and constants, respectively. Here, the input variables X are
assumed to follow normal distributions. Then, the statistical parameters (the mean
and standard deviation) of the input variables are assigned to be calibration
parameters in optimization-based statistical model calibration. The true statistical
parameter vector of the input variables, denoted by 0, is that [u1, o1, w2, 02, us, o3,

14, 03, 115, 05] = [2, 0.5, 4,0.3, 1, 0.6, 5, 0.7, 2, 0.4].

To investigate how the curse of dimensionality affects optimization-based
statistical model calibration, the number of runs for the MCS varies from one
hundred to ten thousands in this example. The marginal PDFs of the predicted output
responses after optimization-based statistical model calibration are estimated by
using the KDE with 10,000 samples, as shown in Figure 4-6. For the remaining four
different calibration metrics excepting the ML, the marginal PDFs of the predicted

output responses after optimization-based statistical model calibration are in a good
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agreement with the histograms of the observed ones.

As shown in Figure 4-7, the marginal PDFs of the input variables calibrated by
the ML are inaccurate regardless of the MCS sampling size; this is, because it does
not consider the statistical correlation between the multivariate output responses. It
is worth noting that the calibration results of the JLkpe become increasingly accurate,
as the number of MCS runs is increased. This is due to the curse of dimensionality
that causes the inaccurate estimation of the joint PDF when the number of runs for
the MCS is relatively small. In general, because of data sparseness, the multivariate

KDE requires larger sample sizes, as the dimension of the output responses increases.

On the other hand, the number of MCS runs has little influence on the marginal
PDFs of the input variables calibrated by the MPCR and JLcopula, 8 Shown in Figure
4-7. The MPCR metric does not suffer from the curse of dimensionality, since it
incorporates the univariate KDE into the modeling of the marginal PDF. Even
though JLcopuia requires joint PDF modeling, it is known that the Gaussian copula
does not suffer from the curse of dimensionality. However, use of the Gaussian
copula will cause the improper modeling of the joint PDF when the assumed

distribution of the input variable differs from the true distribution.

The joint PDF contours of the first and second predicted output responses (yi-
y2 and ya-ys) after calibration when the number of MCS runs is 10,000 were drawn
in Figure 4-8. The joint PDF contours were obtained by using the multivariate KDE
from 10,000 samples. The scatters indicate the observed output response. It is
interesting that the predicted output responses calibrated by the ML exhibit totally

opposite statistical correlation, as compared to the observed one. It can be concluded
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from the results that the proposed MPCR can improve the accuracy of optimization-

based statistical model calibration even for a high-dimensional problem.
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Figure 4-6 Calibrated marginal PDFs of the output response with the number of
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Figure 4-7 Calibrated marginal PDFs of the input variables with the number of
MCS runs of: (a) 100, (b) 1,000, and (c) 10,000 (mathematical example 2)

81 # .-"{ﬂ '.'::I::._ ]_-.



70 70 70
60 60 60
50 50 50
& & &
40 40 40
30 30 30
20 20 20
30 -20 -10 0 10 20 30 =20 -10 10 20 30 20 -10 0 10 20
¥y Yy Yy
70 70
60 60
50 50
= -
40 40
30 30
20 20
30 .20 <10 0 10 20 230 =20 -10 10 20
1 1
(a) The join PDF and scatter plot of y; and y»
70 70 70
60 60 60
wy wy wy
- - ey
50 50 50
40 40 40
40 20 0 20 40 20 20 40 20 0 20
Yy Y4 Yy
70 70
L oo MPCR
60 o 60 ML
- Yl "
= s = MM
50 N2 50
e, TLioe
40 40 0 1L
-40 -20 0 20 -40 -20 20 © Copula
7, 7, O Observed Response

(b) The join PDF and scatter plot of y4 and ys
Figure 4-8 Calibrated joint PDFs of the output responses (mathematical example
2)
Table 4-2,4-2 and 4-3 summarize the estimated calibration parameters, relative
errors, iterations, and function call for optimization-based statistical model
calibration, which depend on the number of MCS runs. The relative error of the

estimated calibration parameters by using the ML are not acceptable regardless of
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the number of MCS runs. In addition, the relative errors of the JLkpe decrease, as the
number of MCS runs increases. The relative errors of the MPCR, JLcopula, and MM
are less than 40 %, regardless of the number of MCS runs. Even though the function
call of the MPCR is relatively high compared to the other calibration metric, it can

lead to an accurate solution regardless of the number of MCS runs in this example.
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Table 4-2 The estimated calibration parameters, relative errors, iterations, and function calls (Mathematical example 2: the number of MCS

runs is 100)
Calibration parameters :
Calibration metric Iterations Fu;la(ﬁlson
H1 01 U2 02 U3 03 Ha 04 Hs Os
Exact solution 200 050 400 030 1.00 060 500 0.70 2.00 040 - -
Estimate 199 056 396 029 089 061 494 089 210 044
MPCR 58 725
Error (%) -040 1148 -1.09 -3.78 -10.50 1.62 -1.20 2736 5.19 899
Estimate 178 0.10 383 0.12 065 045 495 0.70 264 077
ML 37 511
Error (%) -10.98 -80.00 -4.36 -58.60 -34.60 -25.77 -0.96 0.67 32.05 92.05
Estimate 190 045 404 020 084 047 492 077 205 033
MM 53 701
Error (%) -5.06 -9.06 1.04 -33.26 -16.04 -22.12 -1.52 10.52 229 -18.08
L Estimate 1.67 049 401 017 1.00 028 483 130 2.18 0.10
KDE 38 522
(KDE) Error (%) 1654 -1.52 022 -41.94 0.04 -53.62 -342 8585 876 -75.00
JL Estimate 190 051 398 030 092 053 504 086 197 031
(Gaussian 51 664
copula) Error (%) -488 226 -0.51 -035 -843 -11.54 0.74 23.14 -1.38 -21.43

MPCR: Marginal probability correlation residual
ML: Marginal likelihood metric
MM: Moment matching metric

JL: Joint likelihood metric

Error = 100 X (s — §)/s (%), s isthe exact value and $ is an estimate
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Table 4-3 The estimated calibration parameters, relative errors, iterations, and function calls using (Mathematical example 2: the number

of MCS runs is 1,000)

Calibration parameters

Calibration metric Iterations Fu;(ﬁlson
251 01 Uy 0, HUs O3 Uy Oy Us Og
Exact solution 200 050 4.00 0.30 1.00 060 5.00 070 2.00 0.40 - -
Estimate 192 054 398 031 089 062 506 0.8 2.09 0.38
MPCR 50 646
Error (%) -3.81 833 -039 286 -10.84 2.57 1.13 2233 435 -4.20
Estimate 077 023 3.63 0.38 1.49 1.76 438  0.31 2.81 0.10
ML 54 702
Error (%) -61.25 -5490 -9.25 2563 49.20 192.64 -12.39 -56.02 40.38 -75.00
Estimate 195 047 403 025 089 050 500 084 201 0.35
MM 42 593
Error (%) 245 -656 066 -17.32 -10.87 -16.53 -0.07 20.59 029 -1242
L Estimate 170 046 400 0.14 1.01 0.41 4.33 1.44  2.13 0.14
KDE 44 584
( ) Error (%) -15.13 -7.56 -0.01 -51.79 0.65 -31.61 -13.35 10590 6.58 -65.80
JL Estimate 1.96 050 4.01 029 088 0.57 506 083 204 036
(Gaussian 33 478
copula) Error (%) 222 -051 015 -240 -11.59 -500 1.12 19.01 191 -11.15
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MPCR: Marginal probability correlation residual

ML: Marginal likelihood metric

MM: Moment matching metric

JL: Joint likelihood metric

Error = 100 X (s — 8)/s (%), s is the exact value and § is an estimate



Table 4-4 The estimated calibration parameters, relative errors, iterations, and function calls using (Mathematical example 2: the number

of the MCS is 10,000)

Calibration parameters

Calibration metric Iterations Fu;cl';lson
Uy 01 Uz 02 Us O3 Uy Oy Us Os5
Exact Solution 200 050 4.00 0.30 1.00 060 500 070 2.00 0.40 - -
Estimate 192 056 399 033 091 061 498 092 203 0.39
MPCR 55 688
Error (%) -3.95 12,09 -021 9.69 -940 230 -0.32 3149 1.64 -3.25
Estimate 2.80 1.34 430 0.10 0.62 1.73 562 062 0.84 0.10
ML 39 514
Error (%) 40.02 167.85 7.46 -66.67 -38.21 188.15 12.33 -10.99 -58.15 -75.00
Estimate 1.94 046 4.01 026 089 052 500 084 203 034
MM 49 666
Error (%) -2.87 -8.10 0.27 -12.66 -10.94 -13.40 -0.02 2020 1.43 -15.05
JL Estimate 203 041 4.01 0.25 127 072 491 0.86 2.18 043
KDE 40 546
( ) Error (%) 1.73 -18.39 0.36 -16.68 2743 2052 -1.84 2350 8.79 17.39
JL Estimate 1.95 050 4.01 029 089 058 5.01 0.84 2.03 0.35
(Gaussian 54 713
copula) Error (%) -2.68 074 0.14 416 -11.09 -3.56 0.13 2042 1.72 -13.00

MPCR: Marginal probability correlation residual

ML: Marginal likelihood metric

MM: Moment matching metric

JL: Joint likelihood metric

Error = 100 x (s — 8)/s (%), s is the exact value and § is an estimate
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4.3.3 Engineering example 1: Modal analysis of a beam structure with

uncertain rotational stiffness boundary conditions (Scale issue)

The boundaries of beam structures can be theoretically described as simply-
supported or fixed conditions. However, in practice, the boundaries of beam
structures might be clamped with joining processes, such as bolting, welding, or
riveting. In this situation, the boundary condition of a beam structure cannot be
exactly described as either having a simply-supported or a fixed condition. Therefore,
the stiffness of the boundary conditions is uncertain, and decreases with time due to
wear and/or looseness. In this example, optimization-based statistical model
calibration is performed to infer the unknown statistical parameters of the rotational

stiffness of the boundary condition of a beam structure.

The beam structure, which consists of six elements and seven nodes, was
described in Figure 4-9. The boundary condition of the beam structure is modeled as
the rotational stiffness connected between the rigid wall and the boundary nodes.
The displacement in the y-direction is fixed at the end nodes 1 and 7. In Figure 4-9,
k. and k; denote the rotational stiffness at the left and right ends of the beam,
respectively. In this study, the bivariate output responses include the 3rd natural
frequency of the beam, and the 3rd mode shape value ratio in the y-direction of the
4th and 6th nodes. In real experiments, the natural frequency and corresponding
mode shape can be measured by a modal test. In this study, a computational model
using a finite element method (FEM) was constructed to perform modal analysis.
The Euler-Bernoulli beam theory is incorporated into the FEM to simulate the

behavior of the beam.
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Figure 4-9 Schematic representation of the beam structure

The displacement of the Euler-Bernoulli beam can be mathematically described

by a partial differential equation (PDE) as:

dv

u=—ya

(4.25)

where u and v denote the displacement in the x- and y-directions, respectively.

Based on the FEM, the equation of motion can be expressed as:
M,U+K,U=F (4.26)

where M, and K, denote the assembled mass and stiffness matrices, respectively;
and the U and F denote the state (degree of freedom) and force vectors, respectively.

The state and force vectors of the ith element are defined, respectively, as:

0 ,
— L )™M _
W= g T o (G106 (4.27)
9i+1 mi+1

The beam element mass and stiffness matrices are defined, respectively, as:

156 221 54 —13l 12 6l —-12 6l
_paAl| 221 412 131 -312 _Ell el 412 -6l 212
€7 420 54 131 156 -—22l|’ K. = Bl-12 -6l 12 -6l (4.28)
—131 =312 —221 4l? 6l 2012 —6l 412

where E denotes the Young’s modulus; p,; denotes the density; I and A denote
the moment of inertia and cross-sectional area of the beam, respectively; and [

denotes the beam length. In this example, it is assumed the beam is made of

1 O
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aluminum (E =70 GPaand p; = 2760 kg/m?). The width, thickness, and length of
the beam are 15 mm, 1.5 mm, and 240 mm, respectively; the shape of the cross-

section is rectangular.

It is assumed that the rotation spring constant at the left and right ends of the
beam, denoted by k; and k,, follow normal distributions. Here, the calibration
parameter is the normalized statistical parameter (8/k,), where k, , is the nominal
value of the rotational stiffness (k, , =400 N-m). The true statistical parameters of
the input variables, denoted by 0, is that [u1, o1, w2, 02] = [0.10k, o, 0.05k, g,
0.70k,.9, 0.03k,o]. The observed bivariate output responses are given with 100
samples, as shown in Figure 4-10. It should be noted that there is a scale difference

between the 3rd natural frequency and the mode shape value ratio.

The number of MCS runs was 10,000 in this example. The marginal PDFs of
the predicted output responses after optimization-based statistical model calibration
are estimated using the KDE with 10,000 samples, as shown in Figure 4-11. For the
remaining three different calibration metrics, excepting the ML and MM, the

marginal PDFs of the predicted output responses after optimization-based statistical

-1.02

-1.03

Los é"”—‘lfl"”b

&
-1.05

Mode shape value ratio

-1.06
3600 3700 3800 3900 4000
The 3rd natural frequency (Hz)

Figure 4-10 Observed correlated bivariate output responses (engineering example

1)
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model calibration are in a good agreement with the histograms of the observed ones.

For both k; and k,, the predicted marginal PDFs of the input variables
calibrated by the MPCR (red color) are in a very good agreement with the exact ones,
as shown in Figure 4-12. However, both the ML and MM failed to correctly estimate
the calibration parameters. As explained in Section 4.1.2, the MM requires the
weighting matrix and vector to aggregate the mean vector and covariance matrix
differences as one scalar value. In this example, the weighting matrix and vector
were set as the identity matrix and ones-vector, respectively. However, the weighting
matrix and vector should be carefully chosen when the output responses have a
different unit and scale. Therefore, since there is a scale difference between the 3rd
natural frequency and mode shape value ratio, the MM provided inaccurate
calibration results. For the rotation spring constant at the left k;, the JLkpoe and
JLcopuia provide valid calibration results. However, for the rotation spring constant at
the right k,., the predicted marginal PDF calibrated by the JLcopua iS inaccurate,
especially in terms of standard deviation. The JLcopua is formulated with an
assumption that the output responses follow Gaussian distributions. In this example,
even though the input variables follow a Gaussian distribution, the bivariate output
responses do not; thereby, the calibration result of the JLcopuia fOr k,- is not valid.

This issue is related to the flexibility of the Gaussian copula.
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Figure 4-13 Calibrated joint PDFs of the output responses (engineering example
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The joint PDF contours of the predicted output responses were drawn in Figure

4-13. The joint PDF contours were obtained by using the multivariate KDE from
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10,000 samples. The scatters indicate the observed output response. The predicted

joint PDFs calibrated by the MM and ML are somewhat distorted and have opposite

statistical correlation, as compared to the scatters. It can be thus concluded from the

results that it is better to normalize a calibration metric to avoid the scale issue while

considering the statistical correlation.

Table 4-5 The estimated statistical parameters, relative errors, iterations, and
function calls (Mathematical example 1)

Calibration parameters

Calibration metric U 04 Uo 07 Iterations Fu(;cl‘ilson
kr,O kr,O kr,O kr,O
Exact solution 0.10 0.05 0.70 0.03 - -
Estimate 0.10 0.06 070 0.03
MPCR 17 119
Error 501 1067 047 -14.02
(%)
Estimate 0.36 0.10 0.17 0.06
ML 15 119
Error 55984 10012 -76.23 91.65
(%)
Estimate 0.26 0.07 0.33 0.06
MM 8 82
Error 16306 3271 5239 93.45
(%)
Estimate 0.12 0.04 0.73 0.02
JL
15 121
(KDE) Emor 1683 1353 412 -24.94
(%)
L Estimate 0.11 0.05 0.69 0.01
(Gaussian 17 108
copula) E(l;;sr 537 -3.00 -152 -66.67
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MPCR: Marginal probability correlation residual

ML: Marginal likelihood metric

MM: Moment matching metric
JL: Joint likelihood metric

Error = 100 x (s —8)/s (%), s is the exact value and § is an estimate



Table 4-5 shows the estimated calibration parameters, relative errors, iterations,
and function call for optimization based statistical model calibration. It is worth
pointing out that the relative errors of the estimated calibration parameters obtained

by the proposed MPCR is the smallest compared to the other calibration metrics.

4.3.4 Engineering example 2: Crashworthiness of vehicle side impact

(High dimensional & nonlinear problem)

In this example, a model for crashworthiness analysis of vehicle side impact
[86] is statistically calibrated, which is high dimensional and nonlinear problem. The
predictive capability of a model for crashworthiness analysis is important in reliable
vehicle design. Statistical model calibration can be used to improve the credibility
of crashworthiness analysis. In this study, it is assumed that the multivariate output
responses can be measured by sensor attached to a dummy and a vehicle during side
impact testing. The multivariate output responses include the abdomen load (y1); the
upper, middle, and lower rib deflections (Y2, Y3, Y4); the upper, middle, and lower
viscous criteria (ys, Vs, Y7); the public symphysis force (ys); the velocity of the B-
pillar (ys); and the velocity of the front door (y10). Due to the expense of a full-vehicle
FE structural model, this study used the global response surface model generated
using the quadratic backward-Stepwise Regression (SR), which was employed by

Youn at el [] as:

y, = 1.16 — 0.3717x,%, — 0.00931x,x,, — 0.484x5x, + 0.01343x4x4, (4.29)

y, = 28.98 + 3.818x3; — 4.2xyx, + 0.0207x5%19 + 6.63x6X,

(4.30)
_7.7x7x8 + 0.32x9x10
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y3 = 33.86 + 2.95x5 + 0.1792x,y — 5.057x,x, — 11.0x,x5 — 0.0215x5x,,

431
—9.98X7x8 + 22.0X8x9 ( )
y4 = 46.36 - 9.9x2 - 12.9x1x8 + 0.1107)633610 (4.32)
ys = 0.261 — 0.0159x,x, — 0.188x; x5 — 0.019x,x, + 0.0144x3x; (4.33)

+0.0008757x5x0 + 0.08045x,xo + 0.00139xgx;; + 0.00001575x,5%;;

ye = 0.214 + 0.00817x5 — 0.131x, x4 — 0.0704x, x5 + 0.03099x, %,
_0.018x2x7 + 0.0208X3x8 + 0.121X3x9 - 0.00364x5x6 (4.34)
+0.0007715x5x,0 — 0.0005354x,x;0 + 0.00121x5%;,

y7 = 0.74 - 0.061X2 - 0.163X3X3 + 0.00123ZX3X10 - 0.166X7X9

4.35
+0.227x2 ( )
yg = 4‘72 - O.SX4_ - 0.19x2.7C3 - 0.0122X4x10 + 0.009325x6x10 (4 36)
+0.000191x% )

Vo = 10.58 — 0.674x;x, — 1.95x,x5 + 0.02054x3x;, 4.37)
—0.0198X4X10 + 0.028X6x10 )
V10 = 16.45 — 0.489x3x, — 0.843x5x¢ + 0.0432x9%; (4.38)

—0.0556x0x;; — 0.000786x%,

where X1 to x7 denote the thickness of B-pillar inner (x1), B-pillar reinforce (xz), Floor
side inner (xs), Cross member (x4), Door beam (xs), Door belt line (xs), and Roof rail
(x7), respectively; xsand X9 denote the Young’s modulus of B-pillar inner (xs), and
floor side inner (xg), respectively; xioand xi11 denote barrier height (x10), and hitting
position (x11), respectively. he input variables, x; to x; are assumed to follow
lognormal distributions, while xgand xg are assumed to follow normal distributions.
Then, the statistical parameters (the mean and standard deviation) of x; to X are
assigned to be calibration parameters in optimization-based statistical model
calibration. The true statistical parameter vector of the input variables, denoted by
0%, is that [u1, o1, (2, 02, us, 03, s, 04, Uis, 0s, s, s, U1, 07, Us, 08, g, 0g] =[0.51, 0.22,
1.42,0.19, 0.49, 0.17, 1.34, 0.30, 0.69, 0.22, 1.49, 0.32, 0.50, 0.11, 0.36, 0.06, 0.20,

0.06]. Table 4-6 summarizes the information of the input variables, xi1 to xe. In this
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study, xioand x11 are considered as known input variables with uniform distributions.
The mean and standard deviation of xi0and x11 are defined as [u1o, o010, a1, 011] =

[0.00, 1.00, 0.00, 1.00].

The number of MCS runs was 10,000 in this example. The marginal PDFs of
the predicted output responses after optimization-based statistical model calibration
are estimated by using the KDE with 10,000 samples, as shown in Figure 4-14. For
the remaining four different calibration metrics excepting the MM, the marginal
PDFs of the predicted output responses after optimization-based statistical model

calibration are in a good agreement with the histograms of the observed ones.

The predicted marginal PDFs of the input variables calibrated by the MPCR
(red solid line) and JLcopuia (green dashed line) are in a very good agreement with the
exact ones, as shown in Figure 4-15. However, the ML, MM, and JLkpe fail to

correctly estimate the calibration parameters due to their own limitation, as explained

Table 4-6 Information of the input variables of the vehicle side impact model

. Input Vehicle Distribution
Category (Unit) Variagles Component Type
X1 B-pillar inner Lognormal
X2 B-pillar reinforce Lognormal
X3 Floor side inner Lognormal
Thickness (mm) X4 Cross member Lognormal
Xs Door beam Lognormal
X6 Door belt line Lognormal
X7 Roof rail Lognormal
Young’s modulus X3 B-pillar inner Normal
(GPa) X9 floor side inner Normal
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in Sections 4.1.1 and 4.1.2. the ML does not consider the statistical correlation
between the multivariate output responses; the JLxpe suffers from curse of
dimensionality that causes the inaccurate estimation of the joint PDF in high
dimensional problems; the MM could lead to an inaccurate solution when there is
large scale difference in multivariate output responses. Table 4-7 summarizes the
estimated calibration parameters, relative errors, required iterations, function calls,
and computation time for calibration. It is worth noticing that the relative errors of
the estimated calibration parameters by the MPCR are relatively small, compared to

the other calibration metrics.

The joint PDF contours of the first and second predicted output responses (ys,
y») after calibration were drawn in Figure 4-16. The joint PDF contours were
obtained by using the multivariate KDE from 10,000 samples. The scatters indicate
the observed output response. The predicted joint PDFs calibrated by the MM is

somewhat distorted, compared to the scatters.
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Table 4-7 The estimated calibration parameters, relative errors, iterations, and function calls (Engineering example 2)

Calibration parameters
Calibration metric Iter. F.C
My 0y Ha 03 H3 03 Ha Oy Hs 43 He 3 H7 a7 Hsg Og Ho )

Exact solution 0.51 022 142 019 049 0.17 134 030 0.69 022 149 032 050 0.11 036 006 020 0.06 - -

Estimation 0.49 0.21 140 0.18 046 0.10 128 028 073 027 141 0.19 051 0.10 036 0.07 020 0.05
MPCR 52 1107
Error (%) -3.30 -131 -1.47 -132 -643 -39.59 -442 -6.71 640 2560 -5.04 -41.65 335 -12.73 127 2577 3.72 -15.55

Estimation 0.33 022 146 018 073 0.19 1.17 025 0.76 051 119 022 085 0.10 038 0.04 0.17 0.05
ML 83 1811
Error (%) -35.84 038 263 -498 4746 12.86 -12.83 -16.16 10.70 133.48 -19.66 -33.30 71.15 -12.73 8.14 -26.79 -14.54 -21.35

Estimation 0.82 0.18 131 020 093 0.5 1.17 0.10 0.77 0.13 124 036 087 0.17 030 0.07 027 0.01
MM 56 1242

Error (%) 60.04 -17.22 -7.68 821 87.41 11.47 -12.30 -66.98 12.25 -42.52 -16.69 12.17 74.60 48.52 -15.00 26.68 35.51 -84.30

L Estimation 0.47 0.19 142 0.15 054 0.10 125 024 0.75 035 135 0.15 061 0.10 037 0.03 0.19 0.01
42 983

(KDE) Error (%) <712 -13.62 -036 -1995 847 39.59 -7.01 -21.84 934 6132 -891 -52.34 22.56 -12.73 4.58 -53.13 -4.82 -84.30

JL Estimation 0.52 027 138 021 052 0.18 126 028 0.77 030 140 039 055 010 036 006 021 0.07

(Gaussian 46 1080
copula) Error (%) 1.85 2591 -323 1094 460 861 -6.06 -6.28 12.14 3557 -5.76 20.60 10.40 -12.73 1.59 4.12 6.67 948

MPCR: Marginal probability correlation residual

ML: Marginal likelihood metric

MM: Moment matching metric

JL: Joint likelihood metric

Iter.: Iteration

F.C.: Function calls

Error =100 x (s —38)/s (%), s isthe exact value and § is an estimate
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4.4 Summary and Discussion

This study proposed a new calibration metric, namely Marginal Probability and
Correlation Residuals (MPCR), to properly consider the statistical correlation
between multivariate output responses in optimization-based statistical model
calibration. The foundational idea of the proposed MPCR metric is to decompose a
multivariate joint probability distribution into multiple marginal probability
distributions, while considering the statistical correlation between output responses.
Two mathematical and two engineering examples were demonstrated to verify the
effectiveness of the MPCR metric. It can be concluded from the results that even
though the predicted marginal PDF of the output response after calibration matches
well with the observed one, inaccurate solutions may be obtained if the statistical
correlation between the output responses is not properly considered when

formulating a calibration metric.

The MPCR metric has many favorable properties as a calibration metric, such
as 1) marginalization, 2) normalization, and 3) boundedness. Owing to
marginalization, the MPCR metric does not suffer from curse of dimensionality,
since it incorporates the univariate KDE into the modeling of the marginal PDF.
Owing to normalization, the MPCR metric can provide accurate calibration results
even when there is a scale difference between the output responses. In addition, since
the value of the MPCR metric is bounded, it can directly inform the statistical
similarity or dissimilarity between the predicted and observed output responses. It is
thus believed that the proposed MPCR metric will be very helpful for improving the
accuracy and robustness of optimization-based statistical model calibration when the

multivariate output responses are statistically correlated.
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Chapter 5

Hybrid Model Calibration and
Updating
For Estimating System Failure

In Chapter 4, the statistical correlation in output response was taken to estimate the
uncertainty in the model input parameter. The predictive capability of the digital twin
approach is improved by considering uncertainties in manufacturing and test
conditions using statistical model calibration. Maintaining the high predictive
capability of a digital twin model under system failure is of great concern to the
engineers who make design decisions at the early stages of product development.
The physics-based digital twin can give a physical intuition such as prognosis and
diagnosis of system failure. However, it hard to apply the physics-based digital twin
approach to estimate system failure by the computational cost and lack of
information. There is thus an urgent need to develop hybrid digital twin approach for

evaluating system failure under physical uncertainty.

Crack initiation and growth are common failure mechanisms in engineered

products. To verify the structural reliability and durability of engineered products,
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engineers have tried to predict fatigue characteristics using an empirical crack
growth model [87], [88] and advanced physics-based simulation [8], [10] in
engineering product development. However, the predictive capability of a simulation
model can be degraded by physical uncertainty in model formulation and test
conditions. The digital twin approach, which is updated in this research to consider
these uncertainties, can be an attractive substitute for conventional simulation

models.

This study proposes a hybrid digital twin approach to estimate uncertain crack
initiation and growth. The proposed improved digital twin approach for estimating
fatigue crack initiation and growth can be used in a variety of product development
settings. The proposed idea takes advantage of hybrid digital twin approaches, using
both data-driven and physics-based approaches. The proposed approach for
estimating fatigue crack initiation and growth is based on two techniques; (i)
statistical model calibration and (ii) probabilistic element updating. In statistical
model calibration, statistical parameters of input variables are estimated based on the
observed response related to the crack initiation condition. Further, probabilistic
analysis using estimated statistical parameters can predict possible critical elements
that indicate crack initiation and growth. In probabilistic element updating
procedures, the possible crack initiation and growth element is updated based on the
observed response related to the crack growth condition. The validity of the proposed
method is demonstrated using a case study of an automotive sub-frame fatigue test.
The proposed idea is applied to estimate crack initiation and growth in the fatigue
test. From the results, we conclude that the proposed digital twin approach can

accurately estimate crack initiation and growth of an automotive structure under
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uncertain loading conditions and material properties.

Chapter 5 is organized as follows. Section 5.1 provides a brief review of digital
twin approach for estimating crack initiation and growth. The proposed hybrid
digital twin approach is explained in Section 5.2. The application of the proposed
method is demonstrated in Section 5.3. Finally, the conclusions of this work are

outlined in Section 5.4.

5.1 Brief Review of Digital Twin Approaches for Estimating
Crack Initiation & Growth

Crack initiation and growth are common failure mechanisms in engineered products.
To verify the structural reliability and durability of engineered products, engineers
have tried to predict fatigue characteristics using an empirical crack growth model
[87], [88] and advanced physics-based simulation [8], [10] in engineering product
development. However, the predictive capability of a simulation model can be
degraded by physical uncertainty in model formulation and test conditions. For
example, the geometry and boundary conditions in the model formulation may differ
from the physical test conditions. In addition, the manufacturing tolerance and
uncertain nonlinear effects during crack initiation in the physical test condition are
also difficult to consider in the model analysis. The effects of physical uncertainty
in model formulation and test conditions thus have to be taken into account to
improve the predictive capability of simulation models. The digital twin approach,

which is updated in this research to consider these uncertainties, can be an attractive
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substitute for conventional simulation models.

A digital twin combines the observed response from a physical system in real
space with a simulation model in cyberspace to support engineering decisions. In
digital twin approaches, the simulation model must be improved using the observed
response. Simulation models used in digital twin approaches can be categorized into
1) data-driven and 2) physics-based models. Data-driven models, such as relevance
vector machine [3] and artificial neural networks [1], have been proposed to estimate
crack initiation and growth using an experimentally observed response. Data-driven
approaches rest on past experimental data to predict fatigue behavior. However,
these methods require enough data to predict the fatigue crack behavior of the
engineered product of interest. Further, the results of data-driven models are less
interpretable than those from physics-based models. Physics-based models, such as
finite element based models [89]-[92] and material models [93], [94], have been
used to simulate the physical process of crack initiation and growth. However, due
to the uncertainties in modeling and simulation, it is challenging to predict fatigue
behavior with high accuracy using simulation models. In addition, expensive
computational cost is a constraint of physics-based models. The proposed hybrid
digital twin approach uses both data-driven and physics-based models
simultaneously to capitalize on the advantages of each approach, while minimizing
the disadvantages of each method. Hybrid approaches seek to estimate structural

health monitoring and crack growth accurately and efficiently.

Li and Mahadevan et al. (2017) proposed a hybrid digital twin approach for
aircraft wing health monitoring based on a dynamic Bayesian network and a physics-

based model without crack geometry [48]. Their proposed method integrates
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heterogeneous information — including test data, mathematical models, and expert
opinions — to estimate crack length using a Bayesian network. However, their
method requires past crack length data in various conditions; further, it is inefficient
for construction of a crack growth model for each initiation point. Eder et al. (2020)
proposed a hybrid digital twin approach using an FEA model with crack geometry
based on the Virtual Crack Closure Technique (VCCT) [95]. This method was
applied for predicting the fatigue cracks in the adhesive trailing edge joint of a full
3D finite element wind turbine blade model. The results show a robust and
computationally efficient prediction by decoupling the computationally demanding
finite element analysis from the discrete fatigue crack growth analysis. However, use
of VCCT with a deterministic crack growth criterion makes it difficult to estimate
the uncertain crack growth. The crack growth simulation needs to be
probabilistically conducted to estimate the uncertain crack growth of the physical
system. In other work, M. Karve et al. (2020) proposed a digital twin approach for
performing mission optimization under uncertainty, aimed at ensuring system safety
with respect to fatigue cracking [96]. In the Karve et al. study, a Bayesian damage
diagnosis method was proposed by fusing homogeneous sources of data, including
piezo-sensor data and a physics-based model. This method did not take uncertain

crack initiation and growth into account.

Therefore, to consider both the initiation and growth of fatigue cracks, the
present work takes advantage of hybrid digital twin approaches that utilize both data-
driven and physics-based approaches. The proposed approach includes two
techniques: (i) statistical model calibration using a data-driven model and (ii)

probabilistic element updating using a physics-based model. In statistical model
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calibration, statistical parameters of input variables can be estimated based on the
observed response related to the crack initiation and growth condition. Further, the
probabilistic analysis using estimated statistical parameters can predict possible
critical elements that indicate crack initiation and growth. In the probabilistic
element updating procedures, the possible crack initiation and growth element is
updated based on the observed response. The three-fold novel aspects of this study

include:

«  This study proposes a hybrid digital twin approach to estimate uncertain
crack initiation and growth, by incorporating two techniques: (i)
statistical model calibration using a data-driven model and (ii)

probabilistic element updating using a physics-based model.

« The validity and efficiency of the proposed methodology is verified
through digital twin updating of an automotive sub-frame, by using the
observed response related to crack initiation and growth from a fatigue

test.

+  The updated model, which is validated quantitatively and qualitatively,
is compared with fatigue test results, such as displacements and fatigue

crack initiation and growth points.
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5.2 Proposed Digital Twin Approach : Hybrid Model
Calibration & Updating

This section outlines the proposed hybrid digital twin approach. Figure 5-1
describes the procedure for the proposed hybrid digital twin approach. The first step
is data-driven statistical model calibration. In statistical model calibration, the
unknown input variables of a data-driven model, representing uncertainties in
experiments and manufacturing, are estimated using the observed response. The

data-driven model relieves the computational cost of a physics-based twin in the

1. Statistical model calibration using a Data-driven Twin (Ypy)
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Figure 5-1 Procedure for the proposed hybrid-digital twin approach to estimate
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model calibration. The estimated input variables of a data-driven model in the model
calibration step can improve model prediction accuracy and validity of the physics-
based twin in element updating. The second step is the probabilistic element updating.
In element updating, the critical element of the physics-based model representing
crack initiation and propagation is estimated using observed responses related to the
crack initiation and growth condition. The proposed method can be applied to
estimate uncertain and unidentifiable crack initiation and growth that arise because
of the uncertainties in the manufacturing and test conditions. To help readers
understand the proposed method, section 5.2.1 will explain optimization-based
statistical model calibration procedures using a data-driven twin and section 5.2.2

will introduce element updating procedures using a physics-based twin.

5.2.1 Statistical Model Calibration using a Data-driven Twin

A physics-based model is necessary for virtual fatigue analysis in product
development. However, it is not easy to use simulation models to predict physical
behavior with high accuracy. Most input variables in physics-based models have a
certain amount of physical uncertainty, such as inherent variability in material
properties, manufacturing tolerances, and operating (loading) conditions. This input
variable can be assumed as a random variable (Xunknown) that is defined by the type

of distribution and statistical parameter (0).

To estimate an uncertain crack initiation point, probabilistic analysis that
considers uncertainty in model formulation and test conditions is required. The

proper statistical parameters of the input variables are needed for probabilistic
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analysis. However, it is not easy to fully quantify the variability in the input variables
due to limited resources (e.g., time, budget, and facilities); thereby, the statistical
parameters of the model input variables are often unknown. Statistical model
calibration is thus of great importance as a strategy to improve the predictive
capability of a digital twin model [97], [98]. Representative methods for statistical
model calibration include Bayesian approaches, maximum likelihood estimation
(MLE)-based model updating approaches, Markov Chain Monte Carlo (MCMC)
approaches, and optimization-based statistical model calibration approaches [19],
[201, [97], [99]. Optimization-based model calibration can be an excellent strategy

to calibrate a digital twin, considering the correlated output response [100].

However, it is hard to effectively calibrate these models because most physics-
based analysis is computationally expensive. A data-driven twin (Ypr) can be used
in statistical model calibration as a surrogate model [101], [102]. Figure 5-2
describes the procedure of statistical model calibration using a data-driven twin. The
study described in this paper uses a Gaussian process model to substitute for the
physics-based model. The Latin-hyper-cube sampling method is applied to construct

the design of experiment (DoE) for data-driven twin construction.

To estimate the input variables in a physics-based model, optimization-based

statistical model calibration can be formulated as:

minignize fCM(?DT (@), Yobs,zv) (5.1)

where 0 denotes a statistical parameter vector of unknown input variables and fcum

denotes a calibration metric that quantifies the statistical dissimilarity between the
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predicted (Ypr(0)) and observed (Yobs,n) output responses related to crack initiation.
Monte Carlo simulation (MCS) is applied as an uncertainty propagation (UP)
approach to quantify the output response uncertainties for a given statistical
parameter (0), using the constructed data-driven model. In optimization-based
statistical model calibration, the calibration metric, which is defined as an objective
function, must be formulated considering the statistical correlation between
multivariate output responses. Kim et al. proposed the Marginal Probability
Correlation Residual (MPCR) as a calibration metric to consider statistical
correlation [100]. The MPCR is adopted as a calibration metric in this study for this
same purpose. The kernel density estimation (KDE) estimates the probability density

function of the response using the sets of responses from the Monte Carlo simulation.

After statistical model calibration, physics-based analysis can statistically
predict possible crack initiation points where the maximum stress occurs. The
calibrated model can be quantitatively and qualitatively validated. A hypothesis test
using an area-metric is used as a quantitative method and crack initiation points are

also validated qualitatively.
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5.2.2 Probabilistic Element Updating with a Physics-based Twin

Statistical

model calibration can improve the model prediction accuracy of the

physics-based twin using the observed response. The calibrated physics-based twin

can predict possible critical elements where a crack is initiated. Crack initiation and

growth in a physical system induce a transition of the observed response. In the

digital twin approach, the digital twin needs to be updated to represent the fault state

of a physical system in real space. In this study, probabilistic element updating is

used to estimate crack initiation and growth of real physical entities, based on the

observed response. Figure 5-3 represents the proposed element updating procedures.

« Step 2-1.

* Step 2-2.

* Step 2-3.

Physics-based analysis using calibrated statistical parameters is used to
estimate possible state transition, considering various uncertainties in test
conditions. The candidate elements where maximum von-misses stress
occurs are selected as deletion candidates (e).

UP analysis, with deletion of each candidate element, is conducted to
construct the probability density function of the response transition
(AY,rqcr ). The most probable deletion element among candidates is
selected based on the likelihood evaluation with observed response
transition in a fault state (AY,pg r).

The Bayes factor, which is an updating criterion, is calculated as the
maximum likelihood ratios between the current and previous step from
among candidate elements. The elements are deleted until the Bayes

factor is positive. If the Bayes factor is negative, stop the iteration.

Simulation strategies have been developed to predict crack initiation and
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growth, including finite element based methods like Virtual Crack Closure
Techniques (VCCT), Cohesive Zone Model (CZM), and the element deletion
method [7], [8], [10], [92]. However, VCCT requires a specified crack initiation
point and mesh correction around the crack tip. CZM requires traction-separation
law for specified crack interface elements, which need to be specified for each
different material. The element deletion method can be utilized to simulate crack
initiation and growth without mesh correction and a defined crack interface [103]-
[105]. However, sophisticated element deletion criteria are required to simulate
crack initiation and growth [105]. The likelihood function based on the observed
response can be used as an updating (element deletion) criterion to overcome this
issue. The likelihood of physics-based analysis with this n-th candidate element (en)
deletion based on a fault-observed response at the i-th updating iteration is found by:

Nexp

Li(en) = Z lOglO fA?Crack(AYj,Faultlen) (5-2)
j=1

where AY; rq,,; denotes the j-th observed response transition vector in a fault state
and fay,, ... Clen) denotes the joint PDF of the predicted response transition
(AY¢yqcr) With the n-th candidate element (en) deletion. The response transition is

formulated as:
A?Crack(en) = ?Crack (X(B*)len) - ?Normal(x(e*)) (5-3)

where Ye¢,qck (X(0)]e,,) denotes the predicted response with n-th candidate
element (en) deletion and Yy ormar (X(0%)) denotes the predicted response without
element updating. The most probable elements from among the candidates can be

selected based on the likelihood function. The model updating criterion using the
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Bayes factor can be formulated as:

max L;(ey)
K, =log—*——— (5.4)

max Ly (en)
where max L;(e,) denotes the maximum likelihood function value from among
deletion candidates at the i-th iteration; the Bayes factor (K;) is the likelihood ratio
between the current and previous updating iteration. A positive value of the Bayes
factor indicates that the updated element model is more agreeable than the previous
model, based on the observed response in the crack growth condition. Thus, the
updating procedures are continued until the Bayes factor changes into a negative

value.

Element size and density of the computation model affects computation cost of
element updating and accuracy of digital twin analysis. G, Ljustina et al. showed the
Johnson-Cook (JC) dynamic failure model results depending on element size [106].
Even though dense and fine mesh can represent detailed crack progress in real
systems, the computation cost is incrased by a larger system matrix and matrix

computation.
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5.3 Case Study: Automotive Sub-Frame Structure

An automotive sub-frame is a structural component of a vehicle that sustains the
wheels and tires during acceleration, driving, and deceleration. Fatigue
characteristics of the sub-frame affect the ride comport of a car. The proposed
method is applied to estimate the sub-frame’s fatigue crack initiation and growth
using the experimentally observed response. The commercial finite element analysis

tool, Nastran, was used for the physics-based digital twin analysis.

5.3.1 Experimental Fatigue Test

In the experiments, the specimen is the suspension member that sustains a lower arm.
The experiment aims to measure the displacement and principal strains during the
quasi-static and cycling loading test. In this section, the test setups and results are

described.

The sub-frame consists of a suspension member and a control arm. The load is
applied to the suspension member at a joint connected to a control arm in the
experiments. The principal strains were measured by attaching tri-axial strain gauges
at the top surface of the structure. Strain measurement locations were selected based
on sensitivity analysis with respect to the unknown input variables. The four
measured strain points were selected as shown in Figure 5-4 (a). The specimen was
fixed at four points and a load applied with the MTS Model 252-25G-01 fatigue test

rig, as shown in Figure 5-4 (b).

Two types of loading conditions: 1) quasi-static and 2) cyclic load, are
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considered, as shown in Figure 5-5. In the quasi-static load test, the principal strains
were observed in four points under twelve load steps. The maximum magnitude of
the quasi-static load was 14.7 kN. Three specimens were tested to evaluate the
physical uncertainty and the manufacturing errors. The cyclic load was applied to
one of the specimens in the fatigue test until a visually identifiable crack occurred.

The maximum magnitude of cyclic load was 17.64 kN.

In the cyclic loading test, the measured strain in the cyclic load test showed a
significant change at around 20,670 cycles, as shown in Figure 5-5 (c). Even with
the response transition, there was no visible change in the specimen. It was found

that the change was caused by an invisible internal crack. The observed deformation

(b)

Figure 5-4 Experimental condition : (a) strain measured points, (b) test rig
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was assumed as the linear elastic phenomenon. The principal strain and displacement

under twelve different load steps from quasi-static loads were linearly extrapolated

at a maximum level of cyclic load, as shown in Figure 5-6.
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5.3.2 Statistical Model Calibration using a Data-driven Twin

5.3.2.1. Physics-based Model of Suspension Members

The physics-based model was constructed with shell elements to evaluate the
suspension member. The jig is connected to the suspension member using a rigid
body element (RBE2) at the joint node. The load was applied to the point where a
ball joint connects the actuator. The loading condition and boundary condition are
shown in Figure 5-7 (a). The analysis was conducted using a commercial FE solution,
Nastran. The steel plates with different metal properties are connected by three
different weld types. Figure 5-7 (b) shows finite elements consisting of the physics-
based model. The numeric value of the material properties is described as a non-

dimensional value normalized by the initial reference value.
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(@) (b)
Figure 5-7 Analysis condition: (a) loading and boundary conditions (b) model

components

5.3.2.2.  Unknown Input Variables

The suspension member consists of plates connected by welds. The welds are
divided into three types (T1, T2, and T3) depending on the bead size. During the
welding procedure, various defects are generated due to residual thermal stress and
manufacturing tolerances. Therefore, the thicknesses of the weld components are
considered as unknown input variables. The material properties of the plate also have
uncertainty. In particular, Young's Modulus (E) is an important property of the
elastomer, which defines the ratio between stress and strain. As the steel plates are
deformed and machined, plastic deformation or an inner crack can occur during the
manufacturing process. The defects can deteriorate or reinforce the stiffness of the
plate by stress concentration or plastic hardening. Thus, the Young’s Modulus values
of the three different steel materials (A, B, and C) are considered as unknown input
variables. The ball joints that connect the jig and actuator induce an uncertain loading
direction; thus, the two loading direction parameters (6,,6y) are regarded as
unknown input variables. Unknown model input variables and measured output

responses are summarized in Table 5-1. In optimization-based statistical model
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Y

unknown

Force Rotation Angle Major/ Minor Principal
(xl,xz: 6,,06y) Strain

@ Point1(y,,y,)

@ Point2(y_,y,)

@ Point 3 (y5, y6)

Young' s Modulus @ Point 4 (y, v,)
(x,Xx X 'En, Es, Ec) ’

Weld Thickness
(x3,x4,x5: T1, T2, T3)

Table 5-1 Unknown model input variables and measured output responses

calibration, the distribution type of a random variable should be assumed based on
prior information. The thickness value must have a positive value; thus, it is assumed
that weld thickness follows a log-normal distribution. Further, it is assumed that the

Young’s Modulus and force direction parameters follow a normal distribution.

5.3.2.3. Calibration Problem Formulation using a Data-driven Twin
The calibration problem is formulated as
Find 0=[u, o]
to minimize MPCR(Ypre(0), Yobs) (5.5)
subject to 6 <@ <@V
where 0 denotes the statistical parameters of the unknown input variables; 8 consists
of the mean and standard deviation vector, and; 8- and 0V, respectively, denote the
lower and upper bounds of the statistical parameters. The lower and upper bounds

are summarized in Table 5-2.
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X1 X2 X3 X4 X5 X6 X7 X8
(mm) (mm) (mm) (GPa) (GPa) (GPa)
uy  10° 10° 1.4A 1.4B 1.4C 1.4D 1.4E 1.4F
w, -10°  -10° 0.4A 0.4B 0.4C 0.7D 0.7E 0.7F
oy 2° 2° 0.4A 0.4B 0.4C 0.04D 0.04E 0.04F
o, 0.01° 0.01° 0.00lA 0.001B 0.001C 0.001D 0.001E 0.001F

Table 5-2 Lower and upper bounds of statistical parameters

The Gaussian process (kriging) based data-driven model was adopted to replace
the expensive physics-based model; the design matrix of DOE was generated by the
Optimal Latin Hypercube approach. A Gaussian process-based surrogate model was
trained using the DOE. The accuracy of the surrogate model was validated before
calibration. The Root Mean Squared Error (RMSE) of the kriging surrogate model
was evaluated using one-hundred sample points. The value of error is less than 5%
for each response model. The optimal parameter vector that minimizes the
calibration metric was searched using a genetic algorithm. Monte-Carlo simulation
with 10* sample points was run on the efficient surrogate model. Finally, kernel

density estimation was used as PDF modeling.

5.3.2.4. Calibration Results

Table 5-3 summarizes the inferred statistical parameters of the unknown input
variables. From the calibration results, the following observations are made. The
force direction had bias and variability compared to the initial guess. In addition, the
force rotation angle in the Z-axis has a negative bias. Further, the mean of Young’s
Modulus (E) changed up to 30% of the initial mean value. The thickness of the weld
is divided into three types, depending on the bead size (T1, T2, and T3). Most of the
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Unknown Input Initial MPCR
Variables Mean Std. [Mean Std.
0, 0 0 |[-470 197
0y 0 0 |[-088 1.44
welg | THGnm) | A [ 0.08A [0.45A 0.332A
€
Thicknesd T2@mm) | B | 0.08B [0.45B 0.359B
T3(mm) | C ]0.08C [1.21C 0.310C
E,(GPa) [ D |0.07D [1.03D 0.022D
Young’s| e Gpay | E | 0.07E [0.74E 0.024E
Modulus
E.(GPa) | F |0.07F |1.29F 0.021F

Table 5-3 Calibration results of the automotive structural model

welds belong to two types of welds, specifically T1 and T2. The mean values of T1
and T2 were inferred as one-third of the original thickness mean value. This indicates
that the weld stiffness was overestimated before calibration. Monte Carlo Simulation

with 10% sample points was conducted using finite element analysis, rather than the

kriging surrogate model. After calibration, the predicted output response had good

agreement with the observed output response, as shown in Figure 5-8.
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5.3.2.5. Validity Check

The calibration results were validated quantitatively and qualitatively. The validity
checks examine whether statistical calibration can improve the predictive capability
of a physics-based model in an output response domain not used in calibration. In
the quantitative validity check, the loading point displacement was used for
validation. In this study, area metrics using the u-pooling method and hypothesis test
were used as a validity check. The area metric measures the area difference between
the cumulative distribution function (CDF) of the predicted output response and the
empirical CDF of the experimental output response. As shown in Figure 5-9, the area
metrics of the updated output response were smaller than the threshold (i.e., 0.1051)

with a sample size of thirty-six and a significance level of 5.

The calibrated physics-based model analysis statistically predicts three possible
crack initiation points, where the maximum von-Misses stress occurs, as shown in
Figure 5-10 (a). The PDF of stress occurred in the possible crack initiation candidate
shown in Figure 5-10 (b). Candidate 1 shows the most critical stress level compared
to other candidates. After the cyclic loading test, an internal crack was found around
the predicted possible crack initiation point. Thus, it can be concluded that statistical

calibration can improve the predictive capability of a physics-based model.
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Figure 5-9 (a) Displacement prediction after calibration (b) hypothesis testing

using an area metric
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Figure 5-10 (a) The candidates of crack initiation points (b) PDF of Von-misses

stress at each candidate element

5.3.3 Element Updating with a Physics-based Twin

The UP analysis (MCS using a physics-based twin) with deletion of each candidate
element was conducted and the response transition is as shown in Figure 5-11. The
likelihood function for each candidate was calculated using the observed response
transition (AY; gaq¢), @s shown in Table 5-4. The model prediction with candidate 1
gives a maximum likelihood compared to other candidate elements. The updating

procedures were conducted based on the proposed methods.
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At every element updating iteration, three candidate elements were selected
based on the von-misses stress criterion. The most probable crack growth element
was selected using the likelihood value. The Bayes factor, the likelihood ratio
between the previous and current updated model, was calculated at each iteration.
The updating procedure was continued until the Bayes factor changed into a negative
value. The element updated models for each updating iteration are as shown in
Figure 5-12. The updated model shows crack propagation as observed internal crack

propagation in the fatigue test.

Figure 5-13 shows a transition of response in experiments and element updating.
The response transition trend of the updated model follows well the observed
response transition, except at point 1. Point 1 is far from the crack initiation points,
and the response sensitivity is lower than other points in the model. The element
deletion candidates predicted by the last updated model show good agreement with
the observed external and internal cracks from the experiments, as shown in Figure
5-14 (a). The Bayes factor for each iteration was calculated, as shown in Figure 5-14
(b). The Bayes factor is exponentially decaying to a negative value. After the cyclic
loading test, the internal crack is found around the predicted possible crack initiation
and growth point, as shown in Figure 5-14 (c). It can be concluded that element

updating can estimate crack initiation and growth.
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Figure 5-12 Updated models for each iteration
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5.4 Summary and Discussion

In this study, a hybrid digital twin approach was proposed to estimate the crack

initiation and growth using the observed response. The proposed digital twin

approach is based on two techniques; (i) statistical model calibration using a data-

driven twin and (ii) element updating with a physics-based twin. Marginal

Probability & Correlation Residuals (MPCR) were selected as calibration metrics to

consider the statistical correlation between output responses. The Gaussian process

model was used as a data-driven model to substitute the physics-based twin for

uncertainty propagation analysis using Monte Carlo simulation. Statistical model

calibration can improve the validity of digital twins by considering uncertainty in the

test conditions. Based on the observed response related to crack growth, the element
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of the digital twin was updated using the element deletion method. The predicted
critical elements that indicate crack initiation and growth were deleted to calculate
the likelihood for each possible element. The Bayes factor, which is the updating

criterion, was computed using the likelihood ratio at each updating iteration.

The proposed method was applied to an industrial problem to show the
effectiveness of the method. In the experiments, the principal strains were measured
on the surface of automotive structures at four points under quasi-static and cycling
load. The statistical parameters of unknown input variables were inferred using
observed output responses in a quasi-static load. The updated output response shows
good agreement with the experimentally observed response. A validity check was
guantitatively conducted to validate the calibration results. The crack initiation and
growth in the fatigue test were predicted using element updating based on the
observed response-related crack initiation and growth. The updated model was

gualitatively validated by comparison with fatigue test results.

Sections of this chapter have been published or submitted as the following journal
articles:

1) Wongon Kim, Guesuk Lee, Hyejeong Son, Hyunhee Choi, and Byeng D. Youn,
“Estimation of Fatigue Crack Initiation and Growth in Engineering Product
Development using a Digital Twin Approach,” Reliability Engineering & System
Safety, Submitted, 2021.
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Chapter 6

Conclusions

6.1 Contributions and Significance

The proposed research in this doctoral dissertation aims at advancing model
calibration and updating to build hybrid digital twin under insufficient prior
information. This doctoral dissertation is composed of three research thrusts: (1)
data-driven dynamic model updating for anomaly detection with an insufficient prior
knowledge for modeling; (2) a new calibration metric formulation considering
statistical correlation; and (3) hybrid model calibration and updating considering
system failure. It is expected that the proposed research offers the following potential

contributions and broader impacts in digital twin.

Contribution 1: Dynamic Model Updating Framework with Insufficient Prior

Information for Physics-based and Data-driven Modeling

This doctoral dissertation proposes an dynamic model updating framework for
anomaly detection under insufficient prior information for modeling. To the best of

the author’s knowledge, previous research has not addressed data driven dynamic
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model updating to estimate uncertain operating condition under different noise level.

Contribution 2: Improving Optimization-based Statistical Model Calibration

considering Statistical Correlation among Output Response

This study thoroughly examines what happens if the statistical correlation is
neglected in model calibration. In addition, three existing calibration metrics
(marginal likelihood, joint likelihood, and moment matching) are reviewed from the
perspective of their ability to address the statistical correlation between multivariate
output responses. To overcome the issues, a new calibration metric considering
statistical correlation: Marginal Probability and Correlation Residual (MPCR) was
proposed. MPCR metric has favorable properties including normalization,
boundedness, and marginalization; thereby, limitations of three existing calibration
metrics are overcome in this method. The proposed method allows consideration of
the statistical correlation effectively; thus physically reasonable solutions can be
confined. Consequently, accurate optimization-based statistical model calibration is

enabled.

Contribution 3: A New Hybrid Digital Twin Approach to Estimate Fatigue

Crack Initiation and Growth

To verify the structural reliability and durability of engineered products, engineers

have tried to predict fatigue characteristics using an data-driven and physics-based
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digital twin in engineering product development. However, the predictive capability
of a digital twin model can be degraded by physical uncertainty in model formulation
and test conditions. This work takes advantage of hybrid digital twin approaches that
utilize both data-driven and physics-based approaches. The proposed approach
includes two techniques: (i) statistical model calibration using a data-driven model
and (ii) probabilistic element updating using a physics-based model. In statistical
model calibration, statistical parameters of input variables can be estimated based on
the observed response related to the crack initiation and growth condition. Further,
the probabilistic analysis using estimated statistical parameters can predict possible
critical elements that indicate crack initiation and growth. In the probabilistic
element updating procedures, the possible crack initiation and growth element is
updated based on the observed response. The validity and efficiency of the proposed
methodology is verified through digital twin updating of an automotive sub-frame,
by using the observed response related to crack initiation and growth from a fatigue

test.

6.2 Suggestions for Future Research

Although the technical advances proposed in this doctoral dissertation successfully
address some challenges in digital twin approach in both data-driven and physics-
based approach, there are still several research topics that further investigations and
developments are required to bring hybrid digital twin into an alternative solution
for engineering decision support. Specific suggestions for future research are listed

as follows.
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Suggestion 1: Deep Learning-based Hybrid Digital Twin considering
Modeling Error

As the relevant physical phenomena in an engineered system become more complex,
a physics-based model needs to be more sophisticated. However, it is not easy to
fully characterize the physics in the real system using a physics-based model due to
limited resources (e.g., time, budget, and computation costs). The physics-based
model with insufficient prior information includes various modeling errors. The
engineering decisions should be made considering the error and uncertainties in the
model. However, the model error and uncertainties are hard to be quantified using a
small number of data and computation costs. To overcome the issue, the modeling
errors can be quantified and formulated with a data-driven approach. Especially, the
deep learning method can be used to integrate various error causes such as
discretization and spatial and temporal uncertainty in modeling. Therefore, this issue
highlights one research need of deep learning-based hybrid digital twin considering

modeling error.

Suggestion 2: Experimental Design For Physically Feasible & Mathematically

Unique Solution in Statistical Model Calibration

Most calibration solutions are questioned about solution uniqueness and physical
feasibility. However, the model calibration, which is the inverse problem, cannot

guarantee solution uniqueness and physical feasibility because of the ill-posedness
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of an inverse problem. In this study, statistical correlation among output responses
was considered to constraints the calibration solution. However, the solution's
uniqueness and physical feasibility require a more sophisticated model calibration
strategy. The sensitivity of response and uncertainty in data acquisition conditions
can affect the solution convergence and uniqueness. Therefore, the experimental
design for the sensor network and data acquisition should be considered to formulate

statistical model calibration.

Suggestion 3: Hybrid Digital Twin Approach Including Non-linear Physics-
based Model (Fluid, Battery)

As the relevant physical phenomena in an engineered system become more complex,
a physics-based model includes non-linear analysis. The computation cost of non-
linear analysis makes it hard to apply the digital twin approach for engineering
systems with non-linear physics. Various engineering systems include non-linear
physics such as a battery and energy facility with fluid flow, which must be operated
and maintained using a digital twin approach. It is thus required to develop a hybrid
digital twin approach including non-linear physics. Therefore, future work will
include investigating the digital twin approach to deal with computationally

expensive non-linear analysis while maintaining non-linear characteristics.
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