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Abstract

Fault Detection of Gearbox in Industrial Robot
using Current Residual

from Singular Spectrum Template Matching

Dowan Kim

Department of Mechanical Engineering
The Graduate School

Seoul National University

Industrial robots are essential equipment for process automation in a wide range of industrial
fields. In manufacturing fields, unexpected faults of robots can severely damage the economy of a
company. Fault can occur in various components of the robot and a faulty gearbox can have a significant
effect on the robot's driving performance and manufactured product. Therefore, in this paper, gearbox
fault detection of an industrial robot is performed using current signals applied to the actuating motor.
The proposed method synchronizes normal current signal data to reference phase by resampling through
Hilbert Transform. The synchronized signals are then split by singular value decomposition, and the
principal components are extracted and averaged to establish normal template. Residual signal is then
extracted by subtracting normal template from synchronized unknown signal. Finally, health
management feature is calculated from the residual signal to perform fault detection. To quantify the
performance of the proposed method, an evaluation metric ‘detection error’ is derived. The results of
detection error show that the uncertainty of fault detection is declined through the proposed method.
The distribution of health feature using proposed method is more concentrated than that of health feature

using time synchronous averaging without the normal template.
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Chapter 1

Introduction

1.1 Motivation

Recently around the world, factors like risk of manufacturing, work complexity, and
labor costs are increasing steeply. Thus, it is becoming more important to replace human
resources by industrial robots in the actual manufacturing site [1]. These industrial robots are
used in various fields, such as automobiles, aerospace and semiconductor manufacturing,
which are becoming increasingly significant as the size of related industry grows and precision
requirement rises [2],[3]. If failure or fault of industrial robots occur during the manufacturing
process, product quality will be reduced, and downtime of the manufacturing line will be
increased and result in large economic loss. To avoid this circumstance, minimizing the
downtime loss is essential, and many studies and investigations about fault detection methods
of industrial robots have been carried out recently.

As in Figure 1, industrial robots consist of various elements, including reducers,
motors, sensors, end-effectors, links, and transmissions. The mechanical failure of the robot

occurs frequently in the reducer, which is a key to the transmission of the power of the actuator



Figure 1 Various components of industrial robot

[4]. Thus, the fault of the reducer can have a significant impact on the performance of the
industrial robot. Existing fault detection studies of industrial robot reducers can be divided into
two main types by applied signal: methods using vibration signals and methods using current
signals. In the first type, vibration signal, Y.Kim detected fault of gearbox using Phase-based
time-domain averaging (PTDA) for fault detection of a gearbox [5]. Jaber proposed a fault
diagnosis algorithm through vibration signal decomposition using discrete wavelet transform
(DWT) for gearbox backlash diagnosis [6]. Pan et al. detected joint backlash fault of an
industrial robot, and the Wigner-Vile distribution (WVD) and artificial neural network (ANN)
algorithm is used for health feature extraction and fault detection [ 7]. In the second type, current
signal, Algburi et al. performed fault detection using rotary encoder signal [8]. Zhang et al.
proposed method of failure diagnosis of the reducer using the Hidden Markow Model.
Additionally, Li et al. performed robot reducer fault diagnosis by combining Motor Current
Signal Analysis (MCSA) and deep learning.

According to the investigations mentioned above, vibration signals are suitable for

detecting mechanical failures, for example, checking sideband of gear mass frequency.



However, acquiring suitable vibration signal data is difficult because the attenuation of
mechanical vibration can be occurred according to the attached points of vibration sensors.
Additionally, acquired vibration signals are likely to be contaminated by noise occurred from
the operation of industrial robot or outer factors. In contrast, current sensors can be installed
easily in the control box of the robot, and robust to the outer noise.

One of the main fault modes of the gearbox is deterioration, which increases rest of
the frequency components except for the operating frequency of the motor. Therefore,
extracting principal component of the signal is important. Additionally, industrial robots
operate under various operating motion profiles, so frequency elements depending on operating
profiles should be normalized. The method presented in this paper is establishing normal
template by extracting principal components along various motion profile and condition. Then
health management feature is calculated from extracted residual signal. Residual signal is
calculated by subtracting acquired current signal from normal template signal. Also, the
proposed method reduces the variance of the robot's operating status in a current signal by

normalizing the extracted feature according to the motion profile.

1.2 Dissertation Layout

Including this section, this paper is organized with 5 sections. Section 2 provides
background theoretical knowledge for the proposed method. Then section 3 of this paper
describes the proposed method. Section 4 shows experimental validation and according

discussion. Section 5 summarizes the whole work of this paper and shows future works.



Chapter 2

Theoretical Backgrounds

2.1 Characteristic of Current Signal in Fault Diagnosis of

Industrial Robot [9]

In industrial robot, most faults result from deterioration of the mechanical components
due to usage over time because industrial robots are controlled in factory environments and
operated by trained technicians. The mechanical components of industrial robot are
electromechanically connected within the overall system, so deterioration of those components
generates frequency and amplitude modulation. The according torque signal transmitted to the

motor can be expressed as:
N
T(t) = To(t) + Z T,.(t) cos U 2nf,()dt + &, (t)
n=1

T, fn, Dn, and T, denote the amplitude, frequency, phase of torque signal induced by the



oscillatory vibrations, and the average torque. In the industrial robot motion control, the
modulated frequency and torque information can be used to transmit control signals to the
actuator. Therefore, the acquired current signal will be affected by this modulation of the

sending signal. The single-phase modulated current signal can be denoted as:
I1(t) = I.(t)sin U anc(t)dt]

f- (1), and I.(t) denotes the fundamental frequency of the current signal, and the amplitude of

fe(©.
Two main points to consider during fault detection of industrial robot using current

signal are as follow. First point is the fault-related frequency components of f,,. The second

one is the oscillatory terms of the current amplitude I.(t).

2.2 Hilbert Transform [10]

The Hilbert Transform was first introduced by David Hilbert in order to manage a
special case of the Riemann—Hilbert problem for analytic functions. The Hilbert transform is a
specific linear operator in the field of mathematics and signal processing. In the frequency

domain, the Hilbert Transform can be particularly representated into simple form. As in the

Figure 2 below, the HT shifts every frequency component as g radians. This signal processing

technique is significant because the result of transformation is a component of the analytic



representation of a real-valued signal.

— Original Signal
Hilbert Transform

Figure 2 Phase shifting of the Hilbert Transform

The mathematical definition of explicit form of Hilbert Transform H(u) is denoted

as follows:

Figure 3 below shows the original signal and the according phase calculated by the

Hilbert Transform. In chapter 3, this technique is used for signal synchronizing to match the

phases of the current signals.

Original Signal
Phase

Figure 3 Phase of original signal calculated by the Hilbert Transform

2.3 Singular Spectrum Analysis

Singular spectrum analysis is a robust method for the investigation of non-fixed and
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nonlinear signal, and applied to cyclic movement identification in numerous fields such as
death series analysis, climatic time series examination, and geophysical trend extraction [8].
This technique decomposes a complex signal into trend, noise and oscillations. Considering
that industrial robots are operated in various motion profiles and conditions, SSA is suitable to
extract faulty components from intricated signal by diminishing the effect of principal
component related to the fundamental frequency of moving robot.

SSA consists of two main processes, decomposition and reconstruction. First, in the
decomposition progress, the trajectory embedded matrix is constructed from the single-phase
motor current signal. As in the Figure 4 below, N-length current signal is divided by L-length
window. The window strides through the signal point by point, and finally the size of L * (N —

L + 1) trajectory matrix A4 is constructed.

L Resampled signal

X1 X2 X3 | Xk

Xz X3 Xa | = Xk

X3 || Xa Xs | =t Xg+g [=A
XL | XL+1| Xp+2| 0 | XN

L: window length, 2 < L < floor [%]

N : signal length

Figure 4 Construction of trajectory embedded matrix

Subsequently, Singular Value Decomposition is implemented to the trajectory



embedded matrix to obtain eigenvectors. Figure 5 shows the process of singular value
decomposition. First, square orthogonal matrix is calculated by multiplying transposed
trajectory embedded matrix AT to the trajectory embedded matrix A itself. Then eigenvalue
decomposition can be performed to get singular value matrix X, and eigenvector matrix V™.
Eigenvector matrix consists of descending ordered eigenvectors according to the magnitude of

corresponding singular value.

Eigenvalue decomposition

A=UsyT —» ATA = V(ETD)VT e e W=

E =

o )

- Descending ordered(according to eigenvalue) eigenvectors

X1 X2 X3 XK
X2 X3 Xq v X+l
X3 Xy X5 v Xgez [=A
XL Xp+1 Xp+2 XN

U: L = L orthogonal matrix

(=]

V: K = K orthogonal matrix

2: L = K singular value matrix

Figure 5 Process of singular value decomposition

Next process is the final step of decomposition process. Principal component matrix is derived

by multiplying trajectory embedded matrix and eigenvector matrix, and corresponding

calculation is as follows:

Principal component matrix(PC) = A+ V"

X1 X2 X3 Xk

Xp X3 Xg v Xgy Vii - Vig PCy - Pl

X3 Xy X5 o Xg+z [* [ : - HEI i ]
! ! ! . ! Vier - Vi PCpi - PCig

XL Xr+1 Xp+2z 7 XN

Figure 6 below is the visualization of each principal component vector of 1% to 4™ largest

singular value. However, length of these principal vectors is not identical to the original signal



length N. Therefore, restoration of L-length principal components into N-length vectors, the

second main process of SSA must be undergone.

O
A AT
o Y

F-maatao-— 0|

PC4 PC3 PC2 PCH1

Figure 6 Visualization of each principal component vector of 1% to 4™ largest singular value

In order to recreate the identical items, anti-diagonal averaging of corresponding

vectors of principal component matrix and eigenvector matrix is performed. As in Figure 7,

th h

mt" column of principal component matrix and m‘" column of eigenvector matrix is

multiplied first. Then anti-diagonal averaging is done with the resultant matrix, then the m"

column of N-length reconstructed principal component matrix is finally driven.

Anti-diagonal averaging

m th column of PC * (m th column of V)T mth column of RC

PC|[ PClK] Vi [ | Vig 'ggu RCu RC1K
. : . . f 21
PCpil| - | PCrx Wi || = | Ver RC E RC
N1 Lt e NK

RC 1
RC 2

RC 3
RC 4

Figure 7 Reconstruction progress and reconstructed principal components
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These reconstructed principal components are selected through the singular value setting

threshold ‘elbow’ in Figure 8. The chosen reconstructed vectors have eigenvector magnitude

above the elbow, and considered as significant component related to the driving frequency of

industrial robot. These vectors above the elbow are added up to establish normal template.

Sum 20 principal components

T Sum 40 principal components

Figure 8 Singular value setting threshold: elbow
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Furthermore examination about essential SSA can be found in [11].



Chapter 3

Proposed Method

Normal signals Unknown signals

Step 1: Synchronizing signal by resampling

Synchronized normal signals Synchronized unknown signals

A 4

Step 2: Establishing normal template

!

N " Y
| Singular spectrum analysis Step 3: Extracting health feature with residual signal

Deterministic signal l Normal *
| Synchronous averaging I template —I Extract residual signal |
$ Residual signals

Calculating health feature |

Health features

h 4

Out of threshold?

| Normal | | Fault |

Figure 9 Overall flowchart of the proposed method

Figure 9 above is the overall flowchart of the proposed method, consists of 3 steps.
First step is synchronizing signal by resampling. This process is necessary to correctly extract
residual signal by phase matching. Next is the key part of the proposed method, establishing

normal template. Singular spectrum analysis is mainly performed to extract deterministic signal

S—



from current signals of various motion profile and condition. The last step is extracting health
feature with residual signal and detecting fault with the result. Unknown signal is synchronized
through step 1, and residual signal is extracted with this synchronized unknown signal and
normal template. Then health feature is calculated from extracted residual signal and fault

detection is finally performed. The below subsections describe process of each step thoroughly.

3.1 Signal Synchronizing

To extract residual signal correctly, signal synchronizing must be performed to match
the phases of reference signal of normal template and unknown signal. Due to the monotonous
characteristic of current signal, Hilbert Transform can be applied to extract the phase of the

particular signal.

»—— Reference Phase

/ \3 (_) Original Signal

[ ] Resampled Signal
/ \ N
O 1

1
051 1\
K

Linear interpolation
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Figure 10 Signal synchronizing through Hilbert Transform

Figure 10 shows the conceptual plot of signal synchronizing through Hilbert
Transform. First, the reference phase is set to match all the signal data in the same phase. Blue
signal is original signal, and it is linearly interpolated according to the reference phase. The
number of points of the reference phase is determined by the average number of points in single

sinusoidal cycle. This average number of points is calculated by dividing the number of all the



points in the data with the number of sinusoidal cycles in the data.

The Figure 11 below shows normal current signals before and after of the signal
synchronizing. Before resampling, the signals are roughly synchronized through
autocorrelation. However, the phase is not completely matched and this will cause the
extraction of unsuitable residual signal in the subsequential processes. Resampling through

Hilbert transform matches phases among signals finely, and the result is shown in Figure 11.

Before Resampling

Figure 11 Normal current signal before resampling & after resampling

3.2 Establishing Normal Template & Fault Detection using

Residual Signal

Through the singular spectrum analysis, the principal component is extracted and the

normal template is established through the corresponding motion and speed level.



@ Calculating residual signal
<Example of Normal template>

X: Data index Motion 1 Motion 2 Motion 3
Y- Standardized amplitude Condition

Low speed High speed Low speed High speed Low speed High speed

Resampled :
Input signal

Unknown 9 1
health Normal
status ] Template
0 200 400 600 800 1000 1200 1400

@ Extracting health feature

Select from normal template according to X _ M
1430 the condition of input signal RMS — n

* RMS: Health feature indicating fault seventy

Normal
Template ~

Residual
Signal + Qverall degradation increases friction 2 Required torque 1+

- RMS of current signal 1

Figure 12 Conceptual view of normal template and the process of fault detection

Figure 12 is the conceptual view of normal template and the process of fault detection. An input

signal of unknown health status, known working condition (motion, speed level) is acquired.

The signal is resampled following the reference phase of corresponding working condition.

Then, the normal template of the same condition is selected, then the residual signal is

calculated by subtracting the normal template from the resampled input signal. Subsequently,

root-mean-squared value of the residual signal is derived. RMS is a health feature widely used

in indicating fault severity. As the overall degradation is frequently occurred fault mode of

gearbox in industrial robot, RMS is suitable health feature to check fault severity of the gearbox

due to the ascent of required torque.
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Chapter 4

Experimental Validation

4.1 Data Description

The following subsections describe about settings and speculation of industrial robot
testbed and the acquired data.

4.1.1 Testbed Setup

Figure 13 (a) Industrial robot testbed of Hyundai Robotics (YS 080) (b) Fault RV gear
specimen acquired from actual manufacturing line (c) Fault RV gear specimen acquired from

accelerated life test

Figure 13 (a) is the six-axis industrial robot testbed of Hyundai Robotics used for data

acquisition. To imitate the end-effector, a payload of 80kgfis attached to the end of the testbed.

A& st



As shown in Figure 13 (b) and (c), we used a total of two faulty RV gear specimen. The former
one is acquired from actual manufacturing line, denoted as Fault 1 (or Small), and the latter
one is obtained from accelerated life test, denoted as Fault 2 (or Aged). Additionally, the fault
severity of Fault 2 is higher than that of Fault 1.

Data used in this paper is the input current signal to the 4" axis actuator. The current
signal data is obtained with a sampling frequency of 2048Hz by attaching hall sensors (Figure

14 (a)) to each of the electrical wires (Figure 14 (b)) linked to the 4™ axis actuator.

Figure 14 (a) Hall-sensor (b) Electric wires of actuating motors

Figure 15 below is the overall schematic view of data acquisition system. Hall sensor
1s attached to the electric wires between the industrial robot testbed and controller box. Then

the acquired signal is collected by DAQ and finally saved into PC.

Hall
Senso
Controller Box
|
:
1
(e )

Figure 15 Schematic view of data acquisition system
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4.1.2 Acquired Data

Status Motion Speed

Normal Axis 4 20%, 60%, 100%
Faultl

(Small) Axis4 &5 20%, 60%, 100%
Fault2

(Aged) Spotwelding 20%, 60%, 100%

Table 1 Categories of acquired data

The categories of the acquired data are shown in Table 1 above. Motion ‘Axis 4’ means
single-axis motion operating only the 4™ axis, while motion ‘Axis 4 & 5’ means operating the
4™ axis and the 5™ axis simultaneously. Motion ‘Spotwelding’ is implementation of the robot
through the welding motion profile which is used in the actual manufacturing line. All the data

is acquired in 3 different speed levels. The speed level 100% denotes the maximum speed of

the testbed can perform under corresponding motion profile.



4.2 Results & Discussion

Real signals Normal signals Real signals
Time synchronous averaging Step 1: Synchronizing signal by resampling
I Synchronized _
normal signals Synchronized
| Resampling | k. real signals
S l Step 2: Establishing normal template
- Step 3: Extracting health feature with residual signal
| Averaging |> _____ } ': | Singular spectrum analysis |
Deterministic signals Normal
Subtract |
| | Averaging I template -I Subtract |
Synchronized signal 1 ' 1 Residual signals
[ Calculating health feature | ] ' Calculating health feature |
' 1= Averaging 20% of Normal data . ”h"
- | 5|
| - Data is selected randomly (100 iteration) ! No Yes
[ Normal |[ Faut ]! ' - Fit RMS results to normal distribution v+ [_Normal |[  Fault |

Set evaluation metric from the distribution

Figure 16 Overall fault detection process: Time synchronous averaging without normal

template (yellow shaded part) vs. Propose method (grey shaded part)

The Figure 16 above is the overall process of the fault detection of 2 methods. The
yellow shaded part is time synchronous averaging without using normal template, and the grey
shaded part is the proposed method of this paper. In both methods, 20% of normal signal data
is selected randomly through 100 iterations to set reference signal in each motion and speed
condition. In each iteration, RMS values of residual signals are derived from the rest 80% of
Normal data, 100% of Fault 1 data, and 100% of Fault 2 data. Then the RMS values are
averaged within each health index (Normal, Fault 1, Fault 2). Finally, the 100 averaged RMS
values in each health index are fit into the gaussian distribution. This fitting processes are

performed for 3 motion profiles and 3 speed levels.
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RMS of residual signal

48&5 motion 20% 4&5 motion 60%

Normal
Fault 1
O Fault2

4&5 motion 100%

Figure 17 4 randomly calculated RMS values of single iteration in 4&5 motion case

Figure 17 shows 4 randomly calculated RMS values of single iteration in 4&5 motion case,

and this process is repetitively performed along 100 iterations.
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Figure 18 Visualization of the evaluation metric

Figure 18 above is visualization of the evaluation metric, detection error. This metric

is defined in this paper to show the performance of the proposed method. The definition of

detection error is the probability of overlapped area of gaussian distributions of different health

index.



Time Synchronous Averaging Proposed Method
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Figure 19 Distribution of RMS values of speed level 100%, Axis 4 motion using (a) time

synchronous averaging (b) proposed method

Figure 19 is the result of RMS value distribution in speed level 100%, Axis 4 motion. Result
of this operating condition is particularly selected to check the obvious performance
improvement of the proposed method, where the overall results of whole operating condition
can be confirmed in Table 2. As in Figure M, the detection error is declined when applying the
proposed method. The detection error is declined due to the diminish of uncertainty by using
normal template to extract residual signal.

Time Synchronous Averaging

150 Proposed Method
Mormal 150
Small Normal
Aged Small
Aged
100
100
w
[a] w
o o
M a
50 [ ‘ 50 [
P>
/-' N\ I
/ N\
/ \
/ \
0 _ ] 0 / o S LA
0 002 004 006 008 01 012 014 016 018 02 0 002 004 006 008 01 012 014 016 018 02
RMS RMS

Figure 20 Distribution of RMS values of speed level 60%, Axis 4 & 5 motion using time

synchronous averaging & proposed method



In Table 2, result of the proposed method in case of speed level 60%, Axis 4&5 motion is
inferior to other speed level. However, concerning Figure 20, it can be confirmed that the
distance of the distribution among health indices is already far enough, and detection error of
both methods is small. Therefore, the change of detection error is not obviously observed after

using the proposed method.

Axis 4 Axis 4&5 Spotwelding
Speed 20% 6.7 1.8 713
Speed 60% -0.14 0.11 0.43
Speed 100% 6.3 2.83 2.5

Table 2 Average magnitude of detection error decrease of all case



Chapter 5

Conclusion & Future Work

In this paper, the fault detection method of industrial robot gearbox is proposed. Signal
synchronizing through resampling and singular spectrum analysis are applied to establish
normal template. Additionally, an evaluation metric, detection error is introduced to confirm

the performance of the proposed method.

The contribution of this study can be summarized in following ways. First, this paper
introduces overall framework of fault detection in industrial robot gearbox. Next, the
uncertainty problem of fault detection in industrial robot gearbox is enhanced through
extracting fundamental frequency components related to each operating condition of robot.
Finally, by applying preset normal template, users of industrial robots can simply detect fault
of gearbox in industrial robot just by synchronizing the acquired signal, extracting residual

signal, and calculating RMS value.

In the future work, this study will be performed the comparison study of different

eigenvalue threshold in singular spectrum analysis.
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