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Abstract 
 

Fault Detection of Gearbox in Industrial Robot 

using Current Residual 

from Singular Spectrum Template Matching 
 

Dowan Kim 

Department of Mechanical Engineering 

The Graduate School 

Seoul National University 

 

Industrial robots are essential equipment for process automation in a wide range of industrial 

fields. In manufacturing fields, unexpected faults of robots can severely damage the economy of a 

company. Fault can occur in various components of the robot and a faulty gearbox can have a significant 

effect on the robot's driving performance and manufactured product. Therefore, in this paper, gearbox 

fault detection of an industrial robot is performed using current signals applied to the actuating motor. 

The proposed method synchronizes normal current signal data to reference phase by resampling through 

Hilbert Transform. The synchronized signals are then split by singular value decomposition, and the 

principal components are extracted and averaged to establish normal template. Residual signal is then 

extracted by subtracting normal template from synchronized unknown signal. Finally, health 

management feature is calculated from the residual signal to perform fault detection. To quantify the 

performance of the proposed method, an evaluation metric ‘detection error’ is derived. The results of 

detection error show that the uncertainty of fault detection is declined through the proposed method. 

The distribution of health feature using proposed method is more concentrated than that of health feature 

using time synchronous averaging without the normal template. 
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Chapter 1 

 

Introduction 

 

1.1 Motivation 

Recently around the world, factors like risk of manufacturing, work complexity, and 

labor costs are increasing steeply. Thus, it is becoming more important to replace human 

resources by industrial robots in the actual manufacturing site [1]. These industrial robots are 

used in various fields, such as automobiles, aerospace and semiconductor manufacturing, 

which are becoming increasingly significant as the size of related industry grows and precision 

requirement rises [2],[3]. If failure or fault of industrial robots occur during the manufacturing 

process, product quality will be reduced, and downtime of the manufacturing line will be 

increased and result in large economic loss. To avoid this circumstance, minimizing the 

downtime loss is essential, and many studies and investigations about fault detection methods 

of industrial robots have been carried out recently. 

As in Figure 1, industrial robots consist of various elements, including reducers, 

motors, sensors, end-effectors, links, and transmissions. The mechanical failure of the robot 

occurs frequently in the reducer, which is a key to the transmission of the power of the actuator  



 

Figure 1 Various components of industrial robot 

 

[4]. Thus, the fault of the reducer can have a significant impact on the performance of the 

industrial robot. Existing fault detection studies of industrial robot reducers can be divided into 

two main types by applied signal: methods using vibration signals and methods using current 

signals. In the first type, vibration signal, Y.Kim detected fault of gearbox using Phase-based 

time-domain averaging (PTDA) for fault detection of a gearbox [5]. Jaber proposed a fault 

diagnosis algorithm through vibration signal decomposition using discrete wavelet transform 

(DWT) for gearbox backlash diagnosis [6]. Pan et al. detected joint backlash fault of an 

industrial robot, and the Wigner-Vile distribution (WVD) and artificial neural network (ANN) 

algorithm is used for health feature extraction and fault detection [7]. In the second type, current 

signal, Algburi et al. performed fault detection using rotary encoder signal [8]. Zhang et al. 

proposed method of failure diagnosis of the reducer using the Hidden Markow Model. 

Additionally, Li et al. performed robot reducer fault diagnosis by combining Motor Current 

Signal Analysis (MCSA) and deep learning. 

According to the investigations mentioned above, vibration signals are suitable for 

detecting mechanical failures, for example, checking sideband of gear mass frequency. 



However, acquiring suitable vibration signal data is difficult because the attenuation of 

mechanical vibration can be occurred according to the attached points of vibration sensors. 

Additionally, acquired vibration signals are likely to be contaminated by noise occurred from 

the operation of industrial robot or outer factors. In contrast, current sensors can be installed 

easily in the control box of the robot, and robust to the outer noise. 

One of the main fault modes of the gearbox is deterioration, which increases rest of 

the frequency components except for the operating frequency of the motor. Therefore, 

extracting principal component of the signal is important. Additionally, industrial robots 

operate under various operating motion profiles, so frequency elements depending on operating 

profiles should be normalized. The method presented in this paper is establishing normal 

template by extracting principal components along various motion profile and condition. Then 

health management feature is calculated from extracted residual signal. Residual signal is 

calculated by subtracting acquired current signal from normal template signal. Also, the 

proposed method reduces the variance of the robot's operating status in a current signal by 

normalizing the extracted feature according to the motion profile. 

 

1.2 Dissertation Layout 

 

Including this section, this paper is organized with 5 sections. Section 2 provides 

background theoretical knowledge for the proposed method. Then section 3 of this paper 

describes the proposed method. Section 4 shows experimental validation and according 

discussion. Section 5 summarizes the whole work of this paper and shows future works. 

 

 



Chapter 2 

 

Theoretical Backgrounds 

 

2.1 Characteristic of Current Signal in Fault Diagnosis of 

Industrial Robot [9] 

In industrial robot, most faults result from deterioration of the mechanical components 

due to usage over time because industrial robots are controlled in factory environments and 

operated by trained technicians. The mechanical components of industrial robot are 

electromechanically connected within the overall system, so deterioration of those components 

generates frequency and amplitude modulation. The according torque signal transmitted to the 

motor can be expressed as: 

𝑇(𝑡) =  𝑇0(𝑡) +  ∑ 𝑇𝑛(𝑡) cos [∫ 2𝜋𝑓𝑛(𝑡)𝑑𝑡 +  𝛷𝑛(𝑡)]

𝑁

𝑛=1

 

𝑇𝑛, 𝑓𝑛, 𝛷𝑛, and 𝑇0 denote the amplitude, frequency, phase of torque signal induced by the 



oscillatory vibrations, and the average torque. In the industrial robot motion control, the 

modulated frequency and torque information can be used to transmit control signals to the 

actuator. Therefore, the acquired current signal will be affected by this modulation of the 

sending signal. The single-phase modulated current signal can be denoted as: 

𝐼(𝑡) =  𝐼𝑐(𝑡) sin [∫ 2𝜋𝑓𝐶(𝑡)𝑑𝑡] 

𝑓𝑐(t), and 𝐼𝑐(t) denotes the fundamental frequency of the current signal, and the amplitude of 

𝑓𝑐(t). 

Two main points to consider during fault detection of industrial robot using current 

signal are as follow. First point is the fault-related frequency components of 𝑓𝑛. The second 

one is the oscillatory terms of the current amplitude 𝐼𝑐(t). 

 

2.2 Hilbert Transform [10] 

 

The Hilbert Transform was first introduced by David Hilbert in order to manage a 

special case of the Riemann–Hilbert problem for analytic functions. The Hilbert transform is a 

specific linear operator in the field of mathematics and signal processing. In the frequency 

domain, the Hilbert Transform can be particularly representated into simple form. As in the 

Figure 2 below, the HT shifts every frequency component as 
𝜋

2
 radians. This signal processing 

technique is significant because the result of transformation is a component of the analytic 



representation of a real-valued signal. 

 

Figure 2 Phase shifting of the Hilbert Transform 

The mathematical definition of explicit form of Hilbert Transform 𝐻(𝑢) is denoted 

as follows:  

𝐻(𝑢) =  
1

𝜋
∫

𝑢(𝜏)

𝑡 − 𝜏
𝑑𝜏

+∞

−∞
 

 Figure 3 below shows the original signal and the according phase calculated by the 

Hilbert Transform. In chapter 3, this technique is used for signal synchronizing to match the 

phases of the current signals. 

 

Figure 3 Phase of original signal calculated by the Hilbert Transform 

 

2.3 Singular Spectrum Analysis 

 

Singular spectrum analysis is a robust method for the investigation of non-fixed and 



nonlinear signal, and applied to cyclic movement identification in numerous fields such as 

death series analysis, climatic time series examination, and geophysical trend extraction [8]. 

This technique decomposes a complex signal into trend, noise and oscillations. Considering 

that industrial robots are operated in various motion profiles and conditions, SSA is suitable to 

extract faulty components from intricated signal by diminishing the effect of principal 

component related to the fundamental frequency of moving robot. 

SSA consists of two main processes, decomposition and reconstruction. First, in the 

decomposition progress, the trajectory embedded matrix is constructed from the single-phase 

motor current signal. As in the Figure 4 below, N-length current signal is divided by L-length 

window. The window strides through the signal point by point, and finally the size of 𝐿 ∗ (𝑁 −

𝐿 + 1) trajectory matrix A is constructed. 

 

 

Figure 4 Construction of trajectory embedded matrix 

 

Subsequently, Singular Value Decomposition is implemented to the trajectory 



embedded matrix to obtain eigenvectors. Figure 5 shows the process of singular value 

decomposition. First, square orthogonal matrix is calculated by multiplying transposed 

trajectory embedded matrix 𝐴𝑇 to the trajectory embedded matrix 𝐴 itself. Then eigenvalue 

decomposition can be performed to get singular value matrix 𝛴, and eigenvector matrix 𝑉∗. 

Eigenvector matrix consists of descending ordered eigenvectors according to the magnitude of 

corresponding singular value. 

 

Figure 5 Process of singular value decomposition 

 

Next process is the final step of decomposition process. Principal component matrix is derived 

by multiplying trajectory embedded matrix and eigenvector matrix, and corresponding 

calculation is as follows: 

 

Figure 6 below is the visualization of each principal component vector of 1st to 4th largest 

singular value. However, length of these principal vectors is not identical to the original signal 



length N. Therefore, restoration of L-length principal components into N-length vectors, the 

second main process of SSA must be undergone. 

 

Figure 6 Visualization of each principal component vector of 1st to 4th largest singular value 

 

In order to recreate the identical items, anti-diagonal averaging of corresponding 

vectors of principal component matrix and eigenvector matrix is performed. As in Figure 7, 

𝑚𝑡ℎ  column of principal component matrix and 𝑚𝑡ℎ  column of eigenvector matrix is 

multiplied first. Then anti-diagonal averaging is done with the resultant matrix, then the 𝑚𝑡ℎ 

column of N-length reconstructed principal component matrix is finally driven. 

 

 

Figure 7 Reconstruction progress and reconstructed principal components 



 

These reconstructed principal components are selected through the singular value setting 

threshold ‘elbow’ in Figure 8. The chosen reconstructed vectors have eigenvector magnitude 

above the elbow, and considered as significant component related to the driving frequency of 

industrial robot. These vectors above the elbow are added up to establish normal template. 

 

Figure 8 Singular value setting threshold: elbow 

 

Furthermore examination about essential SSA can be found in [11]. 

 

 

 

 

 



Chapter 3 

 

Proposed Method 

 

 

Figure 9 Overall flowchart of the proposed method 

 

Figure 9 above is the overall flowchart of the proposed method, consists of 3 steps. 

First step is synchronizing signal by resampling. This process is necessary to correctly extract 

residual signal by phase matching. Next is the key part of the proposed method, establishing 

normal template. Singular spectrum analysis is mainly performed to extract deterministic signal 



from current signals of various motion profile and condition. The last step is extracting health 

feature with residual signal and detecting fault with the result. Unknown signal is synchronized 

through step 1, and residual signal is extracted with this synchronized unknown signal and 

normal template. Then health feature is calculated from extracted residual signal and fault 

detection is finally performed. The below subsections describe process of each step thoroughly. 

 

3.1 Signal Synchronizing 

 

To extract residual signal correctly, signal synchronizing must be performed to match 

the phases of reference signal of normal template and unknown signal. Due to the monotonous 

characteristic of current signal, Hilbert Transform can be applied to extract the phase of the 

particular signal. 

 

Figure 10 Signal synchronizing through Hilbert Transform 

 

Figure 10 shows the conceptual plot of signal synchronizing through Hilbert 

Transform. First, the reference phase is set to match all the signal data in the same phase. Blue 

signal is original signal, and it is linearly interpolated according to the reference phase. The 

number of points of the reference phase is determined by the average number of points in single 

sinusoidal cycle. This average number of points is calculated by dividing the number of all the 



points in the data with the number of sinusoidal cycles in the data. 

The Figure 11 below shows normal current signals before and after of the signal 

synchronizing. Before resampling, the signals are roughly synchronized through 

autocorrelation. However, the phase is not completely matched and this will cause the 

extraction of unsuitable residual signal in the subsequential processes. Resampling through 

Hilbert transform matches phases among signals finely, and the result is shown in Figure 11. 

 

Figure 11 Normal current signal before resampling & after resampling 

 

3.2 Establishing Normal Template & Fault Detection using 

Residual Signal 

 

Through the singular spectrum analysis, the principal component is extracted and the 

normal template is established through the corresponding motion and speed level. 



  

Figure 12 Conceptual view of normal template and the process of fault detection 

 

Figure 12 is the conceptual view of normal template and the process of fault detection. An input 

signal of unknown health status, known working condition (motion, speed level) is acquired. 

The signal is resampled following the reference phase of corresponding working condition. 

Then, the normal template of the same condition is selected, then the residual signal is 

calculated by subtracting the normal template from the resampled input signal. Subsequently, 

root-mean-squared value of the residual signal is derived. RMS is a health feature widely used 

in indicating fault severity. As the overall degradation is frequently occurred fault mode of 

gearbox in industrial robot, RMS is suitable health feature to check fault severity of the gearbox 

due to the ascent of required torque. 

 

 

 



Chapter 4 

 

Experimental Validation 

 

4.1 Data Description 

The following subsections describe about settings and speculation of industrial robot 

testbed and the acquired data. 

4.1.1 Testbed Setup 

  

Figure 13 (a) Industrial robot testbed of Hyundai Robotics (YS 080) (b) Fault RV gear 

specimen acquired from actual manufacturing line (c) Fault RV gear specimen acquired from 

accelerated life test 

 

Figure 13 (a) is the six-axis industrial robot testbed of Hyundai Robotics used for data 

acquisition. To imitate the end-effector, a payload of 80kgf is attached to the end of the testbed. 



As shown in Figure 13 (b) and (c), we used a total of two faulty RV gear specimen. The former 

one is acquired from actual manufacturing line, denoted as Fault 1 (or Small), and the latter 

one is obtained from accelerated life test, denoted as Fault 2 (or Aged). Additionally, the fault 

severity of Fault 2 is higher than that of Fault 1. 

Data used in this paper is the input current signal to the 4th axis actuator. The current 

signal data is obtained with a sampling frequency of 2048Hz by attaching hall sensors (Figure 

14 (a)) to each of the electrical wires (Figure 14 (b)) linked to the 4th axis actuator. 

 

Figure 14 (a) Hall-sensor (b) Electric wires of actuating motors 

 

Figure 15 below is the overall schematic view of data acquisition system. Hall sensor 

is attached to the electric wires between the industrial robot testbed and controller box. Then 

the acquired signal is collected by DAQ and finally saved into PC. 

 

Figure 15 Schematic view of data acquisition system 

 



4.1.2 Acquired Data 

 

Status Motion Speed 

Normal 

  

Fault1 

(Small) 

 

 Fault2 

(Aged) 

Axis 4 20%, 60%, 100% 

Axis 4 & 5 20%, 60%, 100% 

Spotwelding 20%, 60%, 100% 

 

Table 1 Categories of acquired data 

 

The categories of the acquired data are shown in Table 1 above. Motion ‘Axis 4’ means 

single-axis motion operating only the 4th axis, while motion ‘Axis 4 & 5’ means operating the 

4th axis and the 5th axis simultaneously. Motion ‘Spotwelding’ is implementation of the robot 

through the welding motion profile which is used in the actual manufacturing line. All the data 

is acquired in 3 different speed levels. The speed level 100% denotes the maximum speed of 

the testbed can perform under corresponding motion profile. 

 

 

 

 

 

 

 

 

 



4.2 Results & Discussion 

 

Figure 16 Overall fault detection process: Time synchronous averaging without normal 

template (yellow shaded part) vs. Propose method (grey shaded part) 

 

The Figure 16 above is the overall process of the fault detection of 2 methods. The 

yellow shaded part is time synchronous averaging without using normal template, and the grey 

shaded part is the proposed method of this paper. In both methods, 20% of normal signal data 

is selected randomly through 100 iterations to set reference signal in each motion and speed 

condition. In each iteration, RMS values of residual signals are derived from the rest 80% of 

Normal data, 100% of Fault 1 data, and 100% of Fault 2 data. Then the RMS values are 

averaged within each health index (Normal, Fault 1, Fault 2). Finally, the 100 averaged RMS 

values in each health index are fit into the gaussian distribution. This fitting processes are 

performed for 3 motion profiles and 3 speed levels. 



 

Figure 17 4 randomly calculated RMS values of single iteration in 4&5 motion case 

 

Figure 17 shows 4 randomly calculated RMS values of single iteration in 4&5 motion case, 

and this process is repetitively performed along 100 iterations. 

 

Figure 18 Visualization of the evaluation metric 

  

 Figure 18 above is visualization of the evaluation metric, detection error. This metric 

is defined in this paper to show the performance of the proposed method. The definition of 

detection error is the probability of overlapped area of gaussian distributions of different health 

index.  



 

Figure 19 Distribution of RMS values of speed level 100%, Axis 4 motion using (a) time 

synchronous averaging (b) proposed method 

 

Figure 19 is the result of RMS value distribution in speed level 100%, Axis 4 motion. Result 

of this operating condition is particularly selected to check the obvious performance 

improvement of the proposed method, where the overall results of whole operating condition 

can be confirmed in Table 2. As in Figure M, the detection error is declined when applying the 

proposed method. The detection error is declined due to the diminish of uncertainty by using 

normal template to extract residual signal. 

 

Figure 20 Distribution of RMS values of speed level 60%, Axis 4 & 5 motion using time 

synchronous averaging & proposed method 



 

In Table 2, result of the proposed method in case of speed level 60%, Axis 4&5 motion is 

inferior to other speed level. However, concerning Figure 20, it can be confirmed that the 

distance of the distribution among health indices is already far enough, and detection error of 

both methods is small. Therefore, the change of detection error is not obviously observed after 

using the proposed method. 

 

 Axis 4 Axis 4&5 Spotwelding 

Speed 20% 6.7 1.8 7.13 

Speed 60% -0.14 0.11 0.43 

Speed 100% 6.3 2.83 2.5 

 

Table 2 Average magnitude of detection error decrease of all case 

 

 

 

 

 

 

 

 

 

 



Chapter 5 

 

Conclusion & Future Work 

 

 In this paper, the fault detection method of industrial robot gearbox is proposed. Signal 

synchronizing through resampling and singular spectrum analysis are applied to establish 

normal template. Additionally, an evaluation metric, detection error is introduced to confirm 

the performance of the proposed method.  

 

The contribution of this study can be summarized in following ways. First, this paper 

introduces overall framework of fault detection in industrial robot gearbox. Next, the 

uncertainty problem of fault detection in industrial robot gearbox is enhanced through 

extracting fundamental frequency components related to each operating condition of robot. 

Finally, by applying preset normal template, users of industrial robots can simply detect fault 

of gearbox in industrial robot just by synchronizing the acquired signal, extracting residual 

signal, and calculating RMS value. 

 

In the future work, this study will be performed the comparison study of different 

eigenvalue threshold in singular spectrum analysis. 
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국문 초록 

 

특이 스펙트럼 템플릿 비교를 통한 

전류 잔차를 이용한 

산업용 로봇 기어박스 고장감지 
 

 산업용 로봇은 넓은 범위의 산업 분야에서 필수적인 장비이다. 제조산업 

분야에서, 예상못한 로봇의 고장은 회사에 심각한 경제적 타격을 초래할 수 있다. 

고장은 로봇의 다양한 요소에서 일어날 수 있고, 고장난 기어박스는 로봇의 운행 

성능과 제조된 물품의 품질에 중대한 영향을 미칠 수 있다. 그러므로 본 논문은 

모터에 인가되는 전류 신호를 이용한 산업용 로봇의 기어박스 고장감지를 수행했

다. 제안된 방법은 정상 전류 신호 데이터를 힐버트 변환을 통한 리샘플링을 통

해 참조 위상에 동기화한다. 동기화된 신호들은 특이 스펙트럼 분석을 통해 분해

되고, 주요 성분들이 추출되어 그 평균값이 정상 템플릿을 구축한다. 이후 잔차 

신호가 고장 상태를 모르는 동기화된 신호에서 정상 템플릿을 뺌으로써 추출된다. 

마지막으로 고장 감지를 위해 잔차 신호에서 건전성 인자가 계산된다. 제안된 방

법의 성능을 정량화하기 위해 ‘감지 오차’라는 평가 지표를 도입했다. 이 지표를 

통해 제안된 방법을 사용하였을 때 정상 템플릿을 사용하지 않은 시간 동기화 평

균을 통해 구한 건전성 인자의 분포보다 밀집된 분포를 보였다. 즉, 감지 오차가 

감소하여 고장 감지에서의 불확실성이 감소했다는 것을 확인할 수 있었다. 

 

 



주요어: 산업용 로봇 

  기어박스 고장감지 

  전류 신호 

  정상 템플릿 

  특이 스펙트럼 분석 
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