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Abstract

Optimization-based Model
Improvement for Error Sources
Identification in a Computational
Model

Hyejeong Son

Department of Mechanical and Aerospace Engineering
The Graduate School

Seoul National University

The increased use of computer-aided engineering (CAE) in recent years requires
a more accurate prediction capability in computational models. Therefore, extensive
studies have considered engineering strategies to achieve highly credible computational
models. Optimization-based model improvement (OBMI), which includes model
calibration, validation, and refinement, is one crucial technique that has emerged to
enhance the prediction ability of computational models. Model calibration is the
process of estimating unknown input parameters in a computational model. Model
validation presents a judgement of the accuracy of a predicted response. If it is possible
for a computational model to have model form uncertainties, model refinement explores

unrecognized error sources of a computational model. OBMI can adopt these three



processes individually or sequentially, according to the trustworthiness of the prior

knowledge of the computational modeling.

Although OBMI process improvements have emerged to try to consider the major
sources of errors, OBMI can still suffer from a failure to improve a computational
model. Since numerous error sources in an experimental and computational model are
intertwined with each other, OBMI has difficulty identifying the error sources required
to enable accurate prediction ability of the computational model. Thus, eventually,
OBMI may fail to propose an appropriate solution. To cope with this challenge, this
doctoral dissertation research addresses three essential issues: 1) Research Thrust 1 —a
new experimental design approach for model calibration to reduce parameter
estimation errors; 2) Research Thrust 2) — a device bias quantification method for
considering model form errors with bound information; and, Research Thrust 3) —
comparison of statistical validation metrics to consider type Il errors in model

validation.

Research Thrust 1: A variety of sources of errors in observation and prediction
can interrupt the model improvement process. These error sources degrade the
parameter estimation accuracy of the model calibration. When a computational model
turns out to be invalid because of these error sources, the OBMC process performs
model refinement. However, since model validation cannot distinguish between
parameter estimation errors and modeling errors, it is difficult for the existing method
to efficiently refine the computational model. Thus, this study aims to develop a model
improvement process that identifies the leading cause of invalidity of a prediction. In
this work, an experimental design method is integrated with optimization-based model

improvement to minimize the effect of estimation errors in model calibration. Through



use of the proposed method, after calibration, the computational model mainly includes

the effects of unrecognized modeling errors.

Research Thrust 2: The experimental design method proposed in Research Thrust
1 has the advantage of being able to identify two error sources without additional
observation. However, model calibration still suffers from parameter estimation errors,
since experimental design is affected by model form errors. The parameters estimated
by model calibration are often unreasonable for engineers in practical settings because
they have expert-based prior knowledge about the model parameters. Among the
variety of physical information available, bound information about model parameters
is a suitable constraint in optimization-based model calibration (OBMC). Using prior
information about parameter bounds, Research Thrust 2 devises proportionate bias
calibration to quantify the amount of degradation of the predicted responses that is due
to model form errors in a computational model. The bias term is estimated in the
optimization-based model calibration (OBMC) algorithm with unknown parameters to
enable OBMC to support accurate estimation of unknown parameters within a prior
bound. This study proposes a new formulation of a bias term that depends on the output
responses to resolve the gap in appropriate bias that arises due to the different

dimensions of the predicted responses.

Research Thrust 3: Statistical model validation (SMV) evaluates the accuracy of
a computational model’s predictions. In SMV, hypothesis testing is used to determine
the validity or invalidity of a prediction, based on the value of a statistical validation
metric that quantifies the difference between the predicted and observed results. Errors
in hypothesis testing decisions are troublesome when evaluating the accuracy of a

computational model, since an invalid model might be used in practical engineering



design activities and incorrect results in these settings may lead to safety issues. This
research compares various statistical validation metrics to highlight those that show
fewer errors in hypothesis testing. The resulting work provides a statistical validation
metric that is sensitive to a discrepancy in the mean or variance of the two distributions
from the predictions and observations. Statistical validation metrics examined in this
study include Kullback-Leibler divergence, area metric with U-pooling, Bayes factor,

likelihood, probability of separation, and the probability residual.

Keywords: Optimization-based Model Improvement (OBMI)
Error Source Identification
D-optimality based Experimental Design
Proportionate Bias Calibration
Statistical Validation Metric
Hypothesis Testing
Digital Twin

Student Number: 2015-20733
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Chapter 1

Introduction

1.1 Motivation

Advances in Information and Communication Technology (ICT) have triggered an
Industry 4.0 trend in manufacturing systems. Based on state-of-art ICT technologies,
such as Internet of Things (loT) platforms, Artificial Intelligence (Al), and cyber-
physical-systems (CPS), Industry 4.0 has provided automatic operation in design,
management, and monitoring of the entire manufacturing process (Perakovi¢ et al.
2018) (Alcacer and Cruz-Machado 2019) (Perakovi¢ et al. 2019). The recent trend
of Industry 4.0-based manufacturing has given computer-aided modeling (CAM) a
crucial role in the product development and management processes (Mosterman and
Zander 2016) (Qi and Tao 2018). CAM has enabled more accurate prediction ability
in a wide range of manufacturing settings. Furthermore, the most recent types of
CAM have evolved to enable digital twin exploration of cyber-physical systems
(CPS) that can predict responses in diverse operating conditions (e.g., system
deformation or environmental change), while considering numerous model
parameters (Mosterman and Zander 2016). However, some digital twin parameters
become invalid as the system condition changes; this decreases the prediction

accuracy of this approach. Thus, model improvement techniques have been



developed to enhance the capabilities of computational models. (Kennedy and
O'Hagan 2001) (Trucano et al. 2006) (Xiong et al. 2009) (Oberkampf and Roy 2010)
(Youn et al. 2011) (Ling et al. 2013) (Sun and Sun 2015) (Moon et al. 2015) (Lee et
al. 2018) (Lee et al. 2019) (Hu et al. 2020).

Discovering unknown input parameters in a computational model is one of the
core tasks of model improvement. Optimization-based model calibration (OBMC) is
recognized as a promising solution for estimating unknown input parameters in a
computational model, through the use of optimization techniques. Optimization-
based model improvement (OBMI) is terminology for the model improvement
process, which employs OBMC to estimate unknown input parameters. Including
the model calibration step, OBMI consists of three sub-steps; model calibration,
model validation, and model refinement. Model validation is a decision-making step
to evaluate the prediction accuracy of a computational model based upon observation
data. If the model validation step decides that a computational model is invalid, the
process of OBMI assumes the possibility of blind sources of model form errors. Then,
model refinement examines the most dominant error sources that were unrecognized
in the modeling, through a systematic framework. The overall flow chart of OBMI

and its three sub-steps are shown in Figure 1-1 (Youn et al. 2011).
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Despite the extensive studies about model improvement, engineers who use the
OBMI process still face limitations in their ability to enhance the predictability of a
computational model. A variety of error sources in the computational model and
observation data can threaten the ability to achieve a feasible OBMI result. Figure
1-2, Figure 1-3, and Figure 1-4 illustrate three major error sources that directly affect
observation data and computational models. The model parameters include material
properties, boundary and initial conditions, geometric conditions, and environmental
conditions, as shown Figure 1-2. Model form errors are a comprehensive term for
modeling failures that arise due to insufficient knowledge, such as model
simplification, surrogate modeling errors, and wrong assumptions. The last error
sources are experimental errors, as illustrated in Figure 1-4. Since the predicted
responses of a computational model are not directly influenced by experimental
errors, this is regarded as the least influential factor. However, experimental errors
should be considered, because the observation data serves as a criterion for
estimating parameters in the model calibration and for evaluating the validity of a

computational model in the model validation step.
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Figure 1-4 Various error sources in OBMI: Experimental errors

Due to these error sources, model improvement remains a challenging task for
development of an accurate process. The first challenge is that the estimated
parameters used in model calibration cannot ensure that the result is similar to the
actual value of a real system (Oberkampf and Trucano 2008) (Oberkampf and Roy
2010). The estimated parameter values in model calibration allow the computational
model to emulate the observation data used for model calibration. It is unknown
whether the estimated parameter values are similar to the values of the actual system.
In the end, model improvement cannot guarantee the validity of the estimated
parameter values in other designs without new observation data for the new design.
The second challenge is that model validation cannot ensure an accurate decision.
An invalid computational model can be evaluated as a valid model due to the various
sorts of uncertainties in the predicted responses and observation data. These decision
errors can be dangerous in actual engineering fields, especially when designing a
vast and complex engineering system related to human safety. A trustworthy result
of OBMI can be available after these challenges are solved. Thus, section 1.2

outlines the three technical issues that should be solved to enable wide use of OBMl,



through consideration of major error sources.

1.2 Research Scope and Overview

An accurate OBMI process must be performed with reasonable consideration of the
various error sources. The goal of this doctoral dissertation research is to develop an
advanced OBMI process to enable wide use of a computational model, by tackling
three technical issues: 1) the limitations of OBMI that arise due to coupled error
sources in the model calibration; 2) parameter estimation errors in model calibration
that emerge due to the existence of unrecognized model form errors; 3) decision
errors in statistical model validation that are due to numerous sources of uncertainties.
To address the above-mentioned technical issues, the research scope in this doctoral

dissertation is the enhancement of OBMI through the following three research thrusts:

Research Thrust 1: Experimental Design to Identify Error Sources in

Optimization-based Model Improvement

Due to the error sources introduced in Fig 2-4, it is difficult for the model calibration
and model validation steps to offer reliable operation. One of the main problems in
model calibration is that the error sources degrade the estimation accuracy of the
unknown model parameters. These parameter estimation errors in model calibration
become another error source that is coupled with model form errors in the
computational model. Since OBMC cannot discover the existence of these parameter

estimation errors, a challenge in OBMI arises in that the process cannot identify the



coupled error sources in the model validation (Figure 1-5). These unidentified errors
can prevent model validation from giving the correct decision. The objective of
Research Thrust 1 is to identify two sorts of error sources between parameter
estimation errors and model form errors to enable accurate decisions in model
validation. The proposed method introduces an experimental design approach for
model calibration that reduces the parameter estimation errors to address this issue.
The optimality criterion for the experimental design is derived from the analytical
formulation of the parameter estimation. Using the observation data determined by
the experimental design, the calibrated unknown parameters become close to the
actual value. Two case studies are provided to demonstrate the efficacy of the

proposed method.

": Model Form Error

|
| -a- Parameter Estimation Error|

Model

validation

| a- Coupled Error Sources

Figure 1-5 Model validation with coupled error sources



Research Thrust 2: Proportionate Bias Calibration with Bound Information

to Consider Unrecognized Model Form Errors

The model calibration method with experimental design encounters a limitation in
that the calibrated unknown parameters from the experimental design still remain
parameter estimation errors (Figure 1-6). Even though the model calibration with
experimental design approach can alleviate the estimation errors in the model
calibration, it does not guarantee the optimal value of the unknown parameters. If
the model form errors are dominant in the model calibration, experimental design
cannot significantly reduce the amount of parameter estimation errors. These wrong
estimated parameters can be irrational for practical engineering fields, which have
expert-based information about these unknown model parameters. Thus, Research
Thrust 2 focuses on a systematic framework for model calibration to consider the
amount of unrecognized model form errors using the expert-based bound
information. The reasonable bound information of unknown model parameters can
be a bound constraint in OBMC. The proportionate bias represents the amount of
model form errors in a relationship between the observation data and the predicted
responses. The assumption of proportionate bias is that the biased error is
proportional to the amount of predicted responses. The formulation of modeling bias
is categorized into sensitivity-based bias and proportionate bias for multiple
responses with severely different dimensions. Using the bias form, the amount of
biased errors that arise due to unknown model form errors is calibrated with
unknown model parameters. The bound information of unknown parameters can be
a guide for OBMC to estimate a reasonable value of the unknown parameters and

proportionate bias.
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Figure 1-6 Parameter estimation errors that arise due to the main error sources in
the computational and physical models

Research Thrust 3: Comparison of Statistical Validation Metrics to Reduce

Type Il Errors in Model Validation

Model validation is the process of determining the degree to which a computational
model is an accurate representation of the actual phenomenon, from the perspective
of the model’s intended uses (Babuska and Oden 2004) (Hills et al. 2008)
(Oberkampf and Trucano 2008) (Weathers et al. 2009) (Sankararaman et al. 2011)
(Ling and Mahadevan 2013) (Sankararaman and Mahadevanb 2015). In model
validation, hypothesis testing is used to determine the validity or invalidity of a
prediction based on the value of a statistical validation metric that quantifies the
difference between the predicted and observed results. Errors in hypothesis testing

decisions are troublesome when evaluating the accuracy of a computational model,
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since an invalid model can be used in practical engineering design activities, and
incorrect results in these settings may lead to safety issues. An appropriate selection
of statistical validation metrics that are sensitive to the discrepancy of two
distributions is required to reduce the decision errors. Thus, the objective of Research
Thrust 3 is to provide a guideline to select reasonable statistical validation metrics.
The decision errors of six statistical validation metrics, including area metric, Bayes
factor, Likelihood, Kullback-Leibler Divergence, Probability of Separation, and
Probability Residual, are compared with a numerical example with statistical and
unknown model parameters. These comparison results propose the mean-supportive
and variance-supportive metrics, according to whether the statistical validation

metric is sensitive to the discrepancy of the mean or variance.

Model

refinement

rrs
Candidate 1 Candidate 2 Candidate 3

=

Valid computational
model

No

Ye

| 'ﬂl Validity Decision Error |

Figure 1-7 Validity decision errors in model validation
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1.3 Dissertation Layout

This doctoral dissertation is organized as follows. Chapter 2 briefly explains overall
process of optimization-based model improvement and its three sub-steps (e.g.,
model calibration, model validation, and model refinement). Chapter 3 presents an
OBMI process that is integrated with experimental design, which reduces parameter
estimation errors in model calibration. Chapter 4 proposes a new framework for
model calibration with proportionate bias to consider model form uncertainties with
a prior bound constraint of unknown model parameters. Chapter 5 suggests suitable
statistical validation metrics from the perspective of mean and variance discrepancy
to reduce type Il errors. Chapter 6 summarizes the doctoral dissertation and its
contributions and suggests future research directions. Appendix A provides an
analytical representation of the statistical validation metrics considered in Chapter 5,
when the interested responses are the normal and lognormal distribution. The
derivation in Appendix A is used to explain the mean-supportive and variance-

supportive characteristics of the validation metrics outlined in Chapter 5.
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Chapter 2

Literature Review: Optimization-
based and Bayesian-based Model
Improvement

This chapter reviews two sorts of model improvement methods to help readers’
understanding. Chapter 2.1 explains optimization-based model improvement
(OBMI), the main interest of this doctoral dissertation. The subchapter includes the
description of three sub-steps: model calibration, model validation, and model
refinement. Chapter 2.2 introduces Bayesian-based model improvement process,
another popular model improvement in a statistical manner. The comparison of these

two methods are summarized in Chapter 2.3.

2.1 Optimization-based Model Improvement (OBMI)

Optimization-based model improvement consists of three processes: model
calibration, model validation, and model refinement. Figure 1-1 illustrates overall
process of OBMI. In If the modelers recognize the existence of unknown parameters,

model calibration is performed first. The observation data from the experiments
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plays a key role in calibration, serving as a representative of the true value. However,
estimates of the unknown parameters can be biased from the true values due to error
sources in both observation and prediction. Using the calibrated parameters, the
model validation step is used to determine the validity of the computational model.
Model validation uses a validation metric to measure the discrepancy between the
observed and predicted results (Liu et al. 2011). When a computational model is
invalid, modeling errors in the computational model are regarded as the main source
of invalidity. Because the modelers typically believe that the computational model
has been implemented with a sufficient amount of modeling knowledge, most
modeling errors in a computational model remain unrecognized before the model
improvement process. If the model validation step evaluates the predicted response
from the computational model as invalid, the model improvement process performs
model refinement to discover unrecognized modeling errors. Among all uncertainty
candidates, model refinement distinguishes the most critical error sources through a
three-step process: model invalidity analysis, an invalidity reasoning tree, and
invalidity sensitivity analysis (Oh et al. 2016). The overall model improvement

process continues until the model validation step satisfies the validity criterion.

2.1.1 Model Calibration

The model calibration is to find optimal values of unknown input parameters in a
computational model (Trucano et al. 2006) (Arendt et al. 2010) (Youn et al. 2011)
(Arendt et al. 2012) (Li et al. 2016) (Lee et al. 2018) (Jiang et al. 2020). In this
approach, an optimization problem is formulated to estimate the unknown model

parameters that minimize or maximize the discrepancy of the experimental and

15 = L



computational responses (Frank and Shubin 1992) (Hills and Trucano 2002)
(Gholizadeh and infrastructures 2013) (Lee et al. 2019). Figure 2-1 illustrates the

overall process of optimization-based model calibration.

In Figure 2-1, the first step is to define the unknown model parameters. Generally,
the existence of unknown model parameters are determined according to a modeler’s
opinion. However, the usual practical problems in model calibration encounter the
ambiguity of how the prior information about model parameters is reliable. Thus, a
variable selection method, such as sensitivity-based variable screening, can be
adopted (Hamby 1994) (Frey and Patil 2002) (Campolongo et al. 2007) (looss and
Lemaitre 2015). With the unknown and known model parameters, the predicted
models calculate the responses (outputs) to quantify the discrepancy from the
observation data. The metric for quantification of discrepancy is called ‘calibration
metric’. The value of the calibration metric can be an objective function in the

optimization problem.

min or max f,; (8, x; D), {(x; D)) (2.1)

1 O
16 "“""E -.;'- L-T1



Initial
Calibration Parameters
0;,

vV .

Calibration Parameters
(7]

~
>
Known Input Parameters

Optimal
Calibration Parameters
0,

P
Yes
S
No ~

Optimization Loop

-

Computational [

Model

Figure 2-1 Optimization-based Model Calibration

17

Calibration Metric
(Objective Function)

f(@n(X,0))
1
Outputs
n




In (2.1), fis a calibration metric, n isa predicted responses, and ¢ is observation
data. In m and , the terminologies 0,x, and D respectively denote for unknown
parameter, known parameter, and observation site. The OBMC can be performed
deterministic or statistically, by adopting a calibration metric which can deal with
deterministic or statistic values. The statistical calibration metrics utilizes a statistical
moment or a probability density function of observation and prediction. This
optimization loop continues until the calibration metric value satisfies the criteria

pre-determined by the modelers.

It is worth noting that the optimization-based approach is a deterministic process
since the optimal solution derived from the optimization-based approach is a
deterministic value. However, the model improvement method in this paper is
defined as a statistical approach because the method deals with uncertainties of
responses over the whole process. When computational models include model form
uncertainties, which arise mainly due to incorrect assumptions or excessive
simplification, model calibration fails to find reasonable estimates of the statistical
moments of the unknown input variables. The model refinement step can revise the
leading cause of the model form uncertainties. To avoid a failure of model calibration,
exact computational modeling and simplification of assumptions based on

reasonable physics are required.

2.1.2 Model Validation
Model validation is a process to verify the validity of computational responses
(Oberkampf and Roy 2010). It consists of examining the validation metric and

decision making. The validation metric quantifies the coincidence or the discrepancy
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between the experimental and computational responses. The validation metric is
technically different from the calibration metric in that it should give information of
model validity even in constrained cases, such as where there is a limited number of
data or where the experimental data is given in different environments. To consider
the statistical uncertainty in limited observation, most of model validation adopts a
statistical validation metric. Statistical validation metrics include the area metric and
Bayes factors (Oberkampf and Trucano 2002) (Rebba et al. 2006) (Liu et al. 2011).
Using the validation metric value, the model validation is used to determine the
validity of the calibrated model. In decision making, hypothesis testing is generally

used.

Model validation includes the comparison of a model prediction with
experimental data to evaluate a computational model’s prediction accuracy. Figure
2-2 shows the flow chart of the overall model validation process (Oberkampf and
Barone 2006) (Kat and Els 2012). The first step of model validation is to prepare the
prediction and observation results using computational models and physical
experiments. Based on this prediction and observation data, statistical validation
metrics quantify the discrepancy between the computational prediction and
experimental observation. Depending on The validation metric result composes a
deterministic quantity that is then assessed in model validation. This study
distinguishes statistical validation metrics as either larger-the better (L type) or
smaller-the better (S type). L-type metrics increase when the prediction and
observation become more similar. S-type metrics decrease as the prediction and
observation become more similar. Chapter 5.1 provides details about the

characteristics of each statistical validation metric.
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To evaluate the prediction, hypothesis testing examines the probability of the
null hypothesis and an alternative hypothesis, using the statistical validation metrics.
The key idea is to determine the criteria by building a distribution of the null
hypothesis in which the prediction model is valid. To do this, first, numerous
observation datasets are randomly sampled under the distribution fitted by the
prediction. The validation metric calculated by the observation datasets then forms
the distribution of the null hypothesis. The confidence level (denoted by «)
distinguishes the ranges in which the null hypothesis should be accepted or rejected
for a validation metric value. Figure 2-3 explains the location of the confidence level
in the validation metric distribution. Figure 2-3(a) shows the distribution of L-type
metrics, such as likelihood and Bayes factor. The distribution in Figure 2-3(b) is
given for S-type metrics, including the area metric, Kullback-Leibler divergence,

probability of separation, and probability residual.
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Figure 2-3 The confidence level in a validation metric’s distribution (a) L-type

(log-likelihood), (b) S-type (area metric with U-pooling).

2.1.3 Model Refinement

Model refinement is an essential step in that this process directly removes the
underlying cause of unrecognized model form errors. There has been little
achievement in academic research towards considering the unrecognized model
form errors in a systematic framework. Xiong et al. stated in their paper that personal
experience in modeling gives an intuition for model refinement: however, this is not
an applicable process for practical settings. Therefore, model refinement, introduced
in this paper, aims to explore the most effective root causes of invalid modeling via

a systematic approach (Oh et al. 2016) .

The model refinement selects the most invalid sources based on experts’
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opinion and numerically quantified criteria. The process involves three steps: 1)
model invalidity analysis, 2) an invalidity reasoning tree, and 3) invalidity sensitivity
analysis. Model invalidity analysis is a brainstorming step, which gathers all possible
invalid sources. This step allows as many invalid sources as possible. Figure 2-4
shows an example of the affinity diagram for model invalidity analysis. The second
step is to develop an invalidity reasoning tree that selects only potential invalid
sources from among all sources gathered in Step 1. Figure 2-5 shows an example of
invalidity reasoning tree. For the selection of invalid sources, related experts should
identify the proper reasons for invalidity, from the conceptual, mathematical, and
computational perspective. Invalidity sensitivity analysis quantitatively evaluates the
importance of invalid sources of computational modeling. A decision matrix is one
useful tool for comparing all candidates of the invalid sources of modeling (Dieter
1991). Oh et al. suggested a weighted decision matrix that considers the importance
of each criterion by multiplying the weight values (Forman and Gass 2001) (Oh et
al. 2016). Figure 2-6 is an example of the objective tree which gives weight values
for each criteria. Figure 2-7 shows an example of weighted decision matrix. In this
step, engineers in the field can define criteria and weights for quantification

appropriate for their situation.

- Constraint location of airbag is different from a real specimen

Constraint - Rigid constraint of an airbag does not reflect reality
Physics - Shell(Plate) assumption of wheel cover is not proper
Geometry - Modeling Simplification of an airbag as a lumped mass

Figure 2-4 Example of affinity diagram for model invalidity analysis
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Figure 2-5 Example of invalidity reasoning tree

Potential candidate
0,=1.0
Performance Cost
0,,=0.7 0,,=0.3

Correctness Robustness Computation Implementation
0,,,=0.8 0,,,=0.2 0,,,=0.7 0,,,=0.3

Figure 2-6 Example of objective tree with weight values

. . Candidate 1 Candidate 2 Candidate 3
Criteria Weight
| Score Rating Score Rating Score Rating

Correctness 0.48 5 2.40 1 0.48 4 1.92
Robustness 0.12 3 0.36 3 0.36 3 0.36
Computation cost 0.28 3 0.84 4 1.12 3 0.84
Implementation cost 0.12 2 0.24 4 0.48 4 0.48
Sum of rating 3.84 2.44 3.60

Figure 2-7 Example of invalidity sensitivity analysis
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Numerous field engineers use simplified computational models to increase the
speed of calculation or the efficiency of the modeling. The majority of modeling
errors arise from the simplification of computational models, rather than a lack of
modeling knowledge. Therefore, invalid modeling should be selectively improved
by considering the situation and the standards required for each industrial field to
ensure that an unconditionally exact and complicated model is not implemented. In
addition to the model refinement method, other statistical approaches to deal with
the invalidity of a computational model have been developed (Kennedy and O'Hagan
2001) (Xiong et al. 2009) (Qiu et al. 2018). Bias correction with Bayesian-based
model improvement framework can quantify the number of errors that are due to the
invalidity of a computational model (Kennedy and O'Hagan 2001) (Arendt et al.
2012) (Xi et al. 2013). To precisely quantify the biased errors, this method requires
numerous experimental data samples from a diverse domain of design variables. The
following chapter 2.2 provides more details of bias correction method in Bayesian-

based model improvement.

2.2 Bayesian-based Model Improvement with Bias
Correction

Bayesian-based model calibration is another popular approach for model
improvement which adopts Bayesian inference to estimate unknown model
parameters (Kennedy and O'Hagan 2001) (Beck and Au 2002) (McFarland et al.
2007) (Higdon et al. 2008) (Behmanesh et al. 2015) (Li et al. 2016) (Plumlee 2017)
(Baig 2020). Figure 2-8 illustrates the overall flow chart of Bayesian-based model

improvement. This process applies observation data and the prior distribution of
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unknown model parameters to Bayesian inference, stated in (2.2).

p(8n) x p(m|0)p(0) (2.2)

The term p(0|n) is a posterior distribution of unknown model parameters 8. The
term p(m|0) is likelihood function for unknown model parameters. The last term

p(0) isa prior distribution of unknown parameters.

A

Observation data (¢ = [{4, (3, ..., (;])

A

Prior Distribution of Unknown Parameters (p(0))

A\ 4 A 4
Gaussian process model Gaussian process model
for prediction for bias
(6, x; D)) (6(x; D))

| |
v

Bayes' Theorem (2.3)

A 4

Posterior Distribution of Unknown Parameters (p(0|n))

Y

Posterior Distribution of the Prediction (p(m(0, x; D)))

Figure 2-8 The flow chart of Bayesian-based model improvement
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The prediction model n in (2.2) can be defined under the effect of model form

errors and measurement errors, as shown in (2.3).

n(0,x;D) + 8(x; D) = {(x; D) + £(D)
(2.3)
n(0,x;D) = {(x; D) — 8(x; D) + €(D)

where & is the unrecognized source of modeling errors and € is measurement error.
One thing to be clarified is that the exact amount of error sources & and € are
unknown. Bayesian-based method employs bias correction to quantify the amount
of modeling errors using observations measured across various sites in the design
parameters (Rebba et al. 2006) (Higdon et al. 2008) (Arendt et al. 2010) (Li et al.
2016). The bias correction method first quantifies the bias term as the discrepancy
between prediction and observation with the prior information of unknown
parameters. And then, the quantified bias is adopted to (2.3) for Bayesian inference
to estimate the posterior distribution of unknown parameters and prediction.
Gaussian process modeling can deal with the uncertainty in bias and prediction
response. Generally, measurement error is assumed to be a normal distribution, with

zero-mean and covariance estimated by the observation data (Ferson et al. 2008).

Even though the bias correction method is an efficient way to quantify the
model form errors and unknown parameters together, neither values are similar to
the actual value (Oliver et al. 2015). The bias term determined by this framework
depends on a prior distribution of unknown model parameters, which affects the
result of Bayesian calibration (Jiang et al. 2020). In other words, the result of

Bayesian calibration differs from how accurate the prior information is. The aims of
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quantifying bias term to minimize the difference between the observed and predicted
results. Based on the observation data obtained from design parameters from various
sites, the bias and estimated unknown parameters can be updated to represent the
prediction values. Overall, this technique has no need to consider the accuracy of
parameter estimation errors or the effect of invalidity that arises from modeling

errors; however, this technique requires numerous observation data.

2.3 Summary and Discussion

Chapter 2 aims to introduce two sorts of popular model improvement process: 1)
optimization-based approach, and 2) Bayesian-based approach. It differs in what
kinds of the methods the model improvement framework employs for model
calibration. By the explanation described in Chapter 2.1 and 2.2, Table 2-1 compares

the characteristics of these two model improvement process.

OBMI is a deterministic method that gives a deterministic value for estimated
unknown parameters. The method can deal with the uncertainties of unknown
parameters as a statistical moment (e.g., mean and standard deviation). Furthermore,
OBMI allows getting an optimal value of unknown parameters without any
information about model parameters. OBMI has initially aimed for a computational
model to assist an engineered product design, which has difficulty measuring
observation data for various design sites. Thus, three steps in OBMI aim to enhance
a computational model's accuracy with a limited or insufficient amount of
observation data. For example, the OBMI devices model refinement step which

handles unrecognized model form errors in a qualitative approach.
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Table 2-1 Comparison of optimization-based model improvement and Bayesian-based model improvement

Optimization-based Model Improvement Bayesian-based Model Improvement
Method Deterministic Statistic
Output A representative value (Mean, standard Probability distribution
deviation)
Experimental  Assumes the error is too small to ignore Assumes normal distribution with zero-
error (g) mean N~(0,6?)

Error Source

Consideration Model form Explore the error sources by model Gaussian process modeling with bias

error (9) refinement method correction method
Required prior information - distribution of unknown model parameters
Applicable Observation Data  Data measured at limited design sites Datasets measured in a diverse design sites
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Compared with OBMI, Bayesian-based model improvement is a statistical
approach that gives a result of model calibration as a probability distribution. The
method is an efficient framework to apply the prior information of the parameters.
However, the result of estimated unknown parameters highly depends on the
accuracy of the prior information. With bias correction method, Bayesian-based
model improvement can quantify the Gaussian process model for model form errors
about design parameters. Thus, the Bayesian-based approach requires is applicable

for an engineering system which requires system health diagnostics and management.

By the above comparison, the notable difference between OBMI and Bayesian-
based model improvement is the amount of information used for model improvement.
OBMI intends to be capable of model improvement process when the applicable
information is limited. In contrast, Bayesian-based model improvement aims to
appropriate use of assorted information such as a prior distribution of unknown
parameters or numerous measurable observation datasets. This doctoral dissertation
aims to develop a capable model improvement process in most practical situations
where datasets are limited in a system design step. The research topics introduced in
Chapter 3 through Chapter 5 were devised under the assumption that only a partial

dataset measured at the specific design conditions are allowable.

Sections of this chapter have been published or submitted as the following journal

articles:

1) Hyejeong Son, Guesuk Lee, Kyeonghwan Kang, Young-jin Kang, Byeng D. Youn,
Ikjin Lee, and Yoojeong Noh, “Industrial Issues and Solutions to Statistical Model
Improvement; A Case Study of an Automobile Steering Column,” Structural and
Multidisciplinary Optimization, Vol. 61, pp. 1739-1756, 2020.
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Chapter 3

Experimental Design for
Identifying Error Sources Between
Parameter Estimation Errors and
Model Form Errors

Numerous error sources in observation and prediction affect the results of model
improvement. Observation involves measurement errors, which arise due to
environmental noise, lack of precision in the sensing, or an incorrect experimental
setup (Kim et al. 2019). In a computational model, insufficient knowledge, or
excessive simplification, induces modeling errors that degrade the prediction
accuracy (Thakur et al. 2009). These error sources can degrade the accuracy of the
parameter estimation step in model calibration (Oberkampf and Roy 2010) (Lee et
al. 2019) (Lee 2019). These parameter estimation errors can be another source of
invalidity, in addition to the modeling errors in a computational model. Thus, the
model improvement process requires consideration of the effects of error sources

from both observation and prediction.

To address modeling errors of a computational model in OBMI, model

refinement is used to discover unrecognized sources of errors in the model. Model

31



refinement is conducted after the model validation step only when the predicted
responses of a computational model show invalidity in the model validation step
(Oh et al. 2016) (Son et al. 2020). This method is able to apply model improvement
with limited observation data in a specific design domain, ignoring measurement
errors. However, the parameters estimated from this type of model calibration are
difficult to apply under various design domain conditions, due to parameter
estimation errors. If the model validation step determines that the computational
model is invalid, either modeling errors or parameter estimation errors can be the
main cause of invalidity. Since the model refinement step cannot deal with both
parameter estimation errors and modeling errors, this method is limited in its ability

to improve the accuracy of the overall prediction.

The research outlined herein develops an optimization-based model
improvement that distinguishes the sources of prediction invalidity, discriminating
between errors that arise from the calibrated parameters and those from the modeling
errors in a computational model. An experimental design is integrated into the
optimization-based model improvement to reduce the estimation errors that arise
from unknown parameters in the model calibration step. Using this experimental
design, the errors that remain in a computational model after model calibration are
then mainly due to unrecognized sources of modeling error. Thus, the refinement

step can focus on reducing these unrecognized sources of modeling errors.

The remaining chapters are organized as follows. Chapter 3.1explains the
model improvement process, considering the various types of uncertainty. Chapter
3.2 provides an overview of the proposed model improvement process, including

information-based experimental design. Chapter 3.3 discusses the numerical and
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practical case studies that were examined in this work to show the validity of the
proposed method. Finally, Chapter O concludes with overall remarks and a

discussion of future work.

3.1 Coupled Error Sources in Model Calibration

The flow chart in Figure 3-1 shows optimization-based model improvement, which
was developed to deal with error sources in observation and prediction (Youn et al.
2011). From a physical system in which an interested response can be observed, a
modeler constructs an initial computational model based on the available knowledge.
Observation and prediction respectively include measurement errors and model form
errors. As mentioned in Chapter 2, OBMI process generally assumes that the
observational result are free from any errors and negligible. Modeling errors can
result from any of the diverse types of knowledge required for modeling, such as
input parameters for which exact values are unknown, or invalid assumptions in a
model form. The input parameters denote the physical quantities that determine the
characteristics of a system, such as geometric figures, material properties, or load
and boundary conditions in a computational model. Modeling assumptions involve
geometric simplification, linearization, or elasticity assumptions that are employed

for computational convenience.
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The existence of model form errors is a nuisance for model calibration in that it
affects the accuracy of estimated unknown parameters and has difficulty quantifying
the exact amount of errors. Figure 3-2 illustrates the model calibration process of a
prediction model with model form errors. Figure 3-2 (a) shows the prediction and
observation before the model calibration. The true model is assumed as a linear
function in the prediction model. When @ = Giniiar, initial prediction (n; initiqr) 1S
different from observation (¢;). The model calibration tries to optimize & which
makes prediction and observation equal (n; = ¢;). After the model calibration, the
figure changes to Figure 3-2 (b). Even though the prediction and observation
responses became similar, @ is optimized to &, biased from 6 due to model form
errors. Thus, the model validation step cannot evaluate the invalidity of the
prediction model since the errors of unknown parameters supplement the errors in

prediction.
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3.2 Optimization-based Model Improvement  with
Experimental Design

Chapter 3.1 described the primary limitation of optimization-based model
improvement: the absence of an ability to identify the sources of uncertainty. Thus,
this study proposes a method that helps to identify the uncertainty sources by
reducing the calibration errors. For this purpose, an experimental design method is
adopted. This chapter explains the effects that error sources in observation and
prediction have on model calibration. Then, an experimental design process is

introduced to reduce the errors in the estimated unknown parameters.

3.2.1 Derivation of Parameter Estimation Errors in Model Calibration

There are basically two error sources that degrade the accuracy of a prediction:
parameter estimation errors from the model calibration step and unrecognized
modeling errors in the computational model. Since these two error sources
simultaneously affect the computational model, it is difficult to distinguish which is
the main error source when the target model turns out to be invalid. In this study, we
propose a method that helps to identify the uncertainty sources by minimizing the
effect of the parameter estimation errors. When parameter estimation errors are
minimal, the dominant invalidity sources that remain after calibration are the
unrecognized modeling errors; thus, the model refinement process can focus on
improving the modeling error. To discuss the details of the proposed method, this
study first explains how measurement errors and modeling errors affect the estimates

of unknown parameters in the optimization-based model improvement process.
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The general equation of a predicted and observed response, which considers the
error sources in observation and prediction, is expressed as (3.1) (Kennedy and

O'Hagan 2001) (Xiong et al. 2009) (Arendt et al. 2012) (Plumlee 2017).
n(0,x; D) + §(0, x; D) = {(x; D) + £(D) (3.1)

where 1 is the predicted response of a computational model and ¢ is the
target or true response of a physical model. & is the unrecognized source of
modeling errors and € is measurement error. x and 0 stand for design parameters
and unknown parameters, respectively. The design parameter x is controllable in a
design process and affects the predicted responses. In the optimization-based
model improvement process, however, x can be treated as a constant parameter
because the process is generally employed in a specific design domain (Youn et al.
2011) (Jung et al. 2015). D represents the experimental point where the responses
are measured. In (3.1), the measurement errors € are independent from other input
parameters and only related to the measurement location. The unrecognized
modeling error & depends on the design parameter x and the measurement location
D. In the model improvement process, the first step is model calibration to estimate
0, using the predicted response and observation. Model calibration is an inverse
problem, which solves the equation for 0. To derive the estimates of 0, linear

approximation of the predicted response n is performed, as follows.
n(6,x;D) ~ N(04x;D) + (6 —0,)Vgn (3.2)

Vgn denotes a (mxn) gradient matrix of n which has m number of responses

with regard to the n number of unknown parameters. 0, is an arbitrary value of the
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unknown parameters within a prior bound of unknown parameters. By substituting

(3.2) into (3.1), the equation of prediction and observation is as follows.
N(0, x; D) + (8 — 8,)Vgn + 6(6, x; D) = {(x; D) + &(D) (3.3)

Solving this equation about 0, the estimate 6. for unknown parameter 0 is

derived in (3.4).

0. = {(Vem)T(Vem)} 1 (Vem)"{T(x; D) + £(D,)
- 8(9: X; Dc) - Tl(ﬁa' X; Dc)} +0,)

(3.4)

Dc refers to the measurement location for model calibration. The pseudo
inverse is adopted to calculate the inverse of Vgn, which can be a non-square matrix.
If the predicted responses are nonlinear, the optimization algorithm can be used to
find the optimal value of 0. that minimizes the discrepancy between observed and
predicted results, rather than solving an analytical 8.. No matter how the inverse
problem is solved, 0 is deeply related to € and &. Thus, 6. cannot guarantee that the
estimate is the same as the true 0. In the model validation step, the estimate 0. ensures
validity only for designated design site x and location parameter D.. In order to
satisfy validity in situations other than a specific calibration domain, it is of
importance to minimize the parameter prediction errors in model calibration by

employing an experimental design.

3.2.2 Identification of Error Sources by Employing Experimental
Design

An accurate understanding of error sources in observation and prediction requires
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enormous time and effort. Quantification of measurement errors require repeated
experiments with precise testing equipment. Discovering all modeling errors is time-
consuming because modelers must examine the majority of the diverse modeling
conditions. Therefore, it is nearly impossible to directly identify and separate all
sources of errors. As an efficient tool for identifying the error sources — specifically,
distinguishing between calibrated errors and unrecognized modeling errors — this
study proposes integration of the model improvement process with experimental
design to reduce estimation errors that arise from unknown parameters in model
calibration. The experimental design step finds the optimal location for observation,
which can reduce the parameter estimation errors that otherwise arise in model
calibration. After the model calibration step, the invalidity sources in the
computational model that remain can be assumed to primarily be unrecognized
modeling errors. Then, the model improvement process can ensure that the model
refinement step can be used modify the prediction accuracy when the model

validation step determines that the predicted response is invalid.

Experimental design processes employ numerous alphabetic criteria for
optimizing the measurement location, such as A-, C-, E-, T- or D-optimality (Park
and Himmelblau 1982) (Ucinski 2004) (Pukelsheim 2006) (Atkinson et al. 2007)
(Tricaud et al. 2008) (Song et al. 2009) (Maes et al. 2015). The alphabetic criteria
are used to minimize or maximize a matrix form using an invariant representative of
a matrix (Bandara et al. 2009) (Bock et al. 2013) (Chisari et al. 2017). In this study,
experimental design with a D-optimality condition is adopted. This optimality
criterion is the minimization of the following determinant of dispersion matrix

|XTX|_1, as shown in (3.5) (de Aguiar et al. 1995).
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M = det(|X™X| ")
(3.5)

X denotes the gradient of the computational model (John and Draper 1975). In

a statistical manner, X can be substituted into the likelihood of the unknown

parameters (Bock et al. 2013) (Papadimitriou and Papadimitriou 2015). This

approach has an advantage in multivariate model calibration, since minimal D-

optimality can confirm independence among the measured responses. The minimal

D-optimality condition guarantees non-trivial solutions in model calibration.

This study discusses how the D-optimality experimental design method can
reduce the estimation errors in the unknown parameters. It starts with (3.2), which
represents a linear approximation of a computational model. Assuming that the
observation and prediction have no error sources, the true value of the unknown

parameter is derived as outlined in (3.6).

0= {(Ven)T(VeT])}_l(Ve‘])T{((x: Dc) - ‘l(ﬂa. X; Dc)} + 0,4 (3.6)

From (3.4) and (3.6), the estimation error of the unknown parameters is

calculated as follows.

8 — 8. = {(Vom)" (Vom)} " (Ven) ' {e(D,) — 8(8,,x; D)} (3.7)

Equation (3.7) indicates that the estimation error of the unknown parameters is
proportional to the pseudo-inverse of gradient matrix Vgn, &, and 6. Among them,
D-optimality is equal to minimization of the determinant of {(Von)T(Ven)}~! in

the pseudo inverse form. X in (3.5) corresponds to Vgn in (3.7). The method ignores
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the effect of € and 9, since the exact error sources € and & are unknown to the user.
The effect of £ and & is practically uncontrollable. The minimization of D-optimality
can reduce the parameter estimation errors in model calibration, even though the
reduced amount of parameter estimation error does not actually reach its minimum
due to the uncontrollable £ and §. In the optimization-based model improvement
process, this experimental design prevents model calibration from adjusting the
unknown parameters to compensate for degraded prediction that arises due to
modeling errors. Using estimates of the unknown parameters provided by the
experimental design, the remaining error sources evaluated by the model validation
are constrained to the unrecognized modeling errors. Ultimately, using this approach,
model refinement can then efficiently explore the remaining unrecognized modeling

errors without the interference of other error sources.

3.3 Case Studies

Two case studies are provided to demonstrate the validity of the proposed method of
model improvement with the D-optimality based experimental design method.
Chapter 3.3.1 gives an analytical discussion of model improvement with D-
optimality based experimental design to study a cantilever beam. Chapter 3.3.2
provides a practical example from an engineering field that examines an automotive
wheel rim model. These two examples consider different types of unrecognized error

sources to demonstrate the usefulness of the proposed method in different situations.
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3.3.1 Analytical Case Study: Cantilever Beam Model

In this case study, a simple cantilever beam model is adopted to demonstrate the
proposed method. The beam is subjected to a concentrated load at the tip and
rectangular section. The model satisfies the Euler-Bernoulli beam theory. The setup
is shown in Figure 3-3. Here, we assume that some parameters of the cantilever beam
are estimated using the stress and displacement, whose equations are given as

follows.

Figure 3-3 A cantilever beam

6P(L —d,)
_ [atrue] _ [ WH? } (3.8)
Nerwe = |wyel = 2Pd, 231 — diy)

EWH3

W, H, and L are geometric parameters, as shown in Figure 3-3. P is the input
load at the end of a cantilever beam and E is the elastic modulus. W, H, L, P, and E
indicate the true parameters. d., and dc, are where the stress and displacement are
measured. The subscripts ‘o’ and ‘U’ represent stress and displacement, respectively.
In this case study, the parameter L is considered to have an unrecognized error source,

which means that L is incorrectly known. E and W are recognized unknown

#;rﬁ'! _CIJI_ 1—l| -_.fJ]_ T_III-
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parameters; thus, they need to be calibrated. Considering all error sources, the

prediction model n is written as follows.

6P(L6 - dc,a)
N = [Un] _ WH? (3.9)
un Izpdc,u2(3L5 - dc,u)l
E.W,H3

Here the prediction model & and u involves the unrecognized sources of
modeling error Ls; and unknown parameters E. and We. Using (3.9), the D-optimality
based experimental design method is performed to find the suitable d., and dcu. The

gradient matrix Vgn is as follows.

0E oW
Von =
B
0E oW (3.10)
[ 0 _ 6P(L6 - dc,cr) ]
3 I VVeZHZ
B l_ ZPdC,u2(3L6 - dc,u) _ ZPdc,u2(3L8 - dc,u)J
EZW,H? EW2H?

Using (3.10), the D-optimality metric M is as follows.

_ T -t
M = det{|(Ven)" (Ven)|} s (3.11)

 12P2d2,(3Ls — dey)(Ls — deg)

Using the parameter values shown in Table 3-1, the D-optimality metric M is
calculated with regard to d.,, and dc, and shown in Figure 3-4. The result shows that

M reaches its minimum at dc, =Ls(=19) and d.., =0. The locations selected by the D-
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optimality metric are identical to the locations of maximum stress and displacement,
which is intuitively reasonable. The displacement and stress of the cantilever beam,
in this example, change monotonically along the measurement location D.. With the
monotonicity, the gradient Vgn increases as the value of the response increases. For
a highly nonlinear model, however, the maximum response does not always
guarantee the D-optimality. This is further discussed in chapter 3.3.2, the engineering

case study.

M(Lg,Ls)=4.93¢+15

N M(0,L5) =4.98¢+13
20

M(0,0) "8.19.»?1"'60': , 5

Measured Iocation(dC o)
Measured location(dC 1)

Figure 3-4 D-optimality metric (M) for the cantilever beam
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Table 3-1 The model parameters and corresponding true values for the cantilever beam

Parameters True values Parameters True values
E 200 (Gpa) w 0.5 (m)

L 20 (m) Ls 19 (m)

H 0.5 (m) P 15 (kN)

€ 0.1max(op) €u 0.1max(up)
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Next, these experimental points are used to calibrate the unknown parameters.
The observation data n, at the given experimental points has experimental error and

is written as follows.

6P(L —d¢,) 1
o | z T (3.12)
7= [ q _ WH | .
ul T |2Pd2, (3L —d.y) |
EWH? u

where ¢, and &, are the measurement error of ¢ and u at d., and dcu. The
calibration result is obtained by solving two equations, ¢,= o7 and u,= ug. The

results of model calibration are shown in (3.13) and (2.14).

__ 6P(Ls —deg)W (3.13)
° 6P(L—d.,)+WH?2e,

_ Edcz',u(3L5 - dc,u){6P(L - dc,cr) + WHZEO‘} (3.14)
© " 3(Ls —deo) {2Pd?, (3L — d.y) + €,EWHB)

To compare the estimates and true parameters, (3.13) and (3.14) are normalized
by the true parameters, resulting in (3.15) and (3.16). The estimates of the unknown

parameters are accurate, if the normalized estimates W./W and E./E are close to one.

% _ 6P(Ls —dcq) (3.15)
W 6P(L—d.,)+ WH?2¢,

E,  d&y(3Ls—d. ){6P(L—d.,)+WH?e,} (3.16)

E ~ 3(Ls—d.,) {2Pd2, (3L —d.,) + €, EWH3)}

From (3.15) and (3.16), the conditions in which the normalized estimate is close
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to one are achieved when the experimental noise ¢, and ¢, are zero and the
unrecognized uncertainty Ls is close to L. The factor that is able to make the
normalized estimate close to one is d., and dcy. Building upon the previous
discussion, if d., and dcy are close to the value designated by the D-optimality
condition (e.g., d., =0 and d¢y = Ls) , the normalized estimate must be close to one.
Figure 3-5 illustrates We/W and E./E with regard to d., and dc. Figure 3-5 (a) shows
the normalized estimates with regard to d., and dcu. In the figure, We/W depends
only on d.,, and is close to one when d., =0, the D-optimal point. Similarly, the
normalized estimate E/E is shown in Figure 3-5 (b); it depends on both d., and dc,.
In Figure 3-5 (b), the value of dcu, which enables W./W to be one, is different
according to the value of d.,. When dy =0, the value of d¢y = Ls enables We/W to
approach one. These results support that D-optimality based experimental design

reduces the estimation error in model calibration.
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Figure 3-5 Estimation errors of unknown parameters (a) width (W./W), (b) Young’s modulus (E./E)
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For efficient model refinement activities, the invalidity of model prediction
should be that which arises mainly due to unrecognized sources of modeling errors.
This research compares the errors of predicted responses using the estimates of
unknown parameters and the true value of the unknown parameters. Figure 3-6
describes the model prediction errors due to model form errors and parameter
estimation errors. The model prediction with model form errors are plotted by the
black dotted line. The model prediction with model form and parameter estimation
errors are plotted by the orange line. The discrepancy between two plots are the
prediction errors due to parameter estimation errors. Figure 3-6(a) illustrates the
prediction errors of stress response and Figure 3-6(b) illustrates the prediction errors
of displacement response. The graphs in Figure 3-6 show that the prediction errors
due to parameter estimation errors decreases when the measurement point reaches
D-optimality based experimental design (e.g., dc.=Ls and d.,=0). However, Figure
3-6(b) shows the limitation that the discrepancy increases when the measurement
location of displacement response reaches at dc,=Ls. It is due to the effect of model
form errors in experimental design. Since the experimental design process is
performed with the initial prediction model which includes model form errors, the
result of experimental errors cannot ensure the least parameter estimation errors. To
solve this problem, the model calibration process should consider the effect of model

form errors in prediction. Chapter 4 deals with this issue.
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== == Prediction error with model form error
— Prediction error with model form & parameter estimation error

o Measurement location with minimal parameter estimation error
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(a) (b)

Figure 3-6 The prediction errors due to model form and estimation of unknown parameters; (a) the stress prediction, (b) the
displacement prediction
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3.3.2 Engineering Case Study: Automotive Wheel Rim FEM Model

An automotive wheel rim is the outer frame of a wheel in an automobile that holds
a tire. The model of the rim used in this study is provided by Application Libraries
in COMSOL software (Multiphysics 1998) (Tabatabaian 2015). The structural
analysis computes the stress and displacement of a wheel against the automobile
weight and the tire pressure. Figure 3-7 and Figure 3-8 show the stress and
displacement analysis result of the wheel rim model. Figure 3-9 provides all given
loads of the automotive wheel rim model. Figure 3-9 (a) denotes the fixed boundary
condition that represents that the inner frame of the rim fixed to an automobile body
frame. Figure 3-9 (b) and (c) describe the distributed load from the tire pressure and
weight of the automobile. The wheel rim model includes modeling error in the fixed
boundary condition for unrecognized error sources. The five fixed boundary
locations, as shown in Figure 3-9 (a) are reduced to three fixed locations in Figure
3-10. The boundary conditions in Figure 3-10 are adopted in the prediction model.
The model with a fixed boundary condition in Figure 3-9 (2) provides the observation
data. Furthermore, the observation includes experimental error e= 0.001¢, which
denotes the 0.001 times of each observation. The main parameters, including the
material properties, are described in Table 3-2. The wheel rim is made of aluminum.
For model calibration, this study designates two unknown parameters; the elastic

modulus of aluminum and the pressure of the tire.
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(a) (b)

Figure 3-7 Stress analysis of the wheel rim model; (a) front view, (b) rear view

(a) (b)

Figure 3-8 Displacement analysis of the wheel rim model; (a) front view, (b) rear

view
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(a)

Figure 3-9 Load conditions of an automotive wheel rim model; (a) fixed locations (five locations noted with black circles), (b)

distributed load from the tire pressure, (c) distributed load from the weight of the automobile
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Table 3-2 The model parameters and corresponding true values for the cantilever beam

Parameters True values Known / Unknown
Elastic modulus (F) 70.00 [GPa] Unknown
Poission’s ratio (p) 0.330 Known

Pressure of the tire (Pr) 2.000 [bar] Unknown

Weight of an automobile (W) 1120 [kg] Known
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Figure 3-10 Fixed locations for unrecognized sources of modeling error

Figure 3-11 presents 70 observable points used by D-optimality based
experimental design to select a combination of observations. 65 points are located in
the front-view in Figure 3-11 (a); five points are located in the rear-view in Figure
3-11 (b). The points are concentrated in half of the wheel rim model, since the
geometry and load condition are symmetric. At each point, two different responses
(e.g., stress and displacement) are acquired. Thus, the overall number of observations
is 140. This generates 14C, combinations of observations. Among these
combinations, an observation set that gives a minimum M metric value, mentioned

in (3.5), becomes the D-optimality based experimental design for model calibration.
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(a) (b)

Figure 3-11 Observable candidate locations for the wheel rim model (a) front view, (b) rear view
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For M metric calculation, this study adopted a finite difference method to easily
calculate the term Vgn at E = 68GPa and Pr.=1.8bar, the initial values for model
calibration. Figure 3-12 shows the D-optimality based experimental design (M). The
combination of observations in Figure 3-12 gives the minimal M = 2.57e-08.
Comparing Figure 3-12 with Figure 3-7 and Figure 3-8, the selected locations are
not where the maximum stress and displacement occur. This is due to the geometric
nonlinearity of the wheel rim model, which results in a nonlinear prediction about
the observable location. The results of the model calibration performed with both the
proposed method and with the maximum responses are compared in Figure 3-13 to
show the efficacy of D-optimality based experimental design for model

improvement.
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(a) (b)

Figure 3-12 D-optimal design of observations (a) location for stress, (b) location for

displacement
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(a) (b)

Figure 3-13 The experimental design that gives the maximal responses; (a)

stress (front view), (b) displacement (rear view)

Table 3-3, Table 3-4, and Table 3-5 summarize the model calibration results
using D-optimal design and maximum responses design, as shown in Figure 3-12
and Figure 3-13. Table 3-3 and Table 3-4 include the estimates of unknown
parameters and normalized estimates E</E and Pr./Pr. The estimates of unknown
parameters are accurate, as the normalized estimates are close to one. Examining the
results in Table 3-3, Table 3-4, it can be seen that the estimates of unknown
parameters determined by D-optimal design are much closer to the true values than
are the results of maximal response design. The result in Table 3-5 gives the
predicted response errors using the estimates of unknown parameters and the true
value of the unknown parameters. Table 3-5 uses the normalized root mean squared

errors (RMSE), as shown in (3-20).
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NRMSE

N 1\ (3.17)
) N 0.,x,8;D;) —n(6,x,8;D,)}?
N.n(8,x;D;) N;{“( oX i) —Mn(0,x D)

The terminology 0, 0., X, 4, and D is the same as that used in (3.1). N is the
number of observable points for each predicted response, displacement and stress.
The predicted response errors in (3.20) are due to parameter estimation errors in
model calibration. The result of D-optimal design shows the smaller normalized
RMSE than the maximal responses design in Figure 3-13. Overall, the results in
Table 3-5 show that the D-optimality based experimental design gives a prediction

that is closer to the prediction that only includes modeling errors.
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Table 3-3 Comparison of the model calibration results of unknown variable E (Young’s modulus)

D-optimal design Maximal response design
Estimated £ (Gpa) 65.14 65.00
EJE 0.9305 0.9009

Table 3-4 Comparison of the model calibration results of unknown variable P (pressure of a tire)

D-optimal design Maximal response design
Estimated P (bar) 1.802 1.673
Pr./Pr 0.9285 0.8365

Table 3-5 Comparison of the normalized RMSE of the predicted responses (stress and displacement)

D-optimal design Maximal response design
Stress 1.881E-4 2.114E-4
Displacement 5.668E-3 6.030E-3
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By the parameter estimation result of combination 2 in Table 3-3 and Table 3-4,
the estimation accuracy of E is higher than that of Pr. The difference originates from
the sensitivity of the responses about the parameters. Since the selected responses
combination in combination 2 are more sensitive to E, The optimization algorithm
is prone to easily change the value of E. Table 3-6 describes the sensitivity of each
selected responses in combination 1 and combination 2 about the model parameters
E and Pr. Table 3-6 describes the sensitivity about the model parameters E and Pr.
In this table, the terms Z—’; and % each denote the sensitivity term about E and Pr.
The numbers in brackets stand for the rank of the sensitivity about each parameters
in all 140 responses. For example, the sensitivity of the stress about E in combination
1 is 2.5880E-05. The value is the 29" largest among 150 responses. The third row of
the table includes the summation of normalized sensitivity, calculated as the

following equation.

an;j an;
o = oF 4 oP (3.18)
J 140 9M; y1 0901
i=1 0F i=1 gp

By (3.21), the sensitivity about the parameter E and Pr is easily integrated with
normalized sensitivity term. The result in Table 3-6 shows that the responses in
combination 1 has the first and second largest normalized sensitivity. The result
implies that the parameter estimation accuracy depends on the sensitivity of the
responses, not the magnitude. However, the responses combination which only gives
the highest sensitivity about the unknown parameters can lead unidentifiable
estimation of the parameters. For example, the response combination gives a

parameter solution as a continuous region, not a discrete value.
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Table 3-6 Sensitivity analysis of each response in combination 1 and 2

Combination 1 (Proposed-determinant)

Combination 2 (Maximum response)

11 (Stress) 1, (Displacement) 13 (Stress) 14 (Displacement)
% 2.5880E-05 (29/140) 1.9272E-04 (1/140) 3.6595E-06 (83/140) 1.9272E-04 (1/140)
% 0.8320 (1/140) 6.6119E-06 (74/140) 0.0385 (61/140) 6.6119E-06 (74/140)
] 0.0616(2/140) 0.0754 (1/140) 0.0038 (97/140) 0.0754(1/140)
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3.4 Summary and Discussion

This chapter proposed a method for optimization-based model improvement with
experimental design to efficiently handle the error sources of an invalid
computational model. EXxisting optimization-based model improvements have a
limitation in that the error sources that affect their validity are indistinguishable. To
overcome this, D-optimality based experimental design method is integrated to
identify the major invalidity sources of a computational model by reducing the
estimation errors in the model calibration. By doing so, the model validation step can
evaluate the invalidity of a computational model due to unrecognized errors, and the
model refinement step can efficiently examine the main cause of invalidity from

among the various candidates of unrecognized modeling errors.

The benefits of the proposed method are demonstrated by examining two case
studies. A numerical example of a cantilever beam shows the feasibility of the D-
optimality based experimental design in the model improvement process. The study
shows that the parameter estimation errors in model calibration are reduced when
the measurement location becomes close to the D-optimality-based experimental
design. Another engineering example (e.g., an automobile wheel rim) is examined
to show the application of the proposed method in practice. Based on the estimates
of unknown parameters using D-optimality experimental design, the overall amount
of errors in the predicted responses are close to the amount of errors that arise due to
an invalid modeling. The identified modeling errors in a computational model are
then evaluated using a model validation process and the validity of the model can be

improved by the model refinement step.
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The proposed method can be widely applied where computational models are
used, such as for study of a digital twin in a cyber-physical system (CPS). Since a
CPS is composed of a large number of computational models, it is important to find
an effective way to construct models, in terms of development time and budget. The
proposed method is a preliminary study to reduce the modeling cost required to
ensure the accuracy of digital twin models. Furthermore, enhanced estimates of
unknown parameters in an experimental design can extend the valid domain of the
computational model. This method can also help with parameter updating during the

operation of the computational model to synchronize with reality.

Sections of this chapter have been published or submitted as the following journal
articles:
1) Hyejeong Son, Byeng D. Youn, and Taejin Kim, “Model Improvement with

Experimental Design for ldentifying Error Sources in a Computational Model,”
Structural and Multidisciplinary Optimization, Accepted, 2021.




Chapter 4

Proportionate Bias Calibration
with Bound Information to
Consider Unrecognized Model
Form Errors

Model calibration is a process of estimating unknown model parameters as a tool of
improving a computational model (Park and Himmelblau 1982) (Kennedy and
O'Hagan 2001) (Oberkampf and Roy 2010) (Thonhofer et al. 2014) (Qiu et al. 2018).
It is treated as an inverse problem solving an n-th equation which indicates that the
predicted response is the same as the observation data. Optimization-based model
calibration (OBMC) is one of the popular techniques of model calibration, which
employs optimization algorithms in a deterministic manner (Frank and Shubin 1992)
(Hills and Trucano 2002) (Gholizadeh 2013) (Lee et al. 2019). In OBMC, the
optimization method allows nonlinear predicted responses, which has difficulty

finding an analytical solution to get an approximate result.

Despite these advantages, the model calibration suffers from parameter
estimation errors due to a variety of error sources. As stated in Chapter 3, the coupled

error sources between the parameter estimation errors and model from errors disrupt
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model validation to make the right decision for a computational model. Thus, it is of
importance to reduce the parameter estimation errors to relieve the imprecise
decision in model validation. Although the integration of experimental design
proposed in Chapter 3 can alleviate the problem, the computational model after the
model calibration is still troubled with parameter estimation errors. The parameter
estimation errors are affected by the model form errors and measurement errors that
is hard to discover. In practical fields, engineers can doubt the estimated unknown
parameter by the OBMC because some estimated results are different from their
experience-based information, such as an approximate bound or dimension of the

value of unknown parameters.

To solve this problem, the related scholars have tried to quantify model form
errors and consider the effect of model form errors while the model calibration. One
approach is Bayesian-based model calibration with bias correction that is applicable
with observation data measured in the diverse design domains (Kennedy and
O'Hagan 2001) (McFarland et al. 2007) (Higdon et al. 2008) (Arendt et al. 2010)
(Plumlee 2017). The word ‘bias’ in this method refers to the Gaussian process model
for the amount of model form errors, acquired with the prior information about the
observation data and initial predicted responses. When the unknown model
parameter is updated by the Bayes theorem, the bias term helps the model calibration

to estimate a reasonable value for unknown model parameters.

This chapter devices proportionate bias calibration with prior bound
information to consider the effect of model form errors in OBMC. In this method,
the bias term is treated as another unknown parameter for optimization. The bound

information of unknown parameters can play a crucial role in OBMC that it is one
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of the constraints in the optimization algorithm. Besides, this chapter devices output-
dependent bias, a new formulation for model form errors, to support the optimization

with multiple responses which dimensions are severely different.

The remainder of Chapter 4 is organized as follows. Chapter 4.1 presents brief
review of optimization-based model calibration step which suffers from the effect of
model form errors. Chapter 4.2 provides the detailed descriptions of the proposed
method, the definition of proportionate bias and model calibration with bound
information. Chapter 4.3 discusses the efficiency of the proposed method with

analytical and engineering case studies, as introduced in Chapter 3.3.

4.1 Limitations of Experimental Design for OBMI with the
Effect of Model Form Errors

Chapter 3 proposed a new experimental design for efficient OBMI, which
selects the optimal experimental design to reduce the parameter estimation errors by
minimizing the specific term in (3.7). The method is efficient when reducing the
parameter estimation errors without additional information. However, it remains a
limitation to remove all amount of parameter estimation errors. Equation (3.7)
consists of the following terms: Vgn, €, and 8. The proposed experimental design
aims to minimize the term Vgn, since the other two terms g, and & are uncontrollable.
By the equation (3.7), the parameter estimation errors are affected by the model form
errors and measurement errors as well as the gradient of the prediction Vgn.
Depending on the severity of error sources, the value of estimates for unknown

parameters might be against the basic knowledge about the model parameters.

68



Figure 4-1 shows the effect of error sources on the parameter estimation errors
with the cantilever beam example, as discussed in Chapter 3.3.1. The figures show
the parameter estimation errors derived in (3.15) and (3.16) depending on two error
sources (e.g., measurement and model form errors) when the observation is
measured at the optimal experimental design. Figure 4-1 (a) and (b) respectively
illustrates the estimation errors of width (W) and young’s modulus (E). When the
value is close to one, the surface color in Figure 4-1 is close to yellow. According to
(3.15) and (3.16), the closer the value is to one, the closer the estimates are to the
true value. Figure 4-1 (a) presents that the estimation error of W is reduced to 50%
of the actual value, even though the model calibration utilized the optimal design for
observation data. Figure 4-1 (b) gives the estimation error of E differs from the actual

value by more than about 30%.
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Figure 4-1 The parameter estimation errors of the cantilever beam with optimal

experimental design (a) Width (Wp/Wt), (b) Young’s modulus (Ep/Et)

The result in Figure 4-1shows that the experimental design selection encounters
a limitation to effectively improving the parameter estimation errors when severe
errors exist. This fact gives a doubt on the effectiveness of OBMI since the estimated
values of unknown parameters are against the prior information about the prediction
models that include an approximate range or statistical information of model
parameters. Thus, the proposed method in this chapter aims to consider the amount
of error sources in the process of model calibration to draw reasonable estimates for

unknown parameters.
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4.2 Proportionate Bias Calibration with Bound Information
of Model Parameters

This chapter aims to perform the model calibration with consideration of the error
sources in a prediction model. The bound information of unknown model parameters
are adopted as a constraint in OBMC to roughly quantify the errors. Chapter 4.2.1
presents the definition of proportionate bias. Chapter 4.2.2 explains the framework

of proportionate bias calibration with bound information.

4.2.1 The Formulation of Proportionate Bias

For the consideration of error sources, model calibration adopts the formulation of
prediction and observation with the discrepancy function (Arendt et al. 2010)
(Reichert and Schuwirth 2012) (Li et al. 2016) (Qiu et al. 2018). As a previous study,
the bias correction is the one of popular method, generally used with Bayesian-based
model calibration. The formulation of model calibration with bias function is as

follows.
5(0,x) +n(0,x) =q(x) + ¢ (4.1)

The discrepancy & is dependent to unknown parameters (8) and design parameters
(x). The method quantifies Gaussian process model for the discrepancy, which
involves model form errors and measurement errors, through the observation and
prediction data along the model parameters. As stated in Chapter 2, the method is
efficient when the observation data measured in various design sites and reliable

prior information are available.
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When the observation data only measured in few number of design sites, Qiu et
al. has devised sensitivity-based parameter calibration for consideration of model

form errors (Qiu et al. 2018). The formulation of model calibration is as follows.
{(x) =n(0,x)+46 (4.2)

& denotes the sensitivity-based parameter in (4.2). Figure 4-2 shows the process of
sensitivity-based parameter calibration. In this figure, Xk denotes a vector of known
parameters and Xunk denotes a vector of unknown model parameters. The method
assumes that the discrepancy is a constant function, the simplest form of regression.
This assumption enables model calibration with the observation data measured at
three design sites. The sensitivity-based model calibration firstly estimates the
optimal &, matching the sensitivity of prediction and observation the same. With the

optimal &, optimal values of unknown model parameters are estimated.
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Figure 4-2 Sensitivity-based parameter calibration
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In the sensitivity-based parameter calibration, the constant function for the
discrepancy assumption is valid, especially when the magnitude of output values are
similar. If the magnitude of the responses is highly different, model calibration
optimizes the constant discrepancy by adjusting only a specific response among all
responses, leading to parameter estimation errors. This chapter devises a new
formulation for the discrepancy, called proportionate bias, to solve this problem. The
proportionate bias assumes that the formulation of the discrepancy is a ratio of output

value. The model calibration formulation with the proportionate bias is as follows.
g(x) = 6 xn(8,x) (4.3)

Equation (4.3) defines the observation as the multiplication of the proportionate bias
& and the prediction response m(0,x). Figure 4-3 explains the process of the
proportionate bias calibration. This figure depicts that the proportionate bias is
estimated to 0.5 for n4, n, and nz. The OBMC estimates the suitable value of
proportionate bias with the unknown model parameters. The bound information of
unknown parameters determines the lower and upper bound of the proportionate bias
for the constraint in OBMC. Chapter 4.2.2 discusses the details of proportionate bias

calibration.
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Figure 4-3 The proportionate bias calibration

4.2.2 Proportionate Bias Calibration with Bound Information of
Unknown Model Parameters

The objective of proportionate bias calibration is to increase the accuracy of
estimated unknown model parameters by considering the error sources when
calibrating unknown model parameters. In this method, the bound information of
unknown model parameters can provide a guide to estimate a reasonable value for
unknown parameters and the discrepancy. Figure 4-4 shows the overall process of
proportionate bias calibration using the bound information. Comparing with the
Figure 2-1 explaining the overall framework of OBMC, the proportionate bias
calibration adopts the bound information of unknown parameters and proportionate
bias. Furthermore, the proportionate bias (&) is optimized with unknown model

parameters.
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Figure 4-4 The proportionate bias calibration with bound information
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In this process, the bound of unknown parameters can determine the bound of
proportionate bias. (4.4) defines a bound vector of unknown parameter 0z, which

consists of upper or lower bound of each model parameter.
05, = [91"921",,,,9111'] where j = [LB, UB] (4.4)

n refers to the number of unknown model parameters. j designates the upper or lower
bound. LB and UB denotes the lower bound and upper bound. Since each element
can be upper or lower bound of the parameters, the number of possible 85 is 2"
(e.g., k=1, ---2"). The following equation represents the upper and lower bound of

the proportionate bias according to the bound of unknown parameters.

{(x)

L(g = mklnn(Tk,x) (4'5)
_ {(x)
Us = m’?xn—(eBk,x) (4.6)

4.3 Case Studies

This chapter adopts the analytical and engineering models for the case studies,
already explained in Chapter 3.3.1 and 3.3.2. With three case studies, the detailed
process of proportionate bias calibration is provided. To verify the efficacy of the
proposed method, the case studies compare the estimates of unknown model
parameters calibrated through the proposed method and the sensitivity-based

parameter calibration.
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4.3.1 Analytical Case Study: Cantilever Beam Model

This chapter applies the proportionate bias calibration to the cantilever beam model,
same as Figure 3-3. The model calibration is performed by four calibration approach;
Bayesian method, OBMC with bound information, OBMC with sensitivity bias, and
OBMC with proportionate bias. The model includes model parameters, model form
errors, and experimental errors, as shown in Table 3-1. The model calibration
selected the observation data as displacement responses measured at dc,, =0.5 Ls and
dcu = Ls . The unknown parameters are young’s modulus (E) and width (W). This
study assumes that the reasonable bound information of unknown parameters can be
determined through the standard deviation of the parameters. The bound information
of unknown parameters is set as [-3o, 36], where 6 denotes the standard deviation of
the unknown parameters. The standard deviation of young’s modulus and width is
respectively 15.2Gpa and 0.0220m (Hess et al. 2002). With the statistical
information, the bound of young’s modulus and width are [154.4, 245.6] Gpa and
[0.434, 0.566] m. The bound of proportionate bias is calculated using (4.5) and (4.6).
Table 4-1 summarizes the process of bound selection for sensitivity-based parameter
and proportionate bias. For Bayesian-based method, biased term is quantified by the
Gaussian process (GP) modeling with the discrepancy of experimental data and
initial prediction at at dc, =0.5 Ls and dcu = Ls . Since only two datasets are used for
GP model of the discrepancy, GP model can give fitting errors to predict the amount

of errors due to model form and measurement.
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Table 4-1 The bound selection for sensitivity-based and proportionate bias

E w Prediction Sensitivity-based Proportionate bias
o LB (154.4) LB (0.434) 1.58E+07 -0.14E+07 0.9114

LB (154.4) UB (0.566) 1.21E+07 0.23E+07 1.1901

UB (245.6) LB (0.434) 1.58E+07 -0.14E+07 0.9114

UB (245.6) UB (0.566) 1.21E+07 0.23E+07 1.1901
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E W Prediction Sensitivity-based Proportionate bias

LB (154.4) LB (0.434) 0.049 -0.0106 0.784
LB (154.4) UB (0.566) 0.038 0 1.000
UB (245.6) LB (0.434) 0.031 0.0074 1.239
UB (245.6) UB (0.566) 0.024 0.0144 1.600
Lower Bound -0.14E+07 0.784
Upper Bound 0.23E+07 1.600
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For the OBMC, this case study adopted the calibration metric which considers
the discrepancy formulation. (4.7) is the calibration metric without considering the
discrepancy function. (4.8) and (4.9) is the calibration metric for sensitivity-based

parameter calibration and proportionate bias calibration, respectively.

n 1
min ) (G- 0 W)’ a7
n 1
min ) @ X6, W) - 5)? (48)
nS 1 2 4.9
min ) (&8 x X 6(E, W) (4.9)

Using (4.6), (4.7), and (4.8), Table 4-2 gives the result of model calibration.

(4.9) quantifies the parameter estimation errors errg and erry,.

87”7"51, _ |9i,true - gi,calibratedl (4'10)

gi,true

Table 4-2 provides the optimized unknown parameters, the parameter estimation
errors, and optimized discrepancy(6). Figure 4-5 illustrates the parameter estimation
errors of each four calibration method. Bayesian-based method gives the largest
estimation errors, due to the errors in discrepancy function modeled by GP. OBMC
with bound information shows the result which is close to the bound of the
parameters. It implies that the optimal result is not exist in the given bound of the
model parameters. The proportionate bias method gives the lowest parameter
estimation errors in both two unknown parameters. The sensitivity-based method
shows the most significant estimation errors since the invalid optimal value of the
sensitivity-based model bias term is valid only for the displacement. For the stress
response, the value ‘-0.0102” is too small to support the accuracy of the responses

whose magnitude is 107 times larger than the optimal bias.
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Table 4-2 The result of model calibration for the cantilever beam model

Bayesian- OBMC OBMC with OBMC with
based Sensitivity Proportionate
method bias bias
1) - (GP) - -0.0102 1.0175

E(Gpa) 180.5 180.5 245.6 199.65

ErTg 0.0975 0.0975 0.2280 0.0017

W (m) 0.4750 0.4750 0.4750 0.4833

Erry 0.0500 0.0500 0.0500 0.0334

14
12

0.8

0.6

0.4

Estimation error (¢ %)

0.2

Bayesian OBMC OBMC_6sb OBMC_dpb

Figure 4-5 The proportionate bias calibration with bound information
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4.3.2 Engineering Case Study 1: Automotive Wheel Rim FEM Model

Chapter 4.3.2 employs an engineering case study, already introduced in Chapter
3.3.2. The model includes model parameters, and experimental errors, as shown in
Table 3-2. The considered responses are the displacement and the stress, as shown
in Figure 3-7 and Figure 3-8. The model calibration selected the observation data
through the proposed experimental design method, as represented in Figure 3-12. To
develop the sensitivity-based and proportionate bias calibration, the bound of
unknown parameters E and P are [65, 75] and [1.5, 2.5]. With the bound information

of unknown parameters, Table 4-3 determines the bound of model bias.
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Table 4-3 The bound selection for sensitivity-based and proportionate bias

E w Prediction Sensitivity-based Proportionate bias
o LB (65) LB (1.5) 2.1241e+07 9.5511e+04 0.9955

LB (65) UB (2.5) 2.2065e+07 9.2003e+05 0.9583

UB (75) LB (1.5) 2.1241e+07 9.5464e+04 0.9955

UB (75) UB (2.5) 2.2065e+07 9.2000e+05 0.9583
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E W Prediction Sensitivity-based Proportionate bias

LB (154.4) LB (0.434) 0.049 -0.0106 0.784
LB (154.4) UB (0.566) 0.038 0 1.000
UB (245.6) LB (0.434) 0.031 0.0074 1.239
UB (245.6) UB (0.566) 0.024 0.0144 1.600
Lower Bound -0.14E+07 0.784
Upper Bound 0.23E+07 1.600
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With the bound information of the unknown parameters and model bias, Table 4-4
gives the model calibration result. For model calibration, the calibration metrics in
(4.7) to (4.9) are adopted. The result in Table 4-4 verifies that the proportionate bias

calibration gives the lowest parameter estimation errors errz and erry,.

Table 4-4 The model calibration result for automotive wheel rim model

Without Bias Sensitivity-based Proportionate bias
) - -0.0102 1.0175
E(Gpa) 180.5 245.6 199.65
errg 0.0975 0.2280 0.0017
P (m) 0.4750 0.4750 0.4833
errp 0.0500 0.0500 0.0334
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4.3.3 Engineering Case Study 2: Automotive Steering Column
Assembly FEM model

The purpose of this chapter is to demonstrate the efficacy of proportionate bias
calibration method in a practical FEM model and experimental data. The difference
of chapter 4.3.2 is that chapter 4.3.3 adopted real experimental data measured in
experimental setup with practical measurement noise, and an industrial FEM model

provided by Hyundai Motors group.

Automotive steering column is a device that helps a driver to change the driving
direction of an automobile. One issue in the design of an automotive steering column
is the desire to reduce the resonated vibration transferred from the engine or the
roadway. Transferred vibration may make drivers uncomfortable. The design of an
automotive steering column is based on the understanding of vibrational behaviors
to avoid resonance. Therefore, the purpose of a computational model for an
automotive steering column is to analyze the natural frequency and mode shape of
the vibrations. In this chapter, we focus on natural frequencies matched to specific
mode shapes that arise when a steering wheel vibrates in three axial bending
directions. This approach is based on prior knowledge from industrial experts who
designed the automotive steering column (offered to us via personal communication).
These engineers have found that the vibrating strength of axial bending modes is the
most powerful. The target modes of the natural frequency are the 1st, 2nd, and 4th
modes. The 3rd mode of the natural frequency is not considered because it has a

twisting mode shape.

Figure 4-6 and Figure 4-7 show an automotive steering column and the

computational model of an automotive steering column, respectively. An automotive
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steering column consists of two sub-components: a steering wheel and a column
assembly. Figure 4-6 (a) and Figure 4-7(a) show a steering wheel and Figure 4-6(b)
and Figure 4-7(b) show a column assembly. The full steering column and its
computational model are shown in Figure 4-6(c) and Figure 4-7(c), respectively. For
computational modeling, Hypermesh 13.0 software is used as a pre-processor.
298,458 nodes and 214,268 elements are required for exact computation. To save
computational costs, a computational model simplifies the geometric complexity of
a real product. For example, the bolting system is simplified as a rigid body element
(RBE2). The airbag in the middle of the steering wheel is simplified as a lumped
mass with no geometric inputs. The geometry of the wheel cover uses shell elements,

which only considers thicknesses as a geometric input variable.

Using the simplified steering column model, Autodesk Nastran 2018 is employed
for a solver and post-processor. The automotive steering column model takes 575.66
seconds for the calculation of the natural frequencies and mode shapes. The complex
design of an automotive steering column requires a significant amount of
computational cost for analysis. Despite the calculation cost, however, the
computational responses of the model are severely mismatched with experimental
data. Therefore, the model requires optimization-based model calibration. For the
optimization-based model calibration, the steering column model has five unknown
parameters; elastic modulus of steel, density of a wheel cover, stiffness of an airbag,
thickness of an airbag, thickness of ECU bracket, and thickness of a wheel cover.
The bound information and initial value of each unknown parameters are as shown

in
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Figure 4-6 An automotive steering column: (a) Steering wheel, (b) Column

assembly, (c) Entire steering column
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Figure 4-7 An automotive steering column model: (a) Steering wheel, (b) Column

assembly (c) Entire computational model of the steering column
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Table 4-5 The initial value and bound information of unknown parameters in

automotive steering column model

Bound Initial value
Lower bound Upper bound
Density of the wheel
cover (MPa) 050 120 +00
Elastic modulus of 102500.00 307500.00 205000.00
column frame (MPa)
Thickness of the 275 825 5.50
wheel cover (mm)
Thickness of the ECU 1.60 4.80 3.20

bracket (mm)

With the information about the unknown model parameters, the bound of sensitivity
bias and proportionate bias can be determined by eq. (4.5) and (4.6). This chapter
skips the whole bound selection process like Table 4-1 and Table 4-3, since the
steering column model includes numerous unknown parameters to consider. The

result of the bound is noted as Table 4-6.

Table 4-6 The bound information of bias term

Sensitivity-based bias Proportionate bias
Lower bound Upper bound Lower bound Upper bound
-16.0524 18.4818 0.8340 1.6816
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Similar to chapter 4.3.1 and 4.3.2, model calibration result specifies to OBMC with

bound information, with sensitivity bias, and proportionate bias. The result of

calibrated parameters are summarized in Table 4-7.

Table 4-7 The result of calibrated parameters

OBMC_dyp
OoBMC OBMC_os»
(Proposed)
rho_wheel cover (MPa) 0.7614 0.8406 0.6391
T_wheel cover (mm) 5.5185 5.5256 5.5211
E_steel (GPa) 238.36 233.13 244.01
T_ECU Bracket (mm) 3.6224 3.6224 3.6220
K_airbag (N/mm) 1000.000 999.9999 999.9989
) - 1.0237 0.9749

Since all of practical study cannot figure out the real value of unknown parameters,

the case study result in chapter 4.3.3 cannot show the parameter estimation errors
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directly. Instead, the validity of the calibrated parameters is confirmed by the
prediction errors of 2" mode of natural frequency, whose observation data are not
utilized for model calibration. (4.11) quantifies the prediction error of 2" mode

natural frequency.

€ = M2namr. — Conamr.l/Sonamr. X 100 (%) (4.11)

With (4.1.1), the prediction errors by the calibrated parameters calculated in Table
4-7 are illustrated in Figure 4-8. The result implies that the calibrated result of

proportionate bias can adjust the predicted responses to the observation data.

[E=N
o

Prediction error (¢ %)
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OBMC OBMC_3sb  OBMC_spb

Figure 4-8 Prediction errors of 2nd mode natural frequency by the calibrated

parameters
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4.4 Summary and Discussion

The error sources in a computational and a physical model can degrade the parameter
estimation errors in model calibration. Without considering error sources in model
calibration, the estimates of unknown parameters might be unreasonable compared
with physics-based information. To cope with the estimation errors of the unknown
model parameters, Chapter 5 devices the proportionate bias calibration to consider
the amount of uncontrollable errors in model calibration. The proportionate bias
represents an adjusting ratio between observation and prediction due to the error
sources. OBMC optimizes the proportionate bias term with unknown model
parameters together to quantify the amount of proportionate bias. By the cantilever
beam model and automotive wheel rim model for stress and displacement analysis,
the accuracy of parameter estimation errors with proportionate bias calibration is
compared with other model calibration method (e.g., model calibration without bias
and sensitivity-based model calibration). The result shows the efficacy of the

proportionate bias calibration.

The significant difference between proportionate bias calibration for OBMC
and bias correction for Bayesian calibration is the required observation data. Bias
correction aims to quantify the Gaussian process model for the discrepancy using the
observation data measured from more than three design sites. The proportionate bias
calibration method has a novelty that employs the experience-based bound
information to support the insufficient observation data for quantifying the effect of
error sources in model calibration. The proportionate bias prevents OBMC from
optimizing the unknown parameters to the biased locations from the actual location

to supplement the errors in predicted responses. Comparing with sensitivity-based
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model calibration, the proportionate bias formulation is favorable for the model
calibration by the multiple responses whose magnitude of each response value is

severely different.

To expand use of the proposed method, it will be challenging to determine the
validity of the bound information for unknown model parameters. In case studies,
the author employs the statistical information of unknown parameters by the
references, which has difficulty to gather the required information. In a practical
engineering field, however, it may cause the degraded accuracy of the proposed
method since the reliability of the bound information only depends on the accuracy
of the industrial engineer's experience-based knowledge. Thus, there is a need to
introduce the systematic method for considering epistemic uncertainties of the bound

information as a future research.

Sections of this chapter have been published or submitted as the following journal
articles:

2) Hyejeong Son, Guesuk Lee, Kyeonghwan Kang, Young-jin Kang, Byeng D. Youn,
Ikjin Lee, and Yoojeong Noh, “Industrial Issues and Solutions to Statistical Model
Improvement; A Case Study of an Automobile Steering Column,” Structural and
Multidisciplinary Optimization, Vol. 61, pp. 1739-1756, 2020.




Chapter 5

Comparison of Statistical
Validation Metrics to Reduce Type
Il Errors in Model Validation

Statistical model validation (SMV) evaluates the prediction accuracy of
computational models based upon observed data in a statistical manner (Hills and
Trucano 1999) (Oberkampf and Barone 2006) (Oberkampf and Roy 2010) (Kat and
Els 2012) (Sankararaman and Mahadevanb 2015) (Lee et al. 2019) (Kim and Youn
2019). SMV requires statistical validation metrics and hypothesis testing as tools for
statistical decision-making of whether a computational model is valid or not. A
statistical validation metric measures the discrepancy between predicted and
observed results that is used for the decision-making process (Oberkampf et al. 2004)
(Xiong et al. 2009) (Thonhofer et al. 2014) (Zhao et al. 2017). Hypothesis testing
evaluates the plausibility of rejecting a null hypothesis according to a designated
confidence level (Naylor and Finger 1967) (Balci and Sargent 1982) (Koch 2013)
(Johnson et al. 2000) (Stanton et al. 2000) (Wilcox 2011) (Ross 2020). In SMV, the
null hypothesis is that there is no significant discrepancy between the prediction and
observation. Hypothesis testing constructs a distribution of the validation metric,

assuming that the observation data belongs to the prediction’s distribution. When the
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value of the computed validation metric exists within the confidence level of this
validation metric’s distribution, the hypothesis testing is unable to reject the null
hypothesis. Using this information, SMV determines the validity of the

computational model.

Statistical validation metrics play a crucial role in SMV; they can change the
result of the decision-making process. Under a variety of uncertainty sources, SMV
can adopt a number of previously developed validation metrics in a statistical manner.
Previous studies adopted the shape of the distribution function to consider a
discrepancy in a global region (Kullback 1997) (Hills and Trucano 2002)
(Mahadevan and Rebba 2005) (Oberkampf and Barone 2006) (Oberkampf and
Barone 2006) (Ferson et al. 2008) (Jeon et al. 2015). The area metric is one popular
metric. Developed by Ferson et al., the area metric generally employs a U-pooling
method to solve practical problems using SMV (Ferson et al. 2008) (White and West
2019). Likelihood is a metric for goodness of fit, which measures the fidelity of a
dataset to a designated distribution (Hills and Trucano 2002) (Oberkampf and Roy
2010) (Keysers et al. 2020). In other work, Bayes factor has been used to quantify
the likelihood ratio of two possible distribution models for given data (Kass and
Raftery 1995) (Berger and Mortera 1999) (Keysers et al. 2020). Kullback-Leibler
divergence (KLD) has been used to imply the relative entropy of a probability
density function with respect to another reference distribution (Kullback 1997)
(Smith et al. 2006) (Pérez-Cruz 2008). Probability of separation (PoS) quantifies the
separated degree of two distributions and is generally used for the classification of
two datasets (Jeon et al. 2015). Probability residual is the squared form of the area

discrepancy between two probability density functions (Oh et al. 2019) (Son et al.
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2020).

To guarantee the accuracy of SMV, it is of importance to select a feasible
statistical validation metric. Hypothesis testing must consider both Type | and Type
Il errors. Type | error denotes when an accurate prediction model is wrongly rejected.
In contrast, Type Il error describes the situation when an invalid prediction result is
improperly accepted. The lack of observation data and distribution fitting errors are
the main reasons for both types of errors. These errors severely occur when the
variance of observation data is relatively more extensive than a prediction due to the
statistical uncertainties in observation. In engineering practice, however, Type Il
errors in hypothesis testing can be much hazardous than Type I errors since an invalid
prediction can be used in a variety of activities with potential safety concerns such
as the design of automobiles and planes. Thus, SMV requires an assessment of
statistical validation metrics to arrive at the options that give the less Type Il errors
in decision-making when the variance of observation and prediction have a severe

discrepancy.

Scholars in related fields have discussed the features desired for statistical
validation metrics, according to specific scenarios (Liu et al. 2011) (Ling and
Mahadevan 2013) (Bi et al. 2017) (Maupin et al. 2018). These studies deal with the
extended capability of statistical validation metrics for use with observation data that
has particular characteristics. However, the validation metrics used in existing
studies tend to be very sensitive to the distance between the observation and
prediction and only weakly consider the discrepancy of the distribution with respect
to the distributed degree of each dataset. For an accurate SMV, it is necessary for

statistical validation metrics to quantify the difference between the distributions with
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respect to not only the difference in mean, but also the variance. A discrepancy of
variance between observation and prediction can occur in various situations. For
example, when the uncertainty of the predicted response varies according to an input
parameter, the distributions of the observed and predicted results will have a

difference in variance.

To address this research need, this study focuses on statistical validation metrics,
which enable capture of the variance difference between observation and prediction
to reduce decision errors in SMV. In particular, the research outlined in this study
considers invalid prediction models that arise due to unknown parameters, which
represent the expected error sources in model prediction. The remainder of this study
is organized as follows. Chapter 5.1 gives an overview of statistical validation
metrics. Chapter 5.2 presents a detailed examination of the statistical validation
metrics through a numerical case study that considers differences in uncertainty of
the prediction and observation that arise due to unknown parameters. Discussion and
demonstration of the results in Chapter 5.2 is in Chapter 5.3 why area metric and
PoS was less sensitive when the variance of predicted responses are different. The
engineering case study in Chapter 5.4 confirms the validity of the discussion in
Chapter 5.3. The study concludes with a summary and remarks, provided in Chapter

5.5.

5.1 Brief Review of Statistical VValidation Metrics

Among the developed statistical validation metrics, this study focuses on metrics that
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use statistical distributions of the predictions and observations. Table 5-1
summarizes all equations of the considered statistical validation metrics, both S and
L types. Ci and C; denote the distributions of the data, which can be either
observation or prediction. f and F, respectively, stand for a probability density
function (PDF) and a cumulative density function (CDF) of C; or C,. d denotes each
data element, for the observation data. 6 presents the parameters of the distributions,
which are estimated from both observation and prediction. ¥;, and X, in(5.7)are
the medians. The term S in (5.8) is a scale parameter that is only used in the
probability residual metric. The SMV considered in this study adopts hypothesis
testing for decision making. This chapter provides comprehensive information about
SMV that uses a hypothesis testing process. Furthermore, six statistical validation
metrics are introduced in Chapter 5.1 to assess their capability for use with the

hypothesis testing method.
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Table 5-1 Comparison of the model calibration results of unknown variable E

(Young’s modulus)

Metrics Type Equation

e fe) = [ o= fe@lar g

A tri S ”
fea metrie Ay(FLFp) = f |F(upred) - F(uobs)|du
—oo (5.2)
where u; = pred(xi)
Lh(8|0) = ﬂf((iw) (5.3)
i=1
Likelihood L log Lh(T|0) = ln(l_[ f&le)
i=1
T (5.4)
= > (g le))
i=1
Kullback-Liebler (" fe, ()
S Di(c4lcz) = f_oofcl(x) In (fcz(x) dx (5.5)
Divergence
_ p{qu: gpred = gobs}
° p{qu: gpred * gobs}
Bayes factor L Lh(T|6,ps) (5.6)
[ [LR@IO)fP (0)dpdo
(el—ZPNs _ 1)
Probability of PoS=—01
S where, Pys = (5.7
separation fjooo F,(x)f;,(x)dx for %, <X,
« 2
Probability residual S PR =5X f_w(fcl ) — fe, (x))"dx (5.8)
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5.1.1 Area metric

The area metric is an integral of the difference between two CDFs, as stated in (5.1).
Ferson et al. recommended using the area metric with a U-pooling method (Ferson
et al. 2009). The research described in this study adopted the area metric with a U-
pooling method for a comparison study. The area metric with U-pooling is as shown
in (5.2). The advantage of the U-pooling method is that it can integrate the data
achieved in a variety of environments for validation (Ferson et al. 2009) (Liu et al.
2011). Furthermore, the metric is enabled when only a few observation data are
available; in fact, even if only one data sample exists. The area metric with U-pooling

varies from 0 to 0.5.

5.1.2 Likelihood

Likelihood in (5.3) measures the multiplication of all prediction PDFs at the
observation sites (Edwards 1984) (Severini 2000) (Myung 2003). For practical
reasons, this study applies a logarithmic transformation to the likelihood, as shown
in (5.4). The multiplication of PDF values lower than one makes the likelihood
smaller, which is not beneficial to the computation. The likelihood has no limits on
its ability to increase or decrease, which helps to maximize the likelihood for
parameter estimation. Since the likelihood metric uses observation data without a
fitting method for the distribution, it gives a relatively good validation accuracy with
even a small number of observation data. Likelihood can estimate differences that

arise due to the variance of the observed and predicted results.
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5.1.3 Kullback-Leibler Divergence (KLD)

Kullback-Leibler divergence (KLD), as presented in (5.5), is motivated by
information systems that quantify the entropy of given data (Kullback and Leibler
1951) (Kullback 1997) (Anderson and Burnham 2004) (Bishop 2006). This aspect
makes KLD sensitive to the variance difference between the two datasets. KLD is
asymmetric; thus, if the distributions of fc, and fc, are inverted, different values are
calculated. Therefore, for the case study described in Chapter 5.2, fc; is substituted
into the observation distributions and fc; is used for the prediction distributions. The
metric becomes zero if and only if the distributions of C; and C; are the same in a
global domain at x. In contrast, a high KLD value indicates the separation of the two

distributions.

5.1.4 Bayes Factor

The Bayes factor forms a ratio of the null and alternative hypothesis distributions
(Berger and Mortera 1999) (Morey and Rouder 2011) (Ling and Mahadevan 2013)
(Keysers et al. 2020). For the probabilities of the null hypothesis and the alternative
hypothesis, the Bayes factor in (5.6). adopts the likelihood of observation data under
the prediction model parameters’ prior distribution (Liu et al. 2011). The research
described in this study assumes only two model parameter values estimated from the
observation and prediction data are possible, since the numerical example has no
specific prior information. Thus, fP™ (8) becomes 0.5. This assumption affects the
accuracy of the SMV. However, | want to note that some practical problems have no

prior information to enable use of the Bayes factor.
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5.1.5 Probability of Separation (PoS)

The probability of separation (PoS) metric originates from the probability of failure,
which is generally used in reliability analysis (Jeon et al. 2015). The PoS assumes
that the median of Cy must be smaller than the median of C,. This is because the
probability of failure is defined when the overall strength of a system is smaller than
the load applied to the system. From the derivation in (5.9), the Pxs is defined to be
within the range of [0, 0.5]. PoS is the normalization of Pys, which is defined in the
range of [0, 1]. The (5.9) explains that the maximum value of Pns becomes 0.5 when
the distribution of C; and Cz is the same.

[o¢]

PNSIclzcz :j Feq (x) fer (x)dx
= Cl(x)Fcl(x)lo—ooo _f fcl(X)Fcl(X)dx (59)
| Fatfa(dx =3 Fa(?1% = (1= 0) =05

5.1.6 Probability Residual (PR)

The probability residual (PR), shown in (5.8), is a discrepancy measure for statistical
model calibration that seeks to reinforce the limits of low sensitivity observed in
existing discrepancy measures (Lee et al. 2018) (Oh et al. 2019). Although the PR
has not been used as a discrepancy measure for SMV, this study examines the
possibility of using it for this purpose. The minimal value of PR is zero, which occurs
when the prediction and observation are perfectly in the same distribution. PR is not
limited in its ability to increase the metric value. PR uses the distribution function

that is estimated by a distribution fitting method. Thus, distribution fitting error can
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occur, especially when the number of observations is small. The validation result
described in Chapter 5.3 supports the idea that PR shows low accuracy when the

number of observations is less than 10.

5.2 A comparison study of statistical validation metrics

Chapter 5.2 discusses the comparison of statistical validation metrics, with
discrepancies in variance across the observed and predicted results. As previously
discussed, the existing studies concentrate on examining the SMV accuracy when
the mean of prediction and observation severely occurs. Since the variance
discrepancy also causes hypothesis testing errors when it is not validated correctly,
the statistical validation metrics require to be evaluated quantify the discrepancy of

observation and prediction properly.

5.2.1 Problem definition

A nonlinear response with statistical input parameters is defined for the comparison

study, as shown in (5.10) (Youn et al. 2008)

1
G(X,0) = e T+100x7+2074x767 + ¢ (5.10)

where 6 denotes the unknown variable that causes the discrepancy between the
observation and prediction. The X and ¢ are the model input parameters. The

nonlinearity in function G(X, #) creates a change of variance as well as mean values
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according to the statistical variables X and 8. Through the function G(X, 6) in (5.10),
this study considers the importance of the change in variance for validating a
nonlinear response that numerous engineering examples have. Furthermore, the case
studies reflect Type Il errors by assuming that the prediction and observation have
different 6 values. For a prediction model, Type Il errors are much more dangerous
because an invalid prediction of this type might be utilized in a practical field with

catastrophic results.

This study defines two case studies that were explored to compare statistical
validation metrics. Case 1 deals with the situation in which the variance of the
observed and predicted results is the same. Case 2 considers different variances in
the observation and prediction. Case 2 is further broken down into Case 2-1 and 2-
2. Case 2-1 examines the situation in which the variance of the observation is smaller
than that of the prediction. Case 2-2 explores the situation where the variance of the
observation is larger than that of the prediction. Table 5-2 summarizes the input
parameters X, 0, and ¢ in each case study. Case 1 specifies that ¢ follows a Gaussian
distribution with zero-mean; variance is specified as 0.08, 0.12, 0.16, and 0.2. Case
2 considers the statistical input parameter X, instead of the measurement error ¢. X
follows a Gaussian distribution; the mean is 0.1 and variance is specified as 0.08,

0.12, 0.16, and 0.2.

Depending on the value of 4, the mean and variance of the prediction and
observation can be different. Figure 5-1 depicts the graphs of the function G(X, 6),
concerning the unknown variable 6. The solid black line is the mean of the function
G(X, ). The dashed line, dotted line, dash-dotted line, and solid line with a star mark

show the four different uncertain ranges, which give the 10 and 90% CDF values.
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Figure 5-1 (a) is the graph of Case 1, which has the same variance, regardless of 6.
Figure 5-1 (b) is the graph of the function G(X, 6) in Case 2, which has a different
variance about 4. The red vertical line denotes the predicted response at 8 =1. The
blue vertical line at & =0 shows the observation for Case 2-1, and the line at 6 =2
shows the observation for Case 2-2. The graphs in Figure 5-1 show that the uncertain

range of all the function G(X, 8) increases when the variance of ¢ and X increases.

The observation dataset includes 3 to 30 sampled data to explore the effect of
the number of observations. 10* datasets for 3 to 30 sampled data are prepared to
repeat the test. The prediction includes 10° sampled data to represent the distribution
of prediction without statistical uncertainty. Since the prediction and observation
data were sampled from the different values of 6, the SMV result should be that the
prediction model is invalid. Therefore, the accuracy of the validation metrics denotes
the number of observation datasets for which the validation metric value is outside
of an acceptable range. The accuracy of the validation metrics is defined in (5.11).

n

The rejection ratio = (5.11)

N is the number of datasets, 10%, and n is the number of datasets located outside of
the acceptable range. The validation metric, which gives a high value for the

rejection ratio, shows a favorable result in the SMV.

105 = L



Table 5-2 The model parameters and corresponding true values for the cantilever beam

X 0 e S.t.d

Prediction 0.1 1 N~(0, 0.08 to 0.2%)

Case 1 S.t.dpred. = S.t.dobs
Observation 0.1 2 N~(0, 0.08 to 0.2?)
Prediction N~(0.1, 0.08 to 0.2%) 1 -

Case 2-1 S.t.dpred. > S.t.dobs
Observation N~(0.1, 0.08 to 0.2%) 2 -
Prediction N~(0.1, 0.08 to 0.2%) 1 -

Case 2-2 S.t.dpred. < S.t.dobs
Observation N~(0.1, 0.08 to 0.2%) 0 -
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5.2.2 Results of statistical model validation accuracy

Figure 5-2, Figure 5-3, and Figure 5-4 show the rejection ratio based on the number
of observations. All figures provide that the rejection ratio increases as the number
of observations increases. As the uncertainty of input parameter ¢ or X increases, the
rejection ratio requires more observation data for the rejection ratio to reach one. A
large amount of uncertainty in the function G(X, 8) results in a lower rejection ratio,
since the overlapped area of the prediction and observation distributions prevents
distinguishing between the two distributions’ discrepancy. The following paragraphs
explain the results of Case 1, Case 2-1, and Case 2-2, as shown in Figure 5-2, Figure

5-3, and Figure 5-4.
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i. Case 1: S.t.dpred. = S.t.dobs.

According to the graphs shown in Figure 5-2, the rank of the rejection ratio for
the studied validation metrics is determined as follows: area metric=PoS > KL.D >
Bayes factor > PR~likelihood. Overall, the area metric and PoS give the highest
rejection ratio. The validation metric with the second highest rejection ratio is KLD.
Although the rejection ratio of KLD is almost the same as the Bayes factor’s, the
rejection ratio is lower than KLD’s when the uncertainty of the function G(X, 0)
increases. PR gives the lowest rejection ratio with a small number of observations
(i.e., under 10). In contrast, likelihood shows the lowest rejection ratio with a large

overall number of observation data (i.e., over 10).

il. Case 2: S.t.dpred. # S.t.dobs.

As explained in Chapter 5.2.1, Case 2 is divided into Cases 2-1 and 2-2. In Case
2-1, the rejection ratio of all statistical validation metrics, except for the likelihood,
reached one before the number of observation data exceeded 10, as shown in Figure
5-3. This is because a small variance of observed responses reduces the statistical
uncertainties for the observation results. In Case 2-2, the rejection ratio in Figure 5-4
indicates that the KLD, Bayes factor, and likelihood show a high rejection ratio. PR
shows the lowest rejection ratio with a small number of observation data. Overall,
the KLD and Bayes factor give the highest rejection ratio, as shown in Figure 5-3
and Figure 5-4, except for the case of a small number of observations. When only a
small observation (i.e., less than five) is available, the area metric and PoS give a

higher rejection ratio than KLD and Bayes factor.
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Under unknown parameters in model prediction, it is common for an
engineering system response to have different amounts of variance. Thus, the
comparison result can suggest that KLD or Bayes factor can be a useful discrepancy
measure for the variance discrepancy. Since KLD is a metric to quantify the relative
entropy between two distributions, it is advantageous to distinguish the difference in
the distributions. The area metric and PoS are recommended when a limited number
of observations is available. If the number of observations is small, the statistical
uncertainty in observations can cause a discrepancy in the variance between
observation and prediction. Therefore, when the number of observations is small, it
is desirable to use a metric that is less sensitive to the differences of variance. One
noticeable point is that the Bayes factor’s accuracy is related to the accuracy of the
prior information. The Bayes factor is recommended when reliable prior information

is available.

5.3 Discussion and Demonstration

This chapter explains why the area metric and PoS have low accuracy for variance
discrepancy by deriving a possible metric range. Chapter 5.3.1 graphically explains
the area metric’s possible range when the mean and variance of the two distributions
are increased. Chapter 5.3.2 discusses the possible range of KLD by examining the

limit calculation when the mean and variance of the two distributions increase.

5.3.1 Discussion about the low accuracy of the area metric in a variance
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change

Figure 5-5 and Figure 5-6 illustrate the process for calculation of the area metric
when the distribution of observation and prediction have a discrepancy in the mean
and variance. The left figure is the prediction PDF and the observation data. The
figure located in the middle of Figure 5-5 and Figure 5-6 shows the prediction CDF
and the u-value of the observation. The graph on the right side is the empirical CDF
of the u-value and the prediction CDF values. illustrates the change in the area metric
when the mean of the observation is increased. The observation and prediction in
Figure 5-5 (a) follow a standard normal distribution and the mean of the observation
is increased from three to six in Figure 5-5 (b) and (c). The calculated area metric is
increased from 0.07 to 0.5, according to the increased discrepancy of the mean.
When the distributions of the prediction and observation are the same, the u-value of
the observation is uniformly distributed, as shown in the second graph in Figure 5-5
(a). As the discrepancy of the mean between the distribution of the observation and
prediction increases, the u-values of the observation move to the right side, as shown
in Figure 5-5 (b) and (c). When all of the u-values shift to one, the area discrepancy
of the empirical CDF between the prediction and observation reaches 0.5. In contrast,
the u-value of the observation shifts to zero as the mean of the observation data
decreases. In that case, the final area metric becomes zero. Overall, the discrepancy
of the mean shifts all u-values to zero or one. This result in the area metric values

can be in a range of [0, 0.5], the area metric’s theoretical minimum and maximum.

On the other hand, the range of the metric is reduced in the variance difference.
Figure 5-6 shows the area metric calculation process with U-pooling in which the

variance of observation is increased. The original observation and prediction in
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Figure 5-6 (a) follow a standard normal distribution. The observation variance in
Figure 5-6 (b) and (c) is increased from one to three and six. Unlike Figure 5-5, the
u-values depicted in the second graph of Figure 5-6 partially converge to a different
location, such as 0, 0.5, and 1. The area metric’s possible range cannot reach the
minimum or maximum because u-values cannot converge to one location, 0 or 1.
Thus, the area metric of the observation in Figure 5-6 (c) is calculated as 0.17. Under
the discrepancy of variance, the range of the area metric depends on the number of
observations. In conclusion, this research explains that the area metric with U-
pooling falls within a short range of metric values under the variance discrepancy.
Due to the large variance of the observation, the area metric value became smaller
and within the valid range, even though observation datasets follow invalid

conditions.
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Figure 5-5 The calculation of the area metric when the difference of mean is
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Observation N~(6,1?) (Prediction follows a standard normal distribution)
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5.3.2 Discussion about the low accuracy of the Probability of

Separation (PoS) in a variance change

This chapter focuses on obtaining the limit of PoS as the mean or variance
discrepancy approaches infinity. The predicted and observed responses are assumed
to follow a normal or lognormal distribution. This assumption can consider both
symmetric and asymmetric distributions. Appendix A provide a detailed derivation
of Pns in the PoS equation to derive the analytical metric’s limit. (A.7) is the Pys
when the predicted and observed responses follow a normal distribution. w1 and u»
denotes the mean value. o; and o, stands for S.t.d. The mean discrepancy
approaches infinity, which is the same as when u, approaches infinity or s
approaches minus infinity. The limit of Pys as w1 approaches minus infinity is (5.12).

The limit of Pns as w1 approaches minus infinity is shown in (5.13).

)

> = ®(—w) (5.12)

t—u T .
lim Pyg = lim &(——=) = CI><1im #> = d(-0) =0 (513)

Hp=ee ke o*% + o*% ”2*“\/0% + a%

As the discrepancy of the mean increases, the Pns converges to zero. Thus, the limit

of PoS becomes one, as shown in (5.14).
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The result in (5.14) shows that PoS can reach its maximum when the
discrepancy of the mean in the observation and prediction increases. However, when
the discrepancy of the variance increases, the possible PoS range is different. (5.15)
offers the limit of Pys as the variance o or o2 approach infinity. The limit of Pys as
the variance approaches minus infinity is an unreal situation because the variance is

always a positive number.

) . H1— lo . 1 — Ho

lim Pyg= Ilim &O(—)=> lim ——]=®( 5.15

01010, >0 NS 010rgy; > ( 10-12 + 0-22) <aloroz—>oo 0.12 + 0.22> ( ) ( )
=05

Using (5.15), the limit of Pns converges to 0.5, which cannot be zero. Thus, the
hypothesis testing accepts some invalid observation datasets with a large discrepancy

of variance that is due to the high Phs.
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In the case of the log-normality conditions, (A.17) gives the analytical equation
of Pns. To consider the situation that the u and o, approach infinity, Appendix 2
involves transforming the lognormal distribution’s model parameters to the x, and

o, using (A.15) and (A.16). (5.16) gives the limit of Pns as 2 approaches infinity.

2
) / m, — ln(‘u—zz) - 512\

st
lim Pys =e2 +m1<b| lim
H2—®

=0

As with the result of (5.14) and (5.15), (5.16) shows that the limit of Pns
reaches zero, and PoS can reach its maximum when the discrepancy of the mean in
the observation and prediction increases. In contrast, the limit of Pys as o2 approaches

infinity is non-zero. This is calculated by L'Hospital's rule, as shown in (5.17).
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SZ
The term e2*™ is transformed to w1 using (A.15) and (A.16).

0.51n(0——£+1)+ln/u—%\ (5.18)
i+m i \ o2 +p?
UlziinooPstez 1=€ ! ! =M
Using (5.18), the limit of PoS is as follows.
e(1-2u1) _ 1 (5.19)
lim PoS = ——
0> e—1

The result in (5.19) gives that the limit of PoS can reach the value upper than
one, which means PoS can give its maximum when the variance discrepancy
increases, only when x1 < 0. However, the negative mean value is impossible for the
lognormal distribution. Therefore, the PoS metric can give a validation error in the
hypothesis test because the metric’s possible range decreases when the variance

discrepancy between the observation and prediction increases.

5.4 Case Study

To demonstrate the result in chapters 5.3.1 and 5.3.2, chapter 5.4 employs an
automotive wheel rim FEM model as introduced in chapter 3.3.2. The automotive
wheel rim is a frame of a wheel that combines the wheel to the body of an automobile.
This chapter considers a structural analysis to present maximum stress when a wheel
rim is supported by the weight of an automobile and the pressure in a tire. Figure

3-7(a) illustrates the result of the stress analysis that the maximum stress (o) is
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colored in yellow. Figure 3-9 indicates the boundary and loading condition.

Table 5-3 summarizes the related parameters in this model. Among all model

parameters, the load on the wheel is a statistical parameter that affects the

uncertainties in maximum stress. By assuming that the statistical parameter follows

normal or lognormal distribution, the value of maximum stress can be either

symmetric or asymmetric distribution.

Standard
Parameter Symbol (Unit) Type Mean
deviation
Inflation
P (bar) Deterministic 2 -
pressure
Load on a wheel L (kN) Statistic 10.98 1.098
Young’s
E (GPa) Deterministic 70 -
modulus
Density P (kg/m?) Deterministic 2700 -
Poisson’s ratio v(.) Deterministic ~ 0.33 -

Table 5-3 The statistical information of input parameters in an automotive wheel rim

FEM model
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To show the increase of area metric and PoS when the prediction is inconsistent
with observation, the mean and standard of deviation (S.t.d.) of the load on the wheel
for observation increased until the area metric, and PoS converges. The mean
increased up to 30.98kN, and the S.t.d. increased up to 52.10kN. For the distribution
of observation and prediction, the number of observation and prediction data are 50
and 104. The observation has 1000 sets to repeat the metric calculation. With the
1000 metric values, Figure 5-7 to Figure 5-10 give the boxplot. Figure 5-7 and Figure
5-8 show the limit of area metric and PoS when the mean of L in the observation
increases. For the distribution type of L, Figure 5-7 uses the normal distribution in
order for the distribution of the maximum stress o to become a normal and symmetric
distribution. The graphs in Figure 5-7 show that the area metric and PoS converge to
0.5 and one, which means the perfect separation of the prediction and observation.
The result in Figure 5-7 shows that the area metric and PoS can distinguish the mean
discrepancy of symmetric distributions. The parameter L in Figure 5-8 uses the
lognormal distribution to produce the asymmetric response. The graphs in Figure 5-8
also present that the area metric and PoS converge to 0.5 and one. The overall result
in Figure 5-7 and Figure 5-8 indicates that the area metric and PoS can represent the

perfect separation between two distributions in case of the mean discrepancy.

In contrast, Figure 5-9 and Figure 5-10 give different results. Figure 5-9 and
Figure 5-10 consider the values of area metric and PoS when the variance of the L
for the observation increases. The parameter L in Figure 5-9 uses the normal
distribution, and Figure 5-10 uses the lognormal distribution. Even though the S.t.d.
of the L increased to 52.10kN, more than 50 times of initial S.t.d. (e.g., 1.10kN), the

values of the area metric and PoS in Figure 5-9 and Figure 5-10 do not increase to
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their maximum, 0.5 and 1. In particular, the values of PoS when L follows a normal
distribution, as shown in Figure 5-9 (b), rarely change. This graph supports the result
in (4.15) that the limit of PoS, when the variance discrepancy approaches infinity, is
zero. By the graphs in Figure 5-9 and Figure 5-10, the area metric and PoS cannot
distinguish the difference of S.t.d., no matter how much the discrepancy of S.t.d.

between observation and prediction increases.
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Figure 5-7 The validation metrics change when the mean value of the load on wheel increases (normal distribution); (a) Area

metric, (b) PoS
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5.5 Summary and Discussion

Chapter 5 conducted a comparison study of six statistical validation metrics for their
potential to offer an accurate SMV with hypothesis testing. In particular, the study
focuses on the capability of these approaches to distinguish the discrepancy of
variance between observed and predicted results. When the variance discrepancy is
a major source of invalidity, the KLD and Bayes factor approaches give the best
accuracy, among the six validation metrics studied. One noticeable thing is that the
accuracy of SMV using the Bayes factor approach strongly depends on a reliable
prior information. The area metric and PoS can provide a favorable accuracy when
minimal observations are available, regardless of the discrepancy in the variance.
This chapter provides an enhanced demonstration of why the area metric with U-
pooling and PoS provides low accuracy when there is a significant discrepancy in
the variances of observation and prediction. The area metric and PoS vary in a
smaller range when the discrepancy in the variance increases, as compared with the
discrepancy of the mean. Using automotive wheel rim model, this study emphasized

that the discussion in chapters 5.3.1 and 5.3.2 is reasonable.

This is a pioneering work to evaluate statistical validation metrics under
variance discrepancy in observed and predicted results. This research examines a
nonlinear model that includes statistical input parameters that induce variance
change, along with unknown parameters. It is also worth examining suitable
statistical validation metrics for accurate SMV, since variance discrepancies between
observation and prediction results commonly occur in engineering fields. | believe
that the results of this study can provide a general guideline for field engineers who

are not familiar with SMV, and help them to select a statistical validation metric for
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hypothesis testing that leads to accurate SMV. The result is applicable for
multivariate problems. However, a limitation of this study is that this study has no
discussion on the problem where the difference of the mean and the variance occurs
similarly. The research has not provided a quantitative criterion for selecting a
statistical validation metric between the mean-favored metric (e.g., area metric and
PoS) and the variance-favored metric (e.g., KLD). The future work will explore a
systematic framework for SMV that can guarantee its accuracy in a variety of
engineering case studies through a hybrid validation metric approach using the

characteristics of validation metrics discussed in this study.

Sections of this chapter have been published or submitted as the following journal
articles:

1) Hyejeong Son, Hyunhee Choi, Wongon Kim, Byeng D. Youn, and Guesuk Lee, “A
Comparative Study of Statistical Validation Metrics with Consideration of Variance
to Adress Type Il Errors in Statistical Model Validation,” Structural and
Multidisciplinary Optimization, Submitted in April 2021.
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Chapter 6

Conclusion

6.1 Contributions and Significance

The proposed research in this doctoral dissertation aims at enhancement of OBMI
process with consideration of a variety of error sources in a computational model.
This doctoral dissertation is composed of three research thrusts: (1) experimental
design to identify error sources in optimization-based model improvement; (2)
proportionate bias calibration with bound information to consider unrecognized
model form errors; and (3) comparison of statistical validation metrics to reduce type
IT Errors in model validation. It is expected that the proposed research offers the

following potential contributions and broader impacts in statistical model updating

fields.

Contribution 1: New Experimental Design which Reduces Parameter
Estimation Errors in Model Calibration for Error Sources

Identification

Research Thrust 1 in this doctoral dissertation proposes a new experimental design

134 %



method that uses the analytical equation of parameter estimation errors. The research
brought up a problem in OBMI that the process cannot deal with parameter
estimation errors, coupled with model form errors. The errors in parameter
estimation and model form are questionable in quantifying the error sources since
the actual prediction is unknown. According to the analytical derivation of parameter
estimation errors in model calibration, the new experimental design for OBMI
minimizes the pseudo inverse of the gradient of model prediction, partial terms in
the equation of parameter estimation errors. The method has the advantage that the
experimental design can be performed only with the initial prediction model without
any priors and observation data. With two case studies, the model calibration with
the observation selected from the proposed methods estimates the best values for
unknown parameters. This estimates can upgrade the predictability of the

computational model.

Contribution 2: Novel Framework of Model Calibration to Consider the
Discrepancy due to the Error Sources Using a Bound

Information for Unknown Model Parameters

This doctoral dissertation devises the proportionate bias calibration method in
OBMC to examine the amount of discrepancy between observation and prediction,
due to the error sources such as model form and measurement errors. To the best of
the authors’ knowledge, most existing works in model calibration to consider the
error sources are focused on how to quantify the error sources with numerous sorts

of observation. By applying the proposed methods to case studies, this research
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confirmed that the proposed method can contribute to: 1) adopting experience-based
bound information to support the insufficient observation data for quantifying the
effect of error sources, 2) preventing OBMC from optimizing the unknown
parameters to the biased locations from the actual location to supplement the errors
in predicted responses, and 3) being favorable for the model calibration with multiple
responses whose magnitude of each response value is severely different. According

to these contributions, enhanced model calibration is available.

Contribution 3: Guidance of Statistical Validation Metrics Selection for Model
Validation From the Perspective of Mean and Variance

Difference Between Observation and Prediction

Research Thrust 3 aims to provide guidelines and rationales to select statistical
validation metrics to escape the Type Il errors in model validation. To the best of the
author’s knowledge, the previous work only focuses on applying the validation
metrics in a specific condition, such as multiple responses or lack of observation data.
This research is a pioneering work to evaluate statistical validation metrics under
mean and variance discrepancy in observed and predicted results. The research
performed a comparison study of statistical validation metrics under the discrepancy
of mean or variance between observation and prediction to confirm which metrics
show the highest validation accuracy. The result reveals that area metric and PoS
are sensitive to the discrepancy of the mean (Mean-supportive metrics). KLD and
Bayes factor metrics are favorable to quantify the discrepancy of variance (Variance-

supportive metrics). The mean-supportive metrics are advantageous in only a small
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observation dataset since the quantification of variance discrepancy requires enough
observation. This research has scientific merits in demonstrating why mean-

supportive metrics show poor accuracy in quantifying the variance discrepancy.

6.2 Suggestions for Future Research

This doctoral dissertation performed extensive works to develop an enhanced OBMI
process to deal with the error sources in computational models. Although the
technical advances proposed in this doctoral dissertation successfully address some
issues in OBMI, there are still several research topics that further investigations and
developments are required to deliver the robust OBMI process. Specific suggestions

for future research are listed as follows.

Suggestion 1: Probabilistic Experimental Design Approach for a Severely

Nonlinear Response

The proposed experimental design adopts an assumption that the interested
responses can be linearly simplified. Since the linear model has a constant gradient,
the experimental design method gives the same result regardless of the initial value
of unknown model parameters. Thus, future work should focus on a systematic
method to consider a nonlinear response, which can deal with the variability of the
experimental design result about the initial value of unknown model parameters. As

a suggestion, the statistical information of the unknown model parameters might be
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promising to assess the reliability of the experimental design result (Huan and

Marzouk 2013) (Fedorov and Leonov 2013).

Suggestion 2: Consideration of Multivariate & Multiple Responses in Model

Calibration

For now, the proportionate bias calibration employs a single term for all of the
responses used for model calibration. The case studies considered the model
calibration of two unknown model parameters so that only two sorts of observations
are required. However, model calibration requires more observations as the number
of unknown model parameters increases. Future research requires a discussion of
whether a single-term bias can consider the effects of discrepancies due to error
sources. For multiple-responses model calibration, the proportionate calibration can
increase the number of bias terms. Since the dimension of the optimization space
expands when the number of bias terms increases, it degrades the convergence of the
optimization algorithm (Bessa et al. 2017) (Wang et al. 2020). Thus, the optimal

number of bias terms should be determined.

Suggestion 3: Development of a New Validation Metric by the Integration of
Mean-supportive and Variance-supportive Characteristics in

Statistical Validation Metrics

The development of a validation metric that shows feasibility in the mean and
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variance discrepancy simultaneously, is a significant research need. While this
doctoral dissertation confirmed validation metrics that have mean-supportive and
variance-supportive characteristics for a reasonable selection of metrics, most of the
practical cases involve mean and variance discrepancy together. Thus, future works
should focus on the integration of mean-supportive and variance-supportive
characteristics in a newly formulated validation metric. In addition, the newly
formulated validation metric should consider the effect of the number of
observations since the mean-supportive and variance-supportive characteristics can

differ according to the number of observations.
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Appendix A

Analytical Derivation of
Probability of Separation (PoS)
with Normal and Lognormal
Distribution

To find out the range of PoS when the difference of variance between
observation and prediction increases, these appendices provide the derivation of the
PoS using an analytical probability distribution function. Appendix A.1 assumes that
the observation and prediction follow a normal distribution; Appendix A.2 assumes
a lognormal distribution. The choice of a normal distribution or lognormal
distribution from among the numerous distribution types is made to consider PoS
when the observation and prediction follow the symmetric and asymmetric

distribution.

140



A.1 Analytical Derivation of PoS Metric with a Normal
Distribution

The general PDF of the normal distribution is as follows.

_ 1 -os(5H)
Fa = —=e 5 = o

Sl (A.1)

where u, and o denote the mean and variance, which are the distribution
parameters of a normal distribution. ¢ denotes the standard normal distribution
function, which gives zero and one as a mean and standard deviation. The CDF of a

normal distribution is shown in (A.2).

(A.2)

I R S = Y, ey
F(x)_f_ooame de = P( o )

The CDF F(x) is an integral of the PDF in a range of [-oo, X]. @ stands for the
function of a standard normal CDF. Using (A.1), and (A.2), the PNS in (4.7) is

rewritten as follows.

oo

Xx—H\ 1 —0.5(M)2
CD( ) e o1/ dx p A3
0 02 /JoV2m ! (A3)

PNSZI Fczfcldxzf

< U
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With a normality assumption, the median and the mean of a distribution are the
same. Thus, Pns satisfies (< wo. For the integration of (A.3), the following

transformation is adopted.

x—ﬂ1_t

g1 (A.4)
x=o1t+ 1y

dx = gydt
Substituting (A.4) into (A.3), the Pys is derived as follows.

®x— 1 _os(*=ta)?
PNS:f q;( Mz) 0.5( Ul)dx

e
02 /oyV2m
Cox—p\ 1 e (A.5)
= CD< )—e 05", dt
-f—oo 02 /JoyV2m !

@ oyt +py —
=f @(#)(p(t)dt

2

The CDF term @ in (A.5) is transformed to (A.6). Y is an artificial variable

which follows standard normal distribution.

ot + — ot + —
CD(l Uy M2)=P(YS 1 Uy Hz)

03 02 (A.6)

Uy — Uz

2 2
oy + 0,

= P(02Y — 01t < py — ) = O( )

Since Y and t follow standard normal distribution, the summation of two
variables (o,Y —a;t) follows N~(0, o? + 62 ). Using the definition of the

expectation, (A.7) provides the overall equation of Pys.
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@ ot +p —
PNS :f q)(#)(p(t)dt
—00 2

:f qD(M)(p(t)dt (A7)
—00 0'12 +0'22
Hi— U2 ® Hi— U2
=0 —= tdt = & | —=
() [eon-o(Z)
A.2 Analytical Derivation of PoS Metric with a Lognormal
Distribution

The general PDF and CDF of a lognormal distribution is as follows.

_ 1 _os(@=m)’ In(x) —m (A8)
f) == = o(——)
x 1 05 ln(t;—m 2
F(x) =f_oosme ( )dt (A9)
In(x) —m
=(———

The distribution parameters m and s become the mean and standard deviation

of In(x). Similar to the derivation process in Appendix A.1, Pys is derived as follows.
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PNS:f F, fe,dx

, (A.10)
® — In(x)-m
=f cI)(ln(x) m2> 1 6_0.5( L 1) ”
—0o0 S2 5'1V2T[
In(x) -my;
Sq B
x = eSittm (A.11)
—dx = s, dt
. X =5
(A.12) is the result of transformation, substituting (A.11) into (A.10).
®  n(x)—m 1 _ge(ln@-my\?
PNS=J- QD( ) 2) eo.s( 51 )dx
—o S2 s1V2em
®  /In(x) —m 1
=f cp( ) 2) e~ xg di (A.12)
—oo S2 Slvzﬂ
@ s;t+my; —m
=f x® (#) @(t)dt
—w S5
The term x and ¢(t) in (A.12) is reorganized as follows.
x(p(t) — eSlf+m1 X Le—O-sz — 1 e—0.5t2+51t+m1
V2m V2m
2 2
_ 1 e—o.s(t—sl)sz%Hm1 _ 1 e—0.5(t—51)26571+m1 (A.13)

Vzr Vzr

L im
=e2 T(t—sy1)
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When substituting (t-s1) into L, the overall process of Pys derivation is described

in (A.14) using (A.13).

o sit+m;—m
pus= [ 50 (R
—0o0 2

®  ssit+m; —m,\ St
= f (D(#)e 1+m1(p(t _ Sl)dt

<51L+s1 +my —
:eZ

m;
> @(L)dL

+m1E <CI) (Y S]_L + Sl + my — m2>)
S2

s;L+s2+my —m,
S2

(A.14)

2

S
—e2tMo (Y <

m; —m, — s?

JsE+s3 )

To consider the Pns concerning the mean and variance of distribution c,, instead
of the distribution parameters, the following (A.15) and (A.16) present the relation
between the distribution parameters (e.g., m, and s) and the mean or standard

deviation.

K2 ) (A.15)

(A.16)
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Using the (A.15) and (A.16), Pns in (A.14) is rewritten about the mean and

standard deviation.

2

K3 2
my; — In((——=—=) — s
52 2 2
Pys = €2 TMd( il S (A.17)

2 ‘722
sy + ln(”—% +1)
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