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The increased use of computer-aided engineering (CAE) in recent years requires 

a more accurate prediction capability in computational models. Therefore, extensive 

studies have considered engineering strategies to achieve highly credible computational 

models. Optimization-based model improvement (OBMI), which includes model 

calibration, validation, and refinement, is one crucial technique that has emerged to 

enhance the prediction ability of computational models. Model calibration is the 

process of estimating unknown input parameters in a computational model. Model 

validation presents a judgement of the accuracy of a predicted response. If it is possible 

for a computational model to have model form uncertainties, model refinement explores 

unrecognized error sources of a computational model. OBMI can adopt these three 
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processes individually or sequentially, according to the trustworthiness of the prior 

knowledge of the computational modeling.  

Although OBMI process improvements have emerged to try to consider the major 

sources of errors, OBMI can still suffer from a failure to improve a computational 

model. Since numerous error sources in an experimental and computational model are 

intertwined with each other, OBMI has difficulty identifying the error sources required 

to enable accurate prediction ability of the computational model. Thus, eventually, 

OBMI may fail to propose an appropriate solution. To cope with this challenge, this 

doctoral dissertation research addresses three essential issues: 1) Research Thrust 1 – a 

new experimental design approach for model calibration to reduce parameter 

estimation errors; 2) Research Thrust 2) – a device bias quantification method for 

considering model form errors with bound information; and, Research Thrust 3) – 

comparison of statistical validation metrics to consider type II errors in model 

validation.  

Research Thrust 1: A variety of sources of errors in observation and prediction 

can interrupt the model improvement process. These error sources degrade the 

parameter estimation accuracy of the model calibration. When a computational model 

turns out to be invalid because of these error sources, the OBMC process performs 

model refinement. However, since model validation cannot distinguish between 

parameter estimation errors and modeling errors, it is difficult for the existing method 

to efficiently refine the computational model. Thus, this study aims to develop a model 

improvement process that identifies the leading cause of invalidity of a prediction. In 

this work, an experimental design method is integrated with optimization-based model 

improvement to minimize the effect of estimation errors in model calibration. Through 
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use of the proposed method, after calibration, the computational model mainly includes 

the effects of unrecognized modeling errors. 

Research Thrust 2: The experimental design method proposed in Research Thrust 

1 has the advantage of being able to identify two error sources without additional 

observation. However, model calibration still suffers from parameter estimation errors, 

since experimental design is affected by model form errors. The parameters estimated 

by model calibration are often unreasonable for engineers in practical settings because 

they have expert-based prior knowledge about the model parameters. Among the 

variety of physical information available, bound information about model parameters 

is a suitable constraint in optimization-based model calibration (OBMC). Using prior 

information about parameter bounds, Research Thrust 2 devises proportionate bias 

calibration to quantify the amount of degradation of the predicted responses that is due 

to model form errors in a computational model. The bias term is estimated in the 

optimization-based model calibration (OBMC) algorithm with unknown parameters to 

enable OBMC to support accurate estimation of unknown parameters within a prior 

bound. This study proposes a new formulation of a bias term that depends on the output 

responses to resolve the gap in appropriate bias that arises due to the different 

dimensions of the predicted responses. 

Research Thrust 3: Statistical model validation (SMV) evaluates the accuracy of 

a computational model’s predictions. In SMV, hypothesis testing is used to determine 

the validity or invalidity of a prediction, based on the value of a statistical validation 

metric that quantifies the difference between the predicted and observed results. Errors 

in hypothesis testing decisions are troublesome when evaluating the accuracy of a 

computational model, since an invalid model might be used in practical engineering 
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design activities and incorrect results in these settings may lead to safety issues. This 

research compares various statistical validation metrics to highlight those that show 

fewer errors in hypothesis testing. The resulting work provides a statistical validation 

metric that is sensitive to a discrepancy in the mean or variance of the two distributions 

from the predictions and observations. Statistical validation metrics examined in this 

study include Kullback-Leibler divergence, area metric with U-pooling, Bayes factor, 

likelihood, probability of separation, and the probability residual. 
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Chapter 1  Introduction 

 

Introduction 

 

1.1 Motivation 

Advances in Information and Communication Technology (ICT) have triggered an 

Industry 4.0 trend in manufacturing systems. Based on state-of-art ICT technologies, 

such as Internet of Things (IoT) platforms, Artificial Intelligence (AI), and cyber-

physical-systems (CPS), Industry 4.0 has provided automatic operation in design, 

management, and monitoring of the entire manufacturing process (Peraković et al. 

2018) (Alcácer and Cruz-Machado 2019) (Peraković et al. 2019). The recent trend 

of Industry 4.0-based manufacturing has given computer-aided modeling (CAM) a 

crucial role in the product development and management processes (Mosterman and 

Zander 2016) (Qi and Tao 2018). CAM has enabled more accurate prediction ability 

in a wide range of manufacturing settings. Furthermore, the most recent types of 

CAM have evolved to enable digital twin exploration of cyber-physical systems 

(CPS) that can predict responses in diverse operating conditions (e.g., system 

deformation or environmental change), while considering numerous model 

parameters (Mosterman and Zander 2016). However, some digital twin parameters 

become invalid as the system condition changes; this decreases the prediction 

accuracy of this approach. Thus, model improvement techniques have been 
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developed to enhance the capabilities of computational models.  (Kennedy and 

O'Hagan 2001) (Trucano et al. 2006) (Xiong et al. 2009) (Oberkampf and Roy 2010) 

(Youn et al. 2011) (Ling et al. 2013) (Sun and Sun 2015) (Moon et al. 2015) (Lee et 

al. 2018) (Lee et al. 2019) (Hu et al. 2020). 

Discovering unknown input parameters in a computational model is one of the 

core tasks of model improvement. Optimization-based model calibration (OBMC) is 

recognized as a promising solution for estimating unknown input parameters in a 

computational model, through the use of optimization techniques. Optimization-

based model improvement (OBMI) is terminology for the model improvement 

process, which employs OBMC to estimate unknown input parameters. Including 

the model calibration step, OBMI consists of three sub-steps; model calibration, 

model validation, and model refinement. Model validation is a decision-making step 

to evaluate the prediction accuracy of a computational model based upon observation 

data. If the model validation step decides that a computational model is invalid, the 

process of OBMI assumes the possibility of blind sources of model form errors. Then, 

model refinement examines the most dominant error sources that were unrecognized 

in the modeling, through a systematic framework. The overall flow chart of OBMI 

and its three sub-steps are shown in Figure 1-1 (Youn et al. 2011).  
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Figure 1-1 A flow chart of Optimization-based Model Improvement (OBMI) for a computational model  
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Despite the extensive studies about model improvement, engineers who use the 

OBMI process still face limitations in their ability to enhance the predictability of a 

computational model. A variety of error sources in the computational model and 

observation data can threaten the ability to achieve a feasible OBMI result. Figure 

1-2, Figure 1-3, and Figure 1-4 illustrate three major error sources that directly affect 

observation data and computational models. The model parameters include material 

properties, boundary and initial conditions, geometric conditions, and environmental 

conditions, as shown Figure 1-2. Model form errors are a comprehensive term for 

modeling failures that arise due to insufficient knowledge, such as model 

simplification, surrogate modeling errors, and wrong assumptions. The last error 

sources are experimental errors, as illustrated in Figure 1-4. Since the predicted 

responses of a computational model are not directly influenced by experimental 

errors, this is regarded as the least influential factor. However, experimental errors 

should be considered, because the observation data serves as a criterion for 

estimating parameters in the model calibration and for evaluating the validity of a 

computational model in the model validation step. 
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Figure 1-2 Various error sources in OBMI: Unknown model parameters  
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(c) 

Figure 1-3 Various error sources in OBMI: Model form errors: (a) simplified 

modeling, (b) surrogate modeling, and (c) wrong assumptions 
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Figure 1-4 Various error sources in OBMI: Experimental errors 

 

Due to these error sources, model improvement remains a challenging task for 

development of an accurate process. The first challenge is that the estimated 

parameters used in model calibration cannot ensure that the result is similar to the 

actual value of a real system (Oberkampf and Trucano 2008) (Oberkampf and Roy 

2010). The estimated parameter values in model calibration allow the computational 

model to emulate the observation data used for model calibration. It is unknown 

whether the estimated parameter values are similar to the values of the actual system. 

In the end, model improvement cannot guarantee the validity of the estimated 

parameter values in other designs without new observation data for the new design. 

The second challenge is that model validation cannot ensure an accurate decision. 

An invalid computational model can be evaluated as a valid model due to the various 

sorts of uncertainties in the predicted responses and observation data. These decision 

errors can be dangerous in actual engineering fields, especially when designing a 

vast and complex engineering system related to human safety. A trustworthy result 

of OBMI can be available after these challenges are solved. Thus, section 1.2 

outlines the three technical issues that should be solved to enable wide use of OBMI, 



8 

 

through consideration of major error sources. 

 

1.2 Research Scope and Overview 

An accurate OBMI process must be performed with reasonable consideration of the 

various error sources. The goal of this doctoral dissertation research is to develop an 

advanced OBMI process to enable wide use of a computational model, by tackling 

three technical issues: 1) the limitations of OBMI that arise due to coupled error 

sources in the model calibration; 2) parameter estimation errors in model calibration 

that emerge due to the existence of unrecognized model form errors; 3) decision 

errors in statistical model validation that are due to numerous sources of uncertainties. 

To address the above-mentioned technical issues, the research scope in this doctoral 

dissertation is the enhancement of OBMI through the following three research thrusts: 

 

Research Thrust 1:  Experimental Design to Identify Error Sources in 

Optimization-based Model Improvement 

Due to the error sources introduced in Fig 2-4, it is difficult for the model calibration 

and model validation steps to offer reliable operation. One of the main problems in 

model calibration is that the error sources degrade the estimation accuracy of the 

unknown model parameters. These parameter estimation errors in model calibration 

become another error source that is coupled with model form errors in the 

computational model. Since OBMC cannot discover the existence of these parameter 

estimation errors, a challenge in OBMI arises in that the process cannot identify the 
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coupled error sources in the model validation (Figure 1-5). These unidentified errors 

can prevent model validation from giving the correct decision. The objective of 

Research Thrust 1 is to identify two sorts of error sources between parameter 

estimation errors and model form errors to enable accurate decisions in model 

validation. The proposed method introduces an experimental design approach for 

model calibration that reduces the parameter estimation errors to address this issue. 

The optimality criterion for the experimental design is derived from the analytical 

formulation of the parameter estimation. Using the observation data determined by 

the experimental design, the calibrated unknown parameters become close to the 

actual value. Two case studies are provided to demonstrate the efficacy of the 

proposed method. 

  

Figure 1-5 Model validation with coupled error sources  
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Research Thrust 2:  Proportionate Bias Calibration with Bound Information 

to Consider Unrecognized Model Form Errors  

The model calibration method with experimental design encounters a limitation in 

that the calibrated unknown parameters from the experimental design still remain 

parameter estimation errors (Figure 1-6). Even though the model calibration with 

experimental design approach can alleviate the estimation errors in the model 

calibration, it does not guarantee the optimal value of the unknown parameters. If 

the model form errors are dominant in the model calibration, experimental design 

cannot significantly reduce the amount of parameter estimation errors. These wrong 

estimated parameters can be irrational for practical engineering fields, which have 

expert-based information about these unknown model parameters. Thus, Research 

Thrust 2 focuses on a systematic framework for model calibration to consider the 

amount of unrecognized model form errors using the expert-based bound 

information. The reasonable bound information of unknown model parameters can 

be a bound constraint in OBMC. The proportionate bias represents the amount of 

model form errors in a relationship between the observation data and the predicted 

responses. The assumption of proportionate bias is that the biased error is 

proportional to the amount of predicted responses. The formulation of modeling bias 

is categorized into sensitivity-based bias and proportionate bias for multiple 

responses with severely different dimensions. Using the bias form, the amount of 

biased errors that arise due to unknown model form errors is calibrated with 

unknown model parameters. The bound information of unknown parameters can be 

a guide for OBMC to estimate a reasonable value of the unknown parameters and 

proportionate bias. 
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Figure 1-6 Parameter estimation errors that arise due to the main error sources in 

the computational and physical models 

 

Research Thrust 3: Comparison of Statistical Validation Metrics to Reduce 

Type II Errors in Model Validation 

Model validation is the process of determining the degree to which a computational 

model is an accurate representation of the actual phenomenon, from the perspective 

of the model’s intended uses (Babuska and Oden 2004) (Hills et al. 2008) 

(Oberkampf and Trucano 2008) (Weathers et al. 2009) (Sankararaman et al. 2011) 

(Ling and Mahadevan 2013) (Sankararaman and Mahadevanb 2015). In model 

validation, hypothesis testing is used to determine the validity or invalidity of a 

prediction based on the value of a statistical validation metric that quantifies the 

difference between the predicted and observed results. Errors in hypothesis testing 

decisions are troublesome when evaluating the accuracy of a computational model, 
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since an invalid model can be used in practical engineering design activities, and 

incorrect results in these settings may lead to safety issues. An appropriate selection 

of statistical validation metrics that are sensitive to the discrepancy of two 

distributions is required to reduce the decision errors. Thus, the objective of Research 

Thrust 3 is to provide a guideline to select reasonable statistical validation metrics. 

The decision errors of six statistical validation metrics, including area metric, Bayes 

factor, Likelihood, Kullback-Leibler Divergence, Probability of Separation, and 

Probability Residual, are compared with a numerical example with statistical and 

unknown model parameters. These comparison results propose the mean-supportive 

and variance-supportive metrics, according to whether the statistical validation 

metric is sensitive to the discrepancy of the mean or variance. 

 

 

Figure 1-7 Validity decision errors in model validation  
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1.3 Dissertation Layout 

This doctoral dissertation is organized as follows. Chapter 2 briefly explains overall 

process of optimization-based model improvement and its three sub-steps (e.g., 

model calibration, model validation, and model refinement). Chapter 3 presents an 

OBMI process that is integrated with experimental design, which reduces parameter 

estimation errors in model calibration. Chapter 4 proposes a new framework for 

model calibration with proportionate bias to consider model form uncertainties with 

a prior bound constraint of unknown model parameters. Chapter 5 suggests suitable 

statistical validation metrics from the perspective of mean and variance discrepancy 

to reduce type II errors. Chapter 6 summarizes the doctoral dissertation and its 

contributions and suggests future research directions. Appendix A provides an 

analytical representation of the statistical validation metrics considered in Chapter 5, 

when the interested responses are the normal and lognormal distribution. The 

derivation in Appendix A is used to explain the mean-supportive and variance-

supportive characteristics of the validation metrics outlined in Chapter 5.  
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Chapter 2 Literature Review: Optimization-based and Bayesian-based Model Improvement  

 

Literature Review: Optimization-

based and Bayesian-based Model 

Improvement  

 

This chapter reviews two sorts of model improvement methods to help readers’ 

understanding. Chapter 2.1 explains optimization-based model improvement 

(OBMI), the main interest of this doctoral dissertation. The subchapter includes the 

description of three sub-steps: model calibration, model validation, and model 

refinement. Chapter 2.2 introduces Bayesian-based model improvement process, 

another popular model improvement in a statistical manner. The comparison of these 

two methods are summarized in Chapter 2.3. 

 

2.1 Optimization-based Model Improvement (OBMI)  

Optimization-based model improvement consists of three processes: model 

calibration, model validation, and model refinement. Figure 1-1 illustrates overall 

process of OBMI. In If the modelers recognize the existence of unknown parameters, 

model calibration is performed first. The observation data from the experiments 
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plays a key role in calibration, serving as a representative of the true value. However, 

estimates of the unknown parameters can be biased from the true values due to error 

sources in both observation and prediction. Using the calibrated parameters, the 

model validation step is used to determine the validity of the computational model. 

Model validation uses a validation metric to measure the discrepancy between the 

observed and predicted results (Liu et al. 2011). When a computational model is 

invalid, modeling errors in the computational model are regarded as the main source 

of invalidity. Because the modelers typically believe that the computational model 

has been implemented with a sufficient amount of modeling knowledge, most 

modeling errors in a computational model remain unrecognized before the model 

improvement process. If the model validation step evaluates the predicted response 

from the computational model as invalid, the model improvement process performs 

model refinement to discover unrecognized modeling errors. Among all uncertainty 

candidates, model refinement distinguishes the most critical error sources through a 

three-step process: model invalidity analysis, an invalidity reasoning tree, and 

invalidity sensitivity analysis (Oh et al. 2016). The overall model improvement 

process continues until the model validation step satisfies the validity criterion. 

 

2.1.1 Model Calibration 

The model calibration is to find optimal values of unknown input parameters in a 

computational model (Trucano et al. 2006) (Arendt et al. 2010) (Youn et al. 2011) 

(Arendt et al. 2012) (Li et al. 2016) (Lee et al. 2018) (Jiang et al. 2020). In this 

approach, an optimization problem is formulated to estimate the unknown model 

parameters that minimize or maximize the discrepancy of the experimental and 
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computational responses (Frank and Shubin 1992) (Hills and Trucano 2002) 

(Gholizadeh and infrastructures 2013) (Lee et al. 2019). Figure 2-1 illustrates the 

overall process of optimization-based model calibration.  

In Figure 2-1, the first step is to define the unknown model parameters. Generally, 

the existence of unknown model parameters are determined according to a modeler’s 

opinion. However, the usual practical problems in model calibration encounter the 

ambiguity of how the prior information about model parameters is reliable. Thus, a 

variable selection method, such as sensitivity-based variable screening, can be 

adopted (Hamby 1994) (Frey and Patil 2002) (Campolongo et al. 2007) (Iooss and 

Lemaître 2015). With the unknown and known model parameters, the predicted 

models calculate the responses (outputs) to quantify the discrepancy from the 

observation data. The metric for quantification of discrepancy is called ‘calibration 

metric’. The value of the calibration metric can be an objective function in the 

optimization problem.  

 𝐦𝐢𝐧
𝜽

or𝐦𝐚𝐱
𝜽

𝑓𝑐𝑎𝑙.(𝛈(𝛉, 𝒙; 𝐃), 𝛇(𝒙; 𝐃)) (2.1) 
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Figure 2-1  Optimization-based Model Calibration
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In (2.1), f is a calibration metric, 𝛈 is a predicted responses, and 𝛇 is observation 

data. In 𝛈 and 𝛇, the terminologies 𝛉, 𝒙, and 𝐃 respectively denote for unknown 

parameter, known parameter, and observation site. The OBMC can be performed 

deterministic or statistically, by adopting a calibration metric which can deal with 

deterministic or statistic values. The statistical calibration metrics utilizes a statistical 

moment or a probability density function of observation and prediction. This 

optimization loop continues until the calibration metric value satisfies the criteria 

pre-determined by the modelers. 

It is worth noting that the optimization-based approach is a deterministic process 

since the optimal solution derived from the optimization-based approach is a 

deterministic value. However, the model improvement method in this paper is 

defined as a statistical approach because the method deals with uncertainties of 

responses over the whole process. When computational models include model form 

uncertainties, which arise mainly due to incorrect assumptions or excessive 

simplification, model calibration fails to find reasonable estimates of the statistical 

moments of the unknown input variables. The model refinement step can revise the 

leading cause of the model form uncertainties. To avoid a failure of model calibration, 

exact computational modeling and simplification of assumptions based on 

reasonable physics are required. 

 

2.1.2 Model Validation 

Model validation is a process to verify the validity of computational responses 

(Oberkampf and Roy 2010). It consists of examining the validation metric and 

decision making. The validation metric quantifies the coincidence or the discrepancy 
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between the experimental and computational responses. The validation metric is 

technically different from the calibration metric in that it should give information of 

model validity even in constrained cases, such as where there is a limited number of 

data or where the experimental data is given in different environments. To consider 

the statistical uncertainty in limited observation, most of model validation adopts a 

statistical validation metric. Statistical validation metrics include the area metric and 

Bayes factors (Oberkampf and Trucano 2002) (Rebba et al. 2006) (Liu et al. 2011). 

Using the validation metric value, the model validation is used to determine the 

validity of the calibrated model. In decision making, hypothesis testing is generally 

used.  

Model validation includes the comparison of a model prediction with 

experimental data to evaluate a computational model’s prediction accuracy. Figure 

2-2 shows the flow chart of the overall model validation process (Oberkampf and 

Barone 2006) (Kat and Els 2012). The first step of model validation is to prepare the 

prediction and observation results using computational models and physical 

experiments. Based on this prediction and observation data, statistical validation 

metrics quantify the discrepancy between the computational prediction and 

experimental observation. Depending on The validation metric result composes a 

deterministic quantity that is then assessed in model validation. This study 

distinguishes statistical validation metrics as either larger-the better (L type) or 

smaller-the better (S type). L-type metrics increase when the prediction and 

observation become more similar. S-type metrics decrease as the prediction and 

observation become more similar. Chapter 5.1 provides details about the 

characteristics of each statistical validation metric. 
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Figure 2-2 The process of statistical model validation (SMV). 
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To evaluate the prediction, hypothesis testing examines the probability of the 

null hypothesis and an alternative hypothesis, using the statistical validation metrics. 

The key idea is to determine the criteria by building a distribution of the null 

hypothesis in which the prediction model is valid. To do this, first, numerous 

observation datasets are randomly sampled under the distribution fitted by the 

prediction. The validation metric calculated by the observation datasets then forms 

the distribution of the null hypothesis. The confidence level (denoted by α) 

distinguishes the ranges in which the null hypothesis should be accepted or rejected 

for a validation metric value. Figure 2-3 explains the location of the confidence level 

in the validation metric distribution. Figure 2-3(a) shows the distribution of L-type 

metrics, such as likelihood and Bayes factor. The distribution in Figure 2-3(b) is 

given for S-type metrics, including the area metric, Kullback-Leibler divergence, 

probability of separation, and probability residual. 

 

 

(a) 

(𝟏 − 𝜶) × 𝟏𝟎𝟎% 

(accept) 𝜶 × 𝟏𝟎𝟎%  

(reject) 
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(b) 

Figure 2-3 The confidence level in a validation metric’s distribution (a) L-type 

(log-likelihood), (b) S-type (area metric with U-pooling). 

 

2.1.3 Model Refinement 

Model refinement is an essential step in that this process directly removes the 

underlying cause of unrecognized model form errors. There has been little 

achievement in academic research towards considering the unrecognized model 

form errors in a systematic framework. Xiong et al. stated in their paper that personal 

experience in modeling gives an intuition for model refinement: however, this is not 

an applicable process for practical settings. Therefore, model refinement, introduced 

in this paper, aims to explore the most effective root causes of invalid modeling via 

a systematic approach (Oh et al. 2016) .  

The model refinement selects the most invalid sources based on experts’ 

𝜶 × 𝟏𝟎𝟎% (reject) 

(𝟏 − 𝜶) × 𝟏𝟎𝟎% (accept) 
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opinion and numerically quantified criteria. The process involves three steps: 1) 

model invalidity analysis, 2) an invalidity reasoning tree, and 3) invalidity sensitivity 

analysis. Model invalidity analysis is a brainstorming step, which gathers all possible 

invalid sources. This step allows as many invalid sources as possible. Figure 2-4 

shows an example of the affinity diagram for model invalidity analysis. The second 

step is to develop an invalidity reasoning tree that selects only potential invalid 

sources from among all sources gathered in Step 1. Figure 2-5 shows an example of 

invalidity reasoning tree. For the selection of invalid sources, related experts should 

identify the proper reasons for invalidity, from the conceptual, mathematical, and 

computational perspective. Invalidity sensitivity analysis quantitatively evaluates the 

importance of invalid sources of computational modeling. A decision matrix is one 

useful tool for comparing all candidates of the invalid sources of modeling (Dieter 

1991). Oh et al. suggested a weighted decision matrix that considers the importance 

of each criterion by multiplying the weight values (Forman and Gass 2001) (Oh et 

al. 2016). Figure 2-6 is an example of the objective tree which gives weight values 

for each criteria. Figure 2-7 shows an example of weighted decision matrix. In this 

step, engineers in the field can define criteria and weights for quantification 

appropriate for their situation. 

 

Figure 2-4 Example of affinity diagram for model invalidity analysis 
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Figure 2-5 Example of invalidity reasoning tree 

Figure 2-6 Example of objective tree with weight values 

 

Figure 2-7 Example of invalidity sensitivity analysis 
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Numerous field engineers use simplified computational models to increase the 

speed of calculation or the efficiency of the modeling. The majority of modeling 

errors arise from the simplification of computational models, rather than a lack of 

modeling knowledge. Therefore, invalid modeling should be selectively improved 

by considering the situation and the standards required for each industrial field to 

ensure that an unconditionally exact and complicated model is not implemented. In 

addition to the model refinement method, other statistical approaches to deal with 

the invalidity of a computational model have been developed (Kennedy and O'Hagan 

2001) (Xiong et al. 2009) (Qiu et al. 2018). Bias correction with Bayesian-based 

model improvement framework can quantify the number of errors that are due to the 

invalidity of a computational model (Kennedy and O'Hagan 2001) (Arendt et al. 

2012) (Xi et al. 2013). To precisely quantify the biased errors, this method requires 

numerous experimental data samples from a diverse domain of design variables. The 

following chapter 2.2 provides more details of bias correction method in Bayesian-

based model improvement. 

 

2.2 Bayesian-based Model Improvement with Bias 

Correction 

Bayesian-based model calibration is another popular approach for model 

improvement which adopts Bayesian inference to estimate unknown model 

parameters (Kennedy and O'Hagan 2001) (Beck and Au 2002) (McFarland et al. 

2007) (Higdon et al. 2008) (Behmanesh et al. 2015) (Li et al. 2016) (Plumlee 2017) 

(Baig 2020). Figure 2-8 illustrates the overall flow chart of Bayesian-based model 

improvement. This process applies observation data and the prior distribution of 
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unknown model parameters to Bayesian inference, stated in (2.2). 

 𝑝(𝛉|𝛈) ∝ 𝑝(𝛈|𝛉)𝑝(𝛉) (2.2) 

The term 𝑝(𝛉|𝛈) is a posterior distribution of unknown model parameters 𝜃. The 

term 𝑝(𝛈|𝛉) is likelihood function for unknown model parameters. The last term 

𝑝(𝛉) is a prior distribution of unknown parameters. 

Figure 2-8 The flow chart of Bayesian-based model improvement 

Prior Distribution of Unknown Parameters (𝑝(𝛉)) 

Observation data (𝛇 = [ζ𝟏, ζ𝟐, … , ζ𝒊]) 

Bayes’ Theorem (2.3) 

Posterior Distribution of Unknown Parameters (𝑝(𝛉|𝛈)) 

Posterior Distribution of the Prediction (𝑝(𝛈(𝛉, 𝒙;𝐃))) 

Gaussian process model 

for prediction 

(𝛈(𝛉, 𝒙; 𝐃)) 

Gaussian process model 

for bias 

(𝜹(𝒙;𝐃)) 
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The prediction model 𝛈 in (2.2) can be defined under the effect of model form 

errors and measurement errors, as shown in (2.3). 

 

𝛈(𝛉, 𝒙;𝐃) + 𝜹(𝒙;𝐃) = 𝛇(𝒙;𝐃) + 𝛆(𝐃) 

𝛈(𝛉, 𝒙;𝐃) = 𝛇(𝒙; 𝐃) − 𝜹(𝒙;𝐃) + 𝛆(𝐃) 

(2.3) 

where δ is the unrecognized source of modeling errors and ε is measurement error. 

One thing to be clarified is that the exact amount of error sources 𝜹 and ε are 

unknown. Bayesian-based method employs bias correction to quantify the amount 

of modeling errors using observations measured across various sites in the design 

parameters (Rebba et al. 2006) (Higdon et al. 2008) (Arendt et al. 2010) (Li et al. 

2016). The bias correction method first quantifies the bias term as the discrepancy 

between prediction and observation with the prior information of unknown 

parameters. And then, the quantified bias is adopted to (2.3) for Bayesian inference 

to estimate the posterior distribution of unknown parameters and prediction. 

Gaussian process modeling can deal with the uncertainty in bias and prediction 

response. Generally, measurement error is assumed to be a normal distribution, with 

zero-mean and covariance estimated by the observation data (Ferson et al. 2008).  

Even though the bias correction method is an efficient way to quantify the 

model form errors and unknown parameters together, neither values are similar to 

the actual value (Oliver et al. 2015). The bias term determined by this framework 

depends on a prior distribution of unknown model parameters, which affects the 

result of Bayesian calibration (Jiang et al. 2020). In other words, the result of 

Bayesian calibration differs from how accurate the prior information is. The aims of 
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quantifying bias term to minimize the difference between the observed and predicted 

results. Based on the observation data obtained from design parameters from various 

sites, the bias and estimated unknown parameters can be updated to represent the 

prediction values. Overall, this technique has no need to consider the accuracy of 

parameter estimation errors or the effect of invalidity that arises from modeling 

errors; however, this technique requires numerous observation data. 

 

2.3 Summary and Discussion 

Chapter 2 aims to introduce two sorts of popular model improvement process: 1) 

optimization-based approach, and 2) Bayesian-based approach. It differs in what 

kinds of the methods the model improvement framework employs for model 

calibration. By the explanation described in Chapter 2.1 and 2.2, Table 2-1 compares 

the characteristics of these two model improvement process. 

OBMI is a deterministic method that gives a deterministic value for estimated 

unknown parameters. The method can deal with the uncertainties of unknown 

parameters as a statistical moment (e.g., mean and standard deviation). Furthermore, 

OBMI allows getting an optimal value of unknown parameters without any 

information about model parameters. OBMI has initially aimed for a computational 

model to assist an engineered product design, which has difficulty measuring 

observation data for various design sites. Thus, three steps in OBMI aim to enhance 

a computational model's accuracy with a limited or insufficient amount of 

observation data. For example, the OBMI devices model refinement step which 

handles unrecognized model form errors in a qualitative approach. 
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Table 2-1 Comparison of optimization-based model improvement and Bayesian-based model improvement 

 Optimization-based Model Improvement Bayesian-based Model Improvement 

Method Deterministic Statistic 

Output A representative value (Mean, standard 

deviation) 

Probability distribution 

Error Source 

Consideration 

Experimental 

error (ε) 

Assumes the error is too small to ignore Assumes normal distribution with zero-

mean N~(0,σ2) 

Model form 

error (δ) 

Explore the error sources by model 

refinement method 

Gaussian process modeling with bias 

correction method 

Required prior information - distribution of unknown model parameters 

Applicable Observation Data Data measured at limited design sites Datasets measured in a diverse design sites 
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Compared with OBMI, Bayesian-based model improvement is a statistical 

approach that gives a result of model calibration as a probability distribution. The 

method is an efficient framework to apply the prior information of the parameters. 

However, the result of estimated unknown parameters highly depends on the 

accuracy of the prior information. With bias correction method, Bayesian-based 

model improvement can quantify the Gaussian process model for model form errors 

about design parameters. Thus, the Bayesian-based approach requires is applicable 

for an engineering system which requires system health diagnostics and management.  

By the above comparison, the notable difference between OBMI and Bayesian-

based model improvement is the amount of information used for model improvement. 

OBMI intends to be capable of model improvement process when the applicable 

information is limited. In contrast, Bayesian-based model improvement aims to 

appropriate use of assorted information such as a prior distribution of unknown 

parameters or numerous measurable observation datasets. This doctoral dissertation 

aims to develop a capable model improvement process in most practical situations 

where datasets are limited in a system design step. The research topics introduced in 

Chapter 3 through Chapter 5 were devised under the assumption that only a partial 

dataset measured at the specific design conditions are allowable. 

 

 

  

Sections of this chapter have been published or submitted as the following journal 

articles:  

1) Hyejeong Son, Guesuk Lee, Kyeonghwan Kang, Young-jin Kang, Byeng D. Youn, 

Ikjin Lee, and Yoojeong Noh, “Industrial Issues and Solutions to Statistical Model 

Improvement: A Case Study of an Automobile Steering Column,” Structural and 

Multidisciplinary Optimization, Vol. 61, pp. 1739-1756, 2020. 
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Chapter 3 Experimental Design for Identifying Error Sources Between Parameter Estimation Errors and Model Form Errors 

 

Experimental Design for 

Identifying Error Sources Between 

Parameter Estimation Errors and 

Model Form Errors  

 

Numerous error sources in observation and prediction affect the results of model 

improvement. Observation involves measurement errors, which arise due to 

environmental noise, lack of precision in the sensing, or an incorrect experimental 

setup (Kim et al. 2019). In a computational model, insufficient knowledge, or 

excessive simplification, induces modeling errors that degrade the prediction 

accuracy (Thakur et al. 2009). These error sources can degrade the accuracy of the 

parameter estimation step in model calibration (Oberkampf and Roy 2010) (Lee et 

al. 2019) (Lee 2019). These parameter estimation errors can be another source of 

invalidity, in addition to the modeling errors in a computational model. Thus, the 

model improvement process requires consideration of the effects of error sources 

from both observation and prediction. 

To address modeling errors of a computational model in OBMI, model 

refinement is used to discover unrecognized sources of errors in the model. Model 
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refinement is conducted after the model validation step only when the predicted 

responses of a computational model show invalidity in the model validation step  

(Oh et al. 2016) (Son et al. 2020). This method is able to apply model improvement 

with limited observation data in a specific design domain, ignoring measurement 

errors. However, the parameters estimated from this type of model calibration are 

difficult to apply under various design domain conditions, due to parameter 

estimation errors. If the model validation step determines that the computational 

model is invalid, either modeling errors or parameter estimation errors can be the 

main cause of invalidity. Since the model refinement step cannot deal with both 

parameter estimation errors and modeling errors, this method is limited in its ability 

to improve the accuracy of the overall prediction. 

The research outlined herein develops an optimization-based model 

improvement that distinguishes the sources of prediction invalidity, discriminating 

between errors that arise from the calibrated parameters and those from the modeling 

errors in a computational model. An experimental design is integrated into the 

optimization-based model improvement to reduce the estimation errors that arise 

from unknown parameters in the model calibration step. Using this experimental 

design, the errors that remain in a computational model after model calibration are 

then mainly due to unrecognized sources of modeling error. Thus, the refinement 

step can focus on reducing these unrecognized sources of modeling errors.  

The remaining chapters are organized as follows. Chapter 3.1explains the 

model improvement process, considering the various types of uncertainty. Chapter 

3.2 provides an overview of the proposed model improvement process, including 

information-based experimental design. Chapter 3.3 discusses the numerical and 
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practical case studies that were examined in this work to show the validity of the 

proposed method. Finally, Chapter 0 concludes with overall remarks and a 

discussion of future work. 

 

3.1 Coupled Error Sources in Model Calibration 

The flow chart in Figure 3-1 shows optimization-based model improvement, which 

was developed to deal with error sources in observation and prediction (Youn et al. 

2011). From a physical system in which an interested response can be observed, a 

modeler constructs an initial computational model based on the available knowledge. 

Observation and prediction respectively include measurement errors and model form 

errors. As mentioned in Chapter 2, OBMI process generally assumes that the 

observational result are free from any errors and negligible. Modeling errors can 

result from any of the diverse types of knowledge required for modeling, such as 

input parameters for which exact values are unknown, or invalid assumptions in a 

model form. The input parameters denote the physical quantities that determine the 

characteristics of a system, such as geometric figures, material properties, or load 

and boundary conditions in a computational model. Modeling assumptions involve 

geometric simplification, linearization, or elasticity assumptions that are employed 

for computational convenience.  
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Figure 3-1 Model improvement process that considers major error sources 
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The existence of model form errors is a nuisance for model calibration in that it 

affects the accuracy of estimated unknown parameters and has difficulty quantifying 

the exact amount of errors. Figure 3-2 illustrates the model calibration process of a 

prediction model with model form errors. Figure 3-2 (a) shows the prediction and 

observation before the model calibration. The true model is assumed as a linear 

function in the prediction model. When θ = θinitial, initial prediction (η𝑖,𝑖𝑛𝑖𝑡𝑖𝑎𝑙) is 

different from observation (ζ𝑖 ). The model calibration tries to optimize θ which 

makes prediction and observation equal (η𝑖 = ζ𝑖). After the model calibration, the 

figure changes to Figure 3-2 (b). Even though the prediction and observation 

responses became similar, θ is optimized to θe, biased from θtrue due to model form 

errors. Thus, the model validation step cannot evaluate the invalidity of the 

prediction model since the errors of unknown parameters supplement the errors in 

prediction.  
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(a) 

(b) 

Figure 3-2 Model calibration with model form errors: (a) Before calibration, (b) 

After calibration 
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3.2 Optimization-based Model Improvement with 

Experimental Design 

Chapter 3.1 described the primary limitation of optimization-based model 

improvement: the absence of an ability to identify the sources of uncertainty. Thus, 

this study proposes a method that helps to identify the uncertainty sources by 

reducing the calibration errors. For this purpose, an experimental design method is 

adopted. This chapter explains the effects that error sources in observation and 

prediction have on model calibration. Then, an experimental design process is 

introduced to reduce the errors in the estimated unknown parameters. 

 

3.2.1 Derivation of Parameter Estimation Errors in Model Calibration 

There are basically two error sources that degrade the accuracy of a prediction: 

parameter estimation errors from the model calibration step and unrecognized 

modeling errors in the computational model. Since these two error sources 

simultaneously affect the computational model, it is difficult to distinguish which is 

the main error source when the target model turns out to be invalid. In this study, we 

propose a method that helps to identify the uncertainty sources by minimizing the 

effect of the parameter estimation errors. When parameter estimation errors are 

minimal, the dominant invalidity sources that remain after calibration are the 

unrecognized modeling errors; thus, the model refinement process can focus on 

improving the modeling error. To discuss the details of the proposed method, this 

study first explains how measurement errors and modeling errors affect the estimates 

of unknown parameters in the optimization-based model improvement process. 
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The general equation of a predicted and observed response, which considers the 

error sources in observation and prediction, is expressed as (3.1) (Kennedy and 

O'Hagan 2001) (Xiong et al. 2009) (Arendt et al. 2012) (Plumlee 2017). 

 𝛈(𝛉, 𝒙;𝐃) + 𝜹(𝛉, 𝒙;𝐃) = 𝛇(𝒙;𝐃) + 𝛆(𝐃) (3.1) 

where η is the predicted response of a computational model and 𝛇 is the 

target or true response of a physical model. δ is the unrecognized source of 

modeling errors and ε is measurement error. x and θ stand for design parameters 

and unknown parameters, respectively. The design parameter x is controllable in a 

design process and affects the predicted responses. In the optimization-based 

model improvement process, however, x can be treated as a constant parameter 

because the process is generally employed in a specific design domain (Youn et al. 

2011) (Jung et al. 2015). D represents the experimental point where the responses 

are measured. In (3.1), the measurement errors ε are independent from other input 

parameters and only related to the measurement location. The unrecognized 

modeling error δ depends on the design parameter x and the measurement location 

D. In the model improvement process, the first step is model calibration to estimate 

θ, using the predicted response and observation. Model calibration is an inverse 

problem, which solves the equation for θ. To derive the estimates of θ, linear 

approximation of the predicted response η is performed, as follows. 

 𝛈(𝛉, 𝒙;𝐃) ≈ 𝛈(𝛉𝒂, 𝒙; 𝐃) + (𝛉 − 𝛉𝒂)𝛁𝜽𝛈 (3.2) 

𝛁𝛉η denotes a (m×n) gradient matrix of η which has m number of responses 

with regard to the n number of unknown parameters. θa is an arbitrary value of the 
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unknown parameters within a prior bound of unknown parameters. By substituting 

(3.2) into (3.1), the equation of prediction and observation is as follows. 

 𝛈(𝛉𝒂, 𝒙; 𝐃) + (𝛉 − 𝛉𝒂)𝛁𝜽𝛈 + 𝜹(𝛉, 𝒙;𝐃) = 𝛇(𝒙;𝐃) + 𝛆(𝐃) (3.3) 

Solving this equation about θ, the estimate θe for unknown parameter θ is 

derived in (3.4). 

 
𝛉𝐞 = {(𝛁𝜽𝛈)T(𝛁𝜽𝛈)}−1(𝛁𝜽𝛈)T{𝛇(𝒙;𝐃𝒄) + 𝛆(𝐃𝒄)

− 𝜹(𝛉, 𝒙;𝐃𝒄) − 𝛈(𝛉𝒂, 𝒙; 𝐃𝒄)} + 𝛉𝒂) 
(3.4) 

Dc refers to the measurement location for model calibration. The pseudo 

inverse is adopted to calculate the inverse of 𝛁𝛉η, which can be a non-square matrix. 

If the predicted responses are nonlinear, the optimization algorithm can be used to 

find the optimal value of θe that minimizes the discrepancy between observed and 

predicted results, rather than solving an analytical θe. No matter how the inverse 

problem is solved, θe is deeply related to ε and δ. Thus, θe cannot guarantee that the 

estimate is the same as the true θ. In the model validation step, the estimate θe ensures 

validity only for designated design site x and location parameter Dc. In order to 

satisfy validity in situations other than a specific calibration domain, it is of 

importance to minimize the parameter prediction errors in model calibration by 

employing an experimental design. 

 

3.2.2 Identification of Error Sources by Employing Experimental 

Design 

An accurate understanding of error sources in observation and prediction requires 



40 

 

enormous time and effort. Quantification of measurement errors require repeated 

experiments with precise testing equipment. Discovering all modeling errors is time-

consuming because modelers must examine the majority of the diverse modeling 

conditions. Therefore, it is nearly impossible to directly identify and separate all 

sources of errors. As an efficient tool for identifying the error sources – specifically, 

distinguishing between calibrated errors and unrecognized modeling errors – this 

study proposes integration of the model improvement process with experimental 

design to reduce estimation errors that arise from unknown parameters in model 

calibration. The experimental design step finds the optimal location for observation, 

which can reduce the parameter estimation errors that otherwise arise in model 

calibration. After the model calibration step, the invalidity sources in the 

computational model that remain can be assumed to primarily be unrecognized 

modeling errors. Then, the model improvement process can ensure that the model 

refinement step can be used modify the prediction accuracy when the model 

validation step determines that the predicted response is invalid. 

Experimental design processes employ numerous alphabetic criteria for 

optimizing the measurement location, such as A-, C-, E-, T- or D-optimality (Park 

and Himmelblau 1982) (Ucinski 2004) (Pukelsheim 2006) (Atkinson et al. 2007) 

(Tricaud et al. 2008) (Song et al. 2009) (Maes et al. 2015). The alphabetic criteria 

are used to minimize or maximize a matrix form using an invariant representative of 

a matrix (Bandara et al. 2009) (Bock et al. 2013) (Chisari et al. 2017). In this study, 

experimental design with a D-optimality condition is adopted. This optimality 

criterion is the minimization of the following determinant of dispersion matrix 

|𝐗T𝐗|
−1

, as shown in (3.5) (de Aguiar et al. 1995).  
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𝑀 = det (|𝐗T𝐗|
−1

) 
 

(3.5) 

X denotes the gradient of the computational model (John and Draper 1975). In 

a statistical manner, X can be substituted into the likelihood of the unknown 

parameters (Bock et al. 2013) (Papadimitriou and Papadimitriou 2015). This 

approach has an advantage in multivariate model calibration, since minimal D-

optimality can confirm independence among the measured responses. The minimal 

D-optimality condition guarantees non-trivial solutions in model calibration. 

This study discusses how the D-optimality experimental design method can 

reduce the estimation errors in the unknown parameters. It starts with (3.2), which 

represents a linear approximation of a computational model. Assuming that the 

observation and prediction have no error sources, the true value of the unknown 

parameter is derived as outlined in (3.6). 

𝛉 = {(𝛁𝜽𝛈)T(𝛁𝜽𝛈)}−1(𝛁𝜽𝛈)T{𝛇(𝒙;𝐃𝒄) − 𝛈(𝛉𝒂, 𝒙; 𝐃𝒄)} + 𝛉𝒂 (3.6) 

From (3.4) and (3.6), the estimation error of the unknown parameters is 

calculated as follows. 

𝛉 − 𝛉𝐞 = {(𝛁𝜽𝛈)T(𝛁𝜽𝛈)}−1(𝛁𝜽𝛈)T{𝛆(𝐃𝒄) − 𝜹(𝛉𝒂, 𝒙; 𝐃𝒄)} (3.7) 

Equation (3.7) indicates that the estimation error of the unknown parameters is 

proportional to the pseudo-inverse of gradient matrix 𝛁𝛉η, ε, and δ. Among them, 

D-optimality is equal to minimization of the determinant of {(𝛁𝜽𝛈)T(𝛁𝜽𝛈)}−1 in 

the pseudo inverse form. X in (3.5) corresponds to 𝛁𝛉η in (3.7). The method ignores 
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the effect of ε and δ, since the exact error sources ε and δ are unknown to the user. 

The effect of ε and δ is practically uncontrollable. The minimization of D-optimality 

can reduce the parameter estimation errors in model calibration, even though the 

reduced amount of parameter estimation error does not actually reach its minimum 

due to the uncontrollable ε and δ. In the optimization-based model improvement 

process, this experimental design prevents model calibration from adjusting the 

unknown parameters to compensate for degraded prediction that arises due to 

modeling errors. Using estimates of the unknown parameters provided by the 

experimental design, the remaining error sources evaluated by the model validation 

are constrained to the unrecognized modeling errors. Ultimately, using this approach, 

model refinement can then efficiently explore the remaining unrecognized modeling 

errors without the interference of other error sources. 

 

3.3 Case Studies 

Two case studies are provided to demonstrate the validity of the proposed method of 

model improvement with the D-optimality based experimental design method. 

Chapter 3.3.1 gives an analytical discussion of model improvement with D-

optimality based experimental design to study a cantilever beam. Chapter 3.3.2 

provides a practical example from an engineering field that examines an automotive 

wheel rim model. These two examples consider different types of unrecognized error 

sources to demonstrate the usefulness of the proposed method in different situations. 
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3.3.1 Analytical Case Study: Cantilever Beam Model 

In this case study, a simple cantilever beam model is adopted to demonstrate the 

proposed method. The beam is subjected to a concentrated load at the tip and 

rectangular section. The model satisfies the Euler-Bernoulli beam theory. The setup 

is shown in Figure 3-3. Here, we assume that some parameters of the cantilever beam 

are estimated using the stress and displacement, whose equations are given as 

follows.  

 

Figure 3-3 A cantilever beam 

𝛈𝒕𝒓𝒖𝒆 = [
𝜎𝑡𝑟𝑢𝑒

𝑢𝑡𝑟𝑢𝑒
] =

[
 
 
 

6𝑃(𝐿 − 𝑑𝑐,𝜎)

𝑊𝐻2

2𝑃𝑑𝑐,𝑢
2(3𝐿 − 𝑑𝑐,𝑢)

𝐸𝑊𝐻3 ]
 
 
 

 
(3.8) 

W, H, and L are geometric parameters, as shown in Figure 3-3. P is the input 

load at the end of a cantilever beam and E is the elastic modulus. W, H, L, P, and E 

indicate the true parameters. dc,σ and dc,u are where the stress and displacement are 

measured. The subscripts ‘σ’ and ‘u’ represent stress and displacement, respectively. 

In this case study, the parameter L is considered to have an unrecognized error source, 

which means that L is incorrectly known. E and W are recognized unknown 
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parameters; thus, they need to be calibrated. Considering all error sources, the 

prediction model η is written as follows. 

𝛈 = [
𝜎𝛈

𝑢𝛈
] =

[
 
 
 
 

6𝑃(𝐿𝛿 − 𝑑𝑐,𝜎)

𝑊𝑒𝐻
2

2𝑃𝑑𝑐,𝑢
2(3𝐿𝛿 − 𝑑𝑐,𝑢)

𝐸𝑒𝑊𝑒𝐻
3 ]

 
 
 
 

 
(3.9) 

Here the prediction model σ and u involves the unrecognized sources of 

modeling error Lδ and unknown parameters Ee and We. Using (3.9), the D-optimality 

based experimental design method is performed to find the suitable dc,σ and dc,u. The 

gradient matrix 𝛁𝛉η is as follows. 

𝛁𝛉𝛈 = [

𝜕𝜎𝛈

𝜕𝐸

𝜕𝜎𝛈

𝜕𝑊
𝜕𝑢𝛈

𝜕𝐸

𝜕𝑢𝛈

𝜕𝑊

]

=

[
 
 
 
 0 −

6𝑃(𝐿𝛿 − 𝑑𝑐,𝜎)

𝑊𝑒
2𝐻2

−
2𝑃𝑑𝑐,𝑢

2(3𝐿𝛿 − 𝑑𝑐,𝑢)

𝐸𝑒
2𝑊𝑒𝐻

3
−

2𝑃𝑑𝑐,𝑢
2(3𝐿𝛿 − 𝑑𝑐,𝑢)

𝐸𝑒𝑊𝑒
2𝐻3 ]

 
 
 
 

 

(3.10) 

Using (3.10), the D-optimality metric M is as follows. 

𝑀 = det{|(𝛁𝛉𝛈)𝐓(𝛁𝛉𝛈)|}
−1

=
𝐸𝑒

2𝑊𝑒
3𝐻5

12𝑃2𝑑𝑐,𝑢
2 (3𝐿𝛿 − 𝑑𝑐,𝑢)(𝐿𝛿 − 𝑑𝑐,𝜎)

 

(3.11) 

Using the parameter values shown in Table 3-1, the D-optimality metric M is 

calculated with regard to dc,σ and dc,u, and shown in Figure 3-4. The result shows that 

M reaches its minimum at dc,u =Lδ(=19) and dc,σ =0. The locations selected by the D-
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optimality metric are identical to the locations of maximum stress and displacement, 

which is intuitively reasonable. The displacement and stress of the cantilever beam, 

in this example, change monotonically along the measurement location Dc. With the 

monotonicity, the gradient 𝛁𝛉η increases as the value of the response increases. For 

a highly nonlinear model, however, the maximum response does not always 

guarantee the D-optimality. This is further discussed in chapter 3.3.2, the engineering 

case study. 

 

Figure 3-4 D-optimality metric (M) for the cantilever beam 
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Table 3-1 The model parameters and corresponding true values for the cantilever beam 

 

Parameters True values Parameters True values 

E 200 (Gpa) W 0.5 (m) 

L 20 (m) Lδ 19 (m) 

H 0.5 (m) P 15 (kN) 

εσ 0.1max(σp) εu 0.1max(up) 
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Next, these experimental points are used to calibrate the unknown parameters. 

The observation data ηo at the given experimental points has experimental error and 

is written as follows. 

𝛇 = [
𝜎𝛇

𝑢𝛇
] =

[
 
 
 

6𝑃(𝐿 − 𝑑𝑐,𝜎)

𝑊𝐻2
+ 𝜀𝜎

2𝑃𝑑𝑐,𝑢
2 (3𝐿 − 𝑑𝑐,𝑢)

𝐸𝑊𝐻3
+ 𝜀𝑢]

 
 
 
 

(3.12) 

where εσ and εu are the measurement error of σ and u at dc,σ and dc,u. The 

calibration result is obtained by solving two equations, 𝜎𝛍= 𝜎𝛇 and 𝑢𝛍= 𝑢𝛇. The 

results of model calibration are shown in (3.13) and (2.14).  

𝑊𝑒 =
6𝑃(𝐿𝛿 − 𝑑𝑐,𝜎)𝑊

6𝑃(𝐿 − 𝑑𝑐,𝜎) + 𝑊𝐻2𝜖𝜎 
 

(3.13) 

𝐸𝑒 =
𝐸𝑑𝑐,𝑢

2 (3𝐿𝛿 − 𝑑𝑐,𝑢){6𝑃(𝐿 − 𝑑𝑐,𝜎) + 𝑊𝐻2𝜖𝜎}

3(𝐿𝛿 − 𝑑𝑐,𝜎) {2𝑃𝑑𝑐,𝑢
2 (3𝐿 − 𝑑𝑐,𝑢) + 𝜖𝑢𝐸𝑊𝐻3}

 
(3.14) 

To compare the estimates and true parameters, (3.13) and (3.14) are normalized 

by the true parameters, resulting in (3.15) and (3.16). The estimates of the unknown 

parameters are accurate, if the normalized estimates We/W and Ee/E are close to one.  

𝑊𝑒

𝑊
=

6𝑃(𝐿𝛿 − 𝑑𝑐,𝜎)

6𝑃(𝐿 − 𝑑𝑐,𝜎) + 𝑊𝐻2𝜖𝜎 
 

(3.15) 

𝐸𝑒

𝐸
=

𝑑𝑐,𝑢
2 (3𝐿𝛿 − 𝑑𝑐,𝑢){6𝑃(𝐿 − 𝑑𝑐,𝜎) + 𝑊𝐻2𝜖𝜎}

3(𝐿𝛿 − 𝑑𝑐,𝜎) {2𝑃𝑑𝑐,𝑢
2 (3𝐿 − 𝑑𝑐,𝑢) + 𝜖𝑢𝐸𝑊𝐻3}

 
(3.16) 

From (3.15) and (3.16), the conditions in which the normalized estimate is close 
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to one are achieved when the experimental noise 𝜖𝜎  and 𝜖𝑢  are zero and the 

unrecognized uncertainty Lδ is close to L. The factor that is able to make the 

normalized estimate close to one is dc,σ and dc,u. Building upon the previous 

discussion, if dc,σ and dc,u are close to the value designated by the D-optimality 

condition (e.g., dc,σ =0 and dc,u = Lδ) , the normalized estimate must be close to one. 

Figure 3-5 illustrates We/W and Ee/E with regard to dc,σ and dc,u. Figure 3-5 (a) shows 

the normalized estimates with regard to dc,σ and dc,u. In the figure, We/W depends 

only on dc,σ, and is close to one when dc,σ =0, the D-optimal point. Similarly, the 

normalized estimate Ee/E is shown in Figure 3-5 (b); it depends on both dc,σ and dc,u. 

In Figure 3-5 (b), the value of dc,u, which enables We/W to be one, is different 

according to the value of dc,σ. When dc,u =0, the value of dc,u = Lδ enables We/W to 

approach one. These results support that D-optimality based experimental design 

reduces the estimation error in model calibration. 
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(a) (b) 

 

Figure 3-5 Estimation errors of unknown parameters (a) width (We/W), (b) Young’s modulus (Ee/E) 
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For efficient model refinement activities, the invalidity of model prediction 

should be that which arises mainly due to unrecognized sources of modeling errors. 

This research compares the errors of predicted responses using the estimates of 

unknown parameters and the true value of the unknown parameters. Figure 3-6 

describes the model prediction errors due to model form errors and parameter 

estimation errors. The model prediction with model form errors are plotted by the 

black dotted line. The model prediction with model form and parameter estimation 

errors are plotted by the orange line. The discrepancy between two plots are the 

prediction errors due to parameter estimation errors. Figure 3-6(a) illustrates the 

prediction errors of stress response and Figure 3-6(b) illustrates the prediction errors 

of displacement response. The graphs in Figure 3-6 show that the prediction errors 

due to parameter estimation errors decreases when the measurement point reaches 

D-optimality based experimental design (e.g., dc,u=Lδ and dc,σ=0). However, Figure 

3-6(b) shows the limitation that the discrepancy increases when the measurement 

location of displacement response reaches at dc,u=Lδ. It is due to the effect of model 

form errors in experimental design. Since the experimental design process is 

performed with the initial prediction model which includes model form errors, the 

result of experimental errors cannot ensure the least parameter estimation errors. To 

solve this problem, the model calibration process should consider the effect of model 

form errors in prediction. Chapter 4 deals with this issue.  
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(a) (b) 

Figure 3-6 The prediction errors due to model form and estimation of unknown parameters; (a) the stress prediction, (b) the 

displacement prediction 
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3.3.2 Engineering Case Study: Automotive Wheel Rim FEM Model 

An automotive wheel rim is the outer frame of a wheel in an automobile that holds 

a tire. The model of the rim used in this study is provided by Application Libraries 

in COMSOL software (Multiphysics 1998) (Tabatabaian 2015). The structural 

analysis computes the stress and displacement of a wheel against the automobile 

weight and the tire pressure. Figure 3-7 and Figure 3-8 show the stress and 

displacement analysis result of the wheel rim model. Figure 3-9 provides all given 

loads of the automotive wheel rim model. Figure 3-9 (a) denotes the fixed boundary 

condition that represents that the inner frame of the rim fixed to an automobile body 

frame. Figure 3-9 (b) and (c) describe the distributed load from the tire pressure and 

weight of the automobile. The wheel rim model includes modeling error in the fixed 

boundary condition for unrecognized error sources. The five fixed boundary 

locations, as shown in Figure 3-9 (a) are reduced to three fixed locations in Figure 

3-10. The boundary conditions in Figure 3-10 are adopted in the prediction model. 

The model with a fixed boundary condition in Figure 3-9 (a) provides the observation 

data. Furthermore, the observation includes experimental error ε= 0.001ζ, which 

denotes the 0.001 times of each observation. The main parameters, including the 

material properties, are described in Table 3-2. The wheel rim is made of aluminum. 

For model calibration, this study designates two unknown parameters; the elastic 

modulus of aluminum and the pressure of the tire.  
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(a) (b) 

 

Figure 3-7 Stress analysis of the wheel rim model; (a) front view, (b) rear view 

 

  

(a) (b) 

Figure 3-8 Displacement analysis of the wheel rim model; (a) front view, (b) rear 

view 
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Figure 3-9 Load conditions of an automotive wheel rim model; (a) fixed locations (five locations noted with black circles), (b) 

distributed load from the tire pressure, (c) distributed load from the weight of the automobile 

 

   

(a) (b) (c) 
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Table 3-2 The model parameters and corresponding true values for the cantilever beam 

 

Parameters True values  Known / Unknown 

Elastic modulus (E) 70.00 [GPa] Unknown 

Poission’s ratio (ρ) 0.330 Known 

Pressure of the tire (Pr.) 2.000 [bar] Unknown 

Weight of an automobile (W) 1120 [kg] Known 
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Figure 3-10 Fixed locations for unrecognized sources of modeling error 

Figure 3-11 presents 70 observable points used by D-optimality based 

experimental design to select a combination of observations. 65 points are located in 

the front-view in Figure 3-11 (a); five points are located in the rear-view in Figure 

3-11 (b). The points are concentrated in half of the wheel rim model, since the 

geometry and load condition are symmetric. At each point, two different responses 

(e.g., stress and displacement) are acquired. Thus, the overall number of observations 

is 140. This generates 140C2 combinations of observations. Among these 

combinations, an observation set that gives a minimum M metric value, mentioned 

in (3.5), becomes the D-optimality based experimental design for model calibration.  
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(a) (b) 

Figure 3-11 Observable candidate locations for the wheel rim model (a) front view, (b) rear view 
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For M metric calculation, this study adopted a finite difference method to easily 

calculate the term 𝛁𝛉𝛈 at E = 68GPa and Pr.=1.8bar, the initial values for model 

calibration. Figure 3-12 shows the D-optimality based experimental design (M). The 

combination of observations in Figure 3-12 gives the minimal M = 2.57e-08. 

Comparing Figure 3-12 with Figure 3-7 and Figure 3-8, the selected locations are 

not where the maximum stress and displacement occur. This is due to the geometric 

nonlinearity of the wheel rim model, which results in a nonlinear prediction about 

the observable location. The results of the model calibration performed with both the 

proposed method and with the maximum responses are compared in Figure 3-13 to 

show the efficacy of D-optimality based experimental design for model 

improvement. 

 

  

(a) (b) 

Figure 3-12 D-optimal design of observations (a) location for stress, (b) location for 

displacement 
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(a) (b) 

Figure 3-13 The experimental design that gives the maximal responses; (a) 

stress (front view), (b) displacement (rear view) 

Table 3-3, Table 3-4, and Table 3-5 summarize the model calibration results 

using D-optimal design and maximum responses design, as shown in Figure 3-12 

and Figure 3-13. Table 3-3 and Table 3-4 include the estimates of unknown 

parameters and normalized estimates Ee/E and Pre/Pr. The estimates of unknown 

parameters are accurate, as the normalized estimates are close to one. Examining the 

results in Table 3-3, Table 3-4, it can be seen that the estimates of unknown 

parameters determined by D-optimal design are much closer to the true values than 

are the results of maximal response design. The result in Table 3-5 gives the 

predicted response errors using the estimates of unknown parameters and the true 

value of the unknown parameters. Table 3-5 uses the normalized root mean squared 

errors (RMSE), as shown in (3-20). 
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𝑁𝑅𝑀𝑆𝐸

=
𝑁

∑ 𝛈(𝛉, 𝒙; 𝑫𝒊)
𝑁
𝑖=1

√
1

𝑁
∑{𝛈(𝛉𝒄, 𝒙, 𝜹;𝐃𝒊) − 𝛈(𝛉, 𝒙, 𝜹; 𝐃𝒊)}

2

𝑵

𝑖=1

 

(3.17) 

The terminology θ, θc, x, δ, and D is the same as that used in (3.1). N is the 

number of observable points for each predicted response, displacement and stress. 

The predicted response errors in (3.20) are due to parameter estimation errors in 

model calibration. The result of D-optimal design shows the smaller normalized 

RMSE than the maximal responses design in Figure 3-13. Overall, the results in 

Table 3-5 show that the D-optimality based experimental design gives a prediction 

that is closer to the prediction that only includes modeling errors.  
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Table 3-3 Comparison of the model calibration results of unknown variable E (Young’s modulus)  

 D-optimal design Maximal response design 

Estimated E (Gpa) 65.14 65.00 

Ee/E 0.9305 0.9009 

Table 3-4 Comparison of the model calibration results of unknown variable P (pressure of a tire) 

 D-optimal design Maximal response design 

Estimated P (bar) 1.802 1.673 

Pre/Pr 0.9285 0.8365 

Table 3-5 Comparison of the normalized RMSE of the predicted responses (stress and displacement) 

 D-optimal design Maximal response design 

Stress 1.881E-4 2.114E-4 

Displacement 5.668E-3 6.030E-3 
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By the parameter estimation result of combination 2 in Table 3-3 and Table 3-4, 

the estimation accuracy of E is higher than that of Pr. The difference originates from 

the sensitivity of the responses about the parameters. Since the selected responses 

combination in combination 2 are more sensitive to E, The optimization algorithm 

is prone to easily change the value of E. Table 3-6 describes the sensitivity of each 

selected responses in combination 1 and combination 2 about the model parameters 

E and Pr. Table 3-6 describes the sensitivity about the model parameters E and Pr. 

In this table, the terms 
𝜕𝜂𝑖

𝜕𝐸
 and 

𝜕𝜂𝑗

𝜕𝑃
 each denote the sensitivity term about E and Pr. 

The numbers in brackets stand for the rank of the sensitivity about each parameters 

in all 140 responses. For example, the sensitivity of the stress about E in combination 

1 is 2.5880E-05. The value is the 29th largest among 150 responses. The third row of 

the table includes the summation of normalized sensitivity, calculated as the 

following equation. 

𝜔𝑗 =

𝝏𝜼𝒋

𝝏𝑬

∑
𝝏𝜼𝒊
𝝏𝑬

𝟏𝟒𝟎
𝒊=𝟏

+

𝝏𝜼𝒋

𝝏𝑷

∑
𝝏𝜼𝒊
𝝏𝑷

𝟏𝟒𝟎
𝒊=𝟏

 
(3.18) 

By (3.21), the sensitivity about the parameter E and Pr is easily integrated with 

normalized sensitivity term. The result in Table 3-6 shows that the responses in 

combination 1 has the first and second largest normalized sensitivity. The result 

implies that the parameter estimation accuracy depends on the sensitivity of the 

responses, not the magnitude. However, the responses combination which only gives 

the highest sensitivity about the unknown parameters can lead unidentifiable 

estimation of the parameters. For example, the response combination gives a 

parameter solution as a continuous region, not a discrete value. 
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Table 3-6 Sensitivity analysis of each response in combination 1 and 2  

 

Combination 1 (Proposed-determinant) Combination 2 (Maximum response) 

𝜂1(Stress) 𝜂2 (Displacement) 𝜂3 (Stress) 𝜂4 (Displacement)  

𝜕𝜂𝑖

𝜕𝐸
 2.5880E-05 (29/140) 1.9272E-04 (1/140) 3.6595E-06 (83/140) 1.9272E-04 (1/140) 

𝜕𝜂𝑗

𝜕𝑃
 0.8320 (1/140) 6.6119E-06 (74/140) 0.0385 (61/140) 6.6119E-06 (74/140) 

𝜔𝑗 0.0616(2/140) 0.0754 (1/140) 0.0038 (97/140) 0.0754(1/140) 
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3.4 Summary and Discussion 

This chapter proposed a method for optimization-based model improvement with 

experimental design to efficiently handle the error sources of an invalid 

computational model. Existing optimization-based model improvements have a 

limitation in that the error sources that affect their validity are indistinguishable. To 

overcome this, D-optimality based experimental design method is integrated to 

identify the major invalidity sources of a computational model by reducing the 

estimation errors in the model calibration. By doing so, the model validation step can 

evaluate the invalidity of a computational model due to unrecognized errors, and the 

model refinement step can efficiently examine the main cause of invalidity from 

among the various candidates of unrecognized modeling errors. 

The benefits of the proposed method are demonstrated by examining two case 

studies. A numerical example of a cantilever beam shows the feasibility of the D-

optimality based experimental design in the model improvement process. The study 

shows that the parameter estimation errors in model calibration are reduced when 

the measurement location becomes close to the D-optimality-based experimental 

design. Another engineering example (e.g., an automobile wheel rim) is examined 

to show the application of the proposed method in practice. Based on the estimates 

of unknown parameters using D-optimality experimental design, the overall amount 

of errors in the predicted responses are close to the amount of errors that arise due to 

an invalid modeling. The identified modeling errors in a computational model are 

then evaluated using a model validation process and the validity of the model can be 

improved by the model refinement step. 
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The proposed method can be widely applied where computational models are 

used, such as for study of a digital twin in a cyber-physical system (CPS). Since a 

CPS is composed of a large number of computational models, it is important to find 

an effective way to construct models, in terms of development time and budget. The 

proposed method is a preliminary study to reduce the modeling cost required to 

ensure the accuracy of digital twin models. Furthermore, enhanced estimates of 

unknown parameters in an experimental design can extend the valid domain of the 

computational model. This method can also help with parameter updating during the 

operation of the computational model to synchronize with reality. 

 

  

Sections of this chapter have been published or submitted as the following journal 

articles:  

1) Hyejeong Son, Byeng D. Youn, and Taejin Kim, “Model Improvement with 

Experimental Design for Identifying Error Sources in a Computational Model,” 

Structural and Multidisciplinary Optimization, Accepted, 2021. 
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Chapter 4 Proportionate Bias Calibration with Bound Information to Consider Unrecognized Model Form Errors 

 

Proportionate Bias Calibration 

with Bound Information to 

Consider Unrecognized Model 

Form Errors  

 

Model calibration is a process of estimating unknown model parameters as a tool of 

improving a computational model (Park and Himmelblau 1982) (Kennedy and 

O'Hagan 2001) (Oberkampf and Roy 2010) (Thonhofer et al. 2014) (Qiu et al. 2018). 

It is treated as an inverse problem solving an n-th equation which indicates that the 

predicted response is the same as the observation data. Optimization-based model 

calibration (OBMC) is one of the popular techniques of model calibration, which 

employs optimization algorithms in a deterministic manner (Frank and Shubin 1992) 

(Hills and Trucano 2002) (Gholizadeh 2013) (Lee et al. 2019). In OBMC, the 

optimization method allows nonlinear predicted responses, which has difficulty 

finding an analytical solution to get an approximate result.  

Despite these advantages, the model calibration suffers from parameter 

estimation errors due to a variety of error sources. As stated in Chapter 3, the coupled 

error sources between the parameter estimation errors and model from errors disrupt 
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model validation to make the right decision for a computational model. Thus, it is of 

importance to reduce the parameter estimation errors to relieve the imprecise 

decision in model validation. Although the integration of experimental design 

proposed in Chapter 3 can alleviate the problem, the computational model after the 

model calibration is still troubled with parameter estimation errors. The parameter 

estimation errors are affected by the model form errors and measurement errors that 

is hard to discover. In practical fields, engineers can doubt the estimated unknown 

parameter by the OBMC because some estimated results are different from their 

experience-based information, such as an approximate bound or dimension of the 

value of unknown parameters.  

To solve this problem, the related scholars have tried to quantify model form 

errors and consider the effect of model form errors while the model calibration. One 

approach is Bayesian-based model calibration with bias correction that is applicable 

with observation data measured in the diverse design domains (Kennedy and 

O'Hagan 2001) (McFarland et al. 2007) (Higdon et al. 2008) (Arendt et al. 2010) 

(Plumlee 2017). The word ‘bias’ in this method refers to the Gaussian process model 

for the amount of model form errors, acquired with the prior information about the 

observation data and initial predicted responses. When the unknown model 

parameter is updated by the Bayes theorem, the bias term helps the model calibration 

to estimate a reasonable value for unknown model parameters.  

This chapter devices proportionate bias calibration with prior bound 

information to consider the effect of model form errors in OBMC. In this method, 

the bias term is treated as another unknown parameter for optimization. The bound 

information of unknown parameters can play a crucial role in OBMC that it is one 
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of the constraints in the optimization algorithm. Besides, this chapter devices output-

dependent bias, a new formulation for model form errors, to support the optimization 

with multiple responses which dimensions are severely different. 

The remainder of Chapter 4 is organized as follows. Chapter 4.1 presents brief 

review of optimization-based model calibration step which suffers from the effect of 

model form errors. Chapter 4.2 provides the detailed descriptions of the proposed 

method, the definition of proportionate bias and model calibration with bound 

information. Chapter 4.3 discusses the efficiency of the proposed method with 

analytical and engineering case studies, as introduced in Chapter 3.3.  

 

4.1 Limitations of Experimental Design for OBMI with the 

Effect of Model Form Errors 

Chapter 3 proposed a new experimental design for efficient OBMI, which 

selects the optimal experimental design to reduce the parameter estimation errors by 

minimizing the specific term in (3.7). The method is efficient when reducing the 

parameter estimation errors without additional information. However, it remains a 

limitation to remove all amount of parameter estimation errors. Equation (3.7) 

consists of the following terms: 𝛁𝛉η, ε, and δ. The proposed experimental design 

aims to minimize the term 𝛁𝛉η, since the other two terms ε, and δ are uncontrollable. 

By the equation (3.7), the parameter estimation errors are affected by the model form 

errors and measurement errors as well as the gradient of the prediction 𝛁𝛉η. 

Depending on the severity of error sources, the value of estimates for unknown 

parameters might be against the basic knowledge about the model parameters. 
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Figure 4-1 shows the effect of error sources on the parameter estimation errors 

with the cantilever beam example, as discussed in Chapter 3.3.1. The figures show 

the parameter estimation errors derived in (3.15) and (3.16) depending on two error 

sources (e.g., measurement and model form errors) when the observation is 

measured at the optimal experimental design. Figure 4-1 (a) and (b) respectively 

illustrates the estimation errors of width (W) and young’s modulus (E). When the 

value is close to one, the surface color in Figure 4-1 is close to yellow. According to 

(3.15) and (3.16), the closer the value is to one, the closer the estimates are to the 

true value. Figure 4-1 (a) presents that the estimation error of W is reduced to 50% 

of the actual value, even though the model calibration utilized the optimal design for 

observation data. Figure 4-1 (b) gives the estimation error of E differs from the actual 

value by more than about 30%.  

(a) 
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  (b) 

Figure 4-1 The parameter estimation errors of the cantilever beam with optimal 

experimental design (a) Width (Wp/Wt), (b) Young’s modulus (Ep/Et) 

 

The result in Figure 4-1shows that the experimental design selection encounters 

a limitation to effectively improving the parameter estimation errors when severe 

errors exist. This fact gives a doubt on the effectiveness of OBMI since the estimated 

values of unknown parameters are against the prior information about the prediction 

models that include an approximate range or statistical information of model 

parameters. Thus, the proposed method in this chapter aims to consider the amount 

of error sources in the process of model calibration to draw reasonable estimates for 

unknown parameters. 
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4.2 Proportionate Bias Calibration with Bound Information 

of Model Parameters 

This chapter aims to perform the model calibration with consideration of the error 

sources in a prediction model. The bound information of unknown model parameters 

are adopted as a constraint in OBMC to roughly quantify the errors. Chapter 4.2.1 

presents the definition of proportionate bias. Chapter 4.2.2 explains the framework 

of proportionate bias calibration with bound information.  

 

4.2.1 The Formulation of Proportionate Bias 

For the consideration of error sources, model calibration adopts the formulation of 

prediction and observation with the discrepancy function (Arendt et al. 2010) 

(Reichert and Schuwirth 2012) (Li et al. 2016) (Qiu et al. 2018). As a previous study,  

the bias correction is the one of popular method, generally used with Bayesian-based 

model calibration. The formulation of model calibration with bias function is as 

follows. 

 𝜹(𝛉, 𝒙) + 𝛈(𝛉, 𝒙) = 𝛇(𝒙) + 𝛆 (4.1) 

The discrepancy 𝜹 is dependent to unknown parameters (𝛉) and design parameters 

(𝒙). The method quantifies Gaussian process model for the discrepancy, which 

involves model form errors and measurement errors, through the observation and 

prediction data along the model parameters. As stated in Chapter 2, the method is 

efficient when the observation data measured in various design sites and reliable 

prior information are available.  
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When the observation data only measured in few number of design sites, Qiu et 

al. has devised sensitivity-based parameter calibration for consideration of model 

form errors (Qiu et al. 2018). The formulation of model calibration is as follows.  

 𝛇(𝒙) = 𝛈(𝛉, 𝒙) + 𝛿 (4.2) 

𝛿 denotes the sensitivity-based parameter in (4.2). Figure 4-2 shows the process of 

sensitivity-based parameter calibration. In this figure, Xk denotes a vector of known 

parameters and Xunk denotes a vector of unknown model parameters. The method 

assumes that the discrepancy is a constant function, the simplest form of regression. 

This assumption enables model calibration with the observation data measured at 

three design sites. The sensitivity-based model calibration firstly estimates the 

optimal 𝛿, matching the sensitivity of prediction and observation the same. With the 

optimal 𝛿, optimal values of unknown model parameters are estimated.  

Figure 4-2 Sensitivity-based parameter calibration 
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In the sensitivity-based parameter calibration, the constant function for the 

discrepancy assumption is valid, especially when the magnitude of output values are 

similar. If the magnitude of the responses is highly different, model calibration 

optimizes the constant discrepancy by adjusting only a specific response among all 

responses, leading to parameter estimation errors. This chapter devises a new 

formulation for the discrepancy, called proportionate bias, to solve this problem. The 

proportionate bias assumes that the formulation of the discrepancy is a ratio of output 

value. The model calibration formulation with the proportionate bias is as follows. 

 𝛇(𝒙) = 𝛿 × 𝛈(𝛉, 𝒙) (4.3) 

Equation (4.3) defines the observation as the multiplication of the proportionate bias 

𝛿  and the prediction response 𝛈(𝛉, 𝒙) . Figure 4-3 explains the process of the 

proportionate bias calibration. This figure depicts that the proportionate bias is 

estimated to 0.5 for η1, η2  and η3. The OBMC estimates the suitable value of 

proportionate bias with the unknown model parameters. The bound information of 

unknown parameters determines the lower and upper bound of the proportionate bias 

for the constraint in OBMC. Chapter 4.2.2 discusses the details of proportionate bias 

calibration. 
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Figure 4-3 The proportionate bias calibration 

 

4.2.2 Proportionate Bias Calibration with Bound Information of 

Unknown Model Parameters 

The objective of proportionate bias calibration is to increase the accuracy of 

estimated unknown model parameters by considering the error sources when 

calibrating unknown model parameters. In this method, the bound information of 

unknown model parameters can provide a guide to estimate a reasonable value for 

unknown parameters and the discrepancy. Figure 4-4 shows the overall process of 

proportionate bias calibration using the bound information. Comparing with the 

Figure 2-1 explaining the overall framework of OBMC, the proportionate bias 

calibration adopts the bound information of unknown parameters and proportionate 

bias. Furthermore, the proportionate bias (𝛿) is optimized with unknown model 

parameters.  
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Figure 4-4 The proportionate bias calibration with bound information 
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In this process, the bound of unknown parameters can determine the bound of 

proportionate bias. (4.4) defines a bound vector of unknown parameter 𝛉𝐵, which 

consists of upper or lower bound of each model parameter. 

 𝛉𝐵𝑘 = [𝜃1
𝑗
, 𝜃2

𝑗
,⋯ , 𝜃𝑛

𝑗
] 𝑤ℎ𝑒𝑟𝑒 𝑗 = [LB, UB] (4.4) 

n refers to the number of unknown model parameters. j designates the upper or lower 

bound. LB and UB denotes the lower bound and upper bound. Since each element 

can be upper or lower bound of the parameters, the number of possible 𝛉𝐵 is 2n 

(e.g., k=1, ⋯2n). The following equation represents the upper and lower bound of 

the proportionate bias according to the bound of unknown parameters. 

 𝐋𝛿 = min
𝑘

𝛇(𝒙)

𝛈(𝛉B𝑘
, 𝒙)

 (4.5) 

 𝐔𝛿 = max
𝑘

𝛇(𝒙)

𝛈(𝛉B𝑘
, 𝒙)

 (4.6) 

 

4.3 Case Studies 

This chapter adopts the analytical and engineering models for the case studies, 

already explained in Chapter 3.3.1 and 3.3.2. With three case studies, the detailed 

process of proportionate bias calibration is provided. To verify the efficacy of the 

proposed method, the case studies compare the estimates of unknown model 

parameters calibrated through the proposed method and the sensitivity-based 

parameter calibration.  
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4.3.1 Analytical Case Study: Cantilever Beam Model 

This chapter applies the proportionate bias calibration to the cantilever beam model, 

same as Figure 3-3. The model calibration is performed by four calibration approach; 

Bayesian method, OBMC with bound information, OBMC with sensitivity bias, and 

OBMC with proportionate bias. The model includes model parameters, model form 

errors, and experimental errors, as shown in Table 3-1. The model calibration 

selected the observation data as displacement responses measured at dc,u =0.5 Lδ and 

dc,u = Lδ . The unknown parameters are young’s modulus (E) and width (W). This 

study assumes that the reasonable bound information of unknown parameters can be 

determined through the standard deviation of the parameters. The bound information 

of unknown parameters is set as [-3σ, 3σ], where σ denotes the standard deviation of 

the unknown parameters. The standard deviation of young’s modulus and width is 

respectively 15.2Gpa and 0.0220m (Hess et al. 2002). With the statistical 

information, the bound of young’s modulus and width are [154.4, 245.6] Gpa and 

[0.434, 0.566] m. The bound of proportionate bias is calculated using (4.5) and (4.6). 

Table 4-1 summarizes the process of bound selection for sensitivity-based parameter 

and proportionate bias. For Bayesian-based method, biased term is quantified by the 

Gaussian process (GP) modeling with the discrepancy of experimental data and 

initial prediction at at dc,u =0.5 Lδ and dc,u = Lδ . Since only two datasets are used for 

GP model of the discrepancy, GP model can give fitting errors to predict the amount 

of errors due to model form and measurement. 
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Table 4-1 The bound selection for sensitivity-based and proportionate bias 

 

 

 E W Prediction Sensitivity-based Proportionate bias 

𝜎 LB (154.4) LB (0.434) 1.58E+07 -0.14E+07 0.9114 

LB (154.4) UB (0.566) 1.21E+07 0.23E+07 1.1901 

UB (245.6) LB (0.434) 1.58E+07 -0.14E+07 0.9114 

UB (245.6) UB (0.566) 1.21E+07 0.23E+07 1.1901 
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 E W Prediction Sensitivity-based Proportionate bias 

𝒖 LB (154.4) LB (0.434) 0.049 -0.0106 0.784 

LB (154.4) UB (0.566) 0.038 0 1.000 

UB (245.6) LB (0.434) 0.031 0.0074 1.239 

UB (245.6) UB (0.566) 0.024 0.0144 1.600 

 Lower Bound -0.14E+07 0.784 

 Upper Bound 0.23E+07 1.600 
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For the OBMC, this case study adopted the calibration metric which considers 

the discrepancy formulation. (4.7) is the calibration metric without considering the 

discrepancy function. (4.8) and (4.9) is the calibration metric for sensitivity-based 

parameter calibration and proportionate bias calibration, respectively. 

 𝐦𝐢𝐧
𝜽,𝜹

∑
𝟏

𝛇𝒊
(𝛇𝒊 − 𝛈𝒊(𝑿, 𝜽(𝐸,  𝑊)))

𝟐𝒏

𝒊=𝟏
 (4.7) 

 𝐦𝐢𝐧
𝜽,𝜹

∑
𝟏

𝛇𝒊

(𝛇𝒊 − 𝛈𝒊(𝑿, 𝜽(𝐸,  𝑊)) − 𝜹)𝟐
𝒏

𝒊=𝟏
 (4.8) 

 𝐦𝐢𝐧
𝜽,𝜹

∑
𝟏

𝛇𝒊
(𝛇𝒊 − 𝜹 × 𝛈𝒊(𝑿, 𝜽(𝐸,  𝑊)))

𝟐𝒏

𝒊=𝟏
 (4.9) 

Using (4.6), (4.7), and (4.8), Table 4-2 gives the result of model calibration. 

(4.9) quantifies the parameter estimation errors 𝜀𝑟𝑟𝐸
∗ and 𝜀𝑟𝑟𝑊

∗ . 

 𝜀𝑟𝑟𝜃𝑖

∗ =
|𝜃𝑖,𝑡𝑟𝑢𝑒 − 𝜃𝑖,𝑐𝑎𝑙𝑖𝑏𝑟𝑎𝑡𝑒𝑑|

𝜃𝑖,𝑡𝑟𝑢𝑒
 (4.10) 

Table 4-2 provides the optimized unknown parameters, the parameter estimation 

errors, and optimized discrepancy(𝛿). Figure 4-5 illustrates the parameter estimation 

errors of each four calibration method. Bayesian-based method gives the largest 

estimation errors, due to the errors in discrepancy function modeled by GP. OBMC 

with bound information shows the result which is close to the bound of the 

parameters. It implies that the optimal result is not exist in the given bound of the 

model parameters. The proportionate bias method gives the lowest parameter 

estimation errors in both two unknown parameters. The sensitivity-based method 

shows the most significant estimation errors since the invalid optimal value of the 

sensitivity-based model bias term is valid only for the displacement. For the stress 

response, the value ‘-0.0102’ is too small to support the accuracy of the responses 

whose magnitude is 107 times larger than the optimal bias.  
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Table 4-2 The result of model calibration for the cantilever beam model 

 

Figure 4-5 The proportionate bias calibration with bound information 

 Bayesian-

based 

method 

OBMC OBMC with 

Sensitivity 

bias 

OBMC with 

Proportionate 

bias 

𝛿 - (GP) - -0.0102 1.0175 

E(Gpa) 180.5 180.5 245.6 199.65 

𝜀𝑟𝑟𝐸
∗ 0.0975 0.0975 0.2280 0.0017 

W (m) 0.4750 0.4750 0.4750 0.4833 

𝜀𝑟𝑟𝑊
∗  0.0500 0.0500 0.0500 0.0334 
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4.3.2 Engineering Case Study 1: Automotive Wheel Rim FEM Model 

Chapter 4.3.2 employs an engineering case study, already introduced in Chapter 

3.3.2. The model includes model parameters, and experimental errors, as shown in 

Table 3-2. The considered responses are the displacement and the stress, as shown 

in Figure 3-7 and Figure 3-8. The model calibration selected the observation data 

through the proposed experimental design method, as represented in Figure 3-12. To 

develop the sensitivity-based and proportionate bias calibration, the bound of 

unknown parameters E and P are [65, 75] and [1.5, 2.5]. With the bound information 

of unknown parameters, Table 4-3 determines the bound of model bias. 
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Table 4-3 The bound selection for sensitivity-based and proportionate bias 

 

 

 E W Prediction Sensitivity-based Proportionate bias 

𝜎 LB (65) LB (1.5) 2.1241e+07 9.5511e+04 0.9955 

LB (65) UB (2.5) 2.2065e+07 9.2003e+05 0.9583 

UB (75) LB (1.5) 2.1241e+07 9.5464e+04 0.9955 

UB (75) UB (2.5) 2.2065e+07 9.2000e+05 0.9583 
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 E W Prediction Sensitivity-based Proportionate bias 

𝒖 LB (154.4) LB (0.434) 0.049 -0.0106 0.784 

LB (154.4) UB (0.566) 0.038 0 1.000 

UB (245.6) LB (0.434) 0.031 0.0074 1.239 

UB (245.6) UB (0.566) 0.024 0.0144 1.600 

 Lower Bound -0.14E+07 0.784 

 Upper Bound 0.23E+07 1.600 
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With the bound information of the unknown parameters and model bias, Table 4-4 

gives the model calibration result. For model calibration, the calibration metrics in 

(4.7) to (4.9) are adopted. The result in Table 4-4 verifies that the proportionate bias 

calibration gives the lowest parameter estimation errors 𝜀𝑟𝑟𝐸
∗ and 𝜀𝑟𝑟𝑊

∗ . 

 

Table 4-4 The model calibration result for automotive wheel rim model 

 Without Bias Sensitivity-based Proportionate bias 

𝛿 - -0.0102 1.0175 

E(Gpa) 180.5 245.6 199.65 

𝑒𝑟𝑟𝐸
∗ 0.0975 0.2280 0.0017 

P (m) 0.4750 0.4750 0.4833 

𝑒𝑟𝑟𝑃
∗ 0.0500 0.0500 0.0334 

  

 

 

 



86 

 

4.3.3 Engineering Case Study 2: Automotive Steering Column 

Assembly FEM model 

The purpose of this chapter is to demonstrate the efficacy of proportionate bias 

calibration method in a practical FEM model and experimental data. The difference 

of chapter 4.3.2 is that chapter 4.3.3 adopted real experimental data measured in 

experimental setup with practical measurement noise, and an industrial FEM model 

provided by Hyundai Motors group.  

Automotive steering column is a device that helps a driver to change the driving 

direction of an automobile. One issue in the design of an automotive steering column 

is the desire to reduce the resonated vibration transferred from the engine or the 

roadway. Transferred vibration may make drivers uncomfortable. The design of an 

automotive steering column is based on the understanding of vibrational behaviors 

to avoid resonance. Therefore, the purpose of a computational model for an 

automotive steering column is to analyze the natural frequency and mode shape of 

the vibrations. In this chapter, we focus on natural frequencies matched to specific 

mode shapes that arise when a steering wheel vibrates in three axial bending 

directions. This approach is based on prior knowledge from industrial experts who 

designed the automotive steering column (offered to us via personal communication). 

These engineers have found that the vibrating strength of axial bending modes is the 

most powerful. The target modes of the natural frequency are the 1st, 2nd, and 4th 

modes. The 3rd mode of the natural frequency is not considered because it has a 

twisting mode shape.  

Figure 4-6 and Figure 4-7 show an automotive steering column and the 

computational model of an automotive steering column, respectively. An automotive 
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steering column consists of two sub-components: a steering wheel and a column 

assembly. Figure 4-6 (a) and Figure 4-7(a) show a steering wheel and Figure 4-6(b) 

and Figure 4-7(b) show a column assembly. The full steering column and its 

computational model are shown in Figure 4-6(c) and Figure 4-7(c), respectively. For 

computational modeling, Hypermesh 13.0 software is used as a pre-processor. 

298,458 nodes and 214,268 elements are required for exact computation. To save 

computational costs, a computational model simplifies the geometric complexity of 

a real product. For example, the bolting system is simplified as a rigid body element 

(RBE2). The airbag in the middle of the steering wheel is simplified as a lumped 

mass with no geometric inputs. The geometry of the wheel cover uses shell elements, 

which only considers thicknesses as a geometric input variable.  

Using the simplified steering column model, Autodesk Nastran 2018 is employed 

for a solver and post-processor. The automotive steering column model takes 575.66 

seconds for the calculation of the natural frequencies and mode shapes. The complex 

design of an automotive steering column requires a significant amount of 

computational cost for analysis. Despite the calculation cost, however, the 

computational responses of the model are severely mismatched with experimental 

data. Therefore, the model requires optimization-based model calibration. For the 

optimization-based model calibration, the steering column model has five unknown 

parameters; elastic modulus of steel, density of a wheel cover, stiffness of an airbag, 

thickness of an airbag, thickness of ECU bracket, and thickness of a wheel cover. 

The bound information and initial value of each unknown parameters are as shown 

in  
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(a) (b) (c) 

Figure 4-6 An automotive steering column: (a) Steering wheel, (b) Column 

assembly, (c) Entire steering column 

 

  
 

(a) (b) (c) 

Figure 4-7 An automotive steering column model: (a) Steering wheel, (b) Column 

assembly (c) Entire computational model of the steering column  
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Table 4-5 The initial value and bound information of unknown parameters in 

automotive steering column model  

 

With the information about the unknown model parameters, the bound of sensitivity 

bias and proportionate bias can be determined by eq. (4.5) and (4.6). This chapter 

skips the whole bound selection process like Table 4-1 and Table 4-3, since the 

steering column model includes numerous unknown parameters to consider. The 

result of the bound is noted as Table 4-6. 

 

Table 4-6 The bound information of bias term  

Sensitivity-based bias Proportionate bias 

Lower bound Upper bound Lower bound Upper bound 

-16.0524 18.4818 0.8340 1.6816 

 

 
Bound 

Initial value 
Lower bound Upper bound 

Density of the wheel 

cover (MPa) 
0.50 1.50  1.00 

Elastic modulus of 

column frame (MPa) 
102500.00 307500.00 205000.00 

Thickness of the 

wheel cover (mm) 
2.75 8.25 5.50 

Thickness of the ECU 

bracket (mm) 
1.60 4.80 3.20 
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Similar to chapter 4.3.1 and 4.3.2, model calibration result specifies to OBMC with 

bound information, with sensitivity bias, and proportionate bias. The result of 

calibrated parameters are summarized in Table 4-7. 

 

Table 4-7 The result of calibrated parameters  

 OBMC OBMC_δsb 
OBMC_δpb 

(Proposed) 

rho_wheel cover (MPa) 0.7614 0.8406 0.6391 

T_wheel cover (mm) 5.5185 5.5256 5.5211 

E_steel (GPa) 238.36 233.13 244.01 

T_ECU Bracket (mm) 3.6224 3.6224 3.6220 

K_airbag (N/mm) 1000.000 999.9999 999.9989 

δ - 1.0237 0.9749 

 

Since all of practical study cannot figure out the real value of unknown parameters, 

the case study result in chapter 4.3.3 cannot show the parameter estimation errors 
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directly. Instead, the validity of the calibrated parameters is confirmed by the 

prediction errors of 2nd mode of natural frequency, whose observation data are not 

utilized for model calibration. (4.11) quantifies the prediction error of 2nd mode 

natural frequency. 

 𝜀 = |𝜂2𝑛𝑑 𝑀.𝐹. − 𝜁2𝑛𝑑 𝑀.𝐹.| 𝜁2𝑛𝑑 𝑀.𝐹.⁄ × 100 (%) (4.11) 

With (4.1.1), the prediction errors by the calibrated parameters calculated in Table 

4-7 are illustrated in Figure 4-8. The result implies that the calibrated result of 

proportionate bias can adjust the predicted responses to the observation data.  

 

Figure 4-8 Prediction errors of 2nd mode natural frequency by the calibrated 

parameters  
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4.4 Summary and Discussion 

The error sources in a computational and a physical model can degrade the parameter 

estimation errors in model calibration. Without considering error sources in model 

calibration, the estimates of unknown parameters might be unreasonable compared 

with physics-based information. To cope with the estimation errors of the unknown 

model parameters, Chapter 5 devices the proportionate bias calibration to consider 

the amount of uncontrollable errors in model calibration. The proportionate bias 

represents an adjusting ratio between observation and prediction due to the error 

sources. OBMC optimizes the proportionate bias term with unknown model 

parameters together to quantify the amount of proportionate bias. By the cantilever 

beam model and automotive wheel rim model for stress and displacement analysis, 

the accuracy of parameter estimation errors with proportionate bias calibration is 

compared with other model calibration method (e.g., model calibration without bias 

and sensitivity-based model calibration). The result shows the efficacy of the 

proportionate bias calibration.  

The significant difference between proportionate bias calibration for OBMC 

and bias correction for Bayesian calibration is the required observation data. Bias 

correction aims to quantify the Gaussian process model for the discrepancy using the 

observation data measured from more than three design sites. The proportionate bias 

calibration method has a novelty that employs the experience-based bound 

information to support the insufficient observation data for quantifying the effect of 

error sources in model calibration. The proportionate bias prevents OBMC from 

optimizing the unknown parameters to the biased locations from the actual location 

to supplement the errors in predicted responses. Comparing with sensitivity-based 
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model calibration, the proportionate bias formulation is favorable for the model 

calibration by the multiple responses whose magnitude of each response value is 

severely different.  

To expand use of the proposed method, it will be challenging to determine the 

validity of the bound information for unknown model parameters. In case studies, 

the author employs the statistical information of unknown parameters by the 

references, which has difficulty to gather the required information. In a practical 

engineering field, however, it may cause the degraded accuracy of the proposed 

method since the reliability of the bound information only depends on the accuracy 

of the industrial engineer's experience-based knowledge. Thus, there is a need to 

introduce the systematic method for considering epistemic uncertainties of the bound 

information as a future research.  

 

 

 

 

Sections of this chapter have been published or submitted as the following journal 

articles:  

2) Hyejeong Son, Guesuk Lee, Kyeonghwan Kang, Young-jin Kang, Byeng D. Youn, 

Ikjin Lee, and Yoojeong Noh, “Industrial Issues and Solutions to Statistical Model 

Improvement: A Case Study of an Automobile Steering Column,” Structural and 

Multidisciplinary Optimization, Vol. 61, pp. 1739-1756, 2020. 



94 

 

Chapter 5  Comparison of Statistical Validation Metrics to Reduce Type II Errors in Model Validation 

 

Comparison of Statistical 

Validation Metrics to Reduce Type 

II Errors in Model Validation 

 

Statistical model validation (SMV) evaluates the prediction accuracy of 

computational models based upon observed data in a statistical manner (Hills and 

Trucano 1999) (Oberkampf and Barone 2006) (Oberkampf and Roy 2010) (Kat and 

Els 2012) (Sankararaman and Mahadevanb 2015) (Lee et al. 2019) (Kim and Youn 

2019). SMV requires statistical validation metrics and hypothesis testing as tools for 

statistical decision-making of whether a computational model is valid or not. A 

statistical validation metric measures the discrepancy between predicted and 

observed results that is used for the decision-making process (Oberkampf et al. 2004) 

(Xiong et al. 2009) (Thonhofer et al. 2014) (Zhao et al. 2017). Hypothesis testing 

evaluates the plausibility of rejecting a null hypothesis according to a designated 

confidence level (Naylor and Finger 1967) (Balci and Sargent 1982) (Koch 2013) 

(Johnson et al. 2000) (Stanton et al. 2000) (Wilcox 2011) (Ross 2020). In SMV, the 

null hypothesis is that there is no significant discrepancy between the prediction and 

observation. Hypothesis testing constructs a distribution of the validation metric, 

assuming that the observation data belongs to the prediction’s distribution. When the 
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value of the computed validation metric exists within the confidence level of this 

validation metric’s distribution, the hypothesis testing is unable to reject the null 

hypothesis. Using this information, SMV determines the validity of the 

computational model. 

Statistical validation metrics play a crucial role in SMV; they can change the 

result of the decision-making process. Under a variety of uncertainty sources, SMV 

can adopt a number of previously developed validation metrics in a statistical manner. 

Previous studies adopted the shape of the distribution function to consider a 

discrepancy in a global region (Kullback 1997) (Hills and Trucano 2002) 

(Mahadevan and Rebba 2005) (Oberkampf and Barone 2006) (Oberkampf and 

Barone 2006) (Ferson et al. 2008) (Jeon et al. 2015). The area metric is one popular 

metric. Developed by Ferson et al., the area metric generally employs a U-pooling 

method to solve practical problems using SMV (Ferson et al. 2008) (White and West 

2019). Likelihood is a metric for goodness of fit, which measures the fidelity of a 

dataset to a designated distribution (Hills and Trucano 2002) (Oberkampf and Roy 

2010) (Keysers et al. 2020). In other work, Bayes factor has been used to quantify 

the likelihood ratio of two possible distribution models for given data (Kass and 

Raftery 1995) (Berger and Mortera 1999) (Keysers et al. 2020). Kullback-Leibler 

divergence (KLD) has been used to imply the relative entropy of a probability 

density function with respect to another reference distribution (Kullback 1997) 

(Smith et al. 2006) (Pérez-Cruz 2008). Probability of separation (PoS) quantifies the 

separated degree of two distributions and is generally used for the classification of 

two datasets (Jeon et al. 2015). Probability residual is the squared form of the area 

discrepancy between two probability density functions (Oh et al. 2019) (Son et al. 
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2020).  

To guarantee the accuracy of SMV, it is of importance to select a feasible 

statistical validation metric. Hypothesis testing must consider both Type I and Type 

II errors. Type I error denotes when an accurate prediction model is wrongly rejected. 

In contrast, Type II error describes the situation when an invalid prediction result is 

improperly accepted. The lack of observation data and distribution fitting errors are 

the main reasons for both types of errors. These errors severely occur when the 

variance of observation data is relatively more extensive than a prediction due to the 

statistical uncertainties in observation. In engineering practice, however, Type II 

errors in hypothesis testing can be much hazardous than Type I errors since an invalid 

prediction can be used in a variety of activities with potential safety concerns such 

as the design of automobiles and planes. Thus, SMV requires an assessment of 

statistical validation metrics to arrive at the options that give the less Type II errors 

in decision-making when the variance of observation and prediction have a severe 

discrepancy. 

Scholars in related fields have discussed the features desired for statistical 

validation metrics, according to specific scenarios (Liu et al. 2011) (Ling and 

Mahadevan 2013) (Bi et al. 2017) (Maupin et al. 2018). These studies deal with the 

extended capability of statistical validation metrics for use with observation data that 

has particular characteristics. However, the validation metrics used in existing 

studies tend to be very sensitive to the distance between the observation and 

prediction and only weakly consider the discrepancy of the distribution with respect 

to the distributed degree of each dataset. For an accurate SMV, it is necessary for 

statistical validation metrics to quantify the difference between the distributions with 
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respect to not only the difference in mean, but also the variance. A discrepancy of 

variance between observation and prediction can occur in various situations. For 

example, when the uncertainty of the predicted response varies according to an input 

parameter, the distributions of the observed and predicted results will have a 

difference in variance. 

To address this research need, this study focuses on statistical validation metrics, 

which enable capture of the variance difference between observation and prediction 

to reduce decision errors in SMV. In particular, the research outlined in this study 

considers invalid prediction models that arise due to unknown parameters, which 

represent the expected error sources in model prediction. The remainder of this study 

is organized as follows. Chapter 5.1 gives an overview of statistical validation 

metrics. Chapter 5.2 presents a detailed examination of the statistical validation 

metrics through a numerical case study that considers differences in uncertainty of 

the prediction and observation that arise due to unknown parameters. Discussion and 

demonstration of the results in Chapter 5.2 is in Chapter 5.3 why area metric and 

PoS was less sensitive when the variance of predicted responses are different. The 

engineering case study in Chapter 5.4 confirms the validity of the discussion in 

Chapter 5.3. The study concludes with a summary and remarks, provided in Chapter 

5.5. 

 

5.1 Brief Review of Statistical Validation Metrics 

Among the developed statistical validation metrics, this study focuses on metrics that 
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use statistical distributions of the predictions and observations. Table 5-1 

summarizes all equations of the considered statistical validation metrics, both S and 

L types. C1 and C2 denote the distributions of the data, which can be either 

observation or prediction. f and F, respectively, stand for a probability density 

function (PDF) and a cumulative density function (CDF) of C1 or C2. d denotes each 

data element, for the observation data. 𝜃 presents the parameters of the distributions, 

which are estimated from both observation and prediction. 𝑥̃𝑐1
 and 𝑥̃𝑐2

 in (5.7) are 

the medians. The term S in (5.8) is a scale parameter that is only used in the 

probability residual metric. The SMV considered in this study adopts hypothesis 

testing for decision making. This chapter provides comprehensive information about 

SMV that uses a hypothesis testing process. Furthermore, six statistical validation 

metrics are introduced in Chapter 5.1 to assess their capability for use with the 

hypothesis testing method. 
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Table 5-1 Comparison of the model calibration results of unknown variable E 

(Young’s modulus)  

Metrics Type Equation  

Area metric S 

𝐴(𝑓𝐶1., 𝑓𝐶2
) = ∫ |𝑓𝐶1

(𝑥) − 𝑓𝐶2
(𝑥)|𝑑𝑥

∞

−∞

 
(5.1) 

𝐴𝑢(𝐹1, 𝐹2) = ∫ |𝐹(𝑢𝑝𝑟𝑒𝑑) − 𝐹(𝑢𝑜𝑏𝑠)|𝑑𝑢
∞

−∞

 

where 𝑢𝑖 = 𝐹𝑝𝑟𝑒𝑑(𝑥𝑖) 
(5.2) 

Likelihood L 

𝐿ℎ(𝛇|𝜽) = ∏ 𝑓(ζ𝑖|𝜽)

𝑛

𝑖=1

 
(5.3) 

log 𝐿ℎ(𝛇|𝜽) = ln(∏ 𝑓(ζ𝑖|𝜽)

𝑛

𝑖=1

)

= ∑ ln (𝑓(ζ𝑖|𝜽))

𝑛

𝑖=1

 
(5.4) 

Kullback-Liebler 

Divergence 
S 

𝐷𝐾𝐿(𝑐1|𝑐2) = ∫ 𝑓𝑐1
(𝑥) ln (

𝑓𝐶1
(𝑥)

𝑓𝐶2
(𝑥)

)
∞

−∞

𝑑𝑥 
(5.5) 

Bayes factor L 

𝐵0 =
𝑝{𝛇|𝐻𝑜: 𝜃𝑝𝑟𝑒𝑑 = 𝜃𝑜𝑏𝑠}

𝑝{𝛇|𝐻1: 𝜃𝑝𝑟𝑒𝑑 ≠ 𝜃𝑜𝑏𝑠}

=
𝐿ℎ(𝛇|𝜃𝑜𝑏𝑠)

∫ ∫ 𝐿ℎ(𝛇|𝜃)𝑓𝑝𝑟𝑟(𝜃)𝑑𝜇𝑑𝜎
 

(5.6) 

Probability of 

separation 
S 

𝑃𝑜𝑆 =
(𝑒1−2𝑃𝑁𝑆 − 1)

𝑒 − 1
 

where, 𝑃𝑁𝑆 =

∫ 𝐹𝑐2
(𝑥)𝑓𝑐1

(𝑥)𝑑𝑥
∞

−∞
 for 𝑥̃𝑐1

≤ 𝑥̃𝑐2
 

(5.7) 

Probability residual S 
𝑃𝑅 = 𝑆 × ∫ (𝑓𝐶1

(𝑥) − 𝑓𝐶2
(𝑥))

2
𝑑𝑥

∞

−∞

 
(5.8) 
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5.1.1 Area metric 

The area metric is an integral of the difference between two CDFs, as stated in (5.1). 

Ferson et al. recommended using the area metric with a U-pooling method (Ferson 

et al. 2009). The research described in this study adopted the area metric with a U-

pooling method for a comparison study. The area metric with U-pooling is as shown 

in (5.2). The advantage of the U-pooling method is that it can integrate the data 

achieved in a variety of environments for validation (Ferson et al. 2009) (Liu et al. 

2011). Furthermore, the metric is enabled when only a few observation data are 

available; in fact, even if only one data sample exists. The area metric with U-pooling 

varies from 0 to 0.5. 

 

5.1.2 Likelihood 

Likelihood in (5.3) measures the multiplication of all prediction PDFs at the 

observation sites (Edwards 1984) (Severini 2000) (Myung 2003). For practical 

reasons, this study applies a logarithmic transformation to the likelihood, as shown 

in (5.4). The multiplication of PDF values lower than one makes the likelihood 

smaller, which is not beneficial to the computation. The likelihood has no limits on 

its ability to increase or decrease, which helps to maximize the likelihood for 

parameter estimation. Since the likelihood metric uses observation data without a 

fitting method for the distribution, it gives a relatively good validation accuracy with 

even a small number of observation data. Likelihood can estimate differences that 

arise due to the variance of the observed and predicted results. 
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5.1.3 Kullback-Leibler Divergence (KLD) 

Kullback-Leibler divergence (KLD), as presented in (5.5), is motivated by 

information systems that quantify the entropy of given data (Kullback and Leibler 

1951) (Kullback 1997) (Anderson and Burnham 2004) (Bishop 2006). This aspect 

makes KLD sensitive to the variance difference between the two datasets. KLD is 

asymmetric; thus, if the distributions of fc1 and fc2 are inverted, different values are 

calculated. Therefore, for the case study described in Chapter 5.2, fc1 is substituted 

into the observation distributions and fc2 is used for the prediction distributions. The 

metric becomes zero if and only if the distributions of C1 and C2 are the same in a 

global domain at x. In contrast, a high KLD value indicates the separation of the two 

distributions.  

 

5.1.4 Bayes Factor 

The Bayes factor forms a ratio of the null and alternative hypothesis distributions 

(Berger and Mortera 1999) (Morey and Rouder 2011) (Ling and Mahadevan 2013) 

(Keysers et al. 2020). For the probabilities of the null hypothesis and the alternative 

hypothesis, the Bayes factor in (5.6). adopts the likelihood of observation data under 

the prediction model parameters’ prior distribution (Liu et al. 2011). The research 

described in this study assumes only two model parameter values estimated from the 

observation and prediction data are possible, since the numerical example has no 

specific prior information. Thus, 𝑓𝑝𝑟𝑟(𝜃) becomes 0.5. This assumption affects the 

accuracy of the SMV. However, I want to note that some practical problems have no 

prior information to enable use of the Bayes factor. 

 



102 

 

5.1.5 Probability of Separation (PoS) 

The probability of separation (PoS) metric originates from the probability of failure, 

which is generally used in reliability analysis (Jeon et al. 2015). The PoS assumes 

that the median of C1 must be smaller than the median of C2. This is because the 

probability of failure is defined when the overall strength of a system is smaller than 

the load applied to the system. From the derivation in (5.9), the PNS is defined to be 

within the range of [0, 0.5]. PoS is the normalization of PNS, which is defined in the 

range of [0, 1]. The (5.9) explains that the maximum value of PNS becomes 0.5 when 

the distribution of C1 and C2 is the same.  

𝑃𝑁𝑆|𝑐1=𝑐2
= ∫ 𝐹𝑐1(𝑥)𝑓𝑐1(𝑥)𝑑𝑥

∞

−∞

= 𝐹𝑐1(𝑥)𝐹𝑐1(𝑥)|−∞
∞ − ∫ 𝑓𝑐1(𝑥)𝐹𝑐1(𝑥)𝑑𝑥

∞

−∞

 

∫ 𝐹𝑐1(𝑥)𝑓𝑐1(𝑥)𝑑𝑥
∞

−∞

=
1

2
𝐹𝑐1(𝑥)2|−∞

∞ =
1

2
(1 − 0) = 0.5 

(5.9) 

  

5.1.6 Probability Residual (PR) 

The probability residual (PR), shown in (5.8), is a discrepancy measure for statistical 

model calibration that seeks to reinforce the limits of low sensitivity observed in 

existing discrepancy measures (Lee et al. 2018) (Oh et al. 2019). Although the PR 

has not been used as a discrepancy measure for SMV, this study examines the 

possibility of using it for this purpose. The minimal value of PR is zero, which occurs 

when the prediction and observation are perfectly in the same distribution. PR is not 

limited in its ability to increase the metric value. PR uses the distribution function 

that is estimated by a distribution fitting method. Thus, distribution fitting error can 
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occur, especially when the number of observations is small. The validation result 

described in Chapter 5.3 supports the idea that PR shows low accuracy when the 

number of observations is less than 10. 

 

5.2 A comparison study of statistical validation metrics 

Chapter 5.2 discusses the comparison of statistical validation metrics, with 

discrepancies in variance across the observed and predicted results. As previously 

discussed, the existing studies concentrate on examining the SMV accuracy when 

the mean of prediction and observation severely occurs. Since the variance 

discrepancy also causes hypothesis testing errors when it is not validated correctly, 

the statistical validation metrics require to be evaluated quantify the discrepancy of 

observation and prediction properly.  

 

5.2.1 Problem definition 

A nonlinear response with statistical input parameters is defined for the comparison 

study, as shown in (5.10) (Youn et al. 2008) 

  𝐺(𝑋, 𝜃) = 𝑒
(−

1
1+100𝑋2+2𝜃2+𝑋2𝜃2)

+ 𝜀  (5.10) 

where θ denotes the unknown variable that causes the discrepancy between the 

observation and prediction. The X and ε are the model input parameters. The 

nonlinearity in function G(X, θ) creates a change of variance as well as mean values 
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according to the statistical variables X and θ. Through the function G(X, θ) in (5.10), 

this study considers the importance of the change in variance for validating a 

nonlinear response that numerous engineering examples have. Furthermore, the case 

studies reflect Type II errors by assuming that the prediction and observation have 

different θ values. For a prediction model, Type II errors are much more dangerous 

because an invalid prediction of this type might be utilized in a practical field with 

catastrophic results. 

This study defines two case studies that were explored to compare statistical 

validation metrics. Case 1 deals with the situation in which the variance of the 

observed and predicted results is the same. Case 2 considers different variances in 

the observation and prediction. Case 2 is further broken down into Case 2-1 and 2-

2. Case 2-1 examines the situation in which the variance of the observation is smaller 

than that of the prediction. Case 2-2 explores the situation where the variance of the 

observation is larger than that of the prediction. Table 5-2 summarizes the input 

parameters X, θ, and ε in each case study. Case 1 specifies that ε follows a Gaussian 

distribution with zero-mean; variance is specified as 0.08, 0.12, 0.16, and 0.2. Case 

2 considers the statistical input parameter X, instead of the measurement error ε. X 

follows a Gaussian distribution; the mean is 0.1 and variance is specified as 0.08, 

0.12, 0.16, and 0.2.  

Depending on the value of θ, the mean and variance of the prediction and 

observation can be different. Figure 5-1 depicts the graphs of the function G(X, θ), 

concerning the unknown variable θ. The solid black line is the mean of the function 

G(X, θ). The dashed line, dotted line, dash-dotted line, and solid line with a star mark 

show the four different uncertain ranges, which give the 10 and 90% CDF values. 
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Figure 5-1 (a) is the graph of Case 1, which has the same variance, regardless of θ. 

Figure 5-1 (b) is the graph of the function G(X, θ) in Case 2, which has a different 

variance about θ. The red vertical line denotes the predicted response at θ =1. The 

blue vertical line at θ =0 shows the observation for Case 2-1, and the line at θ =2 

shows the observation for Case 2-2. The graphs in Figure 5-1 show that the uncertain 

range of all the function G(X, θ) increases when the variance of ε and X increases. 

The observation dataset includes 3 to 30 sampled data to explore the effect of 

the number of observations. 104 datasets for 3 to 30 sampled data are prepared to 

repeat the test. The prediction includes 105 sampled data to represent the distribution 

of prediction without statistical uncertainty. Since the prediction and observation 

data were sampled from the different values of θ, the SMV result should be that the 

prediction model is invalid. Therefore, the accuracy of the validation metrics denotes 

the number of observation datasets for which the validation metric value is outside 

of an acceptable range. The accuracy of the validation metrics is defined in (5.11). 

  𝑇ℎ𝑒 𝑟𝑒𝑗𝑒𝑐𝑡𝑖𝑜𝑛 𝑟𝑎𝑡𝑖𝑜 =
𝑛

𝑁
  (5.11) 

N is the number of datasets, 104, and n is the number of datasets located outside of 

the acceptable range. The validation metric, which gives a high value for the 

rejection ratio, shows a favorable result in the SMV. 
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Table 5-2 The model parameters and corresponding true values for the cantilever beam  

 X θ ε S.t.d 

Case 1 

Prediction 0.1 1 N~(0, 0.08 to 0.22) 

S.t.dPred. = S.t.dobs 
Observation 0.1 2 N~(0, 0.08 to 0.22) 

Case 2-1 

Prediction N~(0.1, 0.08 to 0.22) 1 - 

S.t.dPred. > S.t.dobs 
Observation N~(0.1, 0.08 to 0.22) 2 - 

Case 2-2 

Prediction N~(0.1, 0.08 to 0.22) 1 - 

S.t.dPred. < S.t.dobs 
Observation N~(0.1, 0.08 to 0.22) 0 - 
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(a) 

 

(b) 

Figure 5-1 Predicted and observed responses (a) Case 1 (b) Case 2 
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5.2.2 Results of statistical model validation accuracy 

Figure 5-2, Figure 5-3, and Figure 5-4 show the rejection ratio based on the number 

of observations. All figures provide that the rejection ratio increases as the number 

of observations increases. As the uncertainty of input parameter ε or X increases, the 

rejection ratio requires more observation data for the rejection ratio to reach one. A 

large amount of uncertainty in the function G(X, θ) results in a lower rejection ratio, 

since the overlapped area of the prediction and observation distributions prevents 

distinguishing between the two distributions’ discrepancy. The following paragraphs 

explain the results of Case 1, Case 2-1, and Case 2-2, as shown in Figure 5-2, Figure 

5-3, and Figure 5-4. 
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(a) (b) 
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Figure 5-2 Case 1: The rejection ratio for the number of observation data under different uncertainties of ε (a) ε~N(0, 0.082), 

(b) ε~N(0, 0.122), (c) ε~N(0, 0.162), and (d) ε~N(0, 0.202)  

 

 

  

(c) (d) 
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(a) (b) 
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Figure 5-3 Case 2-1: The rejection ratio for the number of observation data sampled at the site θ=2 under different 

uncertainties of X (a) X ~N(0.1, 0.082), (b) X ~N(0.1, 0.122), (c) X ~N(0.1, 0.162), and (d) X ~N(0.1, 0.202)  

 

  

(c) (d) 
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(c) (d) 

Figure 5-4 Case 2-2: The rejection ratio for the number of observation data sampled at the site θ=0 under different 

uncertainties of X (a) X ~N(0.1, 0.082), (b) X ~N(0.1, 0.122), (c) X ~N(0.1, 0.162), and (d) X ~N(0.1, 0.202) 
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i. Case 1: S.t.dPred. = S.t.dobs. 

According to the graphs shown in Figure 5-2, the rank of the rejection ratio for 

the studied validation metrics is determined as follows: area metric≈PoS > KLD > 

Bayes factor > PR≈likelihood. Overall, the area metric and PoS give the highest 

rejection ratio. The validation metric with the second highest rejection ratio is KLD. 

Although the rejection ratio of KLD is almost the same as the Bayes factor’s, the 

rejection ratio is lower than KLD’s when the uncertainty of the function G(X, θ) 

increases. PR gives the lowest rejection ratio with a small number of observations 

(i.e., under 10). In contrast, likelihood shows the lowest rejection ratio with a large 

overall number of observation data (i.e., over 10). 

 

ii. Case 2: S.t.dPred. ≠ S.t.dobs. 

As explained in Chapter 5.2.1, Case 2 is divided into Cases 2-1 and 2-2. In Case 

2-1, the rejection ratio of all statistical validation metrics, except for the likelihood, 

reached one before the number of observation data exceeded 10, as shown in Figure 

5-3. This is because a small variance of observed responses reduces the statistical 

uncertainties for the observation results. In Case 2-2, the rejection ratio in Figure 5-4 

indicates that the KLD, Bayes factor, and likelihood show a high rejection ratio. PR 

shows the lowest rejection ratio with a small number of observation data. Overall, 

the KLD and Bayes factor give the highest rejection ratio, as shown in Figure 5-3 

and Figure 5-4, except for the case of a small number of observations. When only a 

small observation (i.e., less than five) is available, the area metric and PoS give a 

higher rejection ratio than KLD and Bayes factor.  
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Under unknown parameters in model prediction, it is common for an 

engineering system response to have different amounts of variance. Thus, the 

comparison result can suggest that KLD or Bayes factor can be a useful discrepancy 

measure for the variance discrepancy. Since KLD is a metric to quantify the relative 

entropy between two distributions, it is advantageous to distinguish the difference in 

the distributions. The area metric and PoS are recommended when a limited number 

of observations is available. If the number of observations is small, the statistical 

uncertainty in observations can cause a discrepancy in the variance between 

observation and prediction. Therefore, when the number of observations is small, it 

is desirable to use a metric that is less sensitive to the differences of variance. One 

noticeable point is that the Bayes factor’s accuracy is related to the accuracy of the 

prior information. The Bayes factor is recommended when reliable prior information 

is available.  

 

5.3 Discussion and Demonstration  

This chapter explains why the area metric and PoS have low accuracy for variance 

discrepancy by deriving a possible metric range. Chapter 5.3.1 graphically explains 

the area metric’s possible range when the mean and variance of the two distributions 

are increased. Chapter 5.3.2 discusses the possible range of KLD by examining the 

limit calculation when the mean and variance of the two distributions increase.  

 

5.3.1 Discussion about the low accuracy of the area metric in a variance 
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change 

Figure 5-5 and Figure 5-6 illustrate the process for calculation of the area metric 

when the distribution of observation and prediction have a discrepancy in the mean 

and variance. The left figure is the prediction PDF and the observation data. The 

figure located in the middle of Figure 5-5 and Figure 5-6 shows the prediction CDF 

and the u-value of the observation. The graph on the right side is the empirical CDF 

of the u-value and the prediction CDF values. illustrates the change in the area metric 

when the mean of the observation is increased. The observation and prediction in 

Figure 5-5 (a) follow a standard normal distribution and the mean of the observation 

is increased from three to six in Figure 5-5 (b) and (c). The calculated area metric is 

increased from 0.07 to 0.5, according to the increased discrepancy of the mean. 

When the distributions of the prediction and observation are the same, the u-value of 

the observation is uniformly distributed, as shown in the second graph in Figure 5-5 

(a). As the discrepancy of the mean between the distribution of the observation and 

prediction increases, the u-values of the observation move to the right side, as shown 

in Figure 5-5 (b) and (c). When all of the u-values shift to one, the area discrepancy 

of the empirical CDF between the prediction and observation reaches 0.5. In contrast, 

the u-value of the observation shifts to zero as the mean of the observation data 

decreases. In that case, the final area metric becomes zero. Overall, the discrepancy 

of the mean shifts all u-values to zero or one. This result in the area metric values 

can be in a range of [0, 0.5], the area metric’s theoretical minimum and maximum.  

On the other hand, the range of the metric is reduced in the variance difference. 

Figure 5-6 shows the area metric calculation process with U-pooling in which the 

variance of observation is increased. The original observation and prediction in 
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Figure 5-6 (a) follow a standard normal distribution. The observation variance in 

Figure 5-6 (b) and (c) is increased from one to three and six. Unlike Figure 5-5, the 

u-values depicted in the second graph of Figure 5-6 partially converge to a different 

location, such as 0, 0.5, and 1. The area metric’s possible range cannot reach the 

minimum or maximum because u-values cannot converge to one location, 0 or 1. 

Thus, the area metric of the observation in Figure 5-6 (c) is calculated as 0.17. Under 

the discrepancy of variance, the range of the area metric depends on the number of 

observations. In conclusion, this research explains that the area metric with U-

pooling falls within a short range of metric values under the variance discrepancy. 

Due to the large variance of the observation, the area metric value became smaller 

and within the valid range, even though observation datasets follow invalid 

conditions. 
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 Au = 0.07 

(a) 

  

 Au =0.31 

(b) 

  

Au=0.50 

(c) 

Figure 5-5 The calculation of the area metric when the difference of mean is 

increased (a) Observation N~(0,12) (b) Observation N~(2,12) (c) 

Observation N~(6,12) (Prediction follows a standard normal distribution) 
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Au = 0.07 

(a) 

   

Au =0.13 

(b) 

   

Au =0.17 

(c) 

Figure 5-6 The calculation of the area metric when the difference of variance is 

increased (a) Observation N~(0,12) (b) Observation N~(0,22) (c) 

Observation N~(0,62) (Prediction follows a standard normal distribution) 
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5.3.2 Discussion about the low accuracy of the Probability of 

Separation (PoS) in a variance change 

This chapter focuses on obtaining the limit of PoS as the mean or variance 

discrepancy approaches infinity. The predicted and observed responses are assumed 

to follow a normal or lognormal distribution. This assumption can consider both 

symmetric and asymmetric distributions. Appendix A provide a detailed derivation 

of PNS in the PoS equation to derive the analytical metric’s limit. (A.7) is the PNS 

when the predicted and observed responses follow a normal distribution. μ1 and μ2 

denotes the mean value. 𝜎1  and 𝜎2  stands for S.t.d. The mean discrepancy 

approaches infinity, which is the same as when μ2 approaches infinity or μ1 

approaches minus infinity. The limit of PNS as μ1 approaches minus infinity is (5.12). 

The limit of PNS as μ1 approaches minus infinity is shown in (5.13). 

 

lim
𝜇1→−∞

𝑃𝑁𝑆 = lim
𝜇1→−∞

Φ(
𝜇

1
− 𝜇

2

√𝜎1
2 + 𝜎2

2
) = Φ ( lim

𝜇1→−∞

𝜇
1

− 𝜇
2

√𝜎1
2 + 𝜎2

2
) = Φ(−∞)

= 0 

(5.12) 

 

lim
𝜇2→∞

𝑃𝑁𝑆 = lim
𝜇2→∞

Φ(
𝜇

1
− 𝜇

2

√𝜎1
2 + 𝜎2

2
) = Φ ( lim

𝜇2→∞

𝜇
1
− 𝜇

2

√𝜎1
2 + 𝜎2

2
) = Φ(−∞) = 0 

(5.13) 

 

As the discrepancy of the mean increases, the PNS converges to zero. Thus, the limit 

of PoS becomes one, as shown in (5.14). 
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lim
𝜇1→−∞ 𝑜𝑟 

𝜇2→∞

PoS = lim
𝜇1→−∞ 𝑜𝑟 

𝜇2→∞

𝑒(1−2𝑃𝑁𝑆) − 1

𝑒 − 1

=
1

𝑒 − 1
[exp (1 − 2 × ( lim

𝜇1→−∞ 𝑜𝑟 

𝜇2→∞

P𝑁𝑆)) − 1]

=
𝑒(1−0) − 1

𝑒 − 1
= 1 

(5.14) 

 

The result in (5.14) shows that PoS can reach its maximum when the 

discrepancy of the mean in the observation and prediction increases. However, when 

the discrepancy of the variance increases, the possible PoS range is different. (5.15) 

offers the limit of PNS as the variance σ1 or σ2 approach infinity. The limit of PNS as 

the variance approaches minus infinity is an unreal situation because the variance is 

always a positive number. 

 

lim
𝜎1or𝜎2→∞

𝑃𝑁𝑆 = lim
𝜎1or𝜎2→∞

Φ(
𝜇1 − 𝜇2

√𝜎1
2 + 𝜎2

2
) = Φ( lim

𝜎1or𝜎2→∞

𝜇1 − 𝜇2

√𝜎1
2 + 𝜎2

2
) = Φ(0)

= 0.5 

(5.15) 

 

Using (5.15), the limit of PNS converges to 0.5, which cannot be zero. Thus, the 

hypothesis testing accepts some invalid observation datasets with a large discrepancy 

of variance that is due to the high PNS.  
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In the case of the log-normality conditions, (A.17) gives the analytical equation 

of PNS. To consider the situation that the μ2 and σ2 approach infinity, Appendix 2 

involves transforming the lognormal distribution’s model parameters to the μ2 and 

σ2 using (A.15) and (A.16). (5.16) gives the limit of PNS as μ2 approaches infinity. 

lim
𝜇2→∞

𝑃𝑁𝑆 = 𝑒
𝑠1
2

2
+𝑚1Φ

(

 
 
 

lim
𝜇2→∞

𝑚1 − ln(
𝜇2

2

√𝜎2
2 + 𝜇2

2
) − 𝑠1

2

√s1
2 + ln(

𝜎2
2

𝜇2
2 + 1)

)

 
 
 

= 𝑒
𝑠1
2

2
+𝑚1Φ(−∞)

= 0 

(5.16) 

As with the result of (5.14) and (5.15), (5.16) shows that the limit of PNS  

reaches zero, and PoS can reach its maximum when the discrepancy of the mean in 

the observation and prediction increases. In contrast, the limit of PNS as σ2 approaches 

infinity is non-zero. This is calculated by L'Hospital's rule, as shown in (5.17). 

lim
𝜎2→∞
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(5.17) 
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The term 𝑒
𝑠1
2

2
+𝑚1 is transformed to μ1 using (A.15) and (A.16). 

lim
𝜎2→∞

𝑃𝑁𝑆 = 𝑒
𝑠1
2

2
+𝑚1 = 𝑒

0.5 𝑙𝑛(
𝜎1

2

𝜇1
2+1)+𝑙𝑛

(

 𝜇1
2

√𝜎1
2+𝜇1

2
)

 

= 𝜇1 

(5.18) 

Using (5.18), the limit of PoS is as follows. 

lim
𝜎2→∞

𝑃𝑜𝑆 =
𝑒(1−2𝜇1) − 1

𝑒 − 1
 

(5.19) 

 

The result in (5.19) gives that the limit of PoS can reach the value upper than 

one, which means PoS can give its maximum when the variance discrepancy 

increases, only when μ1 < 0. However, the negative mean value is impossible for the 

lognormal distribution. Therefore, the PoS metric can give a validation error in the 

hypothesis test because the metric’s possible range decreases when the variance 

discrepancy between the observation and prediction increases. 

 

5.4 Case Study 

To demonstrate the result in chapters 5.3.1 and 5.3.2, chapter 5.4 employs an 

automotive wheel rim FEM model as introduced in chapter 3.3.2. The automotive 

wheel rim is a frame of a wheel that combines the wheel to the body of an automobile. 

This chapter considers a structural analysis to present maximum stress when a wheel 

rim is supported by the weight of an automobile and the pressure in a tire. Figure 

3-7(a) illustrates the result of the stress analysis that the maximum stress (σ) is 
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colored in yellow. Figure 3-9 indicates the boundary and loading condition.  

Table 5-3 summarizes the related parameters in this model. Among all model 

parameters, the load on the wheel is a statistical parameter that affects the 

uncertainties in maximum stress. By assuming that the statistical parameter follows 

normal or lognormal distribution, the value of maximum stress can be either 

symmetric or asymmetric distribution.  

 

Table 5-3 The statistical information of input parameters in an automotive wheel rim 

FEM model 

Parameter Symbol (Unit) Type Mean 
Standard 

deviation 

Inflation 

pressure 
P (bar) Deterministic 2 - 

Load on a wheel L (kN) Statistic  10.98 1.098 

Young’s 

modulus 
E (GPa) Deterministic 70 - 

Density Ρ (kg/m3) Deterministic 2700 - 

Poisson’s ratio ν (.) Deterministic 0.33 - 
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To show the increase of area metric and PoS when the prediction is inconsistent 

with observation, the mean and standard of deviation (S.t.d.) of the load on the wheel 

for observation increased until the area metric, and PoS converges. The mean 

increased up to 30.98kN, and the S.t.d. increased up to 52.10kN. For the distribution 

of observation and prediction, the number of observation and prediction data are 50 

and 104. The observation has 1000 sets to repeat the metric calculation. With the 

1000 metric values, Figure 5-7 to Figure 5-10 give the boxplot. Figure 5-7 and Figure 

5-8 show the limit of area metric and PoS when the mean of L in the observation 

increases. For the distribution type of L, Figure 5-7 uses the normal distribution in 

order for the distribution of the maximum stress σ to become a normal and symmetric 

distribution. The graphs in Figure 5-7 show that the area metric and PoS converge to 

0.5 and one, which means the perfect separation of the prediction and observation. 

The result in Figure 5-7 shows that the area metric and PoS can distinguish the mean 

discrepancy of symmetric distributions. The parameter L in Figure 5-8 uses the 

lognormal distribution to produce the asymmetric response. The graphs in Figure 5-8 

also present that the area metric and PoS converge to 0.5 and one. The overall result 

in Figure 5-7 and Figure 5-8 indicates that the area metric and PoS can represent the 

perfect separation between two distributions in case of the mean discrepancy.  

In contrast, Figure 5-9 and Figure 5-10 give different results. Figure 5-9 and 

Figure 5-10 consider the values of area metric and PoS when the variance of the L 

for the observation increases. The parameter L in Figure 5-9 uses the normal 

distribution, and Figure 5-10 uses the lognormal distribution. Even though the S.t.d. 

of the L increased to 52.10kN, more than 50 times of initial S.t.d. (e.g., 1.10kN), the 

values of the area metric and PoS in Figure 5-9 and Figure 5-10 do not increase to 
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their maximum, 0.5 and 1. In particular, the values of PoS when L follows a normal 

distribution, as shown in Figure 5-9 (b), rarely change. This graph supports the result 

in (4.15) that the limit of PoS, when the variance discrepancy approaches infinity, is 

zero. By the graphs in Figure 5-9 and Figure 5-10, the area metric and PoS cannot 

distinguish the difference of S.t.d., no matter how much the discrepancy of S.t.d. 

between observation and prediction increases. 
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(a) (b) 

Figure 5-7 The validation metrics change when the mean value of the load on wheel increases (normal distribution); (a) Area 

metric, (b) PoS 
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(a) (b) 

Figure 5-8 The validation metrics change when the mean value of the load on wheel increases (lognormal distribution); (a) 

Area metric, (b) PoS 
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(a) (b) 

Figure 5-9 The validation metrics change when the standard deviation (S.t.d.) value of the load on wheel increases (normal 

distribution); (a) Area metric, (b) PoS 
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(a) (b) 

Figure 5-10 The validation metrics change when the standard deviation (S.t.d.) value of the load on wheel increases (lognormal 

distribution); (a) Area metric, (b) PoS 
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5.5 Summary and Discussion 

Chapter 5 conducted a comparison study of six statistical validation metrics for their 

potential to offer an accurate SMV with hypothesis testing. In particular, the study 

focuses on the capability of these approaches to distinguish the discrepancy of 

variance between observed and predicted results. When the variance discrepancy is 

a major source of invalidity, the KLD and Bayes factor approaches give the best 

accuracy, among the six validation metrics studied. One noticeable thing is that the 

accuracy of SMV using the Bayes factor approach strongly depends on a reliable 

prior information. The area metric and PoS can provide a favorable accuracy when 

minimal observations are available, regardless of the discrepancy in the variance. 

This chapter provides an enhanced demonstration of why the area metric with U-

pooling and PoS provides low accuracy when there is a significant discrepancy in 

the variances of observation and prediction. The area metric and PoS vary in a 

smaller range when the discrepancy in the variance increases, as compared with the 

discrepancy of the mean. Using automotive wheel rim model, this study emphasized 

that the discussion in chapters 5.3.1 and 5.3.2 is reasonable.  

 This is a pioneering work to evaluate statistical validation metrics under 

variance discrepancy in observed and predicted results. This research examines a 

nonlinear model that includes statistical input parameters that induce variance 

change, along with unknown parameters. It is also worth examining suitable 

statistical validation metrics for accurate SMV, since variance discrepancies between 

observation and prediction results commonly occur in engineering fields. I believe 

that the results of this study can provide a general guideline for field engineers who 

are not familiar with SMV, and help them to select a statistical validation metric for 
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hypothesis testing that leads to accurate SMV. The result is applicable for 

multivariate problems. However, a limitation of this study is that this study has no 

discussion on the problem where the difference of the mean and the variance occurs 

similarly. The research has not provided a quantitative criterion for selecting a 

statistical validation metric between the mean-favored metric (e.g., area metric and 

PoS) and the variance-favored metric (e.g., KLD). The future work will explore a 

systematic framework for SMV that can guarantee its accuracy in a variety of 

engineering case studies through a hybrid validation metric approach using the 

characteristics of validation metrics discussed in this study. 
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134 

 

 

Chapter 6 Conclusion 

 

Conclusion 

 

6.1 Contributions and Significance  

The proposed research in this doctoral dissertation aims at enhancement of OBMI 

process with consideration of a variety of error sources in a computational model. 

This doctoral dissertation is composed of three research thrusts: (1) experimental 

design to identify error sources in optimization-based model improvement; (2) 

proportionate bias calibration with bound information to consider unrecognized 

model form errors; and (3) comparison of statistical validation metrics to reduce type 

II Errors in model validation. It is expected that the proposed research offers the 

following potential contributions and broader impacts in statistical model updating 

fields. 

 

Contribution 1: New Experimental Design which Reduces Parameter 

Estimation Errors in Model Calibration for Error Sources 

Identification  

Research Thrust 1 in this doctoral dissertation proposes a new experimental design 
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method that uses the analytical equation of parameter estimation errors. The research 

brought up a problem in OBMI that the process cannot deal with parameter 

estimation errors, coupled with model form errors. The errors in parameter 

estimation and model form are questionable in quantifying the error sources since 

the actual prediction is unknown. According to the analytical derivation of parameter 

estimation errors in model calibration, the new experimental design for OBMI 

minimizes the pseudo inverse of the gradient of model prediction, partial terms in 

the equation of parameter estimation errors. The method has the advantage that the 

experimental design can be performed only with the initial prediction model without 

any priors and observation data. With two case studies, the model calibration with 

the observation selected from the proposed methods estimates the best values for 

unknown parameters. This estimates can upgrade the predictability of the 

computational model. 

 

Contribution 2: Novel Framework of Model Calibration to Consider the 

Discrepancy due to the Error Sources Using a Bound 

Information for Unknown Model Parameters 

This doctoral dissertation devises the proportionate bias calibration method in 

OBMC to examine the amount of discrepancy between observation and prediction, 

due to the error sources such as model form and measurement errors. To the best of 

the authors’ knowledge, most existing works in model calibration to consider the 

error sources are focused on how to quantify the error sources with numerous sorts 

of observation. By applying the proposed methods to case studies, this research 
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confirmed that the proposed method can contribute to: 1) adopting experience-based 

bound information to support the insufficient observation data for quantifying the 

effect of error sources, 2) preventing OBMC from optimizing the unknown 

parameters to the biased locations from the actual location to supplement the errors 

in predicted responses, and 3) being favorable for the model calibration with multiple 

responses whose magnitude of each response value is severely different. According 

to these contributions, enhanced model calibration is available. 

 

Contribution 3: Guidance of Statistical Validation Metrics Selection for Model 

Validation From the Perspective of Mean and Variance 

Difference Between Observation and Prediction  

Research Thrust 3 aims to provide guidelines and rationales to select statistical 

validation metrics to escape the Type II errors in model validation. To the best of the 

author’s knowledge, the previous work only focuses on applying the validation 

metrics in a specific condition, such as multiple responses or lack of observation data. 

This research is a pioneering work to evaluate statistical validation metrics under 

mean and variance discrepancy in observed and predicted results. The research 

performed a comparison study of statistical validation metrics under the discrepancy 

of mean or variance between observation and prediction to confirm which metrics 

show the highest validation accuracy.  The result reveals that area metric and PoS 

are sensitive to the discrepancy of the mean (Mean-supportive metrics). KLD and 

Bayes factor metrics are favorable to quantify the discrepancy of variance (Variance-

supportive metrics). The mean-supportive metrics are advantageous in only a small 
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observation dataset since the quantification of variance discrepancy requires enough 

observation. This research has scientific merits in demonstrating why mean-

supportive metrics show poor accuracy in quantifying the variance discrepancy. 

 

6.2 Suggestions for Future Research 

This doctoral dissertation performed extensive works to develop an enhanced OBMI 

process to deal with the error sources in computational models. Although the 

technical advances proposed in this doctoral dissertation successfully address some 

issues in OBMI, there are still several research topics that further investigations and 

developments are required to deliver the robust OBMI process. Specific suggestions 

for future research are listed as follows. 

 

Suggestion 1: Probabilistic Experimental Design Approach for a Severely 

Nonlinear Response 

The proposed experimental design adopts an assumption that the interested 

responses can be linearly simplified. Since the linear model has a constant gradient, 

the experimental design method gives the same result regardless of the initial value 

of unknown model parameters. Thus, future work should focus on a systematic 

method to consider a nonlinear response, which can deal with the variability of the 

experimental design result about the initial value of unknown model parameters. As 

a suggestion, the statistical information of the unknown model parameters might be 
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promising to assess the reliability of the experimental design result (Huan and 

Marzouk 2013) (Fedorov and Leonov 2013). 

 

Suggestion 2: Consideration of Multivariate & Multiple Responses in Model 

Calibration 

For now, the proportionate bias calibration employs a single term for all of the 

responses used for model calibration. The case studies considered the model 

calibration of two unknown model parameters so that only two sorts of observations 

are required. However, model calibration requires more observations as the number 

of unknown model parameters increases. Future research requires a discussion of 

whether a single-term bias can consider the effects of discrepancies due to error 

sources. For multiple-responses model calibration, the proportionate calibration can 

increase the number of bias terms. Since the dimension of the optimization space 

expands when the number of bias terms increases, it degrades the convergence of the 

optimization algorithm (Bessa et al. 2017) (Wang et al. 2020). Thus, the optimal 

number of bias terms should be determined. 

 

Suggestion 3: Development of a New Validation Metric by the Integration of 

Mean-supportive and Variance-supportive Characteristics in 

Statistical Validation Metrics  

The development of a validation metric that shows feasibility in the mean and 
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variance discrepancy simultaneously, is a significant research need. While this 

doctoral dissertation confirmed validation metrics that have mean-supportive and 

variance-supportive characteristics for a reasonable selection of metrics, most of the 

practical cases involve mean and variance discrepancy together. Thus, future works 

should focus on the integration of mean-supportive and variance-supportive 

characteristics in a newly formulated validation metric. In addition, the newly 

formulated validation metric should consider the effect of the number of 

observations since the mean-supportive and variance-supportive characteristics can 

differ according to the number of observations. 
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Appendix A  Analytical Derivation of Probability of Separation (PoS) with Normal and Lognormal Distribution 

 

Analytical Derivation of 

Probability of Separation (PoS) 

with Normal and Lognormal 

Distribution 

 

To find out the range of PoS when the difference of variance between 

observation and prediction increases, these appendices provide the derivation of the 

PoS using an analytical probability distribution function. Appendix A.1 assumes that 

the observation and prediction follow a normal distribution; Appendix A.2 assumes 

a lognormal distribution. The choice of a normal distribution or lognormal 

distribution from among the numerous distribution types is made to consider PoS 

when the observation and prediction follow the symmetric and asymmetric 

distribution. 
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A.1 Analytical Derivation of PoS Metric with a Normal 

Distribution 

 

The general PDF of the normal distribution is as follows. 

 

  𝑓(𝑥) =
1

𝜎√2𝜋
𝑒

−0.5(
𝑥−𝜇
𝜎

)
2

= φ(
𝑥 − 𝜇

𝜎
)  

(A.1) 

 

where μ, and σ denote the mean and variance, which are the distribution 

parameters of a normal distribution. φ denotes the standard normal distribution 

function, which gives zero and one as a mean and standard deviation. The CDF of a 

normal distribution is shown in (A.2).  

 

  𝐹(𝑥) = ∫
1

𝜎√2𝜋
𝑒

−0.5(
𝑡−𝜇
𝜎

)
2

𝑑𝑡
𝑥

−∞

= Φ(
𝑥 − 𝜇

𝜎
)  

(A.2) 

 

The CDF F(x) is an integral of the PDF in a range of [-∞, x]. Φ stands for the 

function of a standard normal CDF. Using (A.1), and (A.2), the PNS in (4.7) is 

rewritten as follows. 

 

 
𝑃𝑁𝑆 = ∫ 𝐹𝑐2

∞

−∞

𝑓𝑐1
𝑑𝑥 = ∫ Φ(

𝑥 − 𝜇2

𝜎2
)

∞

−∞

1

𝜎1√2𝜋
𝑒

−0.5(
𝑥−𝜇1
𝜎1

)
2

𝑑𝑥 𝜇1

≤ 𝜇2 

(A.3) 

 



142 

 

 

With a normality assumption, the median and the mean of a distribution are the 

same. Thus, PNS satisfies μ1≤ μ2. For the integration of (A.3), the following 

transformation is adopted. 

 

 

𝑥 − 𝜇1

𝜎1
= 𝑡 

𝑥 = 𝜎1𝑡 + 𝜇1 

𝑑𝑥 = 𝜎1𝑑𝑡 

(A.4) 

Substituting (A.4) into (A.3), the PNS is derived as follows. 

 

𝑃𝑁𝑆 = ∫ Φ(
𝑥 − 𝜇2

𝜎2
)

∞

−∞

1

𝜎1√2𝜋
𝑒

−0.5(
𝑥−𝜇1

𝜎1
)
2

𝑑𝑥

= ∫ Φ(
𝑥 − 𝜇2

𝜎2
)

∞

−∞

1

𝜎1√2𝜋
𝑒−0.5(𝑡)2𝜎1𝑑𝑡

= ∫ Φ(
𝜎1𝑡 + 𝜇1 − 𝜇2

𝜎2
)φ(𝑡)𝑑𝑡

∞

−∞

 

(A.5) 

 

The CDF term Φ in (A.5) is transformed to (A.6). Y is an artificial variable 

which follows standard normal distribution. 

 

 

Φ(
𝜎1𝑡 + 𝜇1 − 𝜇2

𝜎2
) = 𝑃 (𝑌 ≤

𝜎1𝑡 + 𝜇1 − 𝜇2

𝜎2
)

= 𝑃(𝜎2𝑌 − 𝜎1𝑡 ≤ 𝜇1 − 𝜇2) = Φ(
𝜇1 − 𝜇2

√𝜎1
2 + 𝜎2

2
) 

(A.6) 

 

Since Y and t follow standard normal distribution, the summation of two 

variables ( 𝜎2𝑌 − 𝜎1𝑡 ) follows N~(0,  𝜎1
2 + 𝜎2

2 ). Using the definition of the 

expectation, (A.7) provides the overall equation of PNS. 
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𝑃𝑁𝑆 = ∫ Φ(
𝜎1𝑡 + 𝜇1 − 𝜇2

𝜎2
)φ(𝑡)𝑑𝑡

∞

−∞

= ∫ Φ(
𝜇1 − 𝜇2

√𝜎1
2 + 𝜎2

2
)φ(𝑡)𝑑𝑡

∞

−∞

= Φ(
𝜇1 − 𝜇2

√𝜎1
2 + 𝜎2

2
)∫ φ(𝑡)𝑑𝑡

∞

−∞

= Φ(
𝜇1 − 𝜇2

√𝜎1
2 + 𝜎2

2
) 

(A.7) 

 

A.2 Analytical Derivation of PoS Metric with a Lognormal 

Distribution 

 

The general PDF and CDF of a lognormal distribution is as follows. 

 

  𝑓(𝑥) =
1

𝑠√2𝜋
𝑒

−0.5(
ln (𝑥)−𝑚

𝑠
)
2

= φ(
ln (𝑥) − 𝑚

𝑠
)  

(A.8) 

 

  

𝐹(𝑥) = ∫
1

𝑠√2𝜋
𝑒

−0.5(
ln (𝑡)−𝑚

𝑠
)
2

𝑑𝑡
𝑥

−∞

= Φ(
ln (𝑥) − 𝑚

𝑠
) 

 
(A.9) 

 

The distribution parameters m and s become the mean and standard deviation 

of ln(x). Similar to the derivation process in Appendix A.1, PNS is derived as follows. 
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𝑃𝑁𝑆 = ∫ 𝐹𝑐2

∞

−∞

𝑓𝑐1
𝑑𝑥

= ∫ Φ(
ln (𝑥) − 𝑚2

𝑠2
)

∞

−∞

1

𝑠1√2𝜋
𝑒

−0.5(
ln (𝑥)−𝑚1

𝑠1
)
2

𝑑𝑥 

(A.10) 

 

 

ln (𝑥) − 𝑚1

𝑠1
= 𝑡 

𝑥 = 𝑒s1𝑡+𝑚1 
1

𝑥
𝑑𝑥 = s1𝑑𝑡 

(A.11) 

 

(A.12) is the result of transformation, substituting (A.11) into (A.10). 

 

𝑃𝑁𝑆 = ∫ Φ(
ln (𝑥) − 𝑚2

𝑠2
)

∞

−∞

1

𝑠1√2𝜋
𝑒

−0.5(
ln (𝑥)−𝑚1

𝑠1
)
2

𝑑𝑥

= ∫ Φ(
ln (𝑥) − 𝑚2

𝑠2
)

∞

−∞

1

𝑠1√2𝜋
𝑒−0.5(𝑡)2𝑥𝑠1𝑑𝑡

= ∫ 𝑥Φ(
s1𝑡 + 𝑚1 − 𝑚2

𝑠2
)φ(𝑡)𝑑𝑡

∞

−∞

 

(A.12) 

 

The term x and φ(t) in (A.12) is reorganized as follows. 

 

𝑥φ(t) = 𝑒𝑠1𝑡+𝑚1 ×
1

√2𝜋
𝑒−0.5𝑡2

=
1

√2𝜋
𝑒−0.5𝑡2+𝑠1𝑡+𝑚1

=
1

√2𝜋
𝑒−0.5(𝑡−𝑠1)2+

𝑠1
2

2
+𝑚1 =

1

√2𝜋
𝑒−0.5(𝑡−𝑠1)2𝑒

𝑠1
2

2
+𝑚1

= 𝑒
𝑠1
2

2
+𝑚1φ(𝑡 − 𝑠1) 

(A.13) 
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When substituting (t-s1) into L, the overall process of PNS derivation is described 

in (A.14) using (A.13).  

 

𝑃𝑁𝑆 = ∫ 𝑥Φ(
𝑠1𝑡 + 𝑚1 − 𝑚2

𝑠2
)φ(𝑡)𝑑𝑡

∞

−∞

= ∫ Φ(
𝑠1𝑡 + 𝑚1 − 𝑚2

𝑠2
) 𝑒

𝑠1
2

2
+𝑚1φ(𝑡 − 𝑠1)𝑑𝑡

∞

−∞

= 𝑒
𝑠1
2

2
+𝑚1 ∫ Φ(

s1𝐿 + s1
2 + 𝑚1 − 𝑚2

𝑠2
)φ(𝐿)𝑑𝐿

∞

−∞

= 𝑒
𝑠1
2

2
+𝑚1E(Φ(𝑌 ≤

𝑠1𝐿 + 𝑠1
2 + 𝑚1 − 𝑚2

𝑠2
))

= 𝑒
𝑠1
2

2
+𝑚1Φ(𝑌 ≤

𝑠1𝐿 + 𝑠1
2 + 𝑚1 − 𝑚2

𝑠2
)

= 𝑒
𝑠1
2

2
+𝑚1Φ(

𝑚1 − 𝑚2 − 𝑠1
2

√𝑠1
2 + 𝑠2

2
) 

(A.14) 

 

To consider the PNS concerning the mean and variance of distribution c2, instead 

of the distribution parameters, the following (A.15) and (A.16) present the relation 

between the distribution parameters (e.g., m, and s) and the mean or standard 

deviation.  

 

𝑚2 = ln(
𝜇2

2

√𝜎2
2 + 𝜇2

2
) (A.15) 

 

𝑠2 = √ln(
𝜎2

2

𝜇2
2 + 1) 

(A.16) 
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Using the (A.15) and (A.16), PNS in (A.14) is rewritten about the mean and 

standard deviation.  

 

𝑃𝑁𝑆 = 𝑒
𝑠1
2

2
+𝑚1Φ(

𝑚1 − ln(
𝜇2

2

√𝜎2
2 + 𝜇2

2
) − 𝑠1

2

√𝑠1
2 + ln(

𝜎2
2

𝜇2
2 + 1)

) (A.17) 
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국문 초록 

 

컴퓨터 모델 내 오류 원인 식별을 

위한 최적화 기반 모델 개선 기법 

연구  
 

서울대학교 대학원 

기계항공공학부 

손 혜 정 

 

컴퓨터 이용 공학 기술의 활용도가 증가함에 따라, 각 

공학분야에서는 보다 정확한 예측 능력을 가진 컴퓨터 모델을 필요로 

하게 되었다. 많은 연구결과를 통해, 신뢰도 높은 계산모델을 얻기 위한 

공학기술들이 개발되었다. 최적화 기반 모델 향상 기술은 계산모델 

예측도 향상을 위한 공학기술 중 하나로, 모델 보정, 모델 검증, 그리고 

모델 개선 과정을 포함하고 있다. 모델 보정은 계산 모델 내 미지변수의 

값을 역으로 추정하는 기술이다. 모델 검증은 예측 성능의 정확도를 

판단한다. 계산모델 내 미지 오류 원인이 존재하면 모델 개선을 통해 

미지 원인을 탐색하는 작업을 수행한다. 최적화 기반 모델향상기술 내 

세가지 세부 기술들은 모델 관련 사전 정보의 양에 따라 유기적으로, 

혹은 개별적으로도 수행이 가능하다.  
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모델 향상 기술이 계산모델 내 영향을 주는 다양한 오류원인을 

고려하여 수행되고 있으나, 최적화 기반 모델 향상기술은 여전히 

계산모델의 정확도를 증가시키는데 한계점을 지니고 있다. 시험 데이터 

및 계산 모델 내 다양한 오류 소스들이 결합되어 있어, 최적화 기반 

모델 향상 기술은 이 오류원인들을 구분하고 각 오류원인들에 대해 

적합한 솔루션을 제공하기에 부적합하다. 따라서, 이러한 문제점을 

해결하고자 본 박사학위논문에서는 (1) 파라미터 추정 오류 감소를 

위한 시험 설계 기법, (2) 모델 보정 시 모델링 및 시험 오류의 양을 

정량화 하기 위한 비율 편향도 정량화 기법 (3) 2종 오류에 강건한 

통계기반 검증 척도 비교 연구를 제안하고자 한다.  

첫 번째 연구에서는 파라미터 추정 오류를 최소화하기 위한 시험 

설계법 개발을 목표로 한다. 여기서 결정된 시험설계안은 모델 보정 시 

사용될 시험 데이터 취득을 위한 시험 설계를 뜻한다. 계산모델 내 

발생하는 모델링 오류, 그리고 시험데이터 취득 시 발생하는 계측오류 

등은 모델 보정에서 정확한 파라미터 값의 추정을 방해한다. 파라미터 

추정 오류를 포함한 계산모델은 주어진 시험데이터를 잘 모사하는 

것처럼 보이지만, 파라미터를 과도하게 편향된 값으로 추정하여 모델링 

오류를 보완한 결과이다. 이 경우, 모델 검증 시 모델이 유효하다고 

판단될 수 있지만 실제로는 파라미터 추정오류와 모델링 오류를 동시에 

갖고 있으므로 다양한 설계조건에서 유효하지 않은 모델이다. 따라서, 

본 연구에서는 파라미터 추정오류와 모델링 오류를 구분하여 정확한 

모델 검증을 유도하고자 한다. 파라미터 추정오류와 모델링 오류는 그 

정도를 각각 정량화 하는 것이 불가능하므로, 파라미터 추정오류를 가장 

최소화 할 수 있는 시험데이터의 종류와 취득위치를 선정할 수 있는 

시험설계법을 고안하였다. 이를 위해, (1) 파라미터 추정오류를 
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수식적으로 유도하였고, (2) 유도된 식 내에서 사용자가 제어할 수 있는 

일부항을 최소화 하도록 하였다. 제안된 시험설계법은 파라미터 

추정오류와 모델링 오류를 구분하고, 모델 검증 시 유효 및 불유효의 

원인이 모델링오류가 될 수 있도록 한다.  

두 번째 연구에서는 파라미터 추정오류를 개선하기 위해 모델 보정 

시 모델링 오류에 의한 성능 저하량을 정량화 할 수 있는 비율 편향 

보정 기법을 제안한다. 첫 번째 연구에서 제안한 시험설계법은 별도의 

추가 시험 데이터 없이 파라미터 추정 오류와 모델링 오류를 구분해 낼 

수 있는 최선의 방법론 이지만, 모델링 오류 및 시험 오류의 영향이 큰 

경우 파라미터 추정오류를 획기적으로 개선하는데 한계가 있다. 오류의 

영향도가 큰 모델은 추정 파라미터의 값이 엔지니어가 가진 경험, 혹은 

물리 기반 정보에 위배되는 지점으로 수렴할 수 있다. 따라서, 본 

연구에서는 관측데이터 외 미지 모델 변수의 물리적 정보를 활용하여 

모델링 오류 및 관측오류에 의한 성능저하도의 양을 정량화 하고자 

한다. 연구에서 제안된 ‘비율편향’ 은 오류에 의한 성능저하도를 

성능값의 일정한 비율로 가정하여, 모델 보정 시 최적화 알고리즘 

내에서 미지모델변수와 함께 최적 값이 추정되는 항이다. 비율편향 항과 

미지모델 변수가 사전의 물리적 정보에 위배되지 않는 범위 내에서 

추정될 수 있도록 미지모델 변수의 범위 정보를 최적화 알고리즘의 

제한조건으로 활용한다. 비율편향 보정기법은 미지모델변수의 추정값이 

모델링 오류에 의한 성능저하를 보완하기 위해 과도하게 편향된 값으로 

최적화 되는 현상을 바로잡을 수 있다.  

세 번째 연구에서는 모델 검증 시 발생할 수 있는 결정 오류를 

개선하기 위해 통계적 검증 척도의 선택 기준을 제시하고자 한다. 모델 

검증은 주로 통계기반 방법인 가설검증을 활용하여 모델의 유효 및 
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불유효를 결정한다. 가설검증은 제 1종 오류 및 제 2종 오류의 발생 

가능성을 갖고 있다. 제 2종 오류는 불유효한 모델을 유효하다고 

판단하는 오류로써 실제 산업분야에 치명적인 사고를 유발할 수 있다. 

본 연구에서는 제 2종 오류를 가장 적게 발생 시킬 수 있는 통계적 

검증 척도를 분석하기 위해 다음과 같은 조건에서의 검증 정확도 비교 

연구를 수행한다. 1) 관측 및 예측 성능의 분산이 같고 평균값의 차이로 

인해 예측 성능이 불유효 한 경우, 2) 관측 및 예측성능의 평균보다 

분산값의 차이로 인해 예측 성능이 불유효 한 경우. 비교연구는 모델 

파라미터의 분산 정도를 4가지로 세분화 하고 관측 데이터 개수에 의한 

정확도 차이를 비교하고자 관측 데이터를 3개에서 30개까지 

증가시켰다. 그 결과, 성능 간 평균의 차이를 잘 정량화 하는 검증척도 

및 성능 간 분산의 차이를 잘 정량화 하는 검증척도를 제안할 수 

있었다. 제안된 검증척도의 평균지향 및 분산지향 특성을 증명하고자, 

평균지향 척도의 극한값을 유도하여 분산값의 증가 시 척도의 값이 

최대값에 도달하지 않아 검증 오류가 발생할 수 있음을 확인하였다.   
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