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Abstract

Deep Learning Approach for
Motor Diagnosis using Bayesian Based
Class Weight Optimization

Yongjin Shin

Department of Mechanical and Aerospace Engineering
The Graduate School

Seoul National University

Diagnosis of motor defects are essential task, because the defects can lead to
failure of an entire system, causing deterioration in quality of applications and user
dissatisfaction. Recently, this problem has been addressed by a data-driven approach
based on deep learning methods. However, in real industrial environment, defect data
are insufficient compared to the normal data, which significantly degrades the learning
performance of the diagnostic model. This paper proposes a deep learning-based
diagnosis method, defining weight balancing parameters to solve the class imbalance
between normal and defect data. The parameters can make the model to more focus on
the defect data during training. We optimized the parameters through Bayesian method,
and find the best model to improve classification performance in minor classes.

Experimental results show that the model with optimized parameters enhanced



performance in given imbalanced data. This refers that the model can proceed training

without editing the input data to balance between minor and major classes.

Keywords: Motor defect
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Bayesian optimization
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Chapter 1

Introduction

1.1 Motivation

Motor defects cause unexpected motor failure during operation. If the motor failure
occurs, the entire system is shut down and can lead to human accidents as well as
economic losses at the production line Therefore, it is essential to diagnose motor
defects in advance, and many studies have been conducted related to this. In
particular, recently, many approaches using deep learning for motor diagnosis have
appeared [1]. On the other hand, there are several big issues with the deep learning
approach. One of the main issues is data imbalance between classes. The defect data
in the actual field is not sufficient, so that makes diagnosis using deep learning
difficult. In order to solve the problem, various methods have been tried from a data

perspective and an algorithm perspective [2].

From the data point of view, the data imbalance problem is solved by balancing the
input data itself by class. Oversampling is a method of adjusting the input by
augmenting data of a minority class to match the level of the majority class, and
under sampling is a method of adjusting the input by removing data of the majority
classes according to the level of the minority class. In addition, under the data

imbalance, Generative Adversarial Networks (GAN) is used as a method of



generating data of the minority class [12]. From an algorithmic point of view, data
imbalance can be resolved by transforming the loss function in deep learning. (Focal

Loss, dice loss)

Dice loss and GDL (generalized dice loss) are introduced to resolve the data
imbalance [3]. Mean false error (MFE) and mean squared false error (MSFE) are
proposed to make up for shortcoming of mean squared error loss function [2].
Focal loss are used in convolutional neural networks to enhance classification
performance of the minority class [9]. However, attempts to perform deep learning-
based motor diagnosis by solving data imbalance from an algorithmic perspective

are still insignificant.

This study aims to resolve the imbalance between normal and defective data by
defining weight balancing parameters for each class in the loss function of a neural
network. In addition, by setting the defined weight balancing parameter as a model
hyper-parameter and performing Bayesian optimization, an optimized model is

found and the classification performance is maximized within a given model [4].

1.2 Dissertation Layout

Including this section, this paper is organized with 6 sections. Section 2 provides
background knowledge for the proposed idea. In section 3, weight balancing
parameters and hyper-parameter optimization using Bayesian method are explained
in detail. Section 4 shows a case study for the proposed idea. Results and analysis
are carried out in Section 5 to verify the effectiveness of the suggestion method,

where classification performance is discussed. Section 6 summarizes the whole



research and gives future works.



Chapter 2
Theoretical Backgrounds

2.1 Loss Function

In deep learning, a neural network is composed of an input layer, hidden layers, and
an output layer. Model parameters at each nodes are automatically determined by the
model structure. When data enters the input layer in a specific shape, it is transmitted
through calculations with internal parameters at each node of the hidden layers. As
it reaches the output layer after the hidden layer, final predicted values of the model

come out.

The loss function is a numerical indicator of how well the model learned the data.
This function can be defined using the difference between the model's output value
and the user's desired output value. After one epoch process of transferring data from
the input layer to the output layer is finished, the parameters inside the model are
updated in the direction of reducing the loss function through backpropagation. The
process repeats again until the model has learned enough of the data. As a result, the
model learns the data by repeating the process of updating the parameters inside the

model in a direction that minimizes the defined loss function.



Input Hidden Output
layer layer layer

Input Output
data value

Figure 2-1 Learning process of neural network.

Back
T propagation

The loss function is expressed as Equation (2.1). Assuming the number of samples,
real output value, and output value of the model are expressed as n,y;, and J;,
respectively. In general, the loss function is calculated as the average of the loss
values of all data samples. Types of loss functions that are frequently used include
MSE(Mean squared error), RMSE(Root mean squared error), binary cross-entropy,
categorical cross-entropy and so on. In this study, we use categorical cross-entropy
because we handle multiple classification problems. Categorical cross-entropy is
calculated by Equation (2.2), where t; is a ground truth; s; is the it" element of

the last layer's output in score vector; C is the number of classes.

1%
L(P) = = L) 2.1)
C
CE = =) t;10g(f())
s (2.2)
f(s)i= W
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2.2 Evaluation Index of Classification Performance

When there are multiple classes of data, the data can be classified into True and False
depending on whether or not they are included in a specific reference class. Then,
the multiple classification problem can be viewed as a double classification problem
that matches whether or not it is a reference class. In the double classification
problem, there are four combinations of observation and prediction results, as shown
in Figure 2-2. True positive is when the observation is 1 and the model predicts it as
1; False positive is when the observation is 1 and the model predicts 0; False negative
is when the observation is 0 and the model predicts it as 1; And false negative is

when the observation is 0 and the model predicts it as 0.

Observed
True False
Predicted
True False
True " .
Positive Positive
False True
False . .
Negative Negative

Figure 2-2 Combination of observation and prediction.

Precision, recall, accuracy, and F1 score are mainly used as metrics for evaluating
classification performance in various learning models. Precision is the percentage of
actual true within the results that the model predicts as true. Recall is the percentage
of the result that the model classifies as true within the observations is true. Precision
and recall are calculated by Equation (2.3) and (2.4), where TP, FP, TN, FN

expresses true positive, false positive, true negative, and false negative, respectively.



TP

recisi = — 2.3
Precision (2.3)
Recall = 2.4

ecall = (2.4)

Accuracy which is the most commonly used is the ratio of predicted cases correctly
to all cases, as shown in equation (2.5). However, the accuracy is not appropriate to
use when the data is imbalanced between classes. This is because, when there are
majority classes that occupies most of the total data and minority classes with a
relatively small proportion, the accuracy is calculated as a high value even if the
minority class is not correctly predicted. Under the data imbalance state, the F1 score
iS a more appropriate metrics, since it considers performance of minor classes. The
F1 score is defined as the harmonic average of precision and recall, as shown in
equation (2.6). If either of the two values is low, the F1 score is calculated as low
values. Therefore, both values must be appropriately high in order to obtain a high
F1 score. In other words, it is a more proper indicator in data imbalance because the

predicted result must be accurate in all classes to produce a high F1 score.

TP+TN
TP+ FN+FP+TN

Accuracy = (2.5)

1 _ o Precision X Recall 2.6)
seore = Precision + Recall '

2.3 Bayesian Optimization

Bayesian optimization aims to find an optimal solution x * that maximizes the

unknown objective function f for the input x. Its main purpose is to quickly and



effectively find the maximum value of f by sequentially examining the input value

x with the minimum number of attempts.

2.3.1 Surrogate Model

Surrogate model refers to a model that makes a probabilistic estimation of an
unknown objective function for investigated samples (x;, f(x;))(@ = 1,2, ...n). In
general, the most commonly used probability model as a surrogate model is a
Gaussian process (GP). GP is a model to represent the probability distribution of the
function to be estimated, and can be expressed through the mean function and the
covariance function as shown in Equation (2.7) below. u(x) and k(x,x") express

mean function and covariance function, respectively.

f)~ GP(u(x), k(x, x")) @2.7)

Figure 2-3 shows the process of Bayesian optimization through GP when the number
of samples is 2, 3, and 4 in sequence. Dotted line represents the actual objective
function, black solid line represents the average function of the irradiated points, and
the purple region represents the standard deviation of the probability distribution of
the objective function. As the investigated points are added, the purple region
decreases because the probability estimation for the objective function becomes
more accurate. The standard deviation is 0 at the point investigated, and as the
distance from this point increases, the standard deviation increases, that is, the

uncertainty increases.
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Figure 2-3 Bayesian optimization using GP [5].

2.3.2 Acquisition Function

Acquisition function refers to a function that recommends the next input candidate
xn+1 based on (x5, f(x1)), (x5, f(x2))..., and (x,, f(x,)) as a result of the
investigation through the surrogate model so far. There are two strategies for
recommending the most promising candidates for which the objective function has

a maximum value. First, Exploitation is an estimation that the actual maximum value



of the objective function exists around the maximum value in the sample candidates
investigated so far. The second estimation strategy is Exploration. In the GP model,
it was confirmed that as the distance from the investigated sample increases, the
estimated standard deviation of the function increases. The larger the standard
deviation is, the larger the range of variation of the objective function is, so there is
a possibility that an actual maximum value may exist. In other words, the
exploitation is to search for the area with the largest standard deviation in the
estimated objective function. These two concepts are in a trade-off relationship with
each other, and the next sample must be estimated by appropriately adjusting the
relative strength of exploitation-exploration. The Expected improvement (EI)
function as shown in Equation (2.8) is a function designed including the above two
strategies, and is most often used as the acquisition function. @ and ¢ represent
the CDF and PDF of the standard normal distribution, respectively; & isaparameter

that controls the relative intensity of exploitation and exploration.

EI(x) = E[max(f (x) — f(x™), 0]]

_ {(u(x) —fa) - OP@D) +0()$@) ifox)>0 &P
0 ifo(x)=0
(k)= (x*)=%) .
7= { ) if o(x)>0 (2.9)
0 ifo(x)=0

2.4 STFT(Short-time Fourier transform)

Failure diagnosis is often difficult with simple time series characteristic factors such

as mean, standard deviation, and kurtosis. Since the rotating body has a natural

10 a1 == LH



rotational frequency, changes due to failure often appear in the frequency domain.
One of the most widely used techniques for converting time series data into the
frequency domain is FFT (Fast Fourier Transform). However, although the FFT can
inform the information in the frequency domain, it has a disadvantage of losing

temporal information, so it is not suitable when data has a time varying property.

In order to compensate for the shortcomings of the FFT, short-time Fourier transform
(STFT) is a technique that expresses both time domain information and frequency
domain information. In order to obtain the STFT, DFT (Discrete Fourier Transform)
is performed on each window while moving from the time series data to the desired
window size at appropriate time intervals. DFT can be calculated by Equation (2.10),
where x, X are time domain signal and frequency signal, respectively. In this way,
the DFT values generated in each window can be made two-dimensional as a time
axis. That is, the horizontal axis of time and the vertical axis of frequency generate
2D image data. STFT is a preprocessing technique that is frequently used for fault
diagnosis because it includes both time domain and frequency domain information

when the characteristics of data change over time.

X(e/") = ¥r=>, x[n]e /" (2.10)

x[n] = ime(ejw)ejwndw (2.11)

1 = L



Chapter 3
Proposed ldea

3.1 Weight Balancing Parameters

As shown in Equation (2.1), the all data samples generally have equal weight, and
the total loss function is calculated as the average of the loss values for each data
sample. However, due to data imbalance, the learning model often does not properly
train minor classes, and only learns major classes. In addition, while the model can
easily classify data with clear differences between classes, it hardly classify some
classes with similar physical characteristics. To solve this problem, it is necessary to
learn more intensively the classes that the model does not classify well. By defining
a new loss function by varying the weight for each data class, the degree of
concentration of model training for each class can be adjusted. The transformed loss
function is expressed as Equation (3.1), where w;, m and n; represent weight
balancing parameter, the number classes, and the number of samples un each class,
respectively.

ng

L (v,9,)1 (3.1)
1

L(Y) = i[wi -
=1 g

For the new loss function, the gradient descent of the neural network is expressed as

equation (3.2). Since the model parameter 6 is fed back by the weight balancing

12



parameters and the learning rate, w; and a become the hyper-parameters of the
model. The learning rate a adjusts the overall scale of the gradient decent, and the
weight parameter w; adjusts the relative contribution of each class to the gradient

decent.

In general, the value of the weight parameter for correcting the data imbalance is
determined in inverse proportion to the number of samples for each data class for
convenience. That is, small weight parameter values are assigned to a major classes
with a large number of samples, and large weight parameter values are assigned to
minor classes with a small number of samples. The equation for the conventional

parameters are as in (3.3).

P SL
R
(32)
1 N
=60 - az [w; @zl‘i (v;,97)1
i= j=1
m
1 1 _
wp=—/ z — (Conventional values) (3.3)
N ey

3.2 Hyper-parameters Optimization using Bayesian Method

In order to classify motor defects, we can create the desired neural network structure,
for given the data. When the previously defined weight balancing parameters and

learning rate are set, the model trains the data by updating the model parameters

13



using the gradient descent method in Equation (3.2). After training is completed, the
model classification performance can be checked with the F1 score calculated as
verification data. In other words, w; and a become the input hyper-parameters,
and the F1 score of the verification data becomes the objective function. The optimal
values of hyper-parameters w; and «a that maximize the classification

performance F1 score of a given model are found through Bayesian optimization.

Figure 3-1 shows the process of optimizing hyper-parameters through the Bayesian
method. The given neural network trains the input data with initial hyper-parameters,
and the trained model computes the F1 score with the verification data. Then, the F1
score according to the hyper-parameter becomes the initial point of the GP model.
Next hyper-parameters to be investigated are recommended through the Bayesian
method. Then, a new model is generated and training is conducted. This process is

repeated, and Bayesian optimization is performed by maximizing the F1 score.

14 = L



Input dataset

Step 1: Create neural network with given hyper-parameters

v

Step 2: Training the model

v

Step 3: Calculation of F1 score on validation set
NO I

Y

Step 4: Update Gaussian model

!

Step 5: Recommend the next hyper-parameter to maximize
the objective function

Yes
4

Step 6: Select an optimized neural network

!

Output diagnosis results

Figure 3-1 Flow chart of learning model update using Bayesian optimization.
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Chapter 4
Experimental Process

4.1 Data Summary

The data is a single channel acoustic signal from a home washing machine motor.
The data consists of a total of 257 sets, consisting of four types: normal data and
three types of different defect data. There are 200 normal sets, 21 defect 1 sets, 30
defect 2 sets, and 6 defect 3 sets. One data set was acquired for 3 seconds with an
acquisition frequency of 25600 [Hz] in a constant velocity section of 3000 to 3600

[RPM]. Information on the types of defects is given in Table 4-1.

Table 4-1 Defect types of motor.

# of sets Description
Normal 200
Defect 1 21 Mlsahgnmept of motor
axis
Defect 2 30 Foreign Substagce mnto
motor bearing
Defect 3 6 Extraneous noise

16
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Figure 4-1 Raw data examples: (a) normal, (b) defect 1, (c) defect 2, (d) defect 3.

4.2 Preprocessing

4.2.1 Sliding window filter

As mentioned earlier, the data in this study consists of a total of 257 sets, and each
data set has a length of 76800 with an acquisition frequency of 25600 [Hz] for 3
seconds. Sliding window filter is a technique that extracts data of a desired length
from long time series data by moving it at appropriate intervals, as shown in Figure
4-2. The sliding window filter was applied to increase the number of input data and
reduce the shape of one input data. Data was extracted by moving as much as 2500
lengths with a window size of 5000 length per data set. 28 windows were created for

each data set, resulting in a total of 7196(28*257) windows.

Y 3 A= o st w
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Window size: 5000 points

Sliding Direction
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Figure 4-2 Sliding window filter.

4.2.2 STFT 2D Image

Since acoustic signal mainly has a characteristic that changes with time, STFT is
often used as a preprocessing task [6]. As shown in Figure 4-1, the acoustic signal
of this research is not constant over time and the variability is large. Therefore,
although the input data is a signal acquired from a motor rotating at a constant speed,
it is appropriate to apply STFT since it has a time-varying property. 7196 images are
generated by applying STFT to each window obtained through the slicing window
filter; The window size and hop size of the STFT are 2048 and 256, respectively.
Figure 4-3 below shows an example of a 2D image applying STFT to the window

extracted from each class.
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Figure 4-3 STFT 2D image examples: (a) normal, (b) defect 1, (c) defect 2, (d)

defect 3.

4.3 Neural Network

7196 windows were created through the sliding window filter, and 2D images were
created by STFT of each window. As shown in Table 4-2, these 7196 images were
divided into training, validation, and test data. The model was trained with training

and validation data, and the model performance was confirmed with the test data.

19 A 8 1T



Table 4-2 Composition of training, validation, and test data.

Train Val Test Total

Normal 3734 933 933 5600
Defect 1 392 98 98 588
Defect 2 560 140 140 840
Defect 3 112 28 28 168
Total 4798 1199 1199 7196

Since the input is a 2D STFT image, we choose 2D-CNN model as a neural
architecture. As shown in Figure 4-4, the model was constructed using 3 convolution
layers with a kernel size of 3*3, a stride size of 1*1, and zero-padding. The number
of parameters of this configured model is 23796. The optimizer is Adam, and the
loss function is categorical cross-entropy. The activation function of the last dense
layer is SoftMax function. The batch size and learning rate were basically 16 and

0.0005, respectively.
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Figure 4-4 Neural architecture of 2D-CNN.

4.4 Optimization Setting

As explained in Part 3.2, Bayesian optimization retrieves the maximum value of the
F1 score by sampling the next hyper-parameter candidates through GP after
receiving the initial hyper-parameter. The hyper-parameters consist of a learning rate
a and weight balancing parameters wy, w,, wg, w, for four data classes. At this
time, since the weight balancing parameters are relative ratios to each other, the
parameter w; of the normal class is set to 1 and optimization is performed for
o, W, ws, and w,. The weight parameters of the minor classes are optimized in log-
scale in the range 1 to 1000, and the learning rate a is optimized in log-scale in the

range of 0.0001 to 0.1.

For the initial parameters to be input to Bayesian optimization, wy, w,, w3, w, are
proportional to the reciprocal of the number of samples of each class as shown in
equation (3.3) and w,, wg, w, were calculated by setting the criterion w; to 1.
The learning rate a is set to 0.0005. That is, since the number of samples for each

class are respectively 200, 21, 30, and 6, the calculated initial parameter («a,

: 2 M &



wy, Wy, W, wy) is (0.0005, 1, 9.524, 6.667, 33.333). Bayesian optimization was set

to 60 times under several trials.

4.5 Comparison Methods

This research proposes a method to increase the model's learning performance when
there is data imbalance between classes. The preceding methods of solving data
imbalance are largely divided into the data point of view and the algorithm point of
view. In the data perspective, the data imbalance problem is alleviated by similarly
controlling the number of input data for each class. As a comparison method for the
proposed method in this study, the most commonly used under sampling and
oversampling techniques were adopted. In both methods, the number of samples for
each class is adjusted through preprocessing before data is input to the model. In the
algorithm perspective, there are methods to solve data imbalance by modifying the
model itself or changing the loss function or metric. In this paper, the technique using

focal loss, which is frequently used recently, is adopted as a comparative control.

In this chapter, we introduce under sampling, over sampling and focal loss as
comparison methods of the proposition, and explain how each method is applied to

solve data imbalance.

45.1 Under Sampling

Under sampling is sampling by reducing the number of data in a major class. In order

to avoid bias in data, in general, random sampling is performed in the major class
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similar to the level of the number of samples in the minor class. When performing
random sampling in the normal class, if the number of samples is too small, the
model cannot sufficiently train due to data loss. Therefore, 50 sets were randomly
sampled from multiple classes, similar to the sum of the number of data sets of the

other classes.

Table 4-3 # of data sets for each classes using under sampling

Normal Defect 1 Defect 2 Defect 3

# of data sets 50 21 30 6

# of 2D images 1400 588 840 168

4.5.2 Over Sampling

Oversampling is a technique of augmenting and sampling data in the minor class to
have a similar number of samples to the major class. There are various methods to
augment data. Random sampling may be performed by simply repeating the data, or
data having a distribution similar to that of existing data can be created and sampled.
In this study, the shift size of the sliding window filter is adjusted to increase the data
differently for each class. If the shift size is reduced, a larger number of windows
can be extracted from one data set, and thus data can be augmented and sampled
more in the minor class. Table 4-4 shows the shift size for each class and the resulting

window.
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Table 4-4 Shift size and # of windows for each classes using oversampling

Normal Defect 1 Defect 2 Defect 3

# of data sets 200 21 30 6
Shift size 2500 1000 1000 200
# of windows 5600 1491 2130 2154

45.3 Focal Loss

Focal loss is a loss function created to mitigate data imbalance between classes. As
shown in Equation (4.1), it is defined by multiplying the cross entropy function used
as the loss function in the multiple classification problem by the term (1 —p,)*.
Here, p, y, and y means the prediction probability of the model, ground truth-
label, and a focusing parameter that reshapes the loss function, respectively. Because
of the multiplied term, training is performed by giving down-weight to classes that
have already been classified well during back propagation. That is, the new loss
function solve the data imbalance by emphasizing the training of difficult to classify
data [9]. In this paper, we compare the classification results using the focal loss and
the classification results using the proposed method from the viewpoint of an
algorithmic approach.

FL(p, y) = —(1 — p,)"log(p:)

> ify=1 (4.1)

where p, = {1 —p otherwise

24



Chapter 5
Result & Analysis

5.1 Classification Performance

After setting the weight balancing parameter and the learning rate as hyper
parameters, Bayesian optimization is performed to find the optimal model that
maximizes the F1 score of the verification data. This optimized model can check the
classification performance using test data. The classification metric was confirmed

by the F1 score and the loss function value for the test data.

The results were compared for the six cases as follows; @ When all classes are
trained with the same weight, @ When class weights are adjusted by conventional
parameters, 3 When hyper-parameters are optimized through Bayesian method.
@ Under sampling, & Over sampling, ® Focal loss. For each case, the
classification performance was calculated using the average value of five

experiments.

As shown in Table 5-1, it can be confirmed that there is no significant difference in
classification performance in case @ and case (2. That is, the imbalance problem
is not solved with the conventional parameters. However, in the case of optimization
3, the F1 score increased by about 0.05 and the loss function decreased near 0.1.

The confusion matrix for each case is shown in Figure 5-1. Looking at cases @ and
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), it can be seen that defect 1 is hardly distinguished from normal. However, in case

(3, it can be seen that about 60% of defectl is distinguished from normal.

In both sampling methods(case @), (), it can be seen that the classification
performance of defect 1 is slightly increased, but the overall performance is
decreased. This is because although the sampling was adjusted for each class to
reduce the imbalance rate, the classification performance in minor classes did not
improve much. However, when focal loss was used (®), both the classification
performance of the minor class and the overall F1 score increased. In particular, it
was confirmed that the classification performance of defect 1 increased by about
30%. In other words, focal loss can effectively solve data imbalance than the existing
loss function. In conclusion, the proposed method is superior to the existing methods

in terms of classification performance of minority classes and overall classification

performance.
Table 5-1 Classification metrics for each case.
@ @ ® @ ® ®
Meanof | 901 0904 0946 0827 0879 0917
F1 score
M:‘;‘S“S"f 0287 0270 0161 0410 0280 1215
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Figure 5-1 Normalized confusion matrix: (a) case @, (b) case @, (c) case 3,

(d) case @, (e) case ®, (f) case ®.
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5.2 Feature Visualization

Figure 5-2 shows the results of feature visualization through t-SNE for each case of
the previously classified results. This is the result by reducing the features that

appeared before the last dense layer of the 2D-CNN model to 2D dimension.

Looking at cases @ and (), it can be seen that defect 2 and defect 3 are well
separated from other classes, but defect 1 is hardly classified with normal. However,
incase (3 of the proposed method, it can be seen that defect 1 can be distinguished

from normal, and other types of defects are clearly separated.

In cases @ and (®, it can be seen that the scale difference is reduced through the
sampling method by looking at the number of samples for each class. As discussed
earlier, it can be seen that the points of defect 1 are more densely gathered and
distinguished from normal to some extent. However, it still seems that the

classification performance is insufficient for fault diagnosis.

Finally, looking at case ®, similar to case (3, defect 1 can be distinguished from
normal. Although the F1 score is lower than the proposed method, it performs much

better than other data imbalance solutions.
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5.3 Application for Different Imbalance Level

This study improves classification performance when there is data imbalance
between classes. The experiment was conducted when normal is 200, defect 1 is 21,
defect 2 is 30, and defect 3 is 6, and it can be seen that there is a data imbalance in
the normal is significantly more than the defect. Following the previous experiment,
in order to verify the performance of the proposed method at different imbalance
levels, we applied this proposed method when the number of normal data is 100 or
400. The case of 100 was named low imbalance level, and the case of 400 was named
high imbalance level, and the case of 200 was named intermediate imbalance level.

The cases @, @ and ® were compared, as shown in the figure 5-3.

In all three imbalance levels, it was confirmed that in case (), the F1 score was the
highest and the loss was the lowest. That is, it can be said that the proposed method

is applicable to various levels of imbalance dataset.
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Figure 5-3 F1 score and loss for each cases: (a) Intermediate imbalance level, (b)

low imbalance level, (c) high imbalance level.

5.4 Comparison with Other Hyper-parameter Optimization
Methods

There are many ways to optimize hyper-parameters in deep learning, but there are
four commonly used methods; Manual search, grid search, random search, and
Bayesian optimization. Manual search is Method of relying on intuition to directly
search for the optimal hyper-parameters value. For grid search, candidate of hyper-
parameters are selected at regular intervals within the search region. In random
search, hyper-parameters within the search section are selected through random

sampling. Finally, Bayesian optimization is a methodology for selecting the next

#;rﬁ'! _CIJI_ 1—l| -_.fJ]_ T_III-
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hyper-parameter candidate by reflecting the previously searched knowledge.
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Figure 5-4 Types of hyper-parameter optimization methods.

In this section, we compare random search and Bayesian optimization, applying in
the experiment. In both methods, if the number of searches is large enough, the
classification performance of the model is similarly improved. Since the neural
network is fixed, it can be analyzed that the classification performance of the model
converges to a certain threshold even when the optimal value of the weight balancing
parameters is found through the search. In Figure 5-5, it can be seen that through
random search, the F1 score continuously vibrates even when the number of searches

increases. In other words, it is impossible to find a meaningful search section with
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50 times. On the other hand, through Bayesian optimization, the F1 score tends to

converge after 20 times. That is, since sections that do not need to be searched are

removed and the next sections are searched, the optimum value can be more

efficiently found.
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Figure 5-5 F1 score vs epochs for each optimization method: (a) Random search

(b) Bayesian optimization.
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Chapter 6

Conclusion

This study proposes a method to solve the data imbalance problem by defining the
weight parameter in the loss function for each class and optimizing the hyper-
parameter through the Bayesian method in deep learning based motor fault diagnosis.
Through the case study, it was confirmed that the proposed method improves the
classification performance of minor classes in the given model and data. In addition,
it was confirmed that it shows better performance than other existing methods of

solving data imbalance.

The contribution of this study can be summarized in three ways. First, the paper
proposes framework of solving data imbalance using Bayesian optimization of
weight balancing parameters. Secondly, this method is applicable regardless of data
type, model type, and preprocessing. Finally, optimized model is found for given

data & model shape, improving classification performance of minor classes.

In future work, this study will be explored for other datasets and it will prove it can
be applicable for various fields. Furthermore, since the classification performance of
minority classes has not yet been completely improved, other attempts are required

to compensate for this.
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