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Abstract 

 

Deep Learning Approach for  

Motor Diagnosis using Bayesian Based 

Class Weight Optimization 
 

Yongjin Shin 

Department of Mechanical and Aerospace Engineering 

The Graduate School 

Seoul National University 

 

Diagnosis of motor defects are essential task, because the defects can lead to 

failure of an entire system, causing deterioration in quality of applications and user 

dissatisfaction. Recently, this problem has been addressed by a data-driven approach 

based on deep learning methods. However, in real industrial environment, defect data 

are insufficient compared to the normal data, which significantly degrades the learning 

performance of the diagnostic model. This paper proposes a deep learning-based 

diagnosis method, defining weight balancing parameters to solve the class imbalance 

between normal and defect data. The parameters can make the model to more focus on 

the defect data during training. We optimized the parameters through Bayesian method, 

and find the best model to improve classification performance in minor classes. 

Experimental results show that the model with optimized parameters enhanced 
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performance in given imbalanced data. This refers that the model can proceed training 

without editing the input data to balance between minor and major classes. 
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Chapter 1  Introduction 

 

Introduction 

 

1.1 Motivation 

Motor defects cause unexpected motor failure during operation. If the motor failure 

occurs, the entire system is shut down and can lead to human accidents as well as 

economic losses at the production line Therefore, it is essential to diagnose motor 

defects in advance, and many studies have been conducted related to this. In 

particular, recently, many approaches using deep learning for motor diagnosis have 

appeared [1]. On the other hand, there are several big issues with the deep learning 

approach. One of the main issues is data imbalance between classes. The defect data 

in the actual field is not sufficient, so that makes diagnosis using deep learning 

difficult. In order to solve the problem, various methods have been tried from a data 

perspective and an algorithm perspective [2].  

From the data point of view, the data imbalance problem is solved by balancing the 

input data itself by class. Oversampling is a method of adjusting the input by 

augmenting data of a minority class to match the level of the majority class, and 

under sampling is a method of adjusting the input by removing data of the majority 

classes according to the level of the minority class. In addition, under the data 

imbalance, Generative Adversarial Networks (GAN) is used as a method of 
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generating data of the minority class [12]. From an algorithmic point of view, data 

imbalance can be resolved by transforming the loss function in deep learning. (Focal 

Loss, dice loss) 

Dice loss and GDL (generalized dice loss) are introduced to resolve the data 

imbalance [3]. Mean false error (MFE) and mean squared false error (MSFE) are 

proposed to make up for shortcoming of mean squared error loss function [2].  

Focal loss are used in convolutional neural networks to enhance classification 

performance of the minority class [9]. However, attempts to perform deep learning-

based motor diagnosis by solving data imbalance from an algorithmic perspective 

are still insignificant. 

This study aims to resolve the imbalance between normal and defective data by 

defining weight balancing parameters for each class in the loss function of a neural 

network. In addition, by setting the defined weight balancing parameter as a model 

hyper-parameter and performing Bayesian optimization, an optimized model is 

found and the classification performance is maximized within a given model [4]. 

 

1.2 Dissertation Layout 

Including this section, this paper is organized with 6 sections. Section 2 provides 

background knowledge for the proposed idea. In section 3, weight balancing 

parameters and hyper-parameter optimization using Bayesian method are explained 

in detail. Section 4 shows a case study for the proposed idea. Results and analysis 

are carried out in Section 5 to verify the effectiveness of the suggestion method, 

where classification performance is discussed. Section 6 summarizes the whole 
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research and gives future works. 
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Chapter 2 Theoretical Backgrounds 

 

Theoretical Backgrounds 

 

2.1 Loss Function 

In deep learning, a neural network is composed of an input layer, hidden layers, and 

an output layer. Model parameters at each nodes are automatically determined by the 

model structure. When data enters the input layer in a specific shape, it is transmitted 

through calculations with internal parameters at each node of the hidden layers. As 

it reaches the output layer after the hidden layer, final predicted values of the model 

come out. 

The loss function is a numerical indicator of how well the model learned the data. 

This function can be defined using the difference between the model's output value 

and the user's desired output value. After one epoch process of transferring data from 

the input layer to the output layer is finished, the parameters inside the model are 

updated in the direction of reducing the loss function through backpropagation. The 

process repeats again until the model has learned enough of the data. As a result, the 

model learns the data by repeating the process of updating the parameters inside the 

model in a direction that minimizes the defined loss function. 
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Figure 2-1 Learning process of neural network. 

The loss function is expressed as Equation (2.1). Assuming the number of samples, 

real output value, and output value of the model are expressed as 𝑛, 𝑦𝑖 , 𝑎𝑛𝑑 𝑦̂𝑖 , 

respectively. In general, the loss function is calculated as the average of the loss 

values of all data samples. Types of loss functions that are frequently used include 

MSE(Mean squared error), RMSE(Root mean squared error), binary cross-entropy, 

categorical cross-entropy and so on. In this study, we use categorical cross-entropy 

because we handle multiple classification problems. Categorical cross-entropy is 

calculated by Equation (2.2), where 𝑡𝑖 is a ground truth; 𝑠𝑖 is the 𝑖𝑡ℎ element of 

the last layer's output in score vector; C is the number of classes.  

𝐿(𝑌̂) =  
1

𝑛
∑ 𝐿 (𝑦𝑖, 𝑦̂𝑖) 

𝑛

𝑖

 (2.1) 

𝐶𝐸 =  − ∑ 𝑡𝑖 log(𝑓(𝑠)𝑖)

𝐶

𝑖

 

𝑓(𝑠)𝑖 =
𝑒𝑠𝑖

∑ 𝑒𝑠𝑗𝐶
𝑗

 

  

 

(2.2) 
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2.2 Evaluation Index of Classification Performance 

When there are multiple classes of data, the data can be classified into True and False 

depending on whether or not they are included in a specific reference class. Then, 

the multiple classification problem can be viewed as a double classification problem 

that matches whether or not it is a reference class. In the double classification 

problem, there are four combinations of observation and prediction results, as shown 

in Figure 2-2. True positive is when the observation is 1 and the model predicts it as 

1; False positive is when the observation is 1 and the model predicts 0; False negative 

is when the observation is 0 and the model predicts it as 1; And false negative is 

when the observation is 0 and the model predicts it as 0. 

 

 

Figure 2-2 Combination of observation and prediction. 

Precision, recall, accuracy, and F1 score are mainly used as metrics for evaluating 

classification performance in various learning models. Precision is the percentage of 

actual true within the results that the model predicts as true. Recall is the percentage 

of the result that the model classifies as true within the observations is true. Precision 

and recall are calculated by Equation (2.3) and (2.4), where TP, FP, TN, FN 

expresses true positive, false positive, true negative, and false negative, respectively. 
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Accuracy which is the most commonly used is the ratio of predicted cases correctly 

to all cases, as shown in equation (2.5). However, the accuracy is not appropriate to 

use when the data is imbalanced between classes. This is because, when there are  

majority classes that occupies most of the total data and minority classes with a 

relatively small proportion, the accuracy is calculated as a high value even if the 

minority class is not correctly predicted. Under the data imbalance state, the F1 score 

is a more appropriate metrics, since it considers performance of minor classes. The 

F1 score is defined as the harmonic average of precision and recall, as shown in 

equation (2.6). If either of the two values is low, the F1 score is calculated as low 

values. Therefore, both values must be appropriately high in order to obtain a high 

F1 score. In other words, it is a more proper indicator in data imbalance because the 

predicted result must be accurate in all classes to produce a high F1 score. 

 

2.3 Bayesian Optimization 

Bayesian optimization aims to find an optimal solution 𝑥 ∗ that maximizes the 

unknown objective function 𝑓 for the input 𝑥. Its main purpose is to quickly and 

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 =  
𝑇𝑃

𝑇𝑃 + 𝐹𝑃
 (2.3) 

𝑅𝑒𝑐𝑎𝑙𝑙 =  
𝑇𝑃

𝑇𝑃 + 𝐹𝑁
 (2.4) 

𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 =  
𝑇𝑃 + 𝑇𝑁

𝑇𝑃 + 𝐹𝑁 + 𝐹𝑃 + 𝑇𝑁
 (2.5) 

𝐹1 𝑠𝑐𝑜𝑟𝑒 = 2 ×
𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 × 𝑅𝑒𝑐𝑎𝑙𝑙

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 + 𝑅𝑒𝑐𝑎𝑙𝑙
 (2.6) 
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effectively find the maximum value of 𝑓 by sequentially examining the input value 

𝑥 with the minimum number of attempts. 

 

2.3.1 Surrogate Model 

Surrogate model refers to a model that makes a probabilistic estimation of an 

unknown objective function for investigated samples (𝑥𝑖 ,  𝑓(𝑥𝑖))(𝑖 = 1,2, … 𝑛). In 

general, the most commonly used probability model as a surrogate model is a 

Gaussian process (GP). GP is a model to represent the probability distribution of the 

function to be estimated, and can be expressed through the mean function and the 

covariance function as shown in Equation (2.7) below. 𝜇(𝑥) and 𝑘(𝑥, 𝑥′) express 

mean function and covariance function, respectively.  

Figure 2-3 shows the process of Bayesian optimization through GP when the number 

of samples is 2, 3, and 4 in sequence. Dotted line represents the actual objective 

function, black solid line represents the average function of the irradiated points, and 

the purple region represents the standard deviation of the probability distribution of 

the objective function. As the investigated points are added, the purple region 

decreases because the probability estimation for the objective function becomes 

more accurate. The standard deviation is 0 at the point investigated, and as the 

distance from this point increases, the standard deviation increases, that is, the 

uncertainty increases. 

 

𝑓(𝑥)~ 𝐺𝑃(𝜇(𝑥),  𝑘(𝑥,  𝑥′)) (2.7) 
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Figure 2-3 Bayesian optimization using GP [5]. 

 

2.3.2 Acquisition Function 

Acquisition function refers to a function that recommends the next input candidate 

𝑥𝑛+1  based on (𝑥1,  𝑓(𝑥1)),(𝑥2,  𝑓(𝑥2))…, and (𝑥𝑛,  𝑓(𝑥𝑛)) as a result of the 

investigation through the surrogate model so far. There are two strategies for 

recommending the most promising candidates for which the objective function has 

a maximum value. First, Exploitation is an estimation that the actual maximum value 
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of the objective function exists around the maximum value in the sample candidates 

investigated so far. The second estimation strategy is Exploration. In the GP model, 

it was confirmed that as the distance from the investigated sample increases, the 

estimated standard deviation of the function increases. The larger the standard 

deviation is, the larger the range of variation of the objective function is, so there is 

a possibility that an actual maximum value may exist. In other words, the 

exploitation is to search for the area with the largest standard deviation in the 

estimated objective function. These two concepts are in a trade-off relationship with 

each other, and the next sample must be estimated by appropriately adjusting the 

relative strength of exploitation-exploration. The Expected improvement (EI) 

function as shown in Equation (2.8) is a function designed including the above two 

strategies, and is most often used as the acquisition function. 𝛷 and 𝜙 represent 

the CDF and PDF of the standard normal distribution, respectively; 𝜉 is a parameter 

that controls the relative intensity of exploitation and exploration. 

 

2.4 STFT(Short-time Fourier transform) 

Failure diagnosis is often difficult with simple time series characteristic factors such 

as mean, standard deviation, and kurtosis. Since the rotating body has a natural 

𝐸𝐼(𝑥) = 𝐸[max(𝑓(𝑥) − 𝑓(𝑥+), 0]] 

=  {
(𝜇(𝑥) − 𝑓(𝑥+) − 𝜉)𝛷(𝑍) + 𝜎(𝑥)𝜙(𝑍)   𝑖𝑓 𝜎(𝑥) > 0

0                                                                      𝑖𝑓𝜎(𝑥) = 0
 

(2.8) 

𝑍 = {
(𝜇(𝑥)−𝑓(𝑥+)−𝜉)

𝜎(𝑥)
             𝑖𝑓 𝜎(𝑥) > 0

0                                     𝑖𝑓 𝜎(𝑥) = 0
  (2.9) 
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rotational frequency, changes due to failure often appear in the frequency domain. 

One of the most widely used techniques for converting time series data into the 

frequency domain is FFT (Fast Fourier Transform). However, although the FFT can 

inform the information in the frequency domain, it has a disadvantage of losing 

temporal information, so it is not suitable when data has a time varying property. 

In order to compensate for the shortcomings of the FFT, short-time Fourier transform 

(STFT) is a technique that expresses both time domain information and frequency 

domain information. In order to obtain the STFT, DFT (Discrete Fourier Transform) 

is performed on each window while moving from the time series data to the desired 

window size at appropriate time intervals. DFT can be calculated by Equation (2.10), 

where 𝑥, X are time domain signal and frequency signal, respectively. In this way, 

the DFT values generated in each window can be made two-dimensional as a time 

axis. That is, the horizontal axis of time and the vertical axis of frequency generate 

2D image data. STFT is a preprocessing technique that is frequently used for fault 

diagnosis because it includes both time domain and frequency domain information 

when the characteristics of data change over time. 

 

  

X(𝑒𝑗𝑤) = ∑ 𝑥[𝑛]𝑒−𝑗𝑤𝑛𝑛=∞
𝑛=−∞   (2.10) 

x[n] =
1

2𝜋
∫ 𝑋(𝑒𝑗𝑤)𝑒𝑗𝑤𝑛𝑑𝑤

2𝜋
  (2.11) 
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Chapter 3 Proposed Idea 

 

Proposed Idea 

 

3.1 Weight Balancing Parameters 

As shown in Equation (2.1), the all data samples generally have equal weight, and 

the total loss function is calculated as the average of the loss values for each data 

sample. However, due to data imbalance, the learning model often does not properly 

train minor classes, and only learns major classes. In addition, while the model can 

easily classify data with clear differences between classes, it hardly classify some  

classes with similar physical characteristics. To solve this problem, it is necessary to 

learn more intensively the classes that the model does not classify well. By defining 

a new loss function by varying the weight for each data class, the degree of 

concentration of model training for each class can be adjusted. The transformed loss 

function is expressed as Equation (3.1), where 𝑤𝑖 , 𝑚 and 𝑛𝑖  represent weight 

balancing parameter, the number classes, and the number of samples un each class, 

respectively. 

For the new loss function, the gradient descent of the neural network is expressed as 

equation (3.2). Since the model parameter 𝜃 is fed back by the weight balancing 

𝐿(𝑌̂) =  ∑[𝑤𝑖 ∙ ∑ 𝐿𝑖 (𝑦𝑗 , 𝑦̂𝑗) 

𝑛𝑖

𝑗=1

]

𝑚

𝑖=1

 (3.1) 
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parameters and the learning rate, 𝑤𝑖 and 𝛼 become the hyper-parameters of the 

model. The learning rate 𝛼 adjusts the overall scale of the gradient decent, and the 

weight parameter 𝑤𝑖 adjusts the relative contribution of each class to the gradient 

decent. 

In general, the value of the weight parameter for correcting the data imbalance is 

determined in inverse proportion to the number of samples for each data class for 

convenience. That is, small weight parameter values are assigned to a major classes 

with a large number of samples, and large weight parameter values are assigned to 

minor classes with a small number of samples. The equation for the conventional 

parameters are as in (3.3). 

 

 
3.2 Hyper-parameters Optimization using Bayesian Method 

In order to classify motor defects, we can create the desired neural network structure, 

for given the data. When the previously defined weight balancing parameters and 

learning rate are set, the model trains the data by updating the model parameters 

𝜃 =  𝜃 −  𝛼
𝛿𝐿

𝛿𝜃
 

= 𝜃 −  𝛼 ∑  [𝑤𝑖 ∙
1

𝛿𝜃
∑ 𝐿𝑖 (𝑦𝑗 , 𝑦̂𝑗) 

𝑛𝑖

𝑗=1

]

𝑚

𝑖=1

 

(3.2) 

 𝑤𝑖 =
1

𝑛𝑖
/ ∑

1

𝑛𝑘

𝑚

𝑘=1

(𝐶𝑜𝑛𝑣𝑒𝑛𝑡𝑖𝑜𝑛𝑎𝑙 𝑣𝑎𝑙𝑢𝑒𝑠) (3.3) 
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using the gradient descent method in Equation (3.2). After training is completed, the 

model classification performance can be checked with the F1 score calculated as 

verification data. In other words, 𝑤𝑖 and 𝛼 become the input hyper-parameters, 

and the F1 score of the verification data becomes the objective function. The optimal 

values of hyper-parameters 𝑤𝑖  and 𝛼  that maximize the classification 

performance F1 score of a given model are found through Bayesian optimization. 

Figure 3-1 shows the process of optimizing hyper-parameters through the Bayesian 

method. The given neural network trains the input data with initial hyper-parameters, 

and the trained model computes the F1 score with the verification data. Then, the F1 

score according to the hyper-parameter becomes the initial point of the GP model. 

Next hyper-parameters to be investigated are recommended through the Bayesian 

method. Then, a new model is generated and training is conducted. This process is 

repeated, and Bayesian optimization is performed by maximizing the F1 score. 
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Figure 3-1 Flow chart of learning model update using Bayesian optimization. 
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Chapter 4 A Experimental Process 

 

Experimental Process 

 

4.1 Data Summary 

The data is a single channel acoustic signal from a home washing machine motor. 

The data consists of a total of 257 sets, consisting of four types: normal data and 

three types of different defect data. There are 200 normal sets, 21 defect 1 sets, 30 

defect 2 sets, and 6 defect 3 sets. One data set was acquired for 3 seconds with an 

acquisition frequency of 25600 [Hz] in a constant velocity section of 3000 to 3600 

[RPM]. Information on the types of defects is given in Table 4-1. 

Table 4-1 Defect types of motor. 

 # of sets Description 

Normal 200  

Defect 1 21 
Misalignment of motor 

axis 

Defect 2 30 
Foreign substance into 

motor bearing 

Defect 3 6 Extraneous noise 
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(a) 

 
(b) 

 
(c) 

 
(d) 

Figure 4-1 Raw data examples: (a) normal, (b) defect 1, (c) defect 2, (d) defect 3. 

 

4.2 Preprocessing 

4.2.1 Sliding window filter 

As mentioned earlier, the data in this study consists of a total of 257 sets, and each 

data set has a length of 76800 with an acquisition frequency of 25600 [Hz] for 3 

seconds. Sliding window filter is a technique that extracts data of a desired length 

from long time series data by moving it at appropriate intervals, as shown in Figure 

4-2. The sliding window filter was applied to increase the number of input data and 

reduce the shape of one input data. Data was extracted by moving as much as 2500 

lengths with a window size of 5000 length per data set. 28 windows were created for 

each data set, resulting in a total of 7196(28*257) windows. 
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Figure 4-2 Sliding window filter. 

 

4.2.2 STFT 2D Image 

Since acoustic signal mainly has a characteristic that changes with time, STFT is 

often used as a preprocessing task [6]. As shown in Figure 4-1, the acoustic signal 

of this research is not constant over time and the variability is large. Therefore, 

although the input data is a signal acquired from a motor rotating at a constant speed, 

it is appropriate to apply STFT since it has a time-varying property. 7196 images are 

generated by applying STFT to each window obtained through the slicing window 

filter; The window size and hop size of the STFT are 2048 and 256, respectively. 

Figure 4-3 below shows an example of a 2D image applying STFT to the window 

extracted from each class. 

 

 



19 

 

 
(a) 

 
(b) 

 
(c) 

 
(d) 

Figure 4-3 STFT 2D image examples: (a) normal, (b) defect 1, (c) defect 2, (d) 

defect 3. 

 

4.3 Neural Network 

7196 windows were created through the sliding window filter, and 2D images were 

created by STFT of each window. As shown in Table 4-2, these 7196 images were 

divided into training, validation, and test data. The model was trained with training 

and validation data, and the model performance was confirmed with the test data. 
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Table 4-2 Composition of training, validation, and test data. 

 Train Val Test Total 

Normal 3734 933 933 5600 

Defect 1 392 98 98 588 

Defect 2 560 140 140 840 

Defect 3 112 28 28 168 

Total 4798 1199 1199 7196 
 

 

 

Since the input is a 2D STFT image, we choose 2D-CNN model as a neural 

architecture. As shown in Figure 4-4, the model was constructed using 3 convolution 

layers with a kernel size of 3*3, a stride size of 1*1, and zero-padding. The number 

of parameters of this configured model is 23796. The optimizer is Adam, and the 

loss function is categorical cross-entropy. The activation function of the last dense 

layer is SoftMax function. The batch size and learning rate were basically 16 and 

0.0005, respectively. 
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Figure 4-4 Neural architecture of 2D-CNN. 

 

4.4 Optimization Setting 

As explained in Part 3.2, Bayesian optimization retrieves the maximum value of the 

F1 score by sampling the next hyper-parameter candidates through GP after 

receiving the initial hyper-parameter. The hyper-parameters consist of a learning rate 

α and weight balancing parameters 𝑤1, 𝑤2, 𝑤3, 𝑤4 for four data classes. At this 

time, since the weight balancing parameters are relative ratios to each other, the 

parameter 𝑤1  of the normal class is set to 1 and optimization is performed for 

α, 𝑤2, 𝑤3, and 𝑤4. The weight parameters of the minor classes are optimized in log-

scale in the range 1 to 1000, and the learning rate α is optimized in log-scale in the 

range of 0.0001 to 0.1. 

For the initial parameters to be input to Bayesian optimization, 𝑤1, 𝑤2, 𝑤3, 𝑤4 are 

proportional to the reciprocal of the number of samples of each class as shown in 

equation (3.3) and 𝑤2, 𝑤3, 𝑤4 were calculated by setting the criterion 𝑤1 to 1.  

The learning rate a is set to 0.0005. That is, since the number of samples for each 

class are respectively 200, 21, 30, and 6, the calculated initial parameter ( 𝛼 , 
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𝑤1, 𝑤2, 𝑤3, 𝑤4) is (0.0005, 1, 9.524, 6.667, 33.333). Bayesian optimization was set 

to 60 times under several trials.  

 

4.5 Comparison Methods 

This research proposes a method to increase the model's learning performance when 

there is data imbalance between classes. The preceding methods of solving data 

imbalance are largely divided into the data point of view and the algorithm point of 

view. In the data perspective, the data imbalance problem is alleviated by similarly 

controlling the number of input data for each class. As a comparison method for the 

proposed method in this study, the most commonly used under sampling and 

oversampling techniques were adopted. In both methods, the number of samples for 

each class is adjusted through preprocessing before data is input to the model. In the 

algorithm perspective, there are methods to solve data imbalance by modifying the 

model itself or changing the loss function or metric. In this paper, the technique using 

focal loss, which is frequently used recently, is adopted as a comparative control. 

In this chapter, we introduce under sampling, over sampling and focal loss as 

comparison methods of the proposition, and explain how each method is applied to 

solve data imbalance.  

 

4.5.1 Under Sampling 

Under sampling is sampling by reducing the number of data in a major class. In order 

to avoid bias in data, in general, random sampling is performed in the major class 
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similar to the level of the number of samples in the minor class. When performing 

random sampling in the normal class, if the number of samples is too small, the 

model cannot sufficiently train due to data loss. Therefore, 50 sets were randomly 

sampled from multiple classes, similar to the sum of the number of data sets of the 

other classes. 

Table 4-3 # of data sets for each classes using under sampling 

 Normal Defect 1 Defect 2 Defect 3 

# of data sets 50 21 30 6 

# of 2D images 1400 588 840 168 
 

 

 

4.5.2 Over Sampling 

Oversampling is a technique of augmenting and sampling data in the minor class to 

have a similar number of samples to the major class. There are various methods to 

augment data. Random sampling may be performed by simply repeating the data, or 

data having a distribution similar to that of existing data can be created and sampled. 

In this study, the shift size of the sliding window filter is adjusted to increase the data 

differently for each class. If the shift size is reduced, a larger number of windows 

can be extracted from one data set, and thus data can be augmented and sampled 

more in the minor class. Table 4-4 shows the shift size for each class and the resulting 

window. 
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Table 4-4 Shift size and # of windows for each classes using oversampling 

 Normal Defect 1 Defect 2 Defect 3 

# of data sets 200 21 30 6 

Shift size 2500 1000 1000 200 

# of windows 5600 1491 2130 2154 
  

 

4.5.3 Focal Loss 

Focal loss is a loss function created to mitigate data imbalance between classes. As 

shown in Equation (4.1), it is defined by multiplying the cross entropy function used 

as the loss function in the multiple classification problem by the term (1 − 𝑝𝑡)𝛾. 

Here, 𝑝, 𝑦, and 𝛾 means the prediction probability of the model, ground truth-

label, and a focusing parameter that reshapes the loss function, respectively. Because 

of the multiplied term, training is performed by giving down-weight to classes that 

have already been classified well during back propagation. That is, the new loss 

function solve the data imbalance by emphasizing the training of difficult to classify 

data [9]. In this paper, we compare the classification results using the focal loss and 

the classification results using the proposed method from the viewpoint of an 

algorithmic approach. 

  

𝐹𝐿(𝑝,  𝑦) = −(1 − 𝑝𝑡)𝛾log (𝑝𝑡) 

𝑤ℎ𝑒𝑟𝑒 𝑝𝑡 =  {
𝑝        𝑖𝑓 𝑦 = 1

1 − 𝑝    𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒
 

(4.1) 
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Chapter 5 Result & Analysis 

 

Result & Analysis 

 

5.1 Classification Performance 

After setting the weight balancing parameter and the learning rate as hyper 

parameters, Bayesian optimization is performed to find the optimal model that 

maximizes the F1 score of the verification data. This optimized model can check the 

classification performance using test data. The classification metric was confirmed 

by the F1 score and the loss function value for the test data. 

The results were compared for the six cases as follows; ① When all classes are 

trained with the same weight, ② When class weights are adjusted by conventional 

parameters, ③ When hyper-parameters are optimized through Bayesian method. 

④ Under sampling, ⑤ Over sampling, ⑥ Focal loss. For each case, the 

classification performance was calculated using the average value of five 

experiments.  

As shown in Table 5-1, it can be confirmed that there is no significant difference in 

classification performance in case ① and case ②. That is, the imbalance problem 

is not solved with the conventional parameters. However, in the case of optimization 

③, the F1 score increased by about 0.05 and the loss function decreased near 0.1. 

The confusion matrix for each case is shown in Figure 5-1. Looking at cases ① and 
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②, it can be seen that defect 1 is hardly distinguished from normal. However, in case 

③, it can be seen that about 60% of defect1 is distinguished from normal. 

In both sampling methods(case ④, ⑤), it can be seen that the classification 

performance of defect 1 is slightly increased, but the overall performance is 

decreased. This is because although the sampling was adjusted for each class to 

reduce the imbalance rate, the classification performance in minor classes did not 

improve much. However, when focal loss was used (⑥), both the classification 

performance of the minor class and the overall F1 score increased. In particular, it 

was confirmed that the classification performance of defect 1 increased by about 

30%. In other words, focal loss can effectively solve data imbalance than the existing 

loss function. In conclusion, the proposed method is superior to the existing methods 

in terms of classification performance of minority classes and overall classification 

performance. 

Table 5-1 Classification metrics for each case. 

 ① ② ③ ④ ⑤ ⑥ 

Mean of 

F1 score 
0.901 0.904 0.946 0.827 0.879 0.917 

Mean of 

loss 
0.287 0.270 0.161 0.410 0.280 1.215 
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(a) 

 
(b) 

 
(c) 

 
(d) 

 
(e) 

 
(f) 

Figure 5-1 Normalized confusion matrix: (a) case ①, (b) case ②, (c) case ③, 

(d) case ④, (e) case ⑤, (f) case ⑥. 
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5.2 Feature Visualization 

Figure 5-2 shows the results of feature visualization through t-SNE for each case of 

the previously classified results. This is the result by reducing the features that 

appeared before the last dense layer of the 2D-CNN model to 2D dimension. 

Looking at cases ① and ②, it can be seen that defect 2 and defect 3 are well 

separated from other classes, but defect 1 is hardly classified with normal. However, 

in case ③ of the proposed method, it can be seen that defect 1 can be distinguished 

from normal, and other types of defects are clearly separated. 

In cases ④ and ⑤, it can be seen that the scale difference is reduced through the 

sampling method by looking at the number of samples for each class. As discussed 

earlier, it can be seen that the points of defect 1 are more densely gathered and 

distinguished from normal to some extent. However, it still seems that the 

classification performance is insufficient for fault diagnosis. 

Finally, looking at case ⑥, similar to case ③, defect 1 can be distinguished from 

normal. Although the F1 score is lower than the proposed method, it performs much 

better than other data imbalance solutions. 
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(a) 

 
(b) 

 
(c) 

 
(d) 

 
(e) 

 
(f) 

 

 

Figure 5-2 Feature visualization through t-SNE: (a) case ①, (b) case ②, (c) 

case ③, (d) case ④, (e) case ⑤, (f) case ⑥. 
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5.3 Application for Different Imbalance Level 

This study improves classification performance when there is data imbalance 

between classes. The experiment was conducted when normal is 200, defect 1 is 21, 

defect 2 is 30, and defect 3 is 6, and it can be seen that there is a data imbalance in 

the normal is significantly more than the defect. Following the previous experiment, 

in order to verify the performance of the proposed method at different imbalance 

levels, we applied this proposed method when the number of normal data is 100 or 

400. The case of 100 was named low imbalance level, and the case of 400 was named 

high imbalance level, and the case of 200 was named intermediate imbalance level. 

The cases ①, ② and ③ were compared, as shown in the figure 5-3. 

In all three imbalance levels, it was confirmed that in case ③, the F1 score was the 

highest and the loss was the lowest. That is, it can be said that the proposed method 

is applicable to various levels of imbalance dataset.  

 



31 

 

 
(a)  

 
(b) 

 
(c) 

Figure 5-3 F1 score and loss for each cases: (a) Intermediate imbalance level, (b) 

low imbalance level, (c) high imbalance level. 

 

5.4 Comparison with Other Hyper-parameter Optimization 

Methods 

There are many ways to optimize hyper-parameters in deep learning, but there are 

four commonly used methods; Manual search, grid search, random search, and 

Bayesian optimization. Manual search is Method of relying on intuition to directly 

search for the optimal hyper-parameters value. For grid search, candidate of hyper-

parameters are selected at regular intervals within the search region. In random 

search, hyper-parameters within the search section are selected through random 

sampling. Finally, Bayesian optimization is a methodology for selecting the next 
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hyper-parameter candidate by reflecting the previously searched knowledge. 

 

 

Figure 5-4 Types of hyper-parameter optimization methods. 

 

In this section, we compare random search and Bayesian optimization, applying in 

the experiment. In both methods, if the number of searches is large enough, the 

classification performance of the model is similarly improved. Since the neural 

network is fixed, it can be analyzed that the classification performance of the model 

converges to a certain threshold even when the optimal value of the weight balancing 

parameters is found through the search. In Figure 5-5, it can be seen that through 

random search, the F1 score continuously vibrates even when the number of searches 

increases. In other words, it is impossible to find a meaningful search section with 
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50 times. On the other hand, through Bayesian optimization, the F1 score tends to 

converge after 20 times. That is, since sections that do not need to be searched are 

removed and the next sections are searched, the optimum value can be more 

efficiently found. 

 

 
(a) 

 
(b) 

Figure 5-5 F1 score vs epochs for each optimization method: (a) Random search  

(b) Bayesian optimization. 
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Chapter 6 Conclusion 

 

Conclusion 

 

This study proposes a method to solve the data imbalance problem by defining the 

weight parameter in the loss function for each class and optimizing the hyper-

parameter through the Bayesian method in deep learning based motor fault diagnosis. 

Through the case study, it was confirmed that the proposed method improves the 

classification performance of minor classes in the given model and data. In addition, 

it was confirmed that it shows better performance than other existing methods of 

solving data imbalance.  

The contribution of this study can be summarized in three ways. First, the paper 

proposes framework of solving data imbalance using Bayesian optimization of 

weight balancing parameters. Secondly, this method is applicable regardless of data 

type, model type, and preprocessing. Finally, optimized model is found for given 

data & model shape, improving classification performance of minor classes. 

In future work, this study will be explored for other datasets and it will prove it can 

be applicable for various fields. Furthermore, since the classification performance of 

minority classes has not yet been completely improved, other attempts are required 

to compensate for this.  
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국문 초록 

 

베이지안 기반 데이터 클래스 가중치 

최적화를 통한 딥러닝 모터 결함 

진단 
 

모터는 산업용 로봇, 가정용 기기, 교통 수단 등 다양한 분야에 

사용되어 지고 있고 모터 부품 하나의 결함이 전체 기계 시스템의 

고장까지 야기할 수 있기 때문에, 모터 결함(Motor defect) 진단은 

필수적이다. 이에, 최근 딥러닝을 사용한 데이터 기반 접근 방법이 고장 

진단 연구에 많이 적용되어지고 있다. 하지만 실제 산업 환경에서는 

고장 사례가 많이 나타나지 않기 때문에 고장 데이터들이 정상 데이터에 

비해 많이 부족하다. 이러한 데이터 불균형(Data imbalance)은 뉴럴 

네트워크 모델이 고장에 관한 정보를 충분히 학습을 불가능하게 하여, 

딥러닝 기반 알고리즘의 고장 진단 성능을 현저히 떨어뜨린다. 본 

연구는 딥러닝 모델이 데이터를 학습할 시, 손실 함수(Loss 

function)에서 데이터 클래스별 가중치 균형 파라미터(Weight 

balancing parameter)를 정의하여 데이터 불균형 문제를 해결하고자 

한다. 클래스별 가중치 파라미터를 조절함으로써, 소수 클래스의 분류 

성능을 향상시키는데 기여하고자 한다. 또한 베이지안 최적화(Bayesian 

optimization) 방법을 통해, 최적화된 가중치 파라미터를 가지는 학습 

모델을 찾을 수 있다. 본 연구의 실험 결과를 통해, 최적화된 학습 

모델이 기존 모델에 비해 다수 및 소수 클래스에서 모두 향상된 분류 

성능을 보임을 확인할 수 있다. 즉, 클래스별 불균형 조절을 위한 입력 

데이터의 편집 없이 모델을 학습시킬 수 있다 

 

주요어:  모터 결함 

 데이터 불균형 

 가중치 균형 파라미터 

 손실 함수 

 베이지안 최적화 
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