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Abstract 

Deep Neural Network based Disease Severity Regression 

for Diagnosis of Abdominal Aortic Aneurysm 

 

Joo Hyeon Im 

Department of Mechanical Engineering 

The Graduate School 

Seoul National University 

 

Disease in the medical field correspond to fault from an engineering point of view. 

In diagnosing machine failure, prognostics and health management (PHM) are 

essential. PHM chases the degradation of the health of the target system and 

produces information on health status. In this paper, the target system is selected as 

human. The target disease of human being the target system is selected as abdominal 

aortic aneurysm (AAA). Two of the main issues related to aneurysm are the lack of 

diagnostic indicators and lack of disease data. Aneurysm is not diagnosed using 

diagnostic indices, but is discovered using imaging techniques such as computed 

tomography (CT) or magnetic resonance imaging (MRI). However, these techniques 

are expensive and time consuming. In addition, because it is difficult to diagnose this 

disease in advance, it is not easy to secure disease data.  

Against these issues, this study proposes a disease diagnosis and severity 

regression technique that combines deep learning. There are three research thrusts 

here: 1) generating normal and disease data through simulation model, 2) regression 

of disease severity, 3) reflecting individual diversity when generating data. In the 

first thrust, data is generated using a simulation model. One of the simulation models 
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for diagnosing human disease is a transmission line model (TLM). A transmission 

line model modified from the model proposed in other previous papers [1] is used. 

In order to obtain blood pressure through the model, the input impedance needs to 

be calculated, which was calculated using a recursive algorithm. In the second thrust, 

disease incidence is monitored through severity regression. Deep neural network 

(DNN) is used as a tool to perform regression. In the third thrust, biometric parameter 

values are given as distributions. In consideration of the characteristics of each 

parameter, an appropriate distribution is assigned to each. The structure of this 

algorithm is formed of four tasks: simulation model modification, data generation, 

DNN design, and solving severity regression problem. It is confirmed that the blood 

pressure waveform data generated through literature research is valid and that the 

regression is well performed through the mean squared error (MSE) loss value. 
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Chapter 1. Introduction     

1.1 Motivation 

Healthcare is the set of services provided by a country of an organization for the 

treatment of the physically and the mentally ill [2]. In the past, a healthcare was a 

symptom based intuitive medical. However, in today, a healthcare is a pattern and 

evidence based medical. Also, healthcare is changing to an algorithm based precision 

medical.  

Table 1-1 Changing the way of healthcare [3] 

Past Present Future 

Symptom-based Pattern-based Algorithm-based 

Intuitive medical Evidence-based medical Precision medical 

 

Big data is a collection of data elements. The main four characteristics of big data 

are: sheer volume, complexity, diversity, and timeless. The advent big data has had 

an impact on the healthcare sector. It is introduced in image processing, signal 

analysis and genetics, and is of great help in care delivery and disease exploration. 

In other words, healthcare is providing personalized and optimized treatment for 

individuals. 

In addition to the introduction of big data, a healthcare service is customized by 

integrating ICT (Information and communication technology) and individual health 

record. Also, it is possible that real time monitoring and management of individual 
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health status without time and place restrictions. According to OECD statistics, a 

health expenditure is growing.  

 

Figure 1-1 Total health expenditure as a share of GDP [4] 

    

Figure 1-2 Annual average growth in real per capita expenditure on health and 

GDP [4] 

 



3 
 

 

 

The existing medical based treatment consists of event data and doctor’s opinion. 

Prognostics and health management (PHM) of human sees disease in terms of 

combining monitoring data and physical knowledge. In other words, the main 

difference between human PHM and healthcare is the convergence with physics 

knowledge. For example, in physiology, retinal arterial analysis can be performed 

by fusion of blood flow and fluid mechanics. In pathology, the integration of cell 

medicated immunity and thermodynamics can execute blood cell analysis. In 

orthopedics, an osteology analysis can be carried out by the convergence of human 

gait motion, dynamics, and robotics. In sum, more accurate diagnosis and prediction 

of human health becomes possible through human PHM. It can also describe how 

the result is reasoned by algorithm.  

 

Figure 1-3 Difference between healthcare and human PHM 
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1.2 Research Thrust 

The objective of this research is development of fault diagnosis method combining 

deep learning. There are three major problems in performing human PHM. First 

problem is insufficiency of data. The anonymous data is acquired from various 

people and the dataset is sparse. So, the regression accuracy is low. Cardiovascular 

disease can be diagnosed by analyzing the correlation between the proximal and the 

peripheral blood pressure waveform. However, the proximal blood pressure 

waveform cannot be measured on a routine basis, so the amount of data for 

developing a diagnostic model is insufficient. Second problem is dispersion of 

disease severity. Blood pressure waveform data corresponding to various disease 

severity cannot be obtained realistically, and only distributed disease severity data 

can be obtained. Third problem is a lack of individuality. Due to the small amount 

of data secured, it is difficult to consider individual deviations. Also, the blood 

pressure waveform data has a large variation according to individual such as gender, 

race, and body composition. So, the population norm based disease diagnosis method 

has limitations in accuracy. Thus, the research objective is to develop applicable and 

practicable deep learning base fault diagnosis techniques.  

Research Thrust 1: Generating Normal and Disease Data through Simulation 

Model 

Research Thrust 1 proposes a simulation model that generates normal and disease 

state data. First, assume a single arterial segment is a thin-walled cylindrical tube. 

That way, we can calculate blood pressure and blood flow in a single artery. Then, 

Transmission line model is modified by setting various disease severity.  
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Research Thrust 2: Regression of Disease Severity 

Research Thrust 2 is disease severity regression. When generating simulation 

data, label the severity. Labels are randomly assigned to train data and sequentially 

assigned to test data. Then, a deep neural network is designed. In this study, a DNN 

with 3 hidden layers was designed. 

Research Thrust 3: Reflecting Individual Diversity When Generating Data 

Research Thrust 3 is to simulate the data of various individuals. First, parameters 

that have an important influence on personal characteristics are selected. This can be 

done by comparing the effects of arterial compliance, length, internal radius, and 

wall thickness on the aortic input impedance. Then, a distribution that fits each 

parameter characteristic is assigned. 

1.3 Dissertation Layout 

This dissertation This dissertation is organized as follows. Chapter 2 reviews the 

background of this research, such as target disease, simulation model, and regression 

tool. Chapter 3 presents a methodology that how to modify the simulation model and 

implement aneurysm. Chapter 4 presents the blood pressure waveform obtained 

through the simulation model. In this chapter, we verify whether the blood pressure 

waveform data makes sense, and compare the results for each aneurysm type. 

Chapter 5 presents the results of regression using the data obtained in Chapter 4. 

Finally, Chapter 6 summarizes the dissertation with its contributions and suggests 

future researches.  
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Chapter 2. Background 

This chapter introduces the core concepts of this dissertation. Chapter 2.1 describes 

the target disease, abdominal aortic aneurysm. The sub-chapters describe the 

mechanisms of disease, diagnosis, and treatment. Chapter 2.2 explains the concept 

of a simulation model that generates data and its operation algorithm. Chapter 2.2.1 

describes the concept of transmission line model (TLM), and chapter 2.2.2 describes 

the recursive algorithm. Chapter 2.2.3 describes the artery tree that is the framework 

of the TLM. Chapter 2.3 is composed of an overview of DNN and description of the 

basic structure. 

2.1 Abdominal Aortic Aneurysm (AAA) 

In this study, the target disease is abdominal aortic aneurysm (AAA). Aortic 

aneurysm is a condition in which a part of the aorta has increased by more than 1.5 

times its normal diameter. The size of the aortic aneurysm determines the potential 

for rupture of blood vessels. When the blood vessel wall stress is larger than the wall 

strength, the aneurysm is ruptured. In general, if the size of an aneurysm is 5cm of 

more, it is classified as a severe disease state. Also, treatment is recommended when 

the size of an aneurysm exceeds 5.5cm. It is called abdominal aortic aneurysm when 

the aneurysm is occurred in the abdominal aorta. Among aortic aneurysm rupture, 

AAA has the largest annual mortality rate. The dangers of this target disease is that 

it is asymptomatic. Some aorta aneurysms have pain during palpation, but at that 

time a likelihood of rupture is high. Also, AAA cause complication such as 

thrombosis and embolism.  
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2.1.1 Hypothesis for the Development of AAA and Rupture 

The mechanisms by which AAA occurs are diverse. There are four typical 

hypotheses: 1) proteolytic degradation of aortic wall connective tissue, 2) 

inflammation and immune responses, 3) biomechanical wall stress, and 4) molecular 

genetics. These mechanisms act in combination rather than independently, creating 

AAA. Patients with AAA have a disability in the formation of elastin and collagen. 

When the aorta wall is weakened by various causes, the aorta expands into a saccular 

or fusiform. As the diameter of the artery increases, the pressure acting on the aorta 

wall increases by Laplace’s law, and the aorta gradually expands. AAA fails to 

withstand pressure when they reach a certain limit and finally ruptures. The rupture 

of aneurysm can be seen as a failure from a mechanical point of view. When the 

arterial wall stress becomes greater than the wall strength, aneurysm ruptures. 

Normal abdominal aorta diameter size is 2.0cm. If the diameter is more than 2cm 

and less than 3cm, it is classified as mild aortic aneurysm (AA). If the diameter is 

more than 3cm and less than 5cm, it is classified as moderate AA. If the diameter 

begins to exceed 5cm, it is classified as a serious condition from then on [5]. There 

is a correlation between blood vessel diameter and rupture rate. When the diameter 

is 5cm or more, the rupture rate is 3 to 15%, but when the diameter is more than 8cm, 

the rupture rate rises rapidly from 30 to 50%.  

2.1.2 Diagnosis and Treatment 

Despite many previous studies, there are still no indicators for diagnosing AAA. The 

magnitude of wall stress, which is most widely used as a diagnostic index, does not 

necessarily coincide with the onset of symptoms of AAAs. Hardman index is model 

that predicts survival after intervention for ruptured AAAs [6]. Therefore, this index 
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cannot be used until the AAA has ruptured. Augmentation index is used as a marker 

of wave reflections and arterial stiffness [7]. Increased augmentation index means 

that arterial stiffness evaluates in patients with AAA. This index is derived from 

central aortic pressure waveform analysis. Although this index is related to AAA, it 

cannot be an index that can diagnose the disease. Peak wall rupture index (PWRI) is 

used to predict AAA volume growth. A wall rupture risk index is defined by locally 

dividing the von Mises wall stress to an estimate of wall strength [8]. Among these 

indices, the highest wall risk index is a peak wall rupture index. Biomechanical 

variables, such as aneurysm diameter, peak wall stress, peak wall shear stress, wall 

strain, wall stiffness, are useful for assessing the risk of AAA rupture, but are 

difficulty to use clinically due to lack of standardization. Thus, there are no indicators 

that can be diagnosed before AAA ruptures.  

Existing diagnostic methods for AAA includes ultrasonography, computed 

tomography (CT) and magnetic resonance imaging (MRI). Ultrasonography is useful 

for examining organ form and vascular blood flow. CT is suitable for long-term 

examinations with large movements. MRI is recommended for soft tissue 

examination. However, these methods are not only for AAA diagnosis. In most cases, 

AAA is discovered while using these diagnostic methods to test for other diseases. 

There are two typical treatments for AAA. The first is to remove the aneurysm 

and replace it with artificial blood vessels. However, the disadvantages of this 

method are that the abdomen needs to be opened for surgery, the length of hospital 

stay is long, and complications may occur during surgery. The second treatment is 

to insert a stent graft into the blood vessel. But, this method is not applicable to all 

patients, and whether or not it is applicable depends on the bending angle and 
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diameter condition of the aorta. 

2.2 Data Generation Model  

2.2.1 Transmission Line Model (TLM) 

In this research, data generation simulation model is a transmission line model. This 

model is developed in a prior work [9]. The model is multi-branch model and each 

transmission line represents an arterial segment. Each vessel segment can be viewed 

as a thin-walled cylindrical tube. Making these assumptions allows you to calculate 

blood pressure and blood flow in a single artery. It is based electrical network model 

and recursive algorithm. The blood flow waveform can be gained by calculating the 

input impedance. Blood pressure and flow are linked by input impedance at any point 

of the arterial system. The relation of reflection coefficient, impedance, propagation 

constants defines the blood pressure and flow formula. The blood pressure (BP) 

waveform equation and the blood flow (BF) waveform equation are as follows: 

𝑃𝑜𝑢𝑡𝑙𝑒𝑡 = 𝑃𝑖𝑛𝑙𝑒𝑡(1 + Γ)/(𝑒𝛾𝑙 + Γ𝑒−𝛾𝑙) (2.1) 

𝐹𝑜𝑢𝑡𝑙𝑒𝑡 = 𝐹𝑖𝑛𝑙𝑒𝑡(1 − Γ)/(𝑒𝛾𝑙 − Γ𝑒−𝛾𝑙) (2.1) 

where 𝑃𝑜𝑢𝑡𝑙𝑒𝑡  and 𝑃𝑖𝑛𝑙𝑒𝑡 are blood pressure waves at the outlet and the inlet 

of the artery, 𝐹𝑜𝑢𝑡𝑙𝑒𝑡 and 𝐹𝑖𝑛𝑙𝑒𝑡  are blood flow waves at the outlet and inlet 

of the artery, Γ is the reflection coefficient, γ is the propagation constant, l 

is the arterial length. The blood relationship of blood pressure and blood flow 

is as follows: 

 

𝑃𝑖𝑛𝑙𝑒𝑡 = 𝐹𝑖𝑛𝑙𝑒𝑡𝑍𝑖𝑛𝑝𝑢𝑡 = 𝐹𝑖𝑛𝑙𝑒𝑡𝑍𝐶
(𝑒𝛾𝑙 + Γ𝑒−𝛾𝑙)

(𝑒𝛾𝑙 − Γ𝑒−𝛾𝑙)
 (2.3) 
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where 𝑍𝑖𝑛𝑝𝑢𝑡  and 𝑍𝐶 are the input impedance and characterstic impedance of the 

artery. If the input of the arterial system is a flow or pressure source, the flows and 

pressures at any point of the arterial system can be calculated, respectively. By 

obtaining the flow or pressure of a point, we can see the flow or pressure at the other 

nearest point.  

2.2.2 Recursive Algorithm 

A recursive algorithm is an algorithmic technique that calls itself. If the small 

decomposed problem is the same as the original problem, it can be solved by 

applying the algorithm. The input impedance calculation problem can be easily 

solved through a recursive algorithm. In this model, the input impedance is 

calculated in the backward way. Impedance from the distal vessel segment to the 

ascending aorta is sequentially worked out.  

2.2.3 Arterial Tree 

An arterial tree based on Noordergraaf’s 55 arterial segments model is used [9]. 

There are no coronary arteries in this artery tree. The rough diagram of the arterial 

segments model is shown in Figure 2-1.  
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Figure 2-1 Arterial tree 
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Table 2-1 Number and name of 55 segments of arterial tree [9] 

Segment 

number 

Arterial segment name  Segment 

number 

Arterial segment name 

1 Ascending aorta 29 Abdominal aorta Ⅲ 

2 Aortic arch Ⅰ 30 Left renal 

3 Brachiocephalic 31 Abdominal aorta Ⅳ 

4 Right subclavian Ⅰ 32 Inferior mesenteric 

5 Right carotid 33 Abdominal aorta Ⅴ 

6 Right vertebral 34 Right common iliac 
7 Right subclavian Ⅱ 35 Right external iliac 

8 Right radius 36 Right internal iliac 

9 Right ulna Ⅰ 37 Right deep femoral 

10 Aortic arch Ⅱ 38 Right femoral 

11 Left carotid 39 Right external carotid 

12 Thoracic aorta Ⅰ 40 Left internal carotid 

13 Thoracic aorta Ⅱ 41 Right posterior tibial 

14 Intercostals 42 Right anterior tibial 

15 Left subclavian Ⅰ 43 Right interosseous 

16 Left vertebral 44 Right ulnar Ⅱ 

17 Left subclavian Ⅱ 45 Left ulnar Ⅱ 
18 Left ulnar Ⅰ 46 Left interosseous 

19 Left radius 47 Right internal carotid 

20 Celiac Ⅰ 48 Left external carotid 

21 Celiac Ⅱ 49 Left common iliac 

22 Hepatic 50 Left external iliac 

23 Splenic 51 Left internal iliac 

24 Gastric 52 Left deep femoral 

25 Abdominal aorta Ⅰ 53 Left femoral 

26 Superior mesenteric 54 Left posterior tibial 

27 Abdominal aorta Ⅱ 55 Left anterior tibial 

28 Right renal   

 

 

 

 

 

 

 



13 
 

 

 

2.3 Deep Neural Network (DNN) 

2.3.1 Overview of DNN 

Deep learning is a set of machine learning algorithms. Deep neural network (DNN) 

is one of the deep learning algorithms. The objective of DNN is approximating any 

function. DNN improves the learning result of the artificial neural network by 

increasing the number of hidden layers. The more the number of hidden layers 

increases, the better the approximation can be. The depth of the model is related to 

the number of nodes. DNN is commonly used to solve regression and classification 

problems. In the medical field, convolution neural network (CNN) techniques using 

image data are often used. Since this study uses blood pressure waveform data, a 

simple DNN was used instead of a complex CNN. 

2.3.2 General Structure of a DNN 

This chapter describes the basic structure of DNN. The linear layer computes the 

output from the input using a linear function, and stores weight and bias in tensor. In 

deep learning, the gradient is calculated by putting input data into the model and 

updating the model is repeated. When putting data into the model, it is divided into 

batch units and entered. Training data divided into batches may have different 

distributions. Normalizing these distributions by adjusting the mean and variance is 

called batch normalization. Batch normalization is placed before the activation 

function. The activation function converts an input into an output and plays a role of 

expressing nonlinearity by stacking layers in the network. The loss function 

computes a value that estimates how far the output is from the correct answer. In the 

regression problem, the mean squared error is used as the loss function. The 

optimizer is a rule to update weights. 
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2.4 Summary and Discussion 

An aneurysm is a balloon-like swelling of the artery and can occur at any point in 

the artery. It usually occurs most often in the aorta. The basis for aneurysm is variable, 

and it ruptures after dilation. There are currently no indicators for diagnosing AAA. 

Most of the cases found are when using the imaging technique. Treatment consists 

of replacing blood vessels with artificial blood vessels or inserting stent graft into 

blood vessels.  

The simulation model implements the artery tree as TLM, and calculates the input 

impedance through a recursive algorithm. Each transmission line can be viewed as a 

thin-walled cylindrical arterial tube. Blood pressure and blood flow are related by 

input impedance and can be calculated at any point in the artery.  

A DNN is one of deep learning algorithms and has several hidden layers of 

artificial neural networks. This algorithm is generally used when solving 

classification or regression problems. The typical organization of a DNN includes 

the following contents: 1) linear layer, 2) batch normalization, 3) activation function, 

4) loss function, and 5) optimizer.  
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Chapter 3. Methodology 

This chapter explains how to conduct research using the concepts induced in Chapter 

2. Chapter 3.1 explains how the TLM was modified to implement the AAA. Chapter 

3.2 describes how different types of aneurysms are implemented. Chapter 3.3 

explains how the structure of the DNN that performs disease severity regression is 

constructed.  

3.1 Alteration of Transmission Line Model 

Original transmission line model [9] is a model that well reflects the general 

characteristics of hemodynamics. Some modifications to the model can implement a 

disease in which the diameter of the arteries becomes narrower, such as peripheral 

occlusive artery disease [1]. In this study, the model was modified to indicate a 

disease that expands rather than narrows blood vessels.  

3.1.1 Materialization of AAA 

When aneurysm occurs, blood vessel swells, the wall thickness becomes thinner, and 

the radius increases. Sins the aneurysm swelling is not uniform, the thickness of the 

aneurysm is not consistent. In this study, by simplifying the problem, it is assumed 

that the thickness of the swollen arterial wall is not decreased and is consistent. The 

aneurysm radius is increased according to the severity of the disease. The radius of 

the aneurysm is set to be 2.5cm when the disease is the most severe.  

3.1.2 Data Description 

The aneurysm was applied to the abdominal aorta. The total length of the abdominal 

aorta is 8cm. The blood pressure measurement point was in the right deep femoral. 
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In fact, since there are cases where pressure is measured in the thighs, the thighs 

were selected as the measurement point. The reason why the measurement point was 

selected as one is because the blood pressure waveform in the left and right thighs is 

the same. The maximum aortic aneurysm diameter was 5cm, because a significant 

proportion of patients with an AAA rupture develop a rupture at aneurysm diameter 

of less than 5cm [5]. When aneurysm has a maximum diameter, the label of severity 

is given as 1. In the normal state, the label is 0. In addition, individual diversity was 

realized by giving the values of the variables representing the characteristics of blood 

vessels as a distribution. A normal distribution is assigned to modeling parameters 

such as body height, artery radius, and wall thickness. A lognormal distribution was 

assigned to physical parameters such as Young’s modulus, arterial viscosity, 

resistance, and compliance. The literature confirms that the blood vessel diameter 

and blood flow velocity histogram follow a normal distribution [10], and that a 

lognormal distribution is used for the coefficient of an organism [11]. 480,000 train 

data and 196,830 test data were generated.  

 

Figure 3-1 Statistical distributions  

(a): Normal distribution, (b): Lognormal distribution 
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3.2 Materialization of Four Types of Aneurysms 

Aneurysm has a shape that gradually swells like a balloon. Therefore, in order to 

specifically simulate an aneurysm in this simulation model, it is necessary to 

differentiate the arterial segment. In other words, it simulates a sphere by gradually 

changing the diameter of a finely divided artery segment. In this study, four types of 

aneurysms were implemented. The reason for implementing various types of 

aneurysms is that the shape of aneurysm is very diverse. Type 1 is an aneurysm by 

inflating the entire abdominal aorta. That is, the radius of the blood vessel of 8cm 

expanded uniformly. In type 2, the abdominal aorta was divided into 7 segments and 

the radius of each piece was different. Each segment is 
8

7
= 1.14cm long. Let the 

initial radius be R0, and the radius increment according to the severity is p. The 

radius of the 7 segments is sequentially R0 + (
p

4
), R0 + (

p

3
), R0 + (

p

2
), R0, R0 +

(
p

2
), R0 + (

p

3
), R0 + (

p

4
). In type 3, the abdominal aorta was divided into 7 sections 

and the radius and length of each segment were different. The method of increasing 

the radius is the same as for Type 2. The length of each segment is given 

symmetrically around the center segment. Specifically, the length of each segment 

was sequentially given as 0.5cm, 1cm, 1cm, 3cm, 1cm, 1cm, and 0.5cm. Finally, 

type 4 is similar to type 3, but the length of each segment is given asymmetrically. 

The length of each segment was sequentially given as 1cm, 2cm, 1cm, 2cm, 0.5cm, 

1cm, and 0.5cm. 
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Figure 3-2 Types of aneurysms  

(a): Type 1, (b): Type 2, (c): Type 3, (d): Type 4 



19 
 

 

 

3.3 Architecture of DNN 

In this study, PyTorch was used as a machine learning library. The most basic DNN 

structure was used. We used three hidden layer with 300 nodes each. The input of 

the model is blood pressure waveform at the measurement point and the output is a 

severity of disease. The dimension of input is 66 and the dimension of output is 1. 

Input and output have a linear function relationship. Data is learned in mini-batch 

units. The batch size is 2,000. ReLU was used as an activation function. Also, we 

used the mean squared error loss, which is the loss used in the regression problem. 

The optimizer is Adam optimizer with initial learning rate of 1 × 10−5.  

 

Figure 3-3 DNN architecture 

3.4 Summary and Discussion 

A model with an AAA was implemented by modifying the TLM that implements 

hemodynamics well. When the artery swells, the radius increases and the wall 

thickness of the vessel is designed to be constant. The site of the aneurysm is the 
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abdominal aorta. The blood pressure measurement point is the deep femoral on the 

right. The maximum diameter of the AAA was set to 5cm. Distributions appropriate 

for each characteristic were assigned to important variables related to blood vessels.  

Considering that the shape of the aortic aneurysm is not standardized, a total of 

four types of aortic aneurysms were implemented. Type 1 is a dilation of the entire 

AAA. In Type 2, the abdominal aorta is divided equally into 7 pieces, and then the 

degree of expansion is different. In Type 3, the AAA was divided into 7 pieces of 

different length, and the degree of dilation was different. Type 4 is similar to Type 

3, but the length of the AAA is different.  

DNN was designed in the PyTorch language. It was configured to have three 

hidden layers. The input of DNN is the blood pressure waveform and the output is 

the severity. The flow chart of the methodology of this study is as follows. 

 

Figure 3-4 Flow chart of the methodology 
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Chapter 4. Data Generation Results 

In this chapter, the blood pressure waveform graph obtained through the modified 

TLM is presented. First, blood pressure waveform graphs by types and disease 

severity are shown. Next, the validity of the acquired blood pressure waveform data 

is verified by comparing it with data in the literature. 

4.1 Blood Pressure Waveform Data 

The characteristics of the blood pressure waveform when having type 1 aneurysm 

are as follows: 1) the waveform becomes wavy as the disease becomes more severe, 

and 2) the value of the peak point increases. In the case of type 2, 3, and 4 aneurysm, 

the characteristic of showing the blood pressure waveform was the same as that of 

type 1. That is,  in common for all types, it can be seen that the BP waveform 

becomes convoluted as the disease severity level increases. When comparing the 

blood pressure waveforms for each type of aneurysm when the disease is the most 

severe, there is a difference in peak value, but there is no clear trend. 
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Figure 4-1 BP waveforms of Type 1 

(a): Severity level 0, (b): Severity level 0.3, (c): Severity level 0.5,  

(d): Severity level 0.7, (e): Severity level 1  
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Figure 4-2 BP waveforms of Type 2 

(a): Severity level 0, (b): Severity level 0.3, (c): Severity level 0.5,  

(d) Severity level 0.7, (e): Severity level 1 
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Figure 4-3 BP waveforms of Type 3 

(a): Severity level 0, (b): Severity level 0.3, (c): Severity level 0.5,  

(d): Severity level 0.7, (e): Severity level 1 
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Figure 4-4 BP waveforms of Type 4 

(a): Severity level 0, (b): Severity level 0.3, (c): Severity level 0.5,  

(d): Severity level 0.7, (e): Severity level 1 
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4.2 Validation of Blood Pressure Waveform Data 

We conducted a literature survey to ensure that these simulated data follow trends in 

real-world data. In this chapter, the validity of blood pressure waveform data is 

verified by comparison with the literature data. The disease in the literature examined 

was also a disease with an abdominal aortic aneurysm [12]. In the literature, it was 

confirmed that the blood pressure waveform became convoluted from normal to 

disease state.  

 

Figure 4-5 BP waveforms from the literature in the presence of an AAA [12]  

(a): Abdominal aorta, (b): BP waveform in normal state,  

(c): BP waveform in disease state 
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4.3 Summary and Discussion 

After implementing four types of aneurysm in TLM, blood pressure waveform data 

was acquired. A common characteristic found in four types of aneurysm models was 

that the more serious the disease became, the more convoluted the waveform. 

Furthermore, as the disease became more serious, the peak value of the waveform 

increased. When comparing results between types, special differences were difficult 

to find. A literature survey was conducted to verify that the acquired simulation data 

were significant. As a result, it was confirmed that the blood pressure waveform 

generated in this research model was similar to the trend. The following limitations 

exist in this verification: 1) Difficulty finding literature showing blood pressure 

waveforms in AAAs, and 2) verification was not possible through actual medical 

blood pressure waveform data. 
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Chapter 5. Regression Results 

In this chapter, disease severity regression is performed using the blood pressure 

waveform data presented in Chapter 4. The tool to solve the regression problem is 

the DNN presented in chapter 3.3. To show the performance of the regression model, 

the train MSE loss and the test MSE loss were calculated. Finally, we present a 

regression result graph.  

5.1 Loss and Regression Plots 

From the results of performing DNN, it was confirmed that the train loss and test 

loss converged to zero in all aneurysm type. In addition, regression was well 

performed for all aneurysm types. The ideal regression result graph is in the form of 

y = x, and the closer the point is to this line, the better the regression performance. 

The case with the smallest train MSE loss was 0.0000317 in type 1. The smallest test 

MSE loss was found to be 0.0001498 in type 2. Since the smallest train loss and test 

loss are found in different types, it is difficult to say that the regression performance 

is the best for any type.  

 

Figure 5-1 Regression result of Type 1 

(a): Train MSE loss, (b): Test MSE loss, (c) Regression result graph 



29 
 

 

 

 

Figure 5-2 Regression result of Type 2 

(a): Train MSE loss, (b) Test MSE loss, (c): Regression result graph 

 

Figure 5-3 Regression result of Type 3 

(a): Train MSE loss, (b) Test MSE loss, (c): Regression result graph 

 

Figure 5-4 Regression result of Type 4 

(a): Train MSE loss, (b) Test MSE loss, (c) Regression result graph 
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Table 5-1 MSE loss values 

 Type 1 Type 2 Type 3 Type 4 

Train MSE loss 0.317 × 10−4 1.361 × 10−4 0.362 × 10−4 1.941 × 10−4 
Test MSE loss 2.842 × 10−4 1.498 × 10−4 2.643 × 10−4 1.969 × 10−4 

 

5.2 Limitations 

In this study, MSE loss was used as an index to suggest the performance of the 

regression model. Typically, regression performance is evaluated by how much the 

loss decreases. However, it is difficult to figure out what it means medically to 

suggest such a loss. In the literature that solved the disease-related regression 

problem, we investigated which indicators were presented, but no appropriate 

indicators were found. Therefore, the lack of an indicator that can suggest the 

performance of the regression model from a medical point of view is a limitation. 

No papers were found that regressed disease severity, and most of them were 

classified as the presence or absence of diseases. 

5.3 Summary and Discussion 

As a result of regression of disease severity through DNN, both train MSE loss and 

test MSE loss converged to zero. Also, as it appears close to ideal estimation, it can 

be confirmed that the regression performs well. When looking at the loss values, 

there is little difference from each other, so it is difficult to determine which type is 

better for performing regression. Finally, the diversity of individuals was reflected 

in the simulation data generation process. It is necessary to supplement that loss, 

which is used as an index to identify the performance of the regression model, is 

difficult to have any special meaning from a medical point of view. 
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Chapter 6. Conclusions  

6.1 Summary and Contributions 

In this dissertation, normal and disease data were created to compensate for the lack 

of data. In addition, disease severity regression was performed to determine the 

severity of the disease progression stage. Also, the diversity of individuals was 

reflected in the simulation data generation process. Contributions accordingly are as 

follows. 

Contribution 1: Realization of desired disease by modifying simulation models 

with different target disease 

First contribution according to this is that the target disease, abdominal aortic 

aneurysm, was implemented by modifying the existing simulation model. The 

possibility of implementing other cardiovascular diseases was confirmed if 

appropriate modifications were made to the model that implemented hemodynamics 

well. In addition, other diseases such as thoracic aortic aneurysm can be 

implemented by changing the disease location of the currently implemented 

aneurysm model.  

Contribution 2: Generation of blood pressure waveforms with trends similar to 

literature 

The second contribution is that it produced BP waveform data with a trend similar 

to that of the literature. This indicates that the model well reflects the hemodynamics 

in the presence of the disease. In addition, the diversity of individuals was considered 
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when generating BP waveform data. 

Contribution 3: Disease severity regression using DNN 

The third contribution is disease severity regression using DNN. This shows that 

deep learning can perform the role of diagnosing diseases and identifying the 

severity. It is also noteworthy that anatomical knowledge such as CT or MRI is 

required and time-consuming examination methods are not used. It is a great 

advantage when considering that it is possible to diagnose a disease and use a 

regression algorithm with only a simple procedure of measuring blood pressure. 

6.2 Suggestions for Future Research 

Considering the points to be supplemented in this study, there are the following 

directions for future research that can be suggested.  

Issue 1: Preparation of medical indicators to suggest the performance of 

regression algorithm 

Although the problem related to the disease was solved by using mechanical 

engineering knowledge, efforts to present its performance as a medically 

understandable indicator are needed. No suitable indicators were found through 

literature research. In addition to using the existing indicators, it is necessary to 

consider how to present the regression performance. 

Issue 2: Implementation of a larger sized abdominal aortic aneurysm 

The maximum diameter of aneurysm implemented in this study was 5cm. In real 
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world, larger-sized aortic aneurysms also exist. Assuming that it is actually 

commercialized, it is necessary to implement an AAA having a larger diameter and 

a complex geometry. It is essential to check whether the blood pressure waveform 

data acquired after implementing aneurysm is valid. 

Issue 3: Simulation model verification using actual patient’s blood pressure 

waveform data 

In this study, the validity of the simulation data was verified through the tendency 

of BP waveform data in literature research. The more powerful verification method 

is to verify the data of the model by acquiring the data of real patients with AAA. 

Before commercializing this algorithm, verification through actual data will be 

essential.  
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Abstract (Korean)  

 

복부 대동맥류 진단을 위한 심층신경망 기반  

질환 심각도 회귀 

 

서울대학교 공과대학 

기계공학부 대학원 

임 주 현 

 

의학 분야에서의 질병은 공학적인 관점에서 보면 결함에 해당한다. 

기계 고장을 진단할 때는 예측 및 상태 관리 (prognostics & health 

management; 이하 PHM)가 필수적이다. PHM은 대상 시스템의 상태 

저하를 추적하고 상태에 대한 정보를 생성한다. 본 연구에서는 대상 

시스템을 인간으로 선정하였다. 대상 시스템의 대상 질병은 복부 

대동맥류로 선정하였다. 동맥류와 관련된 중요한 이슈 중 두 가지는 

진단 지표의 부재와 질환 데이터의 부족이다. 동맥류는 진단 지표를 

사용하여 진단되지 않고 컴퓨터 단층 촬영(computed tomography; 

이하 CT) 또는 자기 공명 영상(magnetic resonance imaging; 이하 

MRI)과 같은 영상 촬영 기법을 사용하여 진단된다. 또한 이 질환은 

사전에 진단하기 어렵기 때문에 질환 데이터의 확보가 쉽지 않다.  

이러한 이슈들에 대한 하나의 솔루션으로써 본 연구는 심층 학습을 

결합한 질환 진단 및 심각도 회귀 기법을 제안한다. 세 가지 연구 

요지는 다음과 같다. 1) 시뮬레이션 모델을 통해 정상 및 질환 데이터 

생성, 2) 질환 심각도 회귀 분석, 3) 데이터 생성 시 개인의 다양성 
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반영. 데이터는 시뮬레이션 모델을 사용하여 생성된다. 인간의 질환을 

진단하기 위한 시뮬레이션 모델 중 하나로 전송 선로 

모델(transmission line model; 이하 TLM)이 있다. 본 연구에서는 

관련 논문에서 제안된 모델을 수정한 전송 선로 모델을 사용한다. 

모델을 통해 혈압 파형 데이터를 얻기 위해서는 재귀 알고리즘을 

사용하여 입력 임피던스를 계산해야 한다. 질환 발생률은 질환 심각도 

회귀를 통해 모니터링 된다. 이때 심층 신경망을 회귀 분석을 수행하는 

도구로써 사용할 수 있다. 생체 관련 매개 변수 값을 분포로 제공하면 

개인의 다양성을 반영할 수 있다. 본 연구에서는 각 변수의 특성을 

고려하여 적절한 분포를 부여하였다. 본 연구의 구조는 시뮬레이션 모델 

수정, 데이터 생성, 심층 신경망 설계 및 심각도 회귀 문제 해결이라는 

네 가지 작업으로 구성된다. 문헌 조사를 통하여 본 연구에서 생성된 

혈압 파형 데이터의 유효성을 검증하였고, 평균 제곱 오차 (mean 

squared error; 이하 MSE) 손실 값을 구해 회귀 분석을 잘 

수행되었음을 확인하였다.  

 

주제어: 심혈관 질환(cardiovascular disease) 

 복부 대동맥류(abdominal aortic aneurysm) 

   심각도 회귀(severity regression) 

 혈압 파형 데이터(blood pressure waveform data) 

 심층 신경망(deep neural network) 

 

학  번:  2018-25189  
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남들 다 가는 대학까지 갔지만 대학원이라는 선택부터는 뭔가 색다르게 

느껴졌습니다. 지금까지 왔던 인생경로에서 새로운 샛길을 뽑아낸 것 

같았습니다. 단순히 기계공학 연구원이 되고 싶다는 꿈을 위해 선택한 

것이었지만 정확히 대학원이 어떤 것인지 잘 몰랐던 저에게 대학원은 

매운 맛이었습니다. 학생과 사회인의 중간 어딘가에 위치한 신분이 

당황스러웠습니다. 더딘 속도로 배우면서 기대에 못 미치는 성과를 낼 

때마다 자괴감이 들었고, 시도는 많이 했지만 실패한 결과를 가져갈 

때마다 슬펐습니다. 원하는 결과치에 도달하지 못할 때마다 나는 왜 

성장하지 않는지, 이제는 성장할 시간이 아니라 이미 성장체로 왔었어야 

하는 건지 혼란스러웠습니다. 못하는 자신이 부끄럽고 동료들에게 

미안해서 위축된 채로 한동안 지냈었습니다. 그 힘든 시기에 힘이 

되어준 준민오빠, 현배오빠께 정말 감사드립니다. 솔직히 두 분께서 안 

계셨으면 여기까지 못 왔을 것 같습니다. 깊은 수렁에서 저를 천천히 

꺼내주신 한진오 교수님께도 깊이 감사드립니다. 처음으로 제대로 

해보는 과제에서 길을 찾지 못할 때마다 정성껏 도와주신 근수오빠, 

수지오빠께 감사드립니다. 피폐해져 있을 때 인간다운 생활을 할 수 

있도록 도와주신 윤한오빠께 감사드립니다. 부족한 부사수를 힘들게 

이끌어주신 사수 김수호 오빠께도 감사드립니다. 연구하면서, 

과제하면서 도움 많이 주신 인찬오빠께도 감사드립니다. 연구실에 
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들어올 수 있게 해주신 윤병동 교수님께 감사드립니다. 여기 있을 수 

있어서 행복합니다. 연구실 선배님들, 후배님들께도 모두 감사드립니다. 

그리고 날 때부터 함께한 엄마, 아빠, 오빠께도 감사드립니다. 자주 

만나지는 못하지만 만날 때마다 관심 가져주시는 친척분들께도 

감사드립니다. 제주도에 있어서 자주 볼 수는 없지만 고등학교의 행복한 

기억을 갖고 살아갈 수 있게 해주는 은지에게도 감사합니다. 그리고 

마지막으로 처음부터 지금까지 그리고 앞으로도 함께할 자신에게 고맙고 

수고했다고 말하고 싶습니다. 앞으로 어떤 인생을 살게 될지 알 순 

없지만 절망하고 좌절하더라도 꼭 포기는 하지 않도록 노력하려고 

합니다. 감사합니다. 
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