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Abstract

Deep Neural Network based Disease Severity Regression
for Diagnosis of Abdominal Aortic Aneurysm

Joo Hyeon Im

Department of Mechanical Engineering
The Graduate School

Seoul National University

Disease in the medical field correspond to fault from an engineering point of view.
In diagnosing machine failure, prognostics and health management (PHM) are
essential. PHM chases the degradation of the health of the target system and
produces information on health status. In this paper, the target system is selected as
human. The target disease of human being the target system is selected as abdominal
aortic aneurysm (AAA). Two of the main issues related to aneurysm are the lack of
diagnostic indicators and lack of disease data. Aneurysm is not diagnosed using
diagnostic indices, but is discovered using imaging technigues such as computed
tomography (CT) or magnetic resonance imaging (MRI). However, these techniques
are expensive and time consuming. In addition, because it is difficult to diagnose this
disease in advance, it is not easy to secure disease data.

Against these issues, this study proposes a disease diagnosis and severity
regression technique that combines deep learning. There are three research thrusts
here: 1) generating normal and disease data through simulation model, 2) regression
of disease severity, 3) reflecting individual diversity when generating data. In the

first thrust, data is generated using a simulation model. One of the simulation models



for diagnosing human disease is a transmission line model (TLM). A transmission
line model modified from the model proposed in other previous papers [1] is used.
In order to obtain blood pressure through the model, the input impedance needs to
be calculated, which was calculated using a recursive algorithm. In the second thrust,
disease incidence is monitored through severity regression. Deep neural network
(DNN) is used as a tool to perform regression. In the third thrust, biometric parameter
values are given as distributions. In consideration of the characteristics of each
parameter, an appropriate distribution is assigned to each. The structure of this
algorithm is formed of four tasks: simulation model modification, data generation,
DNN design, and solving severity regression problem. It is confirmed that the blood
pressure waveform data generated through literature research is valid and that the

regression is well performed through the mean squared error (MSE) loss value.
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Chapter 1. Introduction
1.1 Motivation

Healthcare is the set of services provided by a country of an organization for the
treatment of the physically and the mentally ill [2]. In the past, a healthcare was a
symptom based intuitive medical. However, in today, a healthcare is a pattern and

evidence based medical. Also, healthcare is changing to an algorithm based precision

medical.
Table 1-1 Changing the way of healthcare [3]
Past Present Future
Symptom-based Pattern-based Algorithm-based
Intuitive medical Evidence-based medical Precision medical

Big data is a collection of data elements. The main four characteristics of big data
are: sheer volume, complexity, diversity, and timeless. The advent big data has had
an impact on the healthcare sector. It is introduced in image processing, signal
analysis and genetics, and is of great help in care delivery and disease exploration.
In other words, healthcare is providing personalized and optimized treatment for

individuals.

In addition to the introduction of big data, a healthcare service is customized by
integrating ICT (Information and communication technology) and individual health

record. Also, it is possible that real time monitoring and management of individual



health status without time and place restrictions. According to OECD statistics, a

health expenditure is growing.
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Figure 1-1 Total health expenditure as a share of GDP [4]
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The existing medical based treatment consists of event data and doctor’s opinion.
Prognostics and health management (PHM) of human sees disease in terms of
combining monitoring data and physical knowledge. In other words, the main
difference between human PHM and healthcare is the convergence with physics
knowledge. For example, in physiology, retinal arterial analysis can be performed
by fusion of blood flow and fluid mechanics. In pathology, the integration of cell
medicated immunity and thermodynamics can execute blood cell analysis. In
orthopedics, an osteology analysis can be carried out by the convergence of human
gait motion, dynamics, and robotics. In sum, more accurate diagnosis and prediction
of human health becomes possible through human PHM. It can also describe how

the result is reasoned by algorithm.

Medical Treatment Human PHM

o- =t

Retinal Arterial Analysis Blood Flow Fluid Mechanics
Orthopedics SIWATALN e
" ‘“** e "
Osteology Analysis Human Gait Motion Dynamics and Robotics
Event Data Monitored Data Physics

Figure 1-3 Difference between healthcare and human PHM
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1.2 Research Thrust

The objective of this research is development of fault diagnosis method combining
deep learning. There are three major problems in performing human PHM. First
problem is insufficiency of data. The anonymous data is acquired from various
people and the dataset is sparse. So, the regression accuracy is low. Cardiovascular
disease can be diagnosed by analyzing the correlation between the proximal and the
peripheral blood pressure waveform. However, the proximal blood pressure
waveform cannot be measured on a routine basis, so the amount of data for
developing a diagnostic model is insufficient. Second problem is dispersion of
disease severity. Blood pressure waveform data corresponding to various disease
severity cannot be obtained realistically, and only distributed disease severity data
can be obtained. Third problem is a lack of individuality. Due to the small amount
of data secured, it is difficult to consider individual deviations. Also, the blood
pressure waveform data has a large variation according to individual such as gender,
race, and body composition. So, the population norm based disease diagnosis method
has limitations in accuracy. Thus, the research objective is to develop applicable and

practicable deep learning base fault diagnosis techniques.

Research Thrust 1: Generating Normal and Disease Data through Simulation

Model

Research Thrust 1 proposes a simulation model that generates normal and disease
state data. First, assume a single arterial segment is a thin-walled cylindrical tube.
That way, we can calculate blood pressure and blood flow in a single artery. Then,

Transmission line model is modified by setting various disease severity.



Research Thrust 2: Regression of Disease Severity

Research Thrust 2 is disease severity regression. When generating simulation
data, label the severity. Labels are randomly assigned to train data and sequentially
assigned to test data. Then, a deep neural network is designed. In this study, a DNN

with 3 hidden layers was designed.

Research Thrust 3: Reflecting Individual Diversity When Generating Data

Research Thrust 3 is to simulate the data of various individuals. First, parameters
that have an important influence on personal characteristics are selected. This can be
done by comparing the effects of arterial compliance, length, internal radius, and
wall thickness on the aortic input impedance. Then, a distribution that fits each

parameter characteristic is assigned.

1.3 Dissertation Layout

This dissertation This dissertation is organized as follows. Chapter 2 reviews the
background of this research, such as target disease, simulation model, and regression
tool. Chapter 3 presents a methodology that how to modify the simulation model and
implement aneurysm. Chapter 4 presents the blood pressure waveform obtained
through the simulation model. In this chapter, we verify whether the blood pressure
waveform data makes sense, and compare the results for each aneurysm type.
Chapter 5 presents the results of regression using the data obtained in Chapter 4.
Finally, Chapter 6 summarizes the dissertation with its contributions and suggests

future researches.



Chapter 2. Background

This chapter introduces the core concepts of this dissertation. Chapter 2.1 describes
the target disease, abdominal aortic aneurysm. The sub-chapters describe the
mechanisms of disease, diagnosis, and treatment. Chapter 2.2 explains the concept
of a simulation model that generates data and its operation algorithm. Chapter 2.2.1
describes the concept of transmission line model (TLM), and chapter 2.2.2 describes
the recursive algorithm. Chapter 2.2.3 describes the artery tree that is the framework
of the TLM. Chapter 2.3 is composed of an overview of DNN and description of the

basic structure.

2.1 Abdominal Aortic Aneurysm (AAA)

In this study, the target disease is abdominal aortic aneurysm (AAA). Aortic
aneurysm is a condition in which a part of the aorta has increased by more than 1.5
times its normal diameter. The size of the aortic aneurysm determines the potential
for rupture of blood vessels. When the blood vessel wall stress is larger than the wall
strength, the aneurysm is ruptured. In general, if the size of an aneurysm is 5cm of
more, it is classified as a severe disease state. Also, treatment is recommended when
the size of an aneurysm exceeds 5.5cm. It is called abdominal aortic aneurysm when
the aneurysm is occurred in the abdominal aorta. Among aortic aneurysm rupture,
AAA has the largest annual mortality rate. The dangers of this target disease is that
it is asymptomatic. Some aorta aneurysms have pain during palpation, but at that
time a likelihood of rupture is high. Also, AAA cause complication such as

thrombosis and embolism.



2.1.1 Hypothesis for the Development of AAA and Rupture

The mechanisms by which AAA occurs are diverse. There are four typical
hypotheses: 1) proteolytic degradation of aortic wall connective tissue, 2)
inflammation and immune responses, 3) biomechanical wall stress, and 4) molecular
genetics. These mechanisms act in combination rather than independently, creating
AAA. Patients with AAA have a disability in the formation of elastin and collagen.
When the aorta wall is weakened by various causes, the aorta expands into a saccular
or fusiform. As the diameter of the artery increases, the pressure acting on the aorta
wall increases by Laplace’s law, and the aorta gradually expands. AAA fails to
withstand pressure when they reach a certain limit and finally ruptures. The rupture
of aneurysm can be seen as a failure from a mechanical point of view. When the
arterial wall stress becomes greater than the wall strength, aneurysm ruptures.
Normal abdominal aorta diameter size is 2.0cm. If the diameter is more than 2cm
and less than 3cm, it is classified as mild aortic aneurysm (AA). If the diameter is
more than 3cm and less than 5cm, it is classified as moderate AA. If the diameter
begins to exceed 5cm, it is classified as a serious condition from then on [5]. There
is a correlation between blood vessel diameter and rupture rate. When the diameter
is 5cm or more, the rupture rate is 3 to 15%, but when the diameter is more than 8cm,

the rupture rate rises rapidly from 30 to 50%.

2.1.2 Diagnosis and Treatment

Despite many previous studies, there are still no indicators for diagnosing AAA. The
magnitude of wall stress, which is most widely used as a diagnostic index, does not
necessarily coincide with the onset of symptoms of AAAs. Hardman index is model

that predicts survival after intervention for ruptured AAAs [6]. Therefore, this index



cannot be used until the AAA has ruptured. Augmentation index is used as a marker
of wave reflections and arterial stiffness [7]. Increased augmentation index means
that arterial stiffness evaluates in patients with AAA. This index is derived from
central aortic pressure waveform analysis. Although this index is related to AAA, it
cannot be an index that can diagnose the disease. Peak wall rupture index (PWRI) is
used to predict AAA volume growth. A wall rupture risk index is defined by locally
dividing the von Mises wall stress to an estimate of wall strength [8]. Among these
indices, the highest wall risk index is a peak wall rupture index. Biomechanical
variables, such as aneurysm diameter, peak wall stress, peak wall shear stress, wall
strain, wall stiffness, are useful for assessing the risk of AAA rupture, but are
difficulty to use clinically due to lack of standardization. Thus, there are no indicators

that can be diagnosed before AAA ruptures.

Existing diagnostic methods for AAA includes ultrasonography, computed
tomography (CT) and magnetic resonance imaging (MRI). Ultrasonography is useful
for examining organ form and vascular blood flow. CT is suitable for long-term
examinations with large movements. MRI is recommended for soft tissue
examination. However, these methods are not only for AAA diagnosis. In most cases,

AAA is discovered while using these diagnostic methods to test for other diseases.

There are two typical treatments for AAA. The first is to remove the aneurysm
and replace it with artificial blood vessels. However, the disadvantages of this
method are that the abdomen needs to be opened for surgery, the length of hospital
stay is long, and complications may occur during surgery. The second treatment is
to insert a stent graft into the blood vessel. But, this method is not applicable to all

patients, and whether or not it is applicable depends on the bending angle and



diameter condition of the aorta.

2.2 Data Generation Model

2.2.1 Transmission Line Model (TLM)

In this research, data generation simulation model is a transmission line model. This
model is developed in a prior work [9]. The model is multi-branch model and each
transmission line represents an arterial segment. Each vessel segment can be viewed
as a thin-walled cylindrical tube. Making these assumptions allows you to calculate
blood pressure and blood flow in a single artery. It is based electrical network model
and recursive algorithm. The blood flow waveform can be gained by calculating the
input impedance. Blood pressure and flow are linked by input impedance at any point
of the arterial system. The relation of reflection coefficient, impedance, propagation
constants defines the blood pressure and flow formula. The blood pressure (BP)

waveform equation and the blood flow (BF) waveform equation are as follows:
Pouttet = Pintet (1 +T)/(e?* +Te ™) (2.1)
Fouttet = Finiee(1 —T) /(e —Te ) (2.1)

where P,,1e: and Pie are blood pressure waves at the outlet and the inlet

of the artery, F,,:e¢ and Fi,.¢ are blood flow waves at the outlet and inlet

of the artery, T is the reflection coefficient, y is the propagation constant, 1

is the arterial length. The blood relationship of blood pressure and blood flow

is as follows:

(et +Te ")

Pinter = FinletZinput = FintetZc m (2.3)



where Zin,yye and Zc are the input impedance and characterstic impedance of the
artery. If the input of the arterial system is a flow or pressure source, the flows and
pressures at any point of the arterial system can be calculated, respectively. By
obtaining the flow or pressure of a point, we can see the flow or pressure at the other

nearest point.

2.2.2 Recursive Algorithm

A recursive algorithm is an algorithmic technique that calls itself. If the small
decomposed problem is the same as the original problem, it can be solved by
applying the algorithm. The input impedance calculation problem can be easily
solved through a recursive algorithm. In this model, the input impedance is
calculated in the backward way. Impedance from the distal vessel segment to the

ascending aorta is sequentially worked out.

2.2.3 Arterial Tree
An arterial tree based on Noordergraaf’s 55 arterial segments model is used [9].
There are no coronary arteries in this artery tree. The rough diagram of the arterial

segments model is shown in Figure 2-1.
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Table 2-1 Number and name of 55 segments of arterial tree [9]

Segment Arterial segment name Segment Arterial segment name
number number

1 Ascending aorta 29 Abdominal aorta III
2 Aortic arch I 30 Left renal

3 Brachiocephalic 31 Abdominal aorta IV
4 Right subclavian I 32 Inferior mesenteric

5 Right carotid 33 Abdominal aorta V
6 Right vertebral 34 Right common iliac
7 Right subclavian 11 35 Right external iliac
8 Right radius 36 Right internal iliac

9 Rightulna I 37 Right deep femoral
10 Aortic arch 11 38 Right femoral

11 Left carotid 39 Right external carotid
12 Thoracic aorta I 40 Left internal carotid
13 Thoracic aorta II 41 Right posterior tibial
14 Intercostals 42 Right anterior tibial
15 Left subclavian I 43 Right interosseous
16 Left vertebral 44 Right ulnar 11

17 Left subclavian 11 45 Left ulnar 11

18 Left ulnar I 46 Left interosseous

19 Left radius 47 Right internal carotid
20 Celiac I 48 Left external carotid
21 Celiac II 49 Left common iliac
22 Hepatic 50 Left external iliac

23 Splenic 51 Left internal iliac

24 Gastric 52 Left deep femoral

25 Abdominal aorta I 53 Left femoral

26 Superior mesenteric 54 Left posterior tibial
27 Abdominal aorta 11 55 Left anterior tibial
28 Right renal

S—
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2.3 Deep Neural Network (DNN)

2.3.1 Overview of DNN

Deep learning is a set of machine learning algorithms. Deep neural network (DNN)
is one of the deep learning algorithms. The objective of DNN is approximating any
function. DNN improves the learning result of the artificial neural network by
increasing the number of hidden layers. The more the number of hidden layers
increases, the better the approximation can be. The depth of the model is related to
the number of nodes. DNN is commonly used to solve regression and classification
problems. In the medical field, convolution neural network (CNN) techniques using
image data are often used. Since this study uses blood pressure waveform data, a

simple DNN was used instead of a complex CNN.

2.3.2 General Structure of a DNN

This chapter describes the basic structure of DNN. The linear layer computes the
output from the input using a linear function, and stores weight and bias in tensor. In
deep learning, the gradient is calculated by putting input data into the model and
updating the model is repeated. When putting data into the model, it is divided into
batch units and entered. Training data divided into batches may have different
distributions. Normalizing these distributions by adjusting the mean and variance is
called batch normalization. Batch normalization is placed before the activation
function. The activation function converts an input into an output and plays a role of
expressing nonlinearity by stacking layers in the network. The loss function
computes a value that estimates how far the output is from the correct answer. In the
regression problem, the mean squared error is used as the loss function. The

optimizer is a rule to update weights.

13



2.4 Summary and Discussion

An aneurysm is a balloon-like swelling of the artery and can occur at any point in
the artery. It usually occurs most often in the aorta. The basis for aneurysm is variable,
and it ruptures after dilation. There are currently no indicators for diagnosing AAA.
Most of the cases found are when using the imaging technique. Treatment consists
of replacing blood vessels with artificial blood vessels or inserting stent graft into

blood vessels.

The simulation model implements the artery tree as TLM, and calculates the input
impedance through a recursive algorithm. Each transmission line can be viewed as a
thin-walled cylindrical arterial tube. Blood pressure and blood flow are related by

input impedance and can be calculated at any point in the artery.

A DNN is one of deep learning algorithms and has several hidden layers of
artificial neural networks. This algorithm is generally used when solving
classification or regression problems. The typical organization of a DNN includes
the following contents: 1) linear layer, 2) batch normalization, 3) activation function,

4) loss function, and 5) optimizer.

14



Chapter 3. Methodology

This chapter explains how to conduct research using the concepts induced in Chapter
2. Chapter 3.1 explains how the TLM was modified to implement the AAA. Chapter
3.2 describes how different types of aneurysms are implemented. Chapter 3.3
explains how the structure of the DNN that performs disease severity regression is

constructed.

3.1 Alteration of Transmission Line Model

Original transmission line model [9] is a model that well reflects the general
characteristics of hemodynamics. Some modifications to the model can implement a
disease in which the diameter of the arteries becomes narrower, such as peripheral
occlusive artery disease [1]. In this study, the model was modified to indicate a

disease that expands rather than narrows blood vessels.

3.1.1 Materialization of AAA

When aneurysm occurs, blood vessel swells, the wall thickness becomes thinner, and
the radius increases. Sins the aneurysm swelling is not uniform, the thickness of the
aneurysm is not consistent. In this study, by simplifying the problem, it is assumed
that the thickness of the swollen arterial wall is not decreased and is consistent. The
aneurysm radius is increased according to the severity of the disease. The radius of

the aneurysm is set to be 2.5cm when the disease is the most severe.

3.1.2 Data Description
The aneurysm was applied to the abdominal aorta. The total length of the abdominal

aorta is 8cm. The blood pressure measurement point was in the right deep femoral.

15



In fact, since there are cases where pressure is measured in the thighs, the thighs
were selected as the measurement point. The reason why the measurement point was
selected as one is because the blood pressure waveform in the left and right thighs is
the same. The maximum aortic aneurysm diameter was 5cm, because a significant
proportion of patients with an AAA rupture develop a rupture at aneurysm diameter
of less than 5¢cm [5]. When aneurysm has a maximum diameter, the label of severity
is given as 1. In the normal state, the label is 0. In addition, individual diversity was
realized by giving the values of the variables representing the characteristics of blood
vessels as a distribution. A normal distribution is assigned to modeling parameters
such as body height, artery radius, and wall thickness. A lognormal distribution was
assigned to physical parameters such as Young’s modulus, arterial viscosity,
resistance, and compliance. The literature confirms that the blood vessel diameter
and blood flow velocity histogram follow a normal distribution [10], and that a
lognormal distribution is used for the coefficient of an organism [11]. 480,000 train

data and 196,830 test data were generated.

(a) (b)

Figure 3-1 Statistical distributions

(a): Normal distribution, (b): Lognormal distribution
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3.2 Materialization of Four Types of Aneurysms

Aneurysm has a shape that gradually swells like a balloon. Therefore, in order to
specifically simulate an aneurysm in this simulation model, it is necessary to
differentiate the arterial segment. In other words, it simulates a sphere by gradually
changing the diameter of a finely divided artery segment. In this study, four types of
aneurysms were implemented. The reason for implementing various types of
aneurysms is that the shape of aneurysm is very diverse. Type 1 is an aneurysm by
inflating the entire abdominal aorta. That is, the radius of the blood vessel of 8cm
expanded uniformly. In type 2, the abdominal aorta was divided into 7 segments and
the radius of each piece was different. Each segment is % = 1.14cm long. Let the
initial radius be RO, and the radius increment according to the severity is p. The
radius of the 7 segments is sequentially RO + (%), RO + (E)' RO + (g), RO, RO +
(), RO+ (3), RO+ (). Intype 3, the abdominal aorta was divided into 7 sections
and the radius and length of each segment were different. The method of increasing
the radius is the same as for Type 2. The length of each segment is given
symmetrically around the center segment. Specifically, the length of each segment
was sequentially given as 0.5cm, 1cm, 1cm, 3cm, 1cm, 1cm, and 0.5cm. Finally,
type 4 is similar to type 3, but the length of each segment is given asymmetrically.
The length of each segment was sequentially given as 1cm, 2cm, 1cm, 2cm, 0.5¢cm,

1cm, and 0.5cm.
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Figure 3-2 Types of aneurysms

(@): Type 1, (b): Type 2, (c): Type 3, (d): Type 4
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3.3 Architecture of DNN

In this study, PyTorch was used as a machine learning library. The most basic DNN
structure was used. We used three hidden layer with 300 nodes each. The input of
the model is blood pressure waveform at the measurement point and the output is a
severity of disease. The dimension of input is 66 and the dimension of output is 1.
Input and output have a linear function relationship. Data is learned in mini-batch
units. The batch size is 2,000. ReLU was used as an activation function. Also, we
used the mean squared error loss, which is the loss used in the regression problem.

The optimizer is Adam optimizer with initial learning rate of 1 x 107>,

POINT 300 300 300
37 BP HIDDEN » HIDDEN » HIDDEN SEVERITY
DIM DIM DIM

15T HIDDEN 2N HIDDEN 3R HIDDEN _

Figure 3-3 DNN architecture

3.4 Summary and Discussion

A model with an AAA was implemented by modifying the TLM that implements
hemodynamics well. When the artery swells, the radius increases and the wall

thickness of the vessel is designed to be constant. The site of the aneurysm is the
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abdominal aorta. The blood pressure measurement point is the deep femoral on the
right. The maximum diameter of the AAA was set to 5cm. Distributions appropriate

for each characteristic were assigned to important variables related to blood vessels.

Considering that the shape of the aortic aneurysm is not standardized, a total of
four types of aortic aneurysms were implemented. Type 1 is a dilation of the entire
AAA. In Type 2, the abdominal aorta is divided equally into 7 pieces, and then the
degree of expansion is different. In Type 3, the AAA was divided into 7 pieces of
different length, and the degree of dilation was different. Type 4 is similar to Type
3, but the length of the AAA is different.

DNN was designed in the PyTorch language. It was configured to have three
hidden layers. The input of DNN is the blood pressure waveform and the output is

the severity. The flow chart of the methodology of this study is as follows.

—'l Disease selection and simulation model securement

Comparison
with BP and BF

in literature

Discord

Deep learning

: Regression of the AAA severity

Figure 3-4 Flow chart of the methodology
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Chapter 4. Data Generation Results

In this chapter, the blood pressure waveform graph obtained through the modified
TLM is presented. First, blood pressure waveform graphs by types and disease
severity are shown. Next, the validity of the acquired blood pressure waveform data

is verified by comparing it with data in the literature.

4.1 Blood Pressure Waveform Data

The characteristics of the blood pressure waveform when having type 1 aneurysm
are as follows: 1) the waveform becomes wavy as the disease becomes more severe,
and 2) the value of the peak point increases. In the case of type 2, 3, and 4 aneurysm,
the characteristic of showing the blood pressure waveform was the same as that of
type 1. That is, in common for all types, it can be seen that the BP waveform
becomes convoluted as the disease severity level increases. When comparing the
blood pressure waveforms for each type of aneurysm when the disease is the most

severe, there is a difference in peak value, but there is no clear trend.
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4.2 Validation of Blood Pressure Waveform Data

We conducted a literature survey to ensure that these simulated data follow trends in
real-world data. In this chapter, the validity of blood pressure waveform data is
verified by comparison with the literature data. The disease in the literature examined
was also a disease with an abdominal aortic aneurysm [12]. In the literature, it was
confirmed that the blood pressure waveform became convoluted from normal to

disease state.

Oeepe —©

~

4
W

Time(s) Time(s)

(b) (c)

~
o
—

Figure 4-5 BP waveforms from the literature in the presence of an AAA [12]
(a): Abdominal aorta, (b): BP waveform in normal state,

(c): BP waveform in disease state
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4.3 Summary and Discussion

After implementing four types of aneurysm in TLM, blood pressure waveform data
was acquired. A common characteristic found in four types of aneurysm models was
that the more serious the disease became, the more convoluted the waveform.
Furthermore, as the disease became more serious, the peak value of the waveform
increased. When comparing results between types, special differences were difficult
to find. A literature survey was conducted to verify that the acquired simulation data
were significant. As a result, it was confirmed that the blood pressure waveform
generated in this research model was similar to the trend. The following limitations
exist in this verification: 1) Difficulty finding literature showing blood pressure
waveforms in AAAs, and 2) verification was not possible through actual medical

blood pressure waveform data.
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Chapter 5. Regression Results

In this chapter, disease severity regression is performed using the blood pressure
waveform data presented in Chapter 4. The tool to solve the regression problem is
the DNN presented in chapter 3.3. To show the performance of the regression model,
the train MSE loss and the test MSE loss were calculated. Finally, we present a

regression result graph.

5.1 Loss and Regression Plots

From the results of performing DNN, it was confirmed that the train loss and test
loss converged to zero in all aneurysm type. In addition, regression was well
performed for all aneurysm types. The ideal regression result graph is in the form of
y = X, and the closer the point is to this line, the better the regression performance.
The case with the smallest train MSE loss was 0.0000317 in type 1. The smallest test
MSE loss was found to be 0.0001498 in type 2. Since the smallest train loss and test
loss are found in different types, it is difficult to say that the regression performance

is the best for any type.

(a) (b) (c)

Figure 5-1 Regression result of Type 1
(a): Train MSE loss, (b): Test MSE loss, (c) Regression result graph
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Figure 5-2 Regression result of Type 2
(a): Train MSE loss, (b) Test MSE loss, (c): Regression result graph
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Figure 5-3 Regression result of Type 3
(2): Train MSE loss, (b) Test MSE loss, (c): Regression result graph
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Figure 5-4 Regression result of Type 4
(@): Train MSE loss, (b) Test MSE loss, (c) Regression result graph
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Table 5-1 MSE loss values

Type 1 Type 2 Type 3 Type 4
Train MSE loss | 0.317 x 1074 1.361 x 1074 0.362 x 1074 1.941 x 10~
Test MSE loss | 2.842x 107*  1.498 x 10™* 2.643x107™* 1.969x 107*

5.2 Limitations

In this study, MSE loss was used as an index to suggest the performance of the
regression model. Typically, regression performance is evaluated by how much the
loss decreases. However, it is difficult to figure out what it means medically to
suggest such a loss. In the literature that solved the disease-related regression
problem, we investigated which indicators were presented, but no appropriate
indicators were found. Therefore, the lack of an indicator that can suggest the
performance of the regression model from a medical point of view is a limitation.
No papers were found that regressed disease severity, and most of them were

classified as the presence or absence of diseases.

5.3 Summary and Discussion

As a result of regression of disease severity through DNN, both train MSE loss and
test MSE loss converged to zero. Also, as it appears close to ideal estimation, it can
be confirmed that the regression performs well. When looking at the loss values,
there is little difference from each other, so it is difficult to determine which type is
better for performing regression. Finally, the diversity of individuals was reflected
in the simulation data generation process. It is necessary to supplement that loss,
which is used as an index to identify the performance of the regression model, is

difficult to have any special meaning from a medical point of view.
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Chapter 6. Conclusions
6.1 Summary and Contributions

In this dissertation, normal and disease data were created to compensate for the lack
of data. In addition, disease severity regression was performed to determine the
severity of the disease progression stage. Also, the diversity of individuals was
reflected in the simulation data generation process. Contributions accordingly are as

follows.

Contribution 1: Realization of desired disease by modifying simulation models

with different target disease

First contribution according to this is that the target disease, abdominal aortic
aneurysm, was implemented by modifying the existing simulation model. The
possibility of implementing other cardiovascular diseases was confirmed if
appropriate modifications were made to the model that implemented hemodynamics
well. In addition, other diseases such as thoracic aortic aneurysm can be
implemented by changing the disease location of the currently implemented

aneurysm model.

Contribution 2: Generation of blood pressure waveforms with trends similar to

literature

The second contribution is that it produced BP waveform data with a trend similar
to that of the literature. This indicates that the model well reflects the hemodynamics

in the presence of the disease. In addition, the diversity of individuals was considered
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when generating BP waveform data.

Contribution 3: Disease severity regression using DNN

The third contribution is disease severity regression using DNN. This shows that
deep learning can perform the role of diagnosing diseases and identifying the
severity. It is also noteworthy that anatomical knowledge such as CT or MRI is
required and time-consuming examination methods are not used. It is a great
advantage when considering that it is possible to diagnose a disease and use a

regression algorithm with only a simple procedure of measuring blood pressure.

6.2 Suggestions for Future Research

Considering the points to be supplemented in this study, there are the following

directions for future research that can be suggested.

Issue 1: Preparation of medical indicators to suggest the performance of

regression algorithm

Although the problem related to the disease was solved by using mechanical
engineering knowledge, efforts to present its performance as a medically
understandable indicator are needed. No suitable indicators were found through
literature research. In addition to using the existing indicators, it is necessary to

consider how to present the regression performance.

Issue 2: Implementation of a larger sized abdominal aortic aneurysm

The maximum diameter of aneurysm implemented in this study was 5cm. In real
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world, larger-sized aortic aneurysms also exist. Assuming that it is actually
commercialized, it is necessary to implement an AAA having a larger diameter and
a complex geometry. It is essential to check whether the blood pressure waveform

data acquired after implementing aneurysm is valid.

Issue 3: Simulation model verification using actual patient’s blood pressure

waveform data

In this study, the validity of the simulation data was verified through the tendency
of BP waveform data in literature research. The more powerful verification method
is to verify the data of the model by acquiring the data of real patients with AAA.
Before commercializing this algorithm, verification through actual data will be

essential.
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