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Many studies have been conducted for fault detection of rotating machinery 

under varying speed conditions using time-frequency representation (TFR). 

However, the parameters of TFR have been selected by researchers empirically in 

most previous studies. Also, the previously proposed TFR measures do not suggest 

the optimal parameter for fault diagnosis. This paper thus proposed a TFR measure 

to select the parameter from the perspective of detecting fault features.  

The proposed measure, Weighted Residual Rényi Information (WRRI), is 

based on Rényi Information, selected through a comparative study among previously 

suggested measures. WRRI, defined as a modified form of the input atom of Rényi 

Information, consists of two terms. The first term is the residual term that extracts 

the fault feature, and the second term is the weighting term that reduces the effect of 

noise.  

The validation process consists of the two steps; 1) analytic signal, 2) motor, 

and gearbox signal. In the validation using an analytic signal, it confirmed that WRRI 

suggested a better parameter for detecting fault features than the Rényi Information. 

Also, in the validation using a motor testbed signal and gearbox testbed signal, it 

confirmed that WRRI was possible to select more suitable parameters for fault 

diagnosis than the Rényi Information.  
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Chapter 1. Introduction 
 

 

1.1 Introduction  
 

As the facilities used in the industry become more complicated and the number 

of automation facilities increases, the demand for failure diagnosis has been 

increasing. To minimize downtime cost caused by equipment failure, interest in 

Condition Based Maintenance (CBM) has increased. Among the part of CBM, 

Prognostics and Health Management (PHM) technology collects status information, 

detects anomalies in the system, and predicts failure points in advance through 

analysis and predictive diagnosis [1]. In the case of the fault diagnosis algorithm 

developed in the PHM research field, dynamics of the system in the health and fault 

state are measured through sensors, and the algorithm is developed through spectral 

analysis mainly at a constant speed. The difference between the two states is 

expressed as a failure characteristic frequency or a harmonic form of the supply 

frequency [2]–[4]. However, in recent years, fault diagnosis for rotating equipment 

has been actively studied for diagnosis in a variable speed condition as well as a 

constant speed condition in consideration of applicability in a real industrial 

environment. Because the spectral analysis is no longer meaningful under variable 

speed conditions, PHM researchers tried to diagnose the target system using time-

frequency representation (TFR). TFR is an expression method that can 

simultaneously check time and frequency information, and is frequently used 

because of the advantage of being able to identify frequency components that vary 

depending on time segments [5]. For this reason, researchers have used TFR mainly 

to extract fault features or develop an improved TFR suitable for fault diagnosis of 

each target system. For example, studies using TFR for extraction fault features, 

Hong and Liang [6] performed a study of extracting fault features based on wavelet 

decomposition from the rotating machinery. In the study, a fault feature separation 
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algorithm based on wavelet decomposition was proposed by calculating the 

contribution ratio using a Fourier transform for a multi-component signal. Park et al 

[7] used Wavelet transform to reduce the influence of the signal caused by variable 

speed. By using the wavelet transform to remove the effect of speed variation, the 

fault diagnosis of the planetary gearbox was performed through the residual term 

containing the fault feature. For studies that improved or applied TFR to suit each 

system, Peng, Peter, and Chu [8] proposed an improved Hilbert-Huang transform 

(HHT) for the diagnosis of rolling bearing failure and showed advantages in 

computing efficiency and time-frequency resolution compared to the existing 

wavelet transform (WT). Li and Liang [9] proposed a generalized synchrosqueezing 

transform as a modified form of the synchrosqueezing transform for diagnosing 

gearbox fault in variable speed. The proposed TFR improves time resolution by 

transposing the raw signal into an analytic signal, calculating the inverse 

synchrosqueezing wavelet transform (SWT)[10], and using additional instantaneous 

frequency. Feng, Chen, and Wang [11] successfully exploited the newly proposed 

ConceFT method for bearing fault diagnosis [12]. In applying the method, they 

designed a noise-tolerant diagnostic algorithm considering the modulation feature of 

the bearing vibration signal. Feng and Liang [13] exploited the adaptive optimal 

kernel (AOK) method, a signal-dependent kernel method, to diagnose wind turbine 

gearbox fault [14]. By applying the AOK method, the fault feature observed in a 

laboratory signal that in-situ the sun gear fault can be observed more clearly in the 

real wind turbine gearbox signal. In these studies, the type of TFR has been 

determined and the parameters are selected to develop the algorithm. However, the 

determined TFR’s parameter was determined heuristically by the researchers. Even 

though the results of TFR varies largely depending on the TFR parameters, most 

studies do not consider this and chose TFR parameters heuristically. The results 

heuristically selected in previous studies showed sufficient performance in the study, 

but this TFR may not be the optimal result. 
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A step behind the fault diagnosis, researchers studying TFR in the field of signal 

processing suggested measures to select the TFR parameter from the energy 

concentration point of view for the target TFR. Jones and Parks [15] suggested a 

moment-based measure with the same form of kurtosis. In the same way as the 

characteristic of kurtosis, the peakedness of the target TFR is quantified. Stanković 

[16] suggest norm-based measure with the same form of L2 norm. Rényi [17] 

suggested a modified version of Shannon entropy, Rényi Information which still has 

the properties of entropy. And the normalized version of Rényi Information is 

proposed by considering the energy scale problem [18]. These measures were used 

to determine TFR parameters in terms of energy concentration or to design an 

optimal kernel [19]–[21]. However, the parameters selected using these measures do 

not guarantee the optimal parameter in terms of detecting the fault features. That is, 

the parameters are not the best representation for designing fault diagnosis algorithm. 

Focusing on this problem, this study focuses mainly on proposing measures in terms 

of detecting fault features. Firstly, we analyze and compare the existing measures. 

Secondly, we show that it does not propose the optimal parameters for detecting fault 

features. Then, we propose a measure that can select the optimal parameter from the 

viewpoint of detecting fault features. Verification of the proposed measure is first 

performed with analytically designed signals and the measure is verified through 

motor and gearbox experiment signals. 

This paper is organized as follow, Chapter 2 reviewed previously proposed 

measures and analyzed their characteristics. Chapter 3 introduces the proposed 

measure, WRRI, based on the detecting fault feature perspective. In Chapter 4, the 

validation process proceeded with analytic signals, gearbox, and motor experiment 

signals. Finally, Chapter 5 described the conclusion of the paper and future work. 
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Chapter 2. TFR Measure for Readability 
 

 

2.1 Linear TFR  
 

The TFRs used in this study are Short Time Fourier Transform (STFT) and 

Wavelet Transform (WT) classified as Linear TFR [5]. STFT is calculated by 

combining the Fourier transform used in general spectral analysis and window 

function. Fourier transform takes the sinusoidal function as a basis and localizes the 

target signal segment in the frequency domain. Within the assumption that the signal 

segment is quasi-stationary, the STFT moves the window function and has a 3-d 

representation [22]. The mathematical formula of the STFT is as follows.  

 

𝑃𝑥  (𝑡, 𝑓) = ∫𝑥(𝜏)ℎ∗(𝜏 − 𝑡)𝑒−2𝑗𝜋𝑓𝜏 𝑑𝜏 (2-1) 

∫|ℎ(𝑡)|2𝑑𝑡 = 1 (2-2) 

 

Where ℎ(𝑡) is a window function, ℎ∗(𝑡) is a complex conjugate of a window 

function. The window function has unit energy and mainly uses hamming or 

rectangular window function. The length of the window function is the most 

important parameter of the STFT in that it determines the time-frequency resolution 

that occurs due to the uncertainty principle of Heisenberg-Gabor [23]. If the window 

size is long, STFT makes the representation having good frequency resolution, and 

if the window size is short, it makes the representation having a good time resolution. 

Unlike STFT, WT uses wavelets as a basis to decompose signals. Wavelet, 

which is a wavelike function, is defined as the reference form as a mother wavelet 

and the modified form using the scale parameter is defined as a child wavelet. WT 

performs correlation operation on the basis of these wavelets. The mathematical 

formula of the WT is as follows. 
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𝑃𝑥  (𝑢, 𝑠) =
1

√𝑠
∫𝑥(𝑡)𝜓∗ (

𝑡 − 𝑢

𝑠
) 𝑑𝑡 (2-3) 

∫𝜓(𝑡)𝑑𝑡 = 0 (2-4) 

 

Where 𝑢  is a translation parameter, 𝑠  is a scale parameter, 𝜓  is mother 

wavelet, and 𝜓∗ stands for the complex conjugate of the mother wavelet. For proper 

WT, the integration of the wavelet in the time domain should be satisfied zero. As 

the window function is moved in STFT, the wavelet is also moved in WT by 

changing the translation parameter. The scale parameter is a value corresponding to 

the frequency bin in the STFT and has a mathematical relationship with the central 

frequency of the mother wavelet in the frequency domain. The central frequency 

corresponding to each scale is calculated as 𝑓 = 𝑓0 𝑠⁄  where 𝑓0  is the central 

frequency of the mother wavelet. The representation created by changing these 

parameters in WT becomes a multi-resolution TFR, so it has good time resolution in 

the high frequency domain and good frequency resolution in the low frequency 

domain. 

A discrete version of the wavelet transform can be expressed by its formula by 

discretizing the parameters of CWT. The scale parameter and translation parameter 

are discretized as follows. Where 𝑚 and 𝑛 are integers.  

 

𝑠 = 𝑠0
𝑚, 𝑢 = 𝑛𝑠0

𝑚𝑢0 (2-5) 

𝜓𝑚,𝑛(𝑡) = 𝑠0
−𝑚/2

𝜓(𝑠0
−𝑚𝑡 − 𝑛𝑢0) (2-6) 

𝑃𝑥  (𝑚, 𝑛; 𝜓) = 𝑠0
−𝑚/2

∫𝑥(𝑡)𝜓∗(𝑠0
−𝑚𝑡 − 𝑛𝑢0)𝑑𝑡 (2-7) 

 

The DWT used in this study is the Maximum overlap DWT (MODWT). 

MODWT essentially performs the same calculations as DWT. However, unlike 

DWT, it provides highly redundant information and performs nonorthogonal 

transform. Since the number of 2𝑗 samples is not necessary, the signal does not 

need to be extended, and multi-resolution analysis is still possible [24], [25]. When 
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DWT is expressed by the linear filtering process, MODWT operation is possible by 

not down-sampling at each filter level, and the mathematical relationship of the filter 

between DWT and MODWT is as follows [26]. 

 

{
 

 𝑔̃𝑙,𝑗 =
𝑔𝑗,𝑙

√2𝑗

ℎ̃𝑙,𝑗 =
ℎ𝑗,𝑙

√2𝑗

, 𝑙 = 1,2,3, … , 𝐿 − 1 (2-8) 

 

Where j is a positive integer, L is the filter width, 𝑔𝑙,𝑗, ℎ𝑙,𝑗 are wavelet and 

scaling filters of DWT respectively. 𝑔𝑙,𝑗̃ and ℎ𝑙,𝑗̃ mean wavelet and scaling filter 

of MODWT. The wavelet and scale coefficients of MODWT are 𝑊𝑗,𝑛̃,  𝑉𝑗,𝑛̃ 

respectively.  

 

{
  
 

  
 
𝑉̃𝑗,𝑛 = ∑ 𝑔̃𝑙,𝑗

𝐿𝑗−1

𝑙=0

𝑋(𝑛−𝑙) 𝑚𝑜𝑑 𝑁

𝑊̃𝑗,𝑛 = ∑ ℎ̃𝑙,𝑗

𝐿𝑗−1

𝑙=0

𝑋(𝑛−𝑙) 𝑚𝑜𝑑 𝑁

 (2-9) 

 

Where 𝐿𝑗 = (2
𝑗 − 1)(𝐿 − 1) + 1. At the stage of integer j, MODWT takes the 

transformation of the 𝑋 as a form of vector 𝑊1̃,𝑊2̃, … ,𝑊𝑗̃, 𝑉𝑗̃. The 𝑊𝑗̃ and 𝑉𝑗̃ has 

a dimension of N calculated as the product of 𝑁 × 𝑁 wavelet and scale coefficient.  

For each TFR described above, I would like to explain the parameters to be 

compared using the measures to be introduced in this study. In the case of the STFT, 

the value of measure was examined by changing the window size. The overlap is 

also a user-configurable parameter, but the overlap is excluded from this study 

because the amount of information always increased by overlapping signals is a part 

to be set in relation to computational cost. In the case of WT, various types of 

wavelets were compared. For CWT, generalized Morse wavelets introduced by 

Daubechies and Paul [27] were used for comparison. The mathematical formula and 
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details of the generalized Morse wavelet were as follow. 

 

𝛹𝛽,𝛾(𝜔) = 𝐾𝛽,𝛾𝐻(𝜔)𝜔
𝛽𝑒−𝜔

𝛾
 (2-10) 

𝑃𝛽,𝛾
2 =

𝜔𝛽,𝛾
2𝛹𝛽,𝛾

′′(𝜔𝛽,𝛾)

𝛹𝛽,𝛾(𝜔𝛽,𝛾)
= 𝛽𝛾 (2-11) 

𝛼3;𝛽,𝛾 = 𝑖
𝛾 − 3

𝑃𝛽,𝛾
 (2-12) 

 

Where 𝐾𝛽,𝛾 is normalizing constant, 𝐻(𝜔) is Heaviside unit step function, 𝛽 

is decay parameter, and 𝛾 is symmetry parameter. The parameter that characterizes 

the wavelet is 𝑃𝛽,𝛾 wavelet duration and 𝛼3;𝛽,𝛾 demodulated skewness, which is a 

combination of decay and symmetry parameters [28], [29]. Like the figure that 

Jonathan drew in [29], but for other parameter combinations, Figure 2-1 for the 

parameter sets for comparison was drawn using a freely available MATLAB toolbox 

called JLAB.  
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Figure 2-1. Target generalized Morse wavelets for different parameter sets (a) in 

time domain and (b) in frequency domain. For the time domain wavelet, 

the blue line is the real part of the wavelet, the orange line is the 

imaginary part, and the yellow line is the modulus.  
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In the figure (a) above, the x-axis was rescaled to the duration of each wavelet, 

and the y-axis was rescaled to the magnitude at t=0 of each wavelet. Also in figure 

(b), the x-axis was relocated to the central frequency of each wavelet. By changing 

the decay and symmetry parameters of the wavelet, we compared the wavelets of the 

Cauchy family (𝛾 = 1), Gaussian family (𝛾 = 2), Airy family (𝛾 = 3), and Hyper-

Gaussian family (𝛾 = 4). For DWT, various types of wavelets are used for the 

comparative study of the previous and proposed measures. For example, Haar 

wavelets (haar), Symlet wavelet (sym), Coiflet wavelet (coif), Fejer-Korovkin 

wavelets (fk), and Daubechies wavelets. In the following description, the contents of 

the study were explained through changes according to the window size of the STFT. 

Afterward, in the validation process using testbed signals, the remaining TFRs and 

the parameters are used for validation through the difference in values for each 

measure. 
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Figure 2-2. Target wavelets for DWT up to 4 level, (a) kinds of wavelets having 4 

vanishing moment except Haar wavelet, (b) Daubechies wavelets with 

different vanishing moments. For the time and frequency domain, the 

blue line is the first stage filter, the orange line is second stage filter, the 

yellow line is third stage filter to make a detail coefficient in DWT, and 

the purple line is forth stage filter to make an approximation coefficient 

in DWT.  
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2.2 TFR Measures 
 

In this chapter, we first analyze the TFR measures previously introduced. These 

measures were proposed for the purpose of turning TFR into an improved 

representation, which improves readability by making the representation clearer. For 

general use, the directionality of the measure worked to create a TFR that 

concentrates the energy of the signal [30]. Among the TFR measures studied so far, 

there are four representative measures to be analyzed in this paper. The first measure 

is the moment-type measure which is the same as Equation 2-13. This measure took 

a form of 4th order moment divided by 2nd order moment. To obtain high 

concentration and resolution, this measure is used to select the window size which is 

the parameter of Short Time Fourier Transform (STFT) [15]. Considering that the 

formula of measure is the same form of kurtosis, it can be inferred that this measure 

suggests a higher value as the peakedness of TFR increases. As a result, this measure 

has an ability to guide TFR to select parameters making more sharp representation.  

 

𝑀𝐽𝑃 =
∑ ∑ 𝑃𝑥

4 (𝑛, 𝑘)𝑛𝑘

(∑ ∑ 𝑃𝑥2 (𝑛, 𝑘)𝑛𝑘 )2
 (2-13) 

 

The second measure is a norm-type measure which is the same as Equation 2-

14. This measure took a form of L2 norm shape where the position of the coefficients 

is interchanged. This measure forms a simple formula with the characteristic that it 

does not discriminate against the low concentrated component. Additionally, this 

measure was also used in the STFT to select the optimal window size [16]. 

 

𝑀𝑠 = (∑∑|𝑃𝑥 (𝑛, 𝑘)|1/2
𝑁

𝑘=1

𝑁

𝑛=1

 )

2

 (2-14) 

 

The third and fourth measure is an information-based measure derived from 

Shannon entropy. Shannon entropy is modified to be used in TFR as a Rényi 
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information to handle negative coefficient by the influence of interference term in 

certain TFR such as the Wigner-Ville distribution [17], [31]. Also, information-

based measures have the characteristics of entropy, they play the same role as 

uncertainty measures of probabilistic distribution. In this case, the TFR is considered 

a multi-dimensional distribution, and the information measure quantifies the 

uncertainty of this representation. Therefore, this measure guides the parameters to 

create a more deterministic TFR, making it possible to make representation with high 

readability. The form of Rényi Information is the same as Equation 2-15, and hyper 

parameter 𝛼 should be positive. But generally, the value of 𝛼 is usually adopted 

as 3 because of its good properties[32]–[34]. In Baraniuk et al [34] study, detailed 

studies of its properties have been carried out, so the details are skipped in this paper. 

In Equation 2-16, it is a normalized version of Rényi Information. This measure was 

proposed to improve the limitations of Rényi Information with different values 

depending on the signal scale [18]. 

 

𝑅𝛼(𝑃𝑥) =
1

1 − 𝛼
log2(∑∑𝑃𝑥

𝛼  (𝑛, 𝑘)

𝑛𝑘

) (2-15) 

𝑅𝑛𝛼(𝑃𝑥) =
1

1 − 𝛼
log2 (

∑ ∑ 𝑃𝑥
𝛼  (𝑛, 𝑘)𝑛𝑘

∑ ∑ 𝑃𝑥 (𝑛, 𝑘)𝑛𝑘
)  𝑤𝑖𝑡ℎ 𝛼 ≥ 2 (2-16) 

 

The measures introduced so far, the measures in Equation 2-13,14 quantify the 

peakedness of the representation, and the measures in Equation 2-15,16 quantify the 

uncertainty of the representation. This quantification makes it possible to select TFR 

with higher readability within a range of parameters. In the following chapter, a brief 

comparison of the four quantitative measures mentioned in this chapter was 

conducted and showed how measures work and what characteristics each one has. 

And based on the result of the measure comparative study, we adopt a one form from 

an existing measure to propose a new measure for detecting fault features. 

  



 

13 

 

2.3 Comparative Study of Previous Measure 
 

By comparing the four representative measures introduced in the previous 

chapter, the characteristics of the TFR measure were illustrated. A comparative study 

is conducted with three topics that can appear in TFR. For the analysis of these topics, 

we use a 1-D distributed signal in a similar way to researcher Stankovi [16]. At this 

time, all 1-D distribution type signal L1 norm values are unified to 1 and the value 

was set differently only when checking the interference term. The first topic in 

Figure 2-3 (a)  is about the trend of TFR measures. Target signal distribution is 

shown as (1) -(4) from uncertain to deterministic. The result of four representative 

measures can be seen in Table 2-1. 

 

 

Figure 2-3. Signal distribution for comparative study, (a) Trend, (b) Interference & 

Overlap, (c) Multi-component 

 

 

Table 2-1. Comparative measure values for 3 topics 

Signal 

distribution 

Topic 1. Trend 
Topic 2. Interference & 

Overlap 
Topic 3. Multi-component 

(1) (2) (3) (4) (1) (2) (3) (4) (1) (2) (3) (4) 

L1 norm 1 1 1 1 1 1 2.4 1 1 1 1 1 

𝑀𝐽𝑃 0.1 0.1675 0.5 1 0.1925 0.2 0.2569 0.5 0.1725 0.3125 0.25 0.5 

𝑀𝑠 10 8.3947 2 1 6.4394 8.3192 9.5329 2 6.7309 4.5 4 2 

𝑅 3.3219 2.4118 1 0 2.2420 2.0922 1 1 2.3818 1.4563 2 1 

𝑅𝑛 3.3219 2.4118 1 0 2.2420 2.0922 1.6315 1 2.3818 1.4563 2 1 
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As the signal distributions become shaper from (1) to (4), moment-type measure 

tends to increase as the signal distribution become shaper. The other measures tend 

to decrease as the signal distribution become shaper. This means that the measures 

show a monotonic tendency toward increasing or decreasing as the signals become 

more deterministic. Also, depending on the formula of the measure, the tendency 

may be increasing or decreasing. 

The second topic in Figure 2-3 (b) is about interference and overlap signals.  

The (1), (2) expressed overlap term and, (3), (4) in (b) expressed interference term 

at TFR. For the overlap term. As for over term, it seems that norm-type measure is 

not suitable to choose sharp representation. Other measures could guide to having a 

sharp representation of this case. For the interference term, it can be seen that Rényi 

information ignores the impact of the interference term. This is a disadvantage for 

Rényi information that not possible to recognize interference term for Wigner-Ville 

distribution or modified version of Wigner-Ville distribution. Interestingly, the 

normalized Rényi information proposed to solve the scale problem shows good 

performance against interference terms. 

The third topic in Figure 2-3 (c) is about multi-component. Through this topic, 

it can be seen the tendency of the measure about multi-component. This can be easily 

confirmed by comparing (2) and (3). The measures are said to be a sharper 

representation in (2) except for the norm-type measure. In other words, it can be seen 

that measures tend to focus on one large energy signal, and norm-type measures do 

not. Various interpretations are possible on this case, one is that the norm-based 

measure is effective in the TFR of rotating machinery having multi-components, and 

the other is that when the signal to noise ratio (SNR) is high, it is not effective 

because it guides in the direction of increasing noise component.  

From the standpoint of developing a measure with the diagnosis of rotating 

machinery in the actual industrial site, normalized Rényi information can be 

regarded as the most appropriate measure. This is because normalized Rényi 
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information showed good performance for 2 of the 3 topics analyzed above, and 

confirmed that it tends to guide the TFR on the side that is more robust against noise 

for the last topic. Therefore, we propose a measure for detecting fault features based 

on normalized Rényi information in the next chapter. 
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Chapter 3. TFR Measure for Detectability 
 

 

3.1 Fault Feature Detectability  
 

Before suggesting a measure for the detecting fault feature, a description of the 

fault feature and how it is represented by the TFR measure are given in Chapter 3.1. 

A fault feature means a signal component that is not observed in a health state signal 

or is expressed differently from a health state signal. In the case of a fault state signal, 

the fault feature may be expressed as an independent component such as 

characteristic frequency, or it may appear as a modulation type accompany with a 

health state signal. In essence, the fault diagnosis is a quantification of the fault 

feature which is expressed as a difference between a health state and a fault state 

system. Therefore, in case of using TFR for a system on variable speed conditions, 

it is advantageous for the fault feature to be emphasized. This means that to diagnose 

a system, the parameter that best expresses the fault feature should be selected by a 

TFR measure. However, the existing measure has a limitation that it cannot guide to 

select the optimal parameters for detecting the fault feature.  

To ascertain the issue more clearly, we confirm by modeling the fault feature 

that usually appears in rotating machinery. There are three types of fault feature 

signals modeled: the first is the impulse type of fault feature, the second is the 

characteristic frequency, and the last is a signal made from a mixture of the previous 

two fault features. The first modeling signal is the impulse train like Figure 3-1 (a) 

below. The impulse train signal expressed as a vertical line in a TF-plane. And it is 

the same as theoretical content when an impulse signal expressed on the Fourier 

domain [35]. Also, it can be seen that fine time resolution is to detect impulse type 

fault features well in case of STFT. Therefore, the measure for detecting fault feature 

should be able to guide the emphasis on time resolution. On the contrary, in the case 

of characteristic frequency, shown in Figure 3-1 (b). The characteristic frequency 
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expressed in the horizontal line in the spectrogram. For this type of fault feature, it 

is important to find the characteristic frequency clearly by improving the frequency 

resolution. To take a frequency resolution better, the TFR measure should guide the 

user to take the parameter having better frequency resolution.  

 

 

 

Figure 3-1. Modeled raw signal having fault feature of (a) impulse signal, (b) 

characteristic frequency and spectrogram of (c) impulse signal, (d) 

characteristic frequency 
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Figure 3-2. Mixture of two fault feature (a) raw signal, (b) spectral analysis, and (c) 

spectrogram 

 

 

Figure 3-3. Rényi Information values depends on a window sample in STFT 
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The mixture of two fault feature was modeled by following the way of bearing 

signal similar with [36]. The modeled signal is given from the formula (3-1, 3-2).  

 

 𝑥(𝑡) = 𝑘𝑒−𝛼𝑡
′
(sin(2𝜋𝑓1𝑡) + sin (2𝜋𝑓2𝑡)) (3-1) 

 𝑡′ = 𝑚𝑜𝑑(𝑡,
1

𝑓0
) (3-2) 

 

where  𝑡  is the time instant with a sampling frequency of 2500Hz for 6.5 

seconds. 𝑘 = 0.25 and 𝛼 = 15  is constant. 𝑓1 = 600Hz  and 𝑓2 = 300Hz are 

characteristic frequency of the system. And 𝑓0 = 1.5Hz is a frequency related to 

modulating component, like bearing fault frequency (BPFO) in [36]. The function 

mod returns the value of modulus after division.  

In the case of such a failure characteristic signal, it is difficult to expect an 

intuition about selecting an appropriate parameter. Therefore, in this case, the 

appropriate parameter should be selected using the TFR measure. For example, when 

using Rényi Information for the corresponding fault feature, it looks like Figure 3-3. 

The above results indicate that the parameter to maximize the expression of the 

fault feature can be selected using the TFR measure. Going one step further, linear 

chirp with impulse type fault feature is modeled to see if these results were valid 

even when the driving frequency was present together. Hereinafter, a signal 

component which is the main trend such as a driving frequency is described as a 

ridge signal. The modeled signal was considered to have an effect that the amplitude 

increase as the frequency increases. And the effect of increasing the frequency of the 

impulse signal was considered. 

 

 𝑥(𝑡) = (4 + 2 3⁄ 𝑡) cos(2𝜋𝑓3𝑡
2 + 2𝜋𝑓4𝑡) + 𝛿(𝑡) (3-3) 

 

where 𝑡  is the time instant with a sampling frequency of 2500Hz for 6.5 
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seconds.  𝑓3 = 80Hz is a component related to the increase in the frequency of the 

linear chirp, and 𝑓4 = 100Hz is a value related to the start frequency. 𝛿(𝑡) is 10 

impulse signals that appear at intervals that decrease linearly with increasing 

frequency. 

 

Figure 3-4. Linear chirp with impulse type of fault feature (a) raw signal, (b) result 

of Rényi information, (c) spectrogram having minimum Rényi value, 

and (d) spectrogram for comparison 

 

 

Figure 3-5. Partial plot of Figure 3-4 (c), (d) 
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Figure 3-4 (b) shows the result of using the existing measure, Rényi information, 

for a signal with a linear chirp and impulse type of fault feature added. That is, Rényi 

information guides us to select the window size that best represents this signal at the 

minimum point of the curve as a parameter. The window size corresponding to the 

minimum point is the size corresponding to 2.4% of the total signal length. For 

comparison, by drawing the spectrogram for the window size on the left slightly, 

Figure 3-4 (b) shows that the failure characteristics are better expressed while 

maintaining the tendency for the entire signal, not the plot of the window size 

indicated by Rényi information.  

For a more detailed comparison, Figure 3-5 took a partial plot of Figure 3-4 (c), 

(d). Although the impulse type of fault feature is important in determining the 

window size that improves time resolution, Rényi Information does not seem to 

produce optimal results. It means that the window size guided by Rényi information 

can be a good measure for the concentration of the entire signal, but it cannot be used 

as an optimal measure to detect when fault features are mixed with the ridge signal. 

To overcome this limitation, we intend to propose a TFR measure that focuses on 

detecting fault features. 
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3.2 Weighted Residual Rényi Information  
 

The core idea of the proposed measure for detecting fault features is to make 

use of the advantages of the existing Rényi information measure and to ensure that 

only the focus of the measure is detectability. At this time, since the object of 

detectability is a fault feature, a measure of a deformation type is proposed to 

emphasize this. 

 

𝑅3(𝑃𝑥) = −
1

2
𝑙𝑜𝑔2(∑∑𝑃𝑥

3(𝑛, 𝑘)

𝑛𝑘

) (3-4) 

𝑃𝑥(𝑛, 𝑘) = √(𝐹𝑥 − 𝑁𝑥)√𝐹𝑥 (3-5) 

𝐹𝑥 =
fx

∑∑nx
, 𝑁𝑥 =

nx
∑∑nx

 (3-6) 

 

where 𝑃𝑥(𝑛, 𝑘) is an atom that is an input of Rényi information as a variant of the 

TFR coefficient. fx  and nx  are TFR coefficients at the fault and health state 

respectively. 𝐹𝑥 and 𝑁𝑥 are TFR coefficients normalized by the total sum of the 

health state TFR coefficient. 𝑅3(𝑃𝑥) is a Rényi information with basis alpha value 

3. 𝑛 and 𝑘 are integer for the time and frequency axis. The process of calculating 

the proposed measure is shown in the figure below. 

Firstly, TFR coefficients of health and fault state are normalized by using the 

total sum of the health state coefficient. According to the results of comparative 

studies of previously performed TFR measures, normalization was performed at the 

atom construction step to bring the advantage of normalized Rényi information. Next, 

the key idea of the proposed method is to change the shape of the Atom, 𝑃𝑥(𝑛, 𝑘) in 

equation (3-5). To explain the term, we introduce a simple mathematical derivation 

from the time domain to the time-frequency domain. 
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Figure 3-6. Process of calculating WRRI
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When modeling a signal, it can be said that it consists of a signal with a noise 

term. In the case of a fault signal, the modeled signal can be expressed as the sum of 

the health, fault state signal, and noise signal. The health state signal can be 

expressed as a combination of sinusoidal functions, and the fault signal can be 

defined as a function that is affected by the health state signal and the fault 

characteristics of the system. 

 

𝑥(𝑡) = 𝑥𝑛(𝑡) + 𝑥𝑓(𝑡) + 𝑤(𝑡) (3-7) 

𝑥𝑛(𝑡) =∑𝐶𝑖 × sin (2𝜋 × 𝑓𝐶(𝑖) × 𝑡 + 𝜃𝑐(𝑖))

𝑁

𝑖=1

 (3-8) 

𝑥𝑓(𝑡) = 𝒇(𝑥𝑛(𝑡),  𝐹𝑎𝑢𝑙𝑡 𝑐ℎ𝑎𝑟𝑎𝑐𝑡𝑒𝑟𝑖𝑠𝑡𝑖𝑐) (3-9) 

 

Interestingly, this expression is also available in the TF coefficient. TF 

coefficients of the fault signal can be represented by health state, fault state, and 

noise coefficients. 

 

𝑋(𝑛, 𝑘) = 𝑋𝑛(𝑛, 𝑘) + 𝑋𝑓(𝑛, 𝑘) +𝑊(𝑛, 𝑘) (3-10) 

𝑁𝑥 = 𝑋𝑛(𝑛, 𝑘) +𝑊𝑛(𝑛, 𝑘) (3-11) 

𝐹𝑥 = 𝑋𝑛(𝑛, 𝑘) + 𝑋𝑓(𝑛, 𝑘) +𝑊𝑓(𝑛, 𝑘) (3-12) 

 

The atom, 𝑃𝑥(𝑛, 𝑘), equation (3-5) based on the contents in equation (3-11, 3-

12), the first term is the residual term same with equation (3-13). The residual term 

consists only of the TF coefficient and noise term. This component plays the role of 

extracting and highlighting the fault feature at the measure.  

𝐹𝑥 − 𝑁𝑥 = 𝑋𝑓(𝑛, 𝑘) + 𝑒(𝑛, 𝑘) (3-13) 

𝑒(𝑛, 𝑘) = 𝑊𝑓(𝑛, 𝑘) −𝑊𝑛(𝑛, 𝑘) (3-14) 
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Figure 3-7. Schematic illustration of the residual term 

 

 

Figure 3-8. Schematic illustration of the residual term with noise component 

 

 

Figure 3-9. Schematic illustration of the weighting term 
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If the influence of the noise term among the components included in the residual 

term is very small or not, it will be emphasized in the fault feature as a schematic 

illustration in Figure 3-7. However, in most cases, signals contain noise component 

and their influence cannot be ignored.  

As can be seen from the schematic Figure 3-8, it can be seen that it is difficult 

to extract the fault feature using the residual term due to the noise component. 

Therefore, it was necessary to emphasize the weight on the fault feature or reduce 

the influence on the noise component. The weighting term was designed for this 

purpose and simply took the simple form of multiplying the fault coefficient once 

more, resulting in the equation (3-5).  

The purpose of the weighting term is to reduce the effect on the noise 

component by multiplying the fault coefficient to the residual term. The noise 

component remaining in the residual term is defined as the difference between the 

noise in the health and fault states as shown in equation (3-14), and this component 

is multiplied with the noise component in the fault coefficient. In general, noise 

components defined as white Gaussian have fluctuation values in TFR. It can be 

inferred that the effect of noise decreases because the weighting term creates a 

product form for different noise components. In order to examine the correlation of 

these components in more detail, a mathematical development of the proposed atom 

type and other forms was performed. First, for the existing measure, Rényi entropy, 

expressed by the TF coefficient defined by equations (3-11, 3-12). The TF 

coefficient of the fault signal expressed in the form of an atom is developed as shown 

in equation (3-15). At this time, for comparison with other atom types, the square 

form was used. Second, the residual term also could be expressed in the same way. 

It consists of fault feature component, health state noise component, and fault state 

noise component. The development equation is as shown in equation (3-16). Third, 

in the case of the atom composed of the product of the residual term and the fault 

coefficient, which is the proposed atom, it was also developed as in equation (3-17). 
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In the final form of expression from equation (3-15 – 17), there is a common square 

term consisting of a fault feature and fault state noise coefficients. 

 

𝑃𝑥 = 𝐹𝑥 = √𝐹𝑥2 

𝐹𝑥
2 = (𝑋𝑛 + 𝑋𝑓 +𝑊𝑓)

2 

= 𝑋𝑛
2 + 𝑋𝑓

2 +𝑊𝑓
2 + 2𝑋𝑛𝑋𝑓 + 2𝑋𝑓𝑊𝑓 + 2𝑋𝑛𝑊𝑓 

= (𝑋𝑓 +𝑊𝑓)
2 + 𝑋𝑛

2 + 2𝑋𝑛𝑋𝑓 + 2𝑋𝑛𝑊𝑓 

(3-15) 

𝑃𝑥 = √(𝐹𝑥 − 𝑁𝑥)(𝐹𝑥 −𝑁𝑥) 

(𝐹𝑥 − 𝑁𝑥)
2 = (𝑋𝑓 +𝑊𝑓 −𝑊𝑛)

2 

= 𝑋𝑓
2 +𝑊𝑓

2 +𝑊𝑛
2 + 2𝑋𝑓𝑊𝑓 − 2𝑊𝑛𝑋𝑓 − 2𝑊𝑛𝑊𝑓 

= (𝑋𝑓 +𝑊𝑓)
2 +𝑊𝑛

2 − 2𝑊𝑛𝑋𝑓 − 2𝑊𝑛𝑊𝑓 

(3-16) 

𝑃𝑥 = √(𝐹𝑥 − 𝑁𝑥)𝐹𝑥 

(𝐹𝑥 − 𝑁𝑥)𝐹𝑥 = (𝑋𝑛 +𝑊𝑓 −𝑊𝑛)(𝑋𝑓 +𝑊𝑓) 

= 𝑋𝑓
2 +𝑊𝑓

2 + 2𝑋𝑓𝑊𝑓 −𝑊𝑛𝑋𝑓 −𝑊𝑛𝑊𝑓 

= (𝑋𝑓 +𝑊𝑓)
2 −𝑊𝑛𝑋𝑓 −𝑊𝑛𝑊𝑓 

(3-17) 

1 = 𝐶𝑋𝑛2 = 𝐶𝑊𝑛2 (3-18) 

1 > 𝐶𝑋𝑛𝑋𝑓 ≫ 𝐶𝑋𝑛𝑊𝑓
, 𝐶𝑊𝑛𝑋𝑓 , 𝐶𝑊𝑛𝑊𝑓

 (3-19) 

 

The other components of the development equation have a correlation within 

the components as summarized in equations (3-18, 3-19). Regarding the correlation 

between the ridge signal, the fault feature, and the noise term, it is based on the fact 

that the fault feature is dependent on the ridge signal and the noise components are 

independent of each other. In summary, based on the composition of expression and 

their correlation within the components, the dominant trend of WRRI consists only 

of square terms consisting of fault features and fault state signals. However, the other 

form of an atom cannot ignore the impact on other components. For example, in the 

case of Rényi Information, it can be expected that the measure will focus on the ridge 

signal because not only does 𝑋𝑛
2 term exist, but the other components cannot also 

ignore its impact. In the form of the atom that uses only residual, there are also 
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components that cannot be ignored, such as 𝑊𝑛
2 term. Since the term refers to noise 

acquired under the health state, the atom having residual form means that it is 

vulnerable to the noise component. Therefore, we showed that the proposed atom, 

consisting of the product of the weighting term and residual term, has an appropriate 

form to detect the fault feature. In addition, by using this atom in the Rényi 

information, it retained its good properties.  

In the next chapter, we check the validity of our proposed measure, WRRI and 

the existing measure, Rényi Information, based on the fault signals 
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Chapter 4. Validation of the Proposed Measure 
 

 

The validation process was conducted using two groups of signals. One is 

analytic signals that have a linear chirp as a ridge signal and have each of three fault 

features; impulse type of fault feature, characteristic frequency, a mixture of two 

fault features. The other is experiment signals consisting of signals obtained from 

the motor testbed and signals obtained from the gearbox testbed. As a target TFR for 

comparing WRRI and Rényi information, the comparative study results for each 

parameter of STFT, CWT, and DWT were described.  

 

4.1 Analytic Signals Having Fault Feature  
 

The analytic signal is composed of the sum of ridge signal and fault feature, and 

for convenience, it is assumed that the two are independent components. Ridge 

signal used linear chirp signal, and fault feature used the three fault features used in 

the previous Chapter 3. The linear chirp signal is designed to increase the amplitude 

linearly at the high rotational frequency by partially reflecting the characteristics of 

the rotating machinery. The modeling formula of linear chirp and modeled fault 

signals are as follows. 

 

𝑥(𝑡) = (4 + 2 3⁄ 𝑡) cos 2𝜋(100𝑡 + 80𝑡2) (4-1) 
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Figure 4-1. Analytic signals composed of (a) linear chirp only, (b) linear chirp and 

impulse type of fault feature, (c) linear chirp and mixture of fault 

features, and (d) linear chirp and characteristic frequency  

 

 

 

Figure 4-2. (a) Index plot for WRRI and Rényi Information, (b) Spectrogram at 2.4% 

window size of total signal length, and (c) Spectrogram at 1.4% window 

size of total window length   
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Figure 4-3. (a) Index plot for WRRI and Rényi Information, (b) Spectrogram at 2.2% 

window size of total signal length 

 

 

 

 

Figure 4-4. (a) Index plot for WRRI and Rényi Information, (b) Spectrogram at 2.4% 

window size of total signal length, and (c) Spectrogram at 10% window 

size of total window length 
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Index plot of non-stationary signal with impulse type of fault feature has 

different minimum points for WRRI and Rényi Information as shown in Figure 4-2. 

The minimum point of Rényi Information determines that the spectrogram using a 

window size of 2.4% of the total signal length is the sharpest representation. 

However, the minimum point of WRRI is judged that the spectrogram using the 

window size of 1.4% of the total signal length is the sharpest representation. As 

confirmed in Chapter 3.1, the spectrogram suggested by WRRI to have a 1.4% 

window size is more advantageous in detecting the impulse type of fault feature. 

Since it is WRRI that adds emphasis to the impulse type of fault feature that appears 

with the ridge signal, it is a better measure for the detecting fault feature. 

For the Mixture of two fault features, the WRRI and Rényi Information index 

plots show the same trend. The difference is that fluctuation appears in the proposed 

measure, WRRI. This fluctuation is the cause of the fault feature, which can be 

confirmed through the Rényi Information results in Figure 3-3. Also, in the case of 

Rényi Information, since there is no discrimination between fault feature and ridge 

signal, the influence is not shown in the index plot of the entire signal. 

Considering the case where the characteristic frequency is added linearly with 

the ridge signal, the fault feature is a frequency component, so the TFR measure 

should propose a parameter toward improving the frequency resolution. Reflecting 

that, the WRRI Index plot shows a consistent trend. However, Rényi Information 

does not consistently express that trend. It shows the local minimum point and tends 

to increase and then decrease again. In the case of Rényi Information, which does 

not show the proper trend according to the fault feature, it means that it is not possible 

to choose an appropriate parameter in analyzing the actual fault state signal. 

Therefore, we can see that WRRI is a better TFR measure for detecting fault features 

in these cases. 
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4.2 Experiment Signal  
 

In the validation process using the experiment signal, two types of rotating 

machinery are considered; motor and planetary gearbox. Also, to consider the effects 

on the speed profile, each machinery was operated at two speed profiles. The first 

experiment signals were acquired from the planetary gearbox. The description and 

detail of the gearbox test-bed are illustrated in Park et al [7] article. Health state 

signal and fault state signal were obtained from the testbed and the target failure 

mode is the tooth crack of the planet gear. The raw vibration signal for each speed 

profile is in Figure 4-5.  

The difference between the health state signal and fault state signals was not 

very discernable. As such, if the fault features are little discerned, it could be 

expected that the existing Rényi Information and the proposed WRRI will not show 

much difference, and the results are shown in Figure 4-6. 
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Figure 4-5. Triangular speed profile of (a) RPM, (b) health state signal, (c) fault 

state signal of the gearbox. Sinusoidal speed profile of (d) RPM, (e) 

health state signal, (f) fault state signal of the gearbox. 

 

 

 

Figure 4-6. Triangular speed profile (a) measure value of the gearbox according to 

window size, (b) spectrogram at 0.56% window size, (c) spectrogram 

at 5% window size.  
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It shows the same tendency as both measures and says that it is the optimal 

representation for the 0.56% window size. For comparison, plotting the 

representation at a 5% window size shows that 0.56% is a better representation from 

a readability perspective. In order to check whether the same tendency is made from 

the viewpoint of detectability, the fault feature of the spectrogram made of 0.56% 

and 5% window size is calculated using the Frobenius norm. 

 

‖𝐴‖𝐹≔(∑∑|𝑃𝑖𝑗|
2

𝑛

𝑗=1

𝑚

𝑖=1

)

1/2

 (4-2) 

 

The Frobenius norm is well used to quantify the matrix in machine learning and 

deep learning area [37]–[39]. Besides, quantification was conducted by subtracting 

from health state matrix and fault state matrix, or subtracting from matrix quantified 

values. In the same way, they were quantified using only the values around 

5000~7000 Hz corresponding to the excitation band.  

From all the values provided in the table, it can be seen that the quantification 

value of health and fault state is large at 0.56% window size. Therefore, in terms of 

detectability, the representation at 0.56% window size is better than the other. 

Additionally, the fluctuation of the index is mainly the result of the relationship 

between excitation band and frequency resolution. The unexpected characteristic 

frequency component excited near 9000 Hz also contributes to this trend. 

For the case of sinusoidal speed profile, it shows same result with triangular 

speed profile. The trend of the two measures is the same and recommends the same 

window size from the point of readability and detectability. 
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Figure 4-7. Sinusoidal speed profile (a) measure value of the gearbox according to 

window size, (b) spectrogram at 0.80% window size, (c) spectrogram 

at 5% window size. 

Table 4-1. Quantification result of triangular speed profile spectrogram of the 

gearbox 

 ‖𝐴‖𝐹𝑓−𝐹𝑛  ‖𝐴‖𝐹𝑓 − ‖𝐴‖𝐹𝑛 ‖𝐴‖𝐹𝑓−𝐹𝑛 ,   𝐵𝑃𝐹 
‖𝐴‖𝐹𝑓,   𝐵𝑃𝐹

− ‖𝐴‖𝐹𝑛,   𝐵𝑃𝐹 

0.56% 

Window size 
0.0112 0.0038 0.0107 0.0042 

5%  

Window size 
0.0087 0.0033 0.0083 0.0036 

Table 4-2. Quantification result of sinusoidal speed profile spectrogram of the 

gearbox 

 ‖𝐴‖𝐹𝑓−𝐹𝑛  ‖𝐴‖𝐹𝑓 − ‖𝐴‖𝐹𝑛  ‖𝐴‖𝐹𝑓−𝐹𝑛,   𝐵𝑃𝐹 
‖𝐴‖𝐹𝑓,   𝐵𝑃𝐹

− ‖𝐴‖𝐹𝑛,   𝐵𝑃𝐹 

0.8% Window 

size 
0.0093 0.00228 0.0088 0.0026 

5%  

Window size 
0.0082 0.00226 0.0078 0.0024 
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Because the fault feature is less distinguishable, there is no difference between 

the two measures in the index plot. This result is the same in WT as well as in STFT. 

As for the CWT, the value of the measure is as shown in Figure 4-8 while changing 

the decay parameter 𝛽  and symmetry parameter 𝛾  of the Generalized Morse 

wavelet described in Chapter 2.1. Within the range observed while changing the 

parameters, both measures showed the same index plot.  

It can be seen that this depends on the wavelet duration, 𝑃𝛽,𝛾 , of the product 

of the two parameters. Although there was no difference between the measures 

within the parameter range covered in this study, it was shown that it can be used as 

a role to select parameters of CWT. Also, this role of measures was available in 

DWT. As a result of using MODWT for various types of wavelets, Rényi 

Information and WRRI showed only the difference in value level, and the trend itself 

was the same. 
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Figure 4-8. Triangular speed profile measure value of the gearbox according to 𝛽 

and  𝛾 (a) Rényi Information, (b) WRRI, (c) Scalogram at 𝛽 = 1,  

𝛾 = 1, (d) Scalogram at 𝛽 = 40,  𝛾 = 4. 

 

Figure 4-9. Sinusoidal speed profile measure value of the gearbox according to 𝛽 

and  𝛾 (a) Rényi Information, (b) WRRI, (c) Scalogram at 𝛽 = 1,  

𝛾 = 1, (d) Scalogram at 𝛽 = 40,  𝛾 = 4 
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Figure 4-10. Measure value of the gearbox using MODWT (a) Triangular speed 

profile, (b) Sinusoidal speed profile.  

 

 

Figure 4-11. Triangular speed profile (a) Index plot for WRRI and Rényi 

Information depend on the vanishing moment, (b) Scalogram using db8, 

(c) Spectrogram using db39 



 

40 

 

 

 

Figure 4-12. Sinusoidal speed profile (a) Index plot for WRRI and Rényi 

Information depend on the vanishing moment, (b) Scalogram using 

db10, (c) Spectrogram using db34 

 

Table 4-3. Quantification result of Scalogram of the gearbox depend on vanishing 

moment 

 Triangular speed profile Sinusoidal speed profile 

 db8 db39 db10 db33 

‖𝐴‖𝐹𝑓−𝐹𝑛  0.0027 0.0028 0.0026 0.0027 

‖𝐴‖𝐹𝑓 − ‖𝐴‖𝐹𝑛 6.325e-4 5.887e-4 4.602e-4 4.241e-4 
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The Daubechies wavelet, which is considered a good wavelet for both speed 

profiles, was calculated by adjusting the vanishing moment. The results are as shown 

in Figure 4-11, Figure 4-12. When we used the MODWT, it is difficult to observe 

the speed change in the shifting conditions. In this case, it can be seen that it is not 

meant to select a good wavelet in the aspect of readability using Rényi Information. 

Even if it shows the same trend, in terms of detectability, it still produces valid results 

because the target is in the fault feature. 

The minimum value can be obtained by examining the measure value by 

changing the vanishing moment, but the width of the value is not large. The 

difference in TFR that is selected based on a difference value of about 0.15 does not 

make a big difference even in actual quantification.  

Summarizing the results of STFT and CWT for the two speed profiles of the 

gearbox, Rényi Information and WRRI do not show a difference for signals where 

the fault feature is not clearly noticeable. However, both Rényi Information and 

WRRI were able to select TFR parameters in terms of readability and detectability, 

respectively. And the process was confirmed by spectrogram, scalogram, and 

quantification using Frobenius norm. Therefore, the proposed WRRI can play the 

role of Rényi Information even when the fault feature is not prominent. For cases 

where fault features are discerned, we present a motor test case to see if WRRI can 

actually suggest a better TFR.  
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The second validation process is performed based on the signals acquired 

through the motor testbed. The testbed uses permanent magnet synchronous motor 

(PMSM) seeding stator inter-turn short circuit fault.  

The overall configuration of the testbed is shown in Figure 4-13. The Welcon 

System's servo driver was used to drive the motor. And hysteresis brake which used 

for the role of the external load was Magtrol’s product. There are data obtained from 

the torque sensor and the acceleration sensor, but in this study, only one of the three-

phase current measured with the current probe Tektroniks A622 was used. And the 

target motor used is a 10-pole pair, 200W motor from TMTECH-I Co. 

The speed profile acquired from the torque sensor and raw current signal form 

the current prove for the validation are as follows. 
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Figure 4-13. Overall configuration of the PMSM testbed 

 

Figure 4-14. (a) Testbed target motor, (b) schematic cross-sectional view of PMSM, 

(c) inter-turn short in the PMSM 

 

Figure 4-15. Triangular speed profile of (a) RPM, (b) health state signal, (c) fault 

state signal. Trapezoidal speed profile of (d) RPM, (e) health state 

signal, (f) fault state signal.  
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Unlike the planetary gearbox vibration signal, the fault feature is clearly 

discernable in the PMSM current signal so that it can be visually confirmed. For 

these signals, we compared the measure values according to the window size for 

using the spectrogram. According to the characteristics of the information-based 

measure, which means that the smaller the value, the better the expression, Rényi 

information and WRRI show different minimum points. As shown in Figure 4-16, 

spectrograms were drawn for the window size where each measure points to the 

minimum value. 

However, in the figure, human eyes make it confused to choose (a) is the better 

representation to show the signals. 

It is intuitively clear from a readability point of view that the TFR created by 

Rényi information looks clearer than the TFR produced by WRRI. However, 

considering the fault feature as a reference, it is possible to explain why WRRI chose 

the figure (c). First, in the inter-turn short circuit of PMSM, the three-phase balance 

is broken due to the short-phase, and the triplex component of the PWM supply 

frequency appears due to this imbalance. This phenomenon appears mainly as a 

frequency component at three times the supply frequency [40], [41]. Therefore, it is 

not surprising that WRRI created a spectrogram that improved the frequency 

resolution by selecting a wide window size to emphasize this characteristic 

frequency. Also, an example resolution box for window size is shown in Figure 4-17. 

Because the large window size seems to blur horizontally, the result shown in Figure 

4-16 looks less intuitive.  
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Figure 4-16. Triangular speed profile (a) Measure value comparison according to 

window size, (b) spectrogram at Rényi information measure minimum 

point, (c) spectrogram at WRRI measure minimum point 

 

Figure 4-17. Resolution box example 

Table 4-4. Quantification result of triangular speed profile spectrogram of the motor 

 ‖𝐴‖𝐹𝑓−𝐹𝑛  
‖𝐴‖𝐹𝑓

− ‖𝐴‖𝐹𝑛 
‖𝐴‖𝐹𝑓−𝐹𝑛,   𝐿𝑃𝐹 

‖𝐴‖𝐹𝑓,   𝐿𝑃𝐹

− ‖𝐴‖𝐹𝑛,   𝐿𝑃𝐹 
‖𝐴‖𝐹𝑓−𝐹𝑛,   𝐻𝑃𝐹 

‖𝐴‖𝐹𝑓,   𝐻𝑃𝐹

− ‖𝐴‖𝐹𝑛,   𝐻𝑃𝐹 

2.8%  

Window 

size 

0.0808 0.0445 0.0808 0.0445 1.0222e-5 8.0162e-6 

10%  

Window 

size 

0.0961 0.0495 0.0964 0.0495 1.1557e-5 8.2639e-6 
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Quantification was conducted by subtracting from health and fault state matrix 

or subtracting from matrix quantified values. In the same way, they were quantified 

using only the values above rotating frequency or under characteristic frequency. In 

the current signal, the rotating supply frequency appears along with the speed profile. 

For a motor speed profile with a peak of 3000 RPM, 500 Hz appears as the peak 

rotating frequency. Therefore, the quantification of only the values after the 500 Hz 

range was called HPF, and the case of using only values below 1500 Hz, which is 

the 3rd order harmonic frequency, was called LPF. From the quantification results, 

it can be seen that the value is higher in the TFR proposed by WRRI. The implication 

of this result is that the representation made by window size suggested by WRRI 

makes the difference between health and fault state bigger. In order to check the 

effect of the above results on the actual diagnosis, the diagnosis results were 

confirmed through a deep learning model capable of autonomous feature extraction 

rather than an arbitrary user. The convolutional neural network (CNN) based deep 

learning model used for diagnosis is VGGNet, which shows greater utility and 

scalability than the actual winning algorithm with a simple structure, and is the 

model that won the 2nd prize in ImageNet Large Scale Visual Recognition Challenge 

(ILSVRC) at 2014 [42]. Since the TFR is different for each window size and the 

matrix size at this time is different, the input structure of the model is designed 

differently accordingly, but the number of channels and the structure of the layers is 

designed in the same way as VGGNet. 

Spectrograms were made with a total of 90 identical speed profiles, of which 

60% were used for training and 40% were used for validation. Also, considering that 

the model was trained with little data, the model was repeatedly trained 10 times and 

the result was shown using a boxplot. No further work has been done because what 

we want to check with this diagnostic model is training ability and accuracy. 

Training loss was reduced as a result of training with the model, and the trend was 

not different for both spectrograms. However, in terms of generalization 



 

47 

 

performance, the accuracy converged to 100% when trained with the spectrogram 

selected by WRRI, and the accuracy converged near 88% when trained with the 

spectrogram selected by Rényi Information.   

 

 

 

Figure 4-18. VGGNet based CNN model for fault diagnosis with spectrogram as 

input 

 

 

Figure 4-19. Result of (a) Training loss, (b) Validation accuracy using 2.8% window 

size spectrogram, (c) Training loss, and (d) Validation accuracy using 

10% window size spectrogram as an input 
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Both the quantification result and the diagnostic result prove that the window 

size proposed by WRRI better expresses the fault feature. Additionally, in the case 

of the trapezoidal speed profile, two measures show a different trend. Even in the 

case of Rényi Information tend to make the representation having a bigger and bigger 

window. WRRI shows a local minimum point around 1.3% window size, but it also 

shows the tendency that the value decreases gradually.  

Although the trend of Rényi Information is interpreted from the viewpoint of 

readability, it can be seen that it is not suitable for analyzing signals under variable 

speed conditions. Compared with the triangular speed profile, the suggestion of 

larger window size is due to the longer length of the constant velocity section. In 

other words, Rényi Information suggests that this non-stationary signal is a quasi-

stationary signal and performs a simple Fourier transform. These results are 

undesirable for time-frequency analysis in variable speed conditions. However, 

through the fact that this trend also appears in WRRI, it was confirmed that the larger 

the window size, the more the effect on the constant velocity section was reflected. 

Therefore, we have confirmed that for WRRI and Rényi Information, when the 

length of the constant speed section is long and the variable speed is short, measures 

lead to an analysis by a simple Fourier transform. And this tendency is relatively less 

significant because WRRI focuses on the fault feature. 
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Figure 4-20. Trapezoidal (a) Measure value comparison according to window size, 

(b) spectrogram at WRRI measure minimum point, (c) spectrogram at 

the 10% window size  

 

Table 4-5. Quantification result of trapezoidal speed profile spectrogram of the 

motor 

 ‖𝐴‖𝐹𝑓−𝐹𝑛  
‖𝐴‖𝐹𝑓

− ‖𝐴‖𝐹𝑛 
‖𝐴‖𝐹𝑓−𝐹𝑛,   𝐿𝑃𝐹 

‖𝐴‖𝐹𝑓,   𝐿𝑃𝐹

− ‖𝐴‖𝐹𝑛,   𝐿𝑃𝐹 
‖𝐴‖𝐹𝑓−𝐹𝑛,   𝐻𝑃𝐹 

‖𝐴‖𝐹𝑓,   𝐻𝑃𝐹

− ‖𝐴‖𝐹𝑛,   𝐻𝑃𝐹 

1.36.%  

Windo

w size 

0.0695 0.0423 4.906e-5 4.346e-5 0.0695 0.0423 

10%  

Windo

w size 

0.0436 0.0154 4.819e-5 4.201e-5 0.0436 0.0154 
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The quantification result was a comparison of the local minimum of WRRI and 

the value at 10% window size, and it was confirmed that the difference was large at 

the local minimum of WRRI. Also, the same with the triangular speed profile, 

VGGNet based fault diagnosis model is used to automatically extract fault feature 

and diagnosis fault.  

 

 

Figure 4-21. Result of (a) Training loss, (b) Validation accuracy using 1.36% 

window size spectrogram, (c) Training loss, and (d) Validation 

accuracy using 10% window size spectrogram as an input 
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Compared to the triangular speed profile diagnosis result, it was confirmed that 

the validation accuracy increased to 100% even at a 10% window size. However, it 

can be seen that when the window size is 1.36%, the training loss decrease and 

accuracy increase faster than the 10% window size. This means that there is a lot of 

information available in model training to classify health and fault state. This result, 

together with the quantification result, explains that WRRI better expresses the fault 

feature. 

In the case of using CWT, the value of the measure is as shown in Figure 4-22 

while changing the decay parameter 𝛽  and symmetry parameter 𝛾  of the 

Generalized Morse wavelet described in Chapter 2.1. Within the range observed 

while changing the parameters, both measures showed the same index plot. 

The difference according to the parameter change of the Generalized Morse 

wavelet was confirmed, but the difference between the two measures was not 

discernible. This is presumed to be because the influence of the wavelet parameter 

is greater than the weight on the fault feature. This trend is the same in the trapezoidal 

speed profile case in Figure 4-23. 
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Figure 4-22. Triangular speed profile measure value of the motor according to 𝛽 

and 𝛾  (a) Rényi Information, (b) WRRI, (c) Scalogram at 𝛽 = 1 ,  

𝛾 = 1, (d) Scalogram at 𝛽 = 40,  𝛾 = 4 

 

 

Figure 4-23. Trapezoidal speed profile measure value of the motor according to 𝛽 

and 𝛾  (a) Rényi Information, (b) WRRI, (c) Scalogram at 𝛽 = 1 ,  

𝛾 = 1, (d) Scalogram at 𝛽 = 40,  𝛾 = 4 
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Also, in the case of DWT, there is no difference in the rank of the values that 

the two measures represent for each wavelet, and the difference between the values 

is not significant. Besides, the results of each vanishing moment for the Daubechies 

wavelet are shown in the figure below. WRRI and Rényi Information show the same 

tendency for triangular and trapezoidal speed profiles, although the level of the value 

is different. 

 

 

Figure 4-24. Measure value of the motor using MODWT (a) Triangular speed 

profile, (b) Trapezoidal speed profile 
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Figure 4-25. Triangular speed profile of the motor (a) Index plot for WRRI and 

Rényi Information depend on the vanishing moment, (b) Scalogram 

using db4, (c) Spectrogram using db31 

 

 

Figure 4-26. Trapezoidal speed profile of the motor (a) Index plot for WRRI and 

Rényi Information depend on the vanishing moment, (b) Scalogram 

using db4, (c) Spectrogram using db22  
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The graph shape of the index plot according to the vanishing moment decreases 

to a certain value level and then tends to converge to a specific value. By using this 

graph, it is possible to select a better representation through the wavelet, which can 

be confirmed in the Scalogram. In the graph above, the minimum value selected by 

each measure was db31 for WRRI, db28 for Rényi Information in the triangular 

speed profile, db22 for WRRI, and db21 for Rényi Information in the trapezoidal 

speed profile. However, since the difference in the value of the measure is very small, 

it is difficult to say that it shows a difference. 

When considering this result with the gearbox case, it can be seen that WT 

produces a small measure value difference according to the wavelets in contrast to 

the result that differs depending on the difference in window size in STFT. Also, the 

level of measure value varies depending on the type of wavelet, and the emphasis on 

fault feature is not revealed in the measure value. Differences between inner product 

formulation and multi-resolution with the wavelet serve as a candidate to reduce the 

difference in measure values compared to the STFT case. 

Summarizing the validation results for the two types of rotating machineries, 

the difference between the health and the fault state was not discerned significantly 

in the planetary gearbox, as can be seen from the raw signal. This was reflected in 

the calculation of two measures, and confirmed that it did not make a difference 

between existing Rényi Information and WRRI through STFT, CWT, and DWT. 

However, through these results, we showed that WRRI showed the same 

directionality as that of Rényi Information, and acted as Rényi information when the 

fault feature was small. In the motor testbed, the fault feature existed enough to be 

discerned visually. In this case, Rényi Information and WRRI showed different 

trends, and in the case of STFT, the difference was marked. The quantification result 

and deep learning diagnostic model proved that WRRI is more useful for fault 

diagnosis and feature extraction. However, in the case of CWT and DWT, WRRI 

showed almost the same shape as Rényi Information, and the difference was slight. 
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When interpreting the motor verification contents together with the results of CWT 

and DWT in the gearbox, WT does not have a large change in the measure value 

according to the parameter change. Also, the variation in measure value due to 

parameter change was larger than the variation in measure value caused by 

emphasizing the fault feature of the experimental signal. 
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Chapter 5. Conclusion 
 

 

In this study, a TFR measure for fault diagnosis is proposed. By comparing the 

TFR measures proposed in the previous signal processing studies through a simple 

comparative study, it was confirmed that Rényi Information has good performance. 

Since the measure to be proposed was aimed at fault diagnosis, a perspective of 

detectability for fault features was presented. Based on this, the proposed measure 

was designed to transform the atom of Rényi Information and consisted of residual 

term and weighting term in terms of detecting the fault feature. 

The process of verifying the proposed measure was performed through an 

analytic signal and a rotating machinery signal. The analytic signal was performed 

on signals with a combination of linear chirp with three fault features; impulse type 

of fault feature, mixture type of fault feature, and characteristic frequency. Through 

this, it was verified that the use of the parameters suggested by WRRI better 

expresses the fault feature. Also, a verification process was performed on the 

planetary gearbox testbed, which does not reveal the fault feature, and the motor 

testbed, where the fault feature is well revealed. In the case of planetary gearbox, 

both WRRI and Rényi Information served as measures for better expression but 

showed the same tendency. Through this, WRRI showed that it is possible to perform 

the role of Rényi Information even when fault feature is not discerned. In the case of 

the motor testbed, the WRRI and Rényi Information showed a significant difference 

in the STFT, and for each of them, through the Frobenius norm and CNN based 

diagnosis model, it was verified that the expression proposed by WRRI is a better 

representation for fault diagnosis and feature extraction.  

In the case of the signal used for validation in this study, it was difficult to 

clearly distinguish the difference in the wavelet transform. After that, through the 

verification process for various speed profiles and rotating machinery, we intend to 

secure expandability that can be used for various TFRs including WT. 
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국문 초록  

 

변속 조건에서 운전되는 회전기기 고장진단을 위해 시간-주파수 

표현을 사용한 많은 연구들이 수행되어왔다. 하지만 대부분의 연구에서 

시간-주파수 표현의 파라미터는 연구자들에 의해 경험적으로 선택되었다. 

또한 이전에 제안된 시간-주파수 표현 측정방법도 고장 진단을 위한 

최적의 파라미터를 제안해주지 못한다. 본 연구에서는 고장 특징 검출을 

목적으로 시간-주파수 표현의 파라미터를 제안해주는 측정방법을 

제안한다.  

제안 측정방법 가중 잔차 레니 정보(WRRI)는 이전 연구들에서 

제안된 측정밥법들에 대한 비교연구를 통해 선정된 레니 정보에 

기반한다. WRRI는 레니 정보의 입력 형태를 2가지 성분으로 구성된 변형 

형태를 통해 정의된다. 첫 번째 성분은 고장 특징 추출을 위한 

잔차성분이고, 두 번째 성분은 노이즈의 영향성을 줄이기 위한 

가중성분이다.  

검증 과정은 산술적 신호와 모터, 기어 박스로 이루어진 신호를 

통해 2 단계로 진행된다. 산술적 신호를 사용한 검증과정에서 WRRI는 

기존 측정 방법인 레니 정보보다 고장 특징 검출에 더 적합한 시간-

주파수 표현 파라미터를 제안했다. 또한 모터와 기어박스 테스트베드 

신호를 사용한 검증과정에서 WRRI는 레니 정보보다 고장 특징 추출과 

진단에 더 적합한 시간-주파수 파라미터를 제안했다.  
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