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Abstract 

Study of Interpretable AI Based Bearing Fault Frequency 

Band Estimation Utilizing Generated Signal 

 

Jonghyun Choi 

Department of Mechanical and Aerospace Engineering 

The Graduate School 

Seoul National University 

 

Selecting a resonance band for demodulation is the most important step in 

envelope based rolling element bearing diagnosis as the fault impulses modulate to 

a certain resonant frequency band. To date, many researchers have developed various 

indicators in multi-domain and use either a binary tree or optimization tool to find 

the most suitable filter bank with maximum indicator. However, conventional 

indicator-based methods require specific domain knowledge for choosing the 

indicator and high computation for calculation since they are based on complex 

signal processing. To address this issue, this paper suggests a deep learning-based 

approach using one-dimensional attention gated convolutional neural network(1D-

AttGCNN) trained only with a generated signal. The model learns to regress pre-

defined resonant parameters of the generated signals and require no additional 

training when diagnosing a real fault signal. The proposed architecture includes an 

attention-gated layer, which automatically learns to localize resonance-induced 

impulse through backpropagation. Moreover, uncertainty and non-Gaussian noise 

were taken into account in the signal generating process to facilitate the model 

adaptation to the real target signal. The validity of the proposed model is examined 
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in various environments with different difficulties via three case studies. 

Furthermore, comparisons with the conventional Fast Kurtogram and Autogram 

methods are presented with quantitative measures based on mean absolute deviation 

distance. Results demonstrate the superiority of the proposed method over the 

conventional method and the effectiveness of the proposed architecture and signal 

generation methods. 
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Chapter 1. Introduction     

1.1 Motivation 

When a localized fault occurs on a bearing, rolling elements pass through the fault 

location periodically with a frequency related to the bearing geometry.[1] The 

extraction of this repetition is one of the most direct health monitoring technique of 

REB as the component not only inform the overall condition of the bearing but also 

diagnose the exact defective elements.[2] The repetitive signals are actually the 

localized impulse produced by contact between rolling elements and faulty areas. 

The impulse signals are then transmitted to the accelerometer through a specific path 

in the corresponding system, exciting the structural resonance.[3] However, in a 

complex mechanical system, the faulty signal is usually submerged in the 

background noise or signals from other components. Thus, to isolate the signals from 

noisy components and maximize the bearing fault’s periodic information, 

constructing a bandpass filter with a decent resonant band as a filter bank is crucial. 

[4] Despite the importance, finding the ground truth of a system’s structural 

resonance is much demanding and almost impossible. Until now, many types of 

research have been developing signal processing-based indicators and chosen the 

fault informative band to maximize the indicator. 

 As a benchmark study, Antoni proposed a spectral kurtosis (SK) based kurtogram 

method [2]. In the study, SK was used to quantify a certain frequency band’s 
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impulsiveness, as the fault signal of the bearing is commonly presented as localized 

energy disturbances. Since calculating SK for the full band spectrum is very time-

consuming [2] [3], J. Antoni also introduced the Fast Kurtogram (FK) method, which 

divides filter banks according to a binary tree, rather than calculating SK of all 

spectrum, and successfully reduced computational cost. [4] Afterward, Tomasz.B 

proposed Protrugram, which uses the kurtosis of envelope spectrums to measure the 

energy concentration in a frequency domain to evaluate the periodicity of a certain 

frequency band.[5] A. Moshrefzadeh proposed Autogram, which uses the SK of the 

auto-correlation function to consider both periodicity and impulsiveness [6]. Further, 

in Infogram [7], J. Antoni used negentropy to quantify the fault information of 

specific frequency band in both time and frequency domain. More recently, A. 

Mauricio introduced IESFOgram[8] which utilize cyclic Spectral Correlation and 

Cyclic Spectral Coherence to specify information-rich frequency band under varying 

operating condition. Although the above-mentioned binary tree-based method has 

the advantage of real-time band estimation by calculating a certain indicator in 

discretely separated filter bank, they inevitably extract the sub-optimal result. Thus, 

many recent studies employed optimization tools to generate optimal band selection 

results. Zhang and Randall[9] combined a genetic algorithm and FK where the FK 

presents a rough initial value for the genetic algorithm. Kang et al.[10] also presented 

a binary-coded genetic algorithm for constructing the optimal bandpass filter, and V. 

Kannan et al. utilized a real-coded genetic algorithm in [11]. Besides the genetic 

algorithm, the particle swarm optimization was also suggested as a band selection 
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tool in [12] and [13] to optimize fault to signal ratio and extract the most informative 

frequency band. 

From the above literature reviews, many researchers have proposed a number of 

indicators in both the frequency domain and the time domain to select the optimal 

resonance frequency band. Since these indicators measure the indirect characteristics 

of the faulty resonant band[14], e.g., periodicity or impulsiveness, the characteristics 

of extracted frequency band will vary depending on the indicator when diagnosing 

the bearing fault in an actual engineering field; accordingly, the diagnosis results will 

be highly dependent on the subjective indicator decision. Furthermore, as the 

proposed indicators demanded a large amount of computation, such as a time-

frequency representation, the trade-off between optimality and real-time estimation 

were unable to be solved simultaneously by the previous indicator-based method. 

To address the issues, this thesis suggested an explainable artificial intelligence-

based band selection method utilizing the generated signal.  

1.2 Research Scope and Overview 

This paper suggests the one-dimensional attention gated convolutional neural 

networks(1D-AttGCNN) based method trained only with generated signals to select 

the fault-related resonance band. The 1D-AttGCNN model is suggested to estimate 

the resonant parameters from a high dimensional raw signal without any 

preprocessing process or feature engineering, which enables indicator-free band 
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estimation. Furthermore, the proposed 1D-AttGCNN includes the attention gated 

layer inspired by [15] to localize the bearing-related impulse effectively in the 

training process and result interpretation in the inference step. 

Though the 1D-AttGCN can directly bridge the resonant band and input signal, 

labeling with the actual resonant frequency band and acquiring multiple signals with 

different resonant bands over a wide range of frequency are impossible in real 

conditions. Thus, this study utilized the generated signal as an input and facilitated 

pre-definition of the strict resonance region over a wide range of the spectrum. The 

utilized signal generation process includes non-gaussian noise implementation to 

imitate the arbitrariness of the real environment. Furthermore, since the proposed 

method directly estimates the resonance of the real signal without adapting process, 

real-time and optimal selection are possible.  

1.3 Thesis Layout 

This paper is structured as follows: In section II, background knowledge regarding 

deep learning techniques used in this study will be suggested, including a detailed 

explanation of one-dimensional convolutional neural networks and an attention 

gated layer. In section III, a detailed description of the suggested methodology is 

presented. In section IV, resonant band selection results and corresponding 

diagnosis results for three case studies are presented. In section VI, discussions 

regarding the attention gated layers and signal generation process are presented. 
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Finally, contributions and suggestions for futures studies are presented in the 

conclusion section.  
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Chapter 2. Background knowledge 

This chapter presents background knowledge for this thesis: (1)Envelope analysis, 

(2) One-dimensional convolutional neural networks, and (3) attention gated layer. 

2.1 Envelope analysis 

The bearing fault characteristics are often presented as periodic impulse 

modulated to certain resonance frequency band as in Figure 1.  

 

Figure 1 Characteristics of conventional bearing fault signal 

As illustrated in Figure 1, typical bearing fault-induced resonance is presented as a 

periodic signal carrier with a frequency of bearing characteristic components. The 

signals are often introduced as repetitive transient, in other words, cyclo-stationary. 

In order to demodulate the signal and extract the fault characteristic components, 

envelope analysis is the most widely used technique in diagnosing rotating 

machinery.[16] The common procedure of the envelope analysis is presented in 

Figure 2. The process includes bandpass filtering for increasing the signal to noise 

ratio(SNR), Hilbert transform for envelope extraction, and finally fast Fourier 
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transform(FFT) for envelope spectrum analysis. Fault can be diagnosed in the 

resulting envelope spectrum by distinguishing fault characteristic(BCF) components 

from other irrelevant components in the envelope spectrum[16]. Since the SNR of 

the selected band determines the BCF component’s dominance in the final envelope 

spectrum, the band selection is the most crucial part of envelope analysis[17]. As 

reviewed in section I, many studies have developed an envelope based bearing fault 

diagnosis method by advancing the indicator-based band selection method and 

exposed many issues. To solve such a problem more directly and quickly, this study 

proposed a deep learning-based technique of 1D-AttGCNN. 

 

Figure 2 Conventional procedure of envelope analysis 

2.2 One dimensional convolutional neural network 

Convolutional neural networks(CNN) have been widely used in various industrial 

fields and showed many promising results in the past decade.[18] CNN has distinct 

characteristics, which are localized filter operation, weight sharing, and space-wise 

connection. These aspects allow the CNN to recognize certain patterns from the input 

while maintaining its spatial information during forwarding propagation.[19] 

Showing high image processing performance most studies in the bearing diagnostic 



8 
 

 

 

field have been adopted CNN as 2-dimensional form.[20]–[23]. However, using 2D-

CNN to vibrational signal makes the model more complex and requires an additional 

1D to 2D conversion process(e.g., time-frequency representation), which may cause 

losing some useful information[24]. Therefore, recent studies using vibrational 

signals, 1D-CNN instead of 2D are often used. Figure 3 demonstrates conventional 

1D-CNN architecture. 

 

Figure 3 Conventional 1D-CNN architecture 

The 1D-CNN architectures are conventionally composed of convolutional layers, 

pooling layers, vectorization layers, and fully connected(FC) layers. Further 

mathematical explanation will be presented in the following section 

2.2.1 Convolutional layer 

The convolutional layers convolve localized filters spatially with input sequence. 

The input N-dimensional sequence is assumed to be 𝑋 = [𝑋1, 𝑋2, 𝑋3 … , 𝑋N]. The 

output of a convolutional operation with a 𝑙 by 𝑛 filter can be represented as a 

multiplication between localized input sequence 𝑋i:i+l−1 = [𝑋𝑖 , 𝑋𝑖+1, … , 𝑋𝑖+𝑙−1] 
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and a kernel wj ∈ R𝑙. Final output of the convolutional layer can be denoted as, 

zj,i = 𝐹(𝑤𝑗
𝑇𝑋𝑖:𝑖+𝑙−1 + 𝑏), z ∈ R(𝑁−𝑙+1) ×𝑛 

where superscript T corresponds to transpose operation, b and F represent bias, non-

linear activation function. A stride is set as 1 for mathematical simplification. By 

sliding the filter w from i = 1 to N − L + 1 the final activation map of the jth 

channel, zj, can be calculated as,  

zj = [zj
1, zj

2, zj
3, … , zj

N−l+1], z ∈ R(𝑁−𝑙+1) ×𝑛 

Following the convolutional layer, a pooling layer is applied to extract the most 

significant local activation map from the output of the convolutional layers while 

remarkably reducing the dimensionality of the feature space. The jth pooling 

operation with length g and pooled activation map, pj
𝑘 and Pj, can be obtained as, 

pj
𝑘 = 𝑀𝐴𝑋 (𝑧𝑗

(𝑘−1)𝑔+1
, 𝑧𝑗

(𝑘−1)𝑔+2
, … , 𝑧𝑗

𝑘𝑔
) 

Pj = [𝑝𝑗
1, 𝑝𝑗

2, 𝑝𝑗
3 … , 𝑝𝑗

𝑠], 𝑃 ∈ R(𝑁−𝑙+1) ×𝑛
 

 where stride is considered as 1 for a mathematical explanation. Multiple 

convolutional and pooling layers are constructed for final feature space to consider 

both low and high-level features from the input sequence.  

2.2.2  The global average pooling layer  

After a few convolutional layers and pooling layers, the constructed feature maps 

are vectorized and fed into FC layers for bridging the features with the desired 

output. The vectorizing process used in this study is global average pooling(GAP), 

which averages each feature map spatial wisely as, 

𝑓𝑗 = 𝐴𝑣𝑔(𝑃𝑗), f ∈ R1×𝑛 

 where, Avg corresponds to averaging operation and fj  is jth output of global 

average pooling layer. By this process, GAP summarizes the information channel 
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wisely and reduces the dimension of the final feature space before fed into the fully 

connected(FC) layers. The connected FC layer Consequently, the GAP layer 

increases regularization and decreases computational cost by contracting the number 

of parameters. 

 

2.3 The attention mechanism  

To assist the baseline CNN model to focus more on the resonance-related impulse 

rather than irrelevant regions such as noises, an attention mechanism is utilized in 

this study. The attention mechanism [15] makes a baseline model concentrate on a 

result-relevant region by applying certain weight to the feature space. In this study, 

the weight applying layer is denoted as attention gated layer and constructed by 

combining two convolutional layers without pooling and a locally connected layer. 

The mathematical explanation of the locally connected layer and attention scoring 

will be presented in the following section, whereas a detailed architecture will be 

presented in section 3.2. 

2.3.1 The locally connected layer 

The locally connected layer is similar to the convolutional layer in the local 

connection between input and output, except that filters with different weights are 

applied to each segment. The main difference between a locally connected layer and 

a convolutional layer is shown in Figure 3. 



11 
 

 

 

 

Figure 3 Comparison between convolutional layer and locally connected layer 

The mathematical explanation of locally connected layer with filter size l, stride 1, 

bias bLC and activation function FLC can be denoted as, 

sj,i = 𝐹𝐿𝐶(𝑤𝑗,𝑖
𝑇 𝑋𝑖:𝑖+𝑙−1 + 𝑏𝐿𝐶) 

where wj,i  and sj,i  ith filter and output of jth channel. Unlike convolutional 

layers the locally connected layer convolve individual filters wj,i for each ith input 

segment Xi:i+l−1 . Through this process, the locally connected layer exploits 

different patterns from localized segments while maintaining spatial information. By 

applying the locally connected layer to the attention-gated layer, the proposed 

attention gated layer tried to use convolutional layers’ overall pattern recognition 

capability and locally connected layer’s local information realization capability 

complementarily. 

2.3.2  The attention scoring 

The total attention weighting process by the attention-gated layers is illustrated 
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in figure 4. The mathematical explanation is as follows. 

 

Figure 4 Attention gated layer illustration 

Let P the final n by 𝑙 feature space constructed by the baseline 1D-CNN, then 

P can be denoted as, 

𝑃𝑗 = [p1
j

, p2
j

, p3
j

, … , pn
𝑗

] , P ∈ R𝑛×𝑙 

where p𝑖
j
 denotes the ith feature of jth channel. The attention score W can be 

calculated as, 

𝑊 = O(LC (Conv(Conv(𝑃))))), W ∈ R𝑛×1 

where Conv(P), LC(P) and O(P) stand for the convolutional layers, the one-

channel locally connected layer and sigmoid activation function. The sigmoid 

function is adapted for bounding the attention score 0 to 1. The calculated attention 

score are multiplied to the input feature space P spatial wisely as, 

𝑃attention
i = W × [𝑝1

𝑖 , 𝑝2
𝑖 , 𝑝3

𝑖 , … , 𝑝𝑛
𝑖 ], 𝑃𝑎𝑡𝑡𝑒𝑛𝑡𝑖𝑜𝑛 ∈ R𝑛×𝑙 
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where Pattention
i  denotes the ith attention scored feature space with n-

dimensional channels. Through this process, the attention weighted feature map can 

be constructed by combining the convolutional layers and the attention gated layer. 

The feature map is then fed into the global average pooling layer and a fully 

connected layer for output extraction. The attention weighting process can be learned 

automatically by backpropagation as an ill-posed attention score results in a large 

gradient flow to the attention gated layer. Furthermore, the score indicates a 

quantitative concentration of the network in terms of the output. Thus, interpretation 

of the network’s localization result is possible by visualizing the attention score, 

making the baseline deep learning model more explanatory.  
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Chapter 3. The proposed 1D-AttGCNN based method 

In this section, the proposed 1D-AttGCNN based resonance band selection 

framework is described in detail. The overall procedures of the proposed method are 

illustrated in Figure 5. 

 

Figure 5 Overall procedure of the proposed method  
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In step I, signals are generated based on an impulse train model. The uncertainties 

are taken into account by substituting deterministic parameters as certain random 

variables with statistically defined distributions. The fake impulses are also 

implemented arbitrarily to make fault-related impulse localization more challenging. 

In step II, the 1D-AttCNN model is trained to estimate the resonant parameters of 

the generated signal. An attention layer is automatically trained to localize the fault 

impulse. In step III, the resonant parameters of the target input signal are extracted 

by the trained model and are converted to a bandpass filter bank by half power 

resonance assumption.[25] Finally, fault is diagnosed by comparing fault frequency 

component with 6-median absolute deviation(MAD)[26] threshold in the 

corresponding envelope spectrum. 

3.1 Step I: Signal generation  

In the signal generation process, the baseline impulse train model can be shown 

as [1], 

𝑥(t) = ΣAi𝑠(𝑡 − 𝑖𝑇𝑝) + 𝑅 ∗white gaussian noise 

where, 

s(t) = eβt sin(2𝜋𝑓𝑛𝑡) , 𝐴𝑖 = Bcos(2𝜋𝑓𝑟𝑡) + 1 − 𝐵 

In the above equations, β  corresponds to the damping coefficients, fn 

corresponds to the natural frequency, L is signal length, Ai is the amplitude of ith 

impulse R is a Gaussian noise ratio, B is a modulation coefficient which is zero for 

un-modulated signal, and T is the time interval between fault impulses. Dividing 
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sampling frequency by T results in the pre-defined fault frequency. 

However, the resonant parameters react sensitively to the small changes in a 

passage that the signal passes through to the sensors. Thus, the resonant parameters 

should not be treated as a deterministic variable as defined in the baseline signal, but 

a stochastic variable[27]. Furthermore, the period of fault impulses, 𝑇𝑝 , contains 

uncertainty due to slippage of the rolling element [2] and amplitude of fault impulse, 

A, contains uncertainty due to curvedness of bearing and sensor voltages. 

Thus, to facilitate the adaptation of the trained model to the real signal, these 

uncertainties are implemented by modeling each parameter of the baseline signal as 

statistical random variables as equation Table 1. 

Table 1 Implemented uncertainties for baseline signal 

Parameters distribution Source 

Ai N(1,0.1) Race way curvedness 

𝑇𝑝 U(Tp, 0.05Tp) Slippage of ball 

β N(μ𝛽 , σ𝛽) Resonance passage 

𝑓𝑛 N(𝜇𝑛, σn) Resonance passage 

𝑓𝑟 N(𝑓𝑟, 0.05 ∗ 𝑓𝑟) Load zone distribution 

Whether the designated distribution is suitable for expressing the resonant 

parameter is not the scope of this study. Instead, the purpose of this uncertainty 

modeling is to increase the resonance selection capability of the deep learning model 

by decreasing the gap between the simulation model and the real fault signal in terms 
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of arbitrariness.  

Furthermore, in many previous studies, energy disturbance in time and frequency 

domain often perturbs band selection result, and these disturbances are often 

described as non-Gaussian noise.[27]–[29] Thus, to make the regression model 

robust to presence of energy disturbance in time and frequency domain, the non-

Gaussian noise defined as, 

𝑛𝑔𝑛(t) = ΣK ∗ rand ∗ 𝑠𝑓(𝑡 − 𝑖𝑇𝑟𝑎𝑛𝑑), sf(t) = eβft sin(2𝜋𝑓𝑓𝑡) 

where 𝑓𝑓 and β
f
 are considered as a random variable with normal distribution 

as βf~𝑁(𝜇1, 𝜎1
2) and ff~𝑁(𝜇2, 𝜎2

2) similar to 𝑥(t). To model non-Gaussian noise 

as a random impulse in random time step amplitude exitation time 𝑇𝑟𝑎𝑛𝑑  are 

modeled as U(0, signal length), which is uniform distribution within the length of 

the signal. By applying these non-Gaussian noises the signals are augmented with 

energy disturbance in both the time and the frequency domain. This augmentation 

enables the model to regress the fault-resonant parameters regardless of both 

Gaussian and non-Gaussian noises. The effectiveness of non-Gaussian noise will be 

presented in section 5.3 . 
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Figure 6 Graphical representation of the signal generation process 

Figure 6 graphically demonstrates the effects of the implemented disturbances in 

both time and frequency domain. The implemented uncertainties apply randomness 

to both time and frequency domain regarding fault induced resonance. Furthermore, 

non-gaussian noise, act as arbitrary impulse with normally distributed resonant 

parameters, excites certain band in frequency domain to challenge the resonant 

estimation. 

 For training 30k signals with a length of 6k segments are generated, 15k signals 

with amplitude modulation as the equation for inner race fault, 15k without 

modulation for outer race fault. For each signal the parameters were randomly and 

independently chosen between the upper and lower limit, as shown in Table 2., 

where Fs is a sampling frequency of the target signal.   
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Table 2 Upper & lower limits for signal generating parameters 

Parameter Upper limit Lower limit 

Fs/T(Hz) 250 70 

R 3 0.3 

μf Fs-500 500 

σf 0.3 ∗ μf 0.1 ∗ μf 

μβ 800 100 

σβ 0.3 ∗ μ𝛽 0.1 ∗ μ𝛽 

μ1 Fs-500 500 

σ1 0.5 ∗ μ1 0.1 ∗ μ1 

μ2 800 100 

σ2 0.3 ∗ μ𝛽 0.1 ∗ μ𝛽 

fr(Hz) 30 10 

K 3 0 
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3.2 Step II: Train 1D-AttGCNN 

In this step, the 1D-AttGCNN is trained to regress the pre-defined mean of natural 

frequency and damping coefficient of the input signal, μ𝑛  and μβ . Figure 7 

illustrates the architecture and detailed description of the proposed model. 

 

Figure 7 The proposed 1D-AttGCNN architecture  
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 The model is composed of a baseline 1D-VGGNet model and an attention gated 

layer. The input signal flows through the 1D-VGGNet with ELU activation function 

and construct feature maps. The feature maps are then propagated to the attention 

gated layer for attention scoring. After the model constructs an importance-weighted 

feature map, a global average pooling layer and a fully connected layer with linear 

activation are used for regression of resonant parameter.  

In general, the bearing-related resonance is a localized transient phenomenon 

within the fault-related impulse; which can be easily masked by irrelevant noise [16]. 

Thus, applying global time features to estimate resonant parameters may lead to sub-

optimal results, due to the irrelevant parts of the signal, such as background 

noises.[31] Furthermore, the convolutional layers are relatively weak in recognizing 

localized patterns of the input signal as the layer convolves the same kernels for all 

input segments. Thus, an attention gated layer is used to highlight the resonance 

relevant time step and compensate for the baseline VGGNet based CNN in this 

study.[15] 

 As presented in section 2.3 proposed attention-gated layer is composed of two 1D-

convolutional layers without pooling and one locally connected layer. The detailed 

illustration of the attention gated layer is as shown in Figure 8.  
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Figure 8 Attention gated layer architecture 

By combining convolutional layers and a locally connected layer, the proposed 

attention gate layer aims to effectively localize the fault-induced resonance, often 

denoted as periodic transient: The locally connected layer convolves different filters 

for every input sequence, whereas the convolutional layer uses the same filters. Thus, 

the locally connected layer is suitable for atoning convolutional layers’ vulnerability 

to local transiencies, such as resonance. In short, this study employs both 

convolutional layers and locally connected layers simultaneously to recognize 

localized resonance information within a fault periodic pattern. 

As mentioned in section 2.3, the input feature map of the attention gated layers is 

weighted by the attention score. As the weights correspond to the forward-

propagating information scale, the attention layer automatically trains to assign more 

weight to the resonance-relevance region through backpropagation. 

The Figure 7 and 8 also show hyper-parameter settings used for constructing the 

1D-AttGCNN. The hyper-parameters of the baseline CNN model are similar to the 

VGGNet[32]. The stride of every pooling layer is set to 1 so that each segment of 

the final feature map can point to at least one impulse. The ELU activation function 
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is used to avoid zero-gradient issues.[33] The channel sizes of the attention gate layer 

gradually decrease from 64 to 1 to summarize channel-wise information. The 

detailed training condition and results will be discussed in section 4.  
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3.3 Step II: Fault diagnosis  

In this step, the trained 1D-AttGCNN is used to regress the optimal resonance band 

of a real signal without further training. This step includes filter bank extraction from 

the model’s output, common procedure of envelope analysis to extract envelope 

spectrum(ES)[16], and calculation of median absolute deviation(MAD) distance for 

the quantitative measure. 

Even if inputs are from one signal, the estimated results may vary slightly if the 

6,000 long segments are from different time steps. Considering the variations, the 

estimation results from one signal are averaged from the results of fifty randomly 

divided segments from the signal.  

After the parameters are estimated through inference of real signal and averaging, 

the corresponding band can be calculated using a half-power bandwidth assumption. 

Then the ratio between the receptance function of arbitrary frequency w and natural 

frequency wn is as described in, where 𝛿 is a damping ratio.[25] 

𝐸𝑟 =
√(2δwn

2)2

√(𝑤𝑛
2 − 𝑤2)2 + (2𝛿𝑤𝑤𝑛)2

   

where wn and δ can be converted by output mean of resonant parameter μf and 

β as, 

𝑤𝑛 = √(2𝜋𝜇𝑛)2 + 𝜇𝛽
2  , δ =

μβ

√(2𝜋𝜇𝑛)2 + 𝜇𝛽
2

 

 

Now assigning 𝑤𝑛  and δ  into equation 𝐸𝑟 , half-power resonant points 

fresonance, which are upper and lower bound of the filter bank can be calculated by 

solving equation, 
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2μβ√(2πμn)2 + 𝜇𝛽
2

√((2𝜋𝜇𝑛)2 + 𝜇𝛽
2 − 4𝜋fresonance

2)2 + (4μβ𝜋fresonance)2   

=
1

2
 

Once the filter bank is calculated, the common procedure of envelope analysis is 

used for envelope spectrum extraction, including bandpass filtering, Hilbert-

transform, and FFT.  

 To quantitatively measure the statistical significance of the fault components 

distinguished in the corresponding envelope spectrum, moving MAD distance is 

used. The moving MAD is widely used for detecting statistically relevant peak in 

spectrum analysis,[8] as it is known to be less sensitive to peak outliers than the 

standard deviation.[26]. The moving MAD value is defined as, [26]  

MAD(f) = b ∗ m(|Xf − m(𝑋𝑓)|) 

where b is 1.482, assuming normality of the data,[26] m(x) is the median of signal 

x, X is the windowed spectrum of the signal divided by 27.[26] The MAD distance 

D for fault frequency component f is defined as equation below. 

𝐷(𝑓) =
 Xf − 𝑚(𝑋f)

MAD(Xf)
 

 The value d measures the statistical distance between extracted fault peak and the 

median value of ith corresponding window Xi, scaled by MAD. In this study, d value 

over 6 is set to be diagnostic threshold as 6 similar to 6-sigma rule for detecting 

outlier.[8] 
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Chapter 4. Experimental validation 

The proposed framework was validated in terms of three case studies. For all three 

case studies, the proposed networks were trained in computing environment as Table 

4.  

Table 3 Training environments 

Parameters Condition 

GPU Nvidia Titan XP*2 

Loss Mean squared error 

Optimizer Adam 

Learning rate 1e-5 

Stop criterion Minimum validation loss 

Max epochs 200 

Framework tensorflow 1.13 

The sampling frequencies of the three case studies are different: 10000Hz, 

12800Hz, and 48000Hz. Thus, signals with three different Fs values were generated 

and used individually for AttGCNN training case by case. For comparison, the band 

selection result and corresponding envelope spectrum of two conventional methods, 

Fast Kurtogram(FK)[4] and Autogram[6], are also presented for all three cases. 

4.1 Case study I: Case western reserve university dataset 

In the first case, data sets provided by Case Western Reserve University(CWRU) 

bearing data center[34] are studied. The bearing test rig of CWRU data center is as 

Figure 10. Further detail of the test setup can be found in CWRU bearing data center 

website and reference.[35] 

The used CWRU data in this paper are drive end outer and inner race fault data 

sampled at a frequency of 48,000Hz in, as shown in Table 5. By using 48k dataset, 

this study aims to verify resonance extraction capability under a wider range of 
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frequency regions than that of 12k datasets. 

 

Figure 9 Test setup of CWRU dataset 

Table 4 Used CWRU data description 

Data no Fault 

criterion 

Fault size 

(inch) 

Speed 

condition 

(rpm) 

Load 

condition 

(HP) 

BCF 

(Hz) 

IR007_0 Inner race 0.007 1797rpm 0HP 159.2 

OR007@6_0 Outer race 0.007 1797rpm 0HP 107 

      

For the case of outer race fault data, Figure 10 (a) and (b) shows selected frequency 

band in and corresponding envelope spectrum of the proposed method. The proposed 

method selected 3721Hz to 3925Hz and distinguished a 107Hz Ball pass frequency 

outer(BPFO) component well over the 6-MAD threshold. Thus, Figure 10 implies 

that the proposed method extracted a suitable frequency band for the outer race fault 

data. Figure 11 and 12 represent the FK and Autogram result for band estimation and 

envelope spectrum of the outer race fault data. For both conventional methods, the 

resulted envelope spectrum provided BPFO components well over the threshold. 

Though the band selection results are significantly different, all three methods 
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provided a diagnosable BPFO component. This result implies the outer race fault 

components of the signal are evenly distributed over a wide range of the full 

spectrum and can be diagnosed in several frequency band. 

Figure 13 shows the extracted resonance band for I1 and the corresponding 

envelope spectrum with the diagnostic 6- MAD threshold of the proposed method. 

The estimated average natural frequency is 3821Hz, and the damping coefficient is 

354, which were converted to a lower limit frequency of 3721Hz and an upper limit 

frequency of 3925Hz. As shown in Figure 13, the Ball pass frequency inner(BPFI) 

peak is well above the MAD threshold. 

Figure 14 and 15 shows the band selection result and corresponding envelope 

spectrum of FK and Autgram for the inner race fault data. Both conventional 

methods extracted frequency band with BPFI higher than the threshold. However, 

the envelope spectrum of FK and Autogram result shows harmonics of shaft 

frequency 27.2 Hz as more dominant frequency components than BPFI result. These 

results imply the bands from FK and Autogram are not based on the faulty impulse 

but by the shaft induced vibration. Thus, the selection result of FK and Autogram 

are most likely affected by shaft rotation, not fault induced vibration. These results 

signify the superiority of the proposed method in terms of fault-related frequency 

band selection of inner race fault data. 
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Figure 10 (a) Band selection, (b)diagnosis result of the proposed method for OR data 

 

Figure 11 (a) Band selection, (b)diagnosis result of the FK for OR data 

 

Figure 12 (a) Band selection and (b) diagnosis result of the Autogram for OR data   

(a) (b) 

(a) (b) 

(a) (b) 
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Figure 13(a) Band selection, (b)diagnosis result of the proposed method for IR data 

 

Figure 14 (a) Band selection, (b)diagnosis result of the FK for IR data 

 

Figure 15 (a) Band selection and (b) diagnosis result of the Autogram for IR data    

(a) (b) 

(a) (b) 

(a) (b) 
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4.2 Case study II: Seoul national university ALT test 

In this case, data acquired from SNU accelerated life test(ALT) test-bed are 

studied for validation under naturally induced spall and early diagnosis capability. 

The testbed consists of two support bearings for supporting the shaft, a hydraulic 

pressure pump for applying loads to radial and axial direction, a motor for rotating 

the shaft and a 3-axis accelerometer for measuring vibration of the test bearing, as 

described in Figure 16. 

 

Figure 16 Seoul national university normal to degradation test setup 

 The accelerometer is mounted vertically on the test bearing housing; thus the 

resonance condition of the measured signal is highly dependent on the voting 

condition of the housing. The operating condition and test bearing descriptions are 

as Table 5[36]. The used data is the acceleration in the vertical direction collected at 

a sampling frequency of 10000Hz, 10 seconds per minutes. The experiment lasted 

about 1800 minutes until the RMS value exceeded the empirically set threshold as 

in Figure 17.  

As a result of the experiment, no-fault was induced in the other parts except the 

inner race. The detailed description of experimental bearing is as Table 5.  
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Figure 17 RMS trend of the ALT test 

Table 5 Test setup for SNU ALT test 

Setup Value 

Bearing type SKF 7202 

Speed(RPM) 1450 

Axial load(hp) 0.34 

Sampling frequency 10000 

Expected fault frequency 155.5 

Total elapsed time(min) 1552 

 

Figure 18 Extracted MAD distance by time(the proposed method, FK, Autogram) 



33 
 

 

 

 Figure 18 shows the MAD distance threshold of the BPFI extracted from each 

minute of data of the experiment by the proposed method and two conventional 

methods. In the figure, the fault frequency components exceeded the MAD threshold 

at 1534 minutes, 14 minutes before the RMS rise time, whereas FK and Autogram 

method exceeded at 1546 and 1550 minutes. This result indicates that the proposed 

two methods cannot estimate the fault informative band early due to their 

insensitivity, but in the case of the proposed method, a band that maximizes small 

fault information can be found even at the stage of an incipient small defect. 
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Figure 19 (a)Band selection, (b)diagnosis result of the proposed method for 1534 data 

 

Figure 20 (a) Band selection, (b) diagnosis result of the FK for 1534 data 

 

Figure 21 (a) Band selection, (b) diagnosis result of the Autogram for 1534 data 

(a) (b) 

(a) (b) 

(a) (b) 
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 Figure 19 shows the extracted frequency band and corresponding envelope 

spectrum of the 1534 minutes data, where the proposed method first detects the inner 

race fault. As in Figure 19 (a), the proposed method selected 3453Hz to 3702Hz as 

a filter bank, and the BPFI component can well be distinguished from the other 

components by exceeding the threshold with MAD distance of 7.21313 in the 

corresponding envelope spectrums. These results clearly show that the proposed 

method is capable of early diagnosis of initiated incipient fault of inner race.  

Based on the Figure 20 and 21, the conventional two method selected un-effective 

frequency band and failed to diagnose early initiated spall, though the proposed 

method first extracted the diagnosable BPFI from the same data. From those analysis, 

the proposed method proved to be more effective in early detection of naturally 

induced spall than conventional methods. 

 

4.3 Case study III: On-road wheel bearing dataset 

The vibration signal from a faulty automobile wheel bearing on real road 

conditions are analyzed in the last case.  

 

Figure 22 (a) Accelerometer setup, (b) simplified cross-section of wheel bearing 

(a) (b) 
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Table 6 Data description 

Data no Environment 
Fault 

location 

Vehicle 

speed 

Rotational 

speed(RPM) 
BCF(Hz) 

W60 
Conventional 

road 

Inboard 

outer race 
60km/h 500 52 

W100 Highway 
Inboard 

outer race 
100km/h 840 96 

 

Figure 25 shows the simplified cross-section of the target wheel-bearing and table 

7 shows the physical properties of the bearing. The fault was seeded by impact 

hammer to the onboard outer race of the bearing to imitate brinelling. The 

accelerometer was seeded directly to the target bearing as Figure 25 (a) and measured 

vibration of 3 directions with a sampling frequency of 12,800Hz. The electric car is 

used for the experiment to avoid explosive vibration signals from internal 

combustion engines. The experiment was conducted on two different environments: 

one on the conventional road with 60km/h constant speed and one on the highway 

with 100km/h constant speed. The operating conditions and expected fault 

frequencies can be seen in the table 6. The fault frequencies may show small 

differences from the theoretical values as the rotation of the shaft has minor 

fluctuation. Since the data was gathered from bearing mounted on a vehicle operating 

in a real road environment, strong noises such as structural vibration or road 

fluctuation are expected to be contained.  
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Figure 23 (a)Band selection, (b)diagnosis result of the proposed method for W60 data 

 

Figure 24(a) Band selection, (b) diagnosis result of FK for W60 data 

 

Figure 25 (a) Band selection, (b) diagnosis result of Autogram for W60 

(a) (b) 

(a) (b) 

(a) (b) 
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Figure 26 (a)Band selection, (b)diagnosis result of the proposed method for W100 data 

 

Figure 27 (a) Band selection, (b) diagnosis result of FK for W100 data 

 

Figure 28(a) Band selection, (b) diagnosis result of Autogram for W100  

(a) (b) 

(a) (b) 

(a) (b) 
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Figure 23 (a) and (b) represent the band selection and reciprocal envelope 

spectrum of data W60 result in by the proposed method. Based on the Figure 23, the 

proposed method selected 811Hz to 1101Hz as filter bank and successfully 

diagnosed outer race fault with MADD of 12.1. The corresponding envelope 

spectrum exhibits distinct BPFO and its second harmonic, though the signal contains 

strong low frequency noise as FFT result Figure 23 (a). Thus, proposed method 

successfully diagnoses the outer race fault of the onboard bearing on the 

conventional road. 

FK and Autogram result of data W60 and their diagnostic result are described in 

Figure 24 and 25. As shown in Fig, FK extract high frequency region 6133Hz to 

6400Hz as filter bank and demonstrate no distinct fault frequency component over 

the threshold. Also, as in Figure 25, Autgram selects 3150Hz to 3650Hz region and 

reveal no fault-related impulse over the threshold. 

For W100 dataset, the estimation and its envelope spectrum of the proposed method 

is as Figure 26. The proposed method selected 1313Hz to 1587Hz for bandpass 

filtering and exhibit a noticeable BPFO component with 8.771 MADD.  

However, as presented in Figure 27 and 28, FK and Autogram chose much lower 

and higher frequency regions and failed to extract any specific fault-related 

component, not to mention the threshold. Thus, we can conclude that FK and 

Autogram choose inadequate frequency bands for outer race fault diagnosis. 

Based on the result above, the proposed method shows compatible diagnostic 

capability under both conventional and highway condition while demonstrating 

better condition.   
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Chapter 5. Discussion  

In this section, further discussions regarding the case study results will be given. In 

section 5.1, the effectiveness of the attention gated layer will be discussed in terms 

of the impulse localization effect by visualizing the attention score and regularization. 

Also, in section 5.2, the implementation of non-Gaussiafn noise will be further 

discussed in terms of diagnostic capability under a noisy environment. 

 

5.1 Effectiveness of attention gate layer 

For visual interpretation of whether the resonant parameters are chosen based on 

the fault-related impulse. The attention result will be shown by coloring the raw 

signal according to the attention scores. 

 

Figure 29 Attention score results of (a) case I: IR data (b) case II: 1552 data and 

(c) caseIII: W100 data 

(a) 

(b) (c) 
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Figure 29 shows the visualization result of attention scores extracted from case 

I~III. For cases I and II, the attention-gate layer grant high attention score for the 

fault related impulse regions, which are spaced with a period related to the BPFI. 

This clearly shows that the resonant parameters of case I & II are estimated based on 

the inner race fault induced impulse. However, since the raw signal of case study III 

is acquired under noisy real environment, the signal retains strong modulation and 

low frequency noises, which makes visual detection of fault related impulse 

impossible. Thus, although the attention scores are localized in a certain region, the 

interpretation of whether the regions are fault-related impulses is relatively difficult . 

In short, under the experimental condition, the highlighted region of the attention 

gated layer can be interpreted as the fault-induced impulse, nevertheless it is hard to 

be certain under noisy environment due to the limitation of visual inspection. Though 

the visualization result is ambiguous  

In figure 30, the training results of the proposed 1D-AttGCNN and 1D-CNN 

without the attention gated layer are compared.  

 

Figure 30 Loss comparison of with and w/o attention gated layer model 
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Table 7 Band selection comparison between with and w/o attention model 

 

Case I Case II Case III 

Fc(Hz) Bw(Hz) Fc(Hz) Bw(Hz) Fc(Hz) Bw(Hz) 

With 

attention 
4280 138 3580 238 1400 261 

W/O 

attention 
-98 206 3670 254 -10887 349 

 

The result shows that implementation of the attention-gated layer decrease 

validation mean squared error(MSE) loss. Also in Table 8, the band estimation result 

comparison results are given. Without the attention gated layer, the conventional 

CNN infer negative resonance parameters from case I and III data which are invalid 

for band passing. These results indicate that the proposed attention-gated layer 

increases the regularization of the conventional model in both training and test parts.  

5.2 Effectiveness of non-Gaussian noise implementation 

In this section, the effectiveness of non-gaussian noise implementation will be 

analyzed in terms of diagnostic capability under a noisy environment. Figure 31 

presents a comparison between extracted MAD distance value of 1D-AttGCNN 

model trained with and without non-gaussian noise implementation. 

As Figure 31 shows, the model trained without non-gaussian noises extracted 

MAD distance lower than the threshold for both W60 and W100 data. This result 

demonstrates that the non-gaussian implementation increases the model’s 
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compatibility under noisy environment.  

 

Figure 31 Extracted MAD distance comparison between with and w/o NGN 
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Chapter 6. Conclusions  

6.1 Summary and Contributions 

 In this thesis, a novel 1D-AttGCNN based bearing fault frequency band 

estimation method utilizing generated signals in the training step has been proposed. 

The contributions and significance of this research are summarized as follows. 

Contribution 1: Development first direct band selection approach based on 

deep learning 

In this thesis, a 1D-AttGCNN is newly utilized to directly estimates fault 

resonance frequency band from the raw signal. The band selection is known to be 

the most important part of the envelope-based fault diagnosis field. However, 

conventional signal processing based methods have been shown two inevitable 

issues in terms of indicator dependent result and real-time optimality trade-off. By 

using a deep neural network, this study constructs direct link between raw bearing 

signals and their resonant frequency band, which enables objective and real time 

decision. 

Contribution 2: Superior to conventional signal processing based methods in 

terms of diagnostic capability under various environment 

 The proposed method has been verified its effectiveness in three different 

environments by comparing with two conventional methods. The proposed method 

shows superior diagnostic capability in terms of selecting fault-informative 

frequency band and extracting distinguishable fault frequency components from 
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experimental environment to noisy real condition. 

Contribution 3: Overcoming black box-ness of conventional deep learning 

method by attention-gated layer.  

 The employed attention-gated layer localizes fault-related resonance region by 

controlling the information through attention score weighting. After the inference, 

the basis region of the model’s estimation can be highlighted by visualizing attention 

scores. As the CNN preserves localized information during forward passing, highly 

weighted regions of the final feature maps directly indicate focused regions from the 

input. These aspects make the baseline CNN model more explanatory. 

6.2 Suggestions for Future Research 

This thesis proposed a noble 1D-AttGCNN based resonant band selection method. 

But there still exist several issues to be solved for the advancing deep learning-based 

band selection. The details of the issues are listed as follows. 

Issue 1: Analytic signal generation process 

The proposed signal generation steps are composed of simple analytic bearing 

fault simulation model and several uncertainties. This simplified simulation model 

enables fast implementation of bearing fault signal. However, in the analytic model. 

Thus, the proposed signal generation step can be advanced through more complex 

modeling with physical aspects of bearing defects. For instance, FEM model can 

imitates not only incipient spalls with different shapes but also sub-surface crack and 

can generate more adaptable signal to real environment. 
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Issue 2: Difficulty in visual interpretation under noisy environment 

Proposed attention gated layer presented reasonable interpretation in case study 

1 & 2. However, for case 3, the interpretation based on visualization was difficult 

since there exist strong low frequency noises and modulation. This issues are 

expected to be solved by employing several state of the art XAI(explainable artificial 

intelligent) techniques. For example, gradients based techniques such as integrated 

gradients or sensitivity analysis can enhance the interpretation under noisy 

environments.  

Issue 3: Difficulties in parameter setting 

The hyper-parameter settings in this study were empirically chosen based on the 

VGGnet. Though the settings are adequate enough to show the effectiveness of the 

deep learning based approach, the performance of the proposed 1D-AttGCNN model 

can further be boosted through hyper-parameter optimization. Recently, Bayesian 

based approaches such as gaussian process or scalable Bayesian optimization have 

been utilized for hyper-parameter tuning of the deep neural networks 
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Abstract (Korean)  

 

생성 신호를 활용한 해석 가능 인공지능 기반 

베어링 고장 주파수 추정에 관한 연구 

 

서울대학교 공과대학 

기계항공공학부 대학원 

최 종 현 

 

베어링의 고장 신호가 특정 공진 주파수 대역에 진폭 변조 되기에 

진폭 변조를 위한 주파수 대역을 선택하는 것은 포락 해석 기반의 

베어링 고장 진단 분야에서 가장 중요한 부분이다. 최근까지, 많은 

연구자들이 여러 도메인에서 공진 영역을 가르킬 수 있는 

표지(indicator)들을 개발하였으며 이진 트리나 최적화 기법과 같은 

방법으로 이 표지를 최대화 하는 방식으로 올바른 필터 영역을 

추정하고자 하였다. 그러나, 이러한 표지들이 복잡한 신호처리 과정을 

거쳐서 계산되기에 기존의 기법들은 필연적으로 표지 선택에 다량의 

도메인 지식을 요하며 밴드 추출 과정에도 최적성과 실시간 진단 사이의 

트레이드 오프(trade-off)가 발생하는 문제점이 있다. 이러한 문제를 

해결하기 위하여 본 학위 논문에서는 생성 신호로 훈련된 1차원 어텐션 

게이트 합성곱 신경망(1D-AttGCNN) 기반의 딥러닝 기법을 

제안한다. 해당 모델은 생성 신호에서 사전에 정의된 공진 파라미터를 

회귀하는 방법을 학습하며 진단 과정에서는 추가로 실제 데이터에 대한 

훈련을 요하지 않는다. 또한 제안한 아키텍쳐는 어텐션 게이트를 
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포함하여, 자동으로 고장으로 발생하는 공진 영역을 국부화 시키는 

방법을 학습할 수 있다. 또한 본 학위 논문에서는 신호 생성 과정에 

불확실성과 비가우시안 노이즈를 고려하여 목표가 되는 실제 신호에 

모델이 적응을 올바르게 하도록 하였다. 본 학위 논문에서는 제안 

기법의 정합성은 세가지 케이스를 활용하여 여러 다른 공학적 환경에서 

검증하였다. 또한, 기존의 빠른 컬토그램(Fast Kurtogram)과 

오토그램(Autogram)이라는 기법과의 정량적인 비교 또한 포함되었다. 

결과적으로 제안 기법은 기존에 기법에 비하여 우수한 진단 성능을 

보여주었으며, 제안 아키텍처와 신호 생성 과정의 유효성 또한 검증 

되었다. 

 

주제어: 베어링 고장 진단(Bearing fault diagnosis) 

 포락 해석(Envelope analysis) 

 공진 주파수 선택(Resonance band selection) 

 집중 기법(Attention mechanism) 

 신호 생성(Signal generation) 

 합성곱 신경망(Convolutional neural network) 
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