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Due to the rapid development and advancement of today’s industry, the demand for 

safe and reliable power distribution and transmission lines is becoming more critical; 

thus, prognostics and health management (hereafter, PHM) is becoming more 

important in the power transformer industry. Among various methods developed for 

power transformer diagnosis, the artificial intelligence (AI) based approach has 

received considerable interest from academics. Specifically, deep learning 

technology, which offers excellent performance when used with vast amounts of data, 

is also rapidly gaining the spotlight in the academic field of transformer fault 

diagnosis. The interest in deep learning has been especially noticed in the field of 

fault diagnosis, because deep learning algorithms can be applied to complex systems 
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that have large amounts of data, without the need for a deep understanding of the 

domain knowledge of the system. 

However, the outstanding performance of these diagnosis methods has not yet 

gained much attention in the power transformer PHM industry. The reason is that a 

large amount of unlabeled and a small amount of fault data always restrict their deep-

learning-based diagnosis methods in the power transformer PHM industry. 

Therefore, in this dissertation research, deep-learning-based fault diagnosis 

methods are developed to overcome three issues that currently prevent this type of 

diagnosis in industrial power transformers: 1) the visualization of health feature 

space issue, 2) the insufficient data issue, and 3) the severity issue. To cope with 

these challenges, this thesis is composed of three research thrusts. The first research 

thrust develops a health feature space via a semi-supervised autoencoder with an 

auxiliary detection task. The proposed method can visualize a monotonic health 

trendability of the transformer’s degradation properties. Further, thanks to the use of 

a semi-supervised approach, the method is applicable to situations with a large 

amount of unlabeled and a small amount labeled data (a situation common in 

industrial datasets). Next, the second research thrust proposes a new framework, that 

bridges the rule-based Duval method with an AI-based deep neural network (BDD). 

In this method, the rule-based Duval method is utilized to pseudo-label a large 

amount of unlabeled data. Furthermore, the AI-based DNN is used to apply 

regularization techniques and parameter transfer learning to learn the noisy pseudo-

labelled data. Finally, the third thrust not only identifies fault types but also indicates 

a severity level. However, the balance between labeled fault types and the severity 

level is imbalanced in real-world data. Therefore, in the proposed method, diagnosis 
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of fault types – with severity levels – under imbalanced conditions is addressed by 

utilizing a generative adversarial network with an auxiliary classifier. The validity 

of the proposed methods is demonstrated by studying massive unlabeled dissolved 

gas analysis (DGA) data, provided by the Korea Electric Power Company (KEPCO), 

and sparse labeled data, provided by the IEC TC 10 database. Each developed 

method could be used in industrial fields that use power transformers to monitor the 

health feature space, consider severity level, and diagnose transformer faults under 

extremely insufficient labeled fault data. 
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Chapter 1 Introduction 

 

Introduction 

 

1.1 Motivation 

As the power grid capacity continues to grow, power transformers have become 

crucial components of distribution and transmission lines in power systems. For 

stable operation of transformers, insulation materials are used to prevent heat transfer 

and electrical discharge [1]. Although transformers are manufactured to meet reliable 

design conditions, uncertainties in operation can cause transformers to operate in an 

unexpected way. Thus, to prevent catastrophic social, economic, and energy 

efficiency losses, prognostics and health management techniques have attracted 

attention in recent decades [2-4]. 

Among the existing methods for diagnosing oil-filled transformers, dissolved 

gas analysis (DGA) is the most well-known method to determine the condition of 

the insulation materials found in internal transformers [5]. When insulation materials 

composed of hydrocarbon molecules are continuously exposed to electrical and 

thermal stresses, combustible gases (e.g.,  H2, C2H2, C2H4) are decomposed from 

the insulation materials and then dissolved in the oil [6-10]. Via on/offline 

measurement of these dissolved gases, DGA can diagnose (i.e., detect and identify) 
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the fault types and estimate the fault severity level of the internal insulation health 

states of the transformers. 

Fault diagnosis methods using DGA are divided into two categories: rule-based 

methods and artificial intelligence (AI)-based methods. In rule-based methods, 

concentrations and/or ratios of gases, called handcrafted features, have been 

proposed; these features use experts’ domain knowledge to provide fault 

identification that is based on human-experienced thresholds. However, rule-based 

methods have relatively low accuracy and inconsistent diagnosis results due to 

insufficient mathematical computation and their empirical handcrafted thresholds. 

To overcome the underperformance of rule-based methods, AI-based methods, 

corroborated with data-driven methods, have been employed to improve fault 

diagnosis performance. In the beginning, conventional AI-based transformer fault 

diagnosis methods were studied as a supervised learning approach, through the use 

of fault-labeled DGA data [11, 12]. In addition, to increase the fault diagnosis 

performance, supervised approaches for feature selection techniques have been 

developed [13-18]. Despite some achievements of these supervised learning 

approaches, they have some limitations in that they use only labeled DGA datasets; 

these datasets are difficult to obtain in actual industrial fields. Thus, in other prior 

work, a few semi-supervised learning approaches have been developed to consider 

unlabeled data with labeled data. Furthermore, in recent years, with the help of deep 

learning methods, which are more advanced than conventional shallow learning 

approaches, the accuracy has been increased dramatically. 

Although deep learning has achieved promising performance in areas such as 
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representation, reconstruction, and generation in image data, it is not a solution that 

can ultimately be directly applied to all industrial field data at once. Specifically, 

transformer DGA data, which is completely different from image data, has not yet 

received much research attention. Furthermore, deep-learning-based fault diagnosis 

research has not yet been focused on experts who actually manage industrial 

transformer maintenance. Thus, investigation of deep learning based fault diagnosis 

methods that examine real-world industrial issues is required so that these methods 

can be applied to industrial transformers. 

There are currently three practical issues with transformer PHM in industrial 

fields. The first issue is transformer health state monitoring, which is not intuitive 

because conventional methods make transformer trends challenging to visualize. The 

second issue is the weakness of AI-based diagnosis performance, which depends on 

the number of labeled fault data. Although the aforementioned semi-supervised 

learning method has been developed, it is still not free from issues related to the 

number of labeled fault data and the distribution or characteristics of unlabeled data. 

Finally, AI-based methods so far have not been considered to determine fault 

severity levels. As a result, there is an issue in that industry practitioners must still 

maintain a comprehensive maintenance plan that uses rule-based methods to 

estimate the severity levels, even if AI-based methods are used to diagnose fault 

types. 

Therefore, this thesis aims to study deep-learning-based fault diagnosis to 

overcome these practical issues in power transformers. After studying and 

developing a deep learning based fault diagnosis approach that addresses all three 

major issues, this thesis research achieves three major outcomes: 1) a health feature 
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space is enabled that can visualize the degradation of the monotonic health 

trendability and 2) a robust fault diagnosis method is proposed that bridges the rule-

based Duval method and the deep neural network approach, and 3) feature extraction 

of the severity level, as well as fault identification, is enabled. 

 

1.2 Research Scope and Overview 

The goal of this dissertation is to propose deep-learning-based fault diagnosis 

methods for industrial issues in power transformers. Three research thrusts are 

proposed. First, a health feature space that can visualize the monotonic health 

trendability of transformer degradation via a semi-supervised autoencoder with an 

auxiliary task (SAAT) is developed. Next, an approach is proposed that bridges a 

rule-based Duval method and a deep neural network. Finally, a generative 

adversarial network that embeds a DGA severity level is proposed. These three 

thrusts are briefly described below. 

 

Research Thrust 1:  Extracting a Health Feature Space via a Semi-Supervised 

Autoencoder with an Auxiliary Task (SAAT)  

Research thrust 1 considers a health feature space via SAAT for power 

transformer fault diagnosis using DGA. The health feature space generated by a 

semi-supervised autoencoder (SSAE) not only identifies normal and 

thermal/electrical fault types, it also presents the underlying characteristics of the 
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DGA. In the proposed approach, by adding an auxiliary task that detects normal and 

fault states in the loss function of SSAE, the health feature space additionally enables 

visualization of the health degradation properties. The overall procedure of the new 

approach includes three key steps: 1) preprocessing the DGA data, 2) extracting two 

health features via SAAT, and 3) visualizing the two health features in two-

dimensional space. Then, we test the proposed approach using massive 

unlabeled/labeled Korea Electric Power Corporation (KEPCO) databases and IEC 

TC 10 databases. To demonstrate the effectiveness of the proposed approach, four 

comparative studies are conducted with these datasets; the studies examined: 1) the 

effectiveness of the auxiliary detection task, 2) the effectiveness of the visualization 

method, 3) conventional fault diagnosis methods, and 4) the state-of-the-art, semi-

supervised deep learning algorithms. By examining several evaluation metrics, these 

comparative studies confirm that the proposed approach outperforms SSAE without 

the auxiliary task, existing methods, and state-of-the-art deep learning algorithms, in 

terms of defining health degradation performance. We expect that the proposed 

SAAT-based health feature space approach will be widely applicable to intuitively 

monitor the health state of power transformers in the real world. 

 

Research Thrust 2:  Bridging a Rule-based Duval Method and a Deep Neural 

Network  

Research thrust 2 proposes a new framework, named BDD, that bridges Duval’s 

method with a deep neural network (DNN) approach for power transformer fault 

diagnosis using dissolved gas analysis (DGA). The proposed BDD consists of the 
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following three key points. First, to overcome an important issue, which is that most 

DGA data found in real-world industrial settings is unlabeled, Duval’s method is 

newly used to provide knowledge, which is called pseudo-labeling information, to a 

DNN for unlabeled DGA data. Second, motivated by the fact that the pseudo-labeled 

data does not always declare correct answers, a DNN architecture with an auxiliary 

regularization task is newly proposed; this approach is somewhat robust to the noisy 

labeled data. Last, a parameter transfer learning approach is applied to evolve the 

pre-trained DNN model, which is trained from a large amount of pseudo-labeled 

source data, to diagnose the sparse labeled target data. To demonstrate the 

effectiveness of the proposed approach, four case studies are executed: (i) a 

comparison with existing methods, (ii) examination of the effectiveness of parameter 

freezing via feature space investigation, (iii) studying the robustness of the 

regularization task under noisy labeled DGA, and (iv) probing the hyperparameter 

effects. These case studies confirm that the proposed BDD method outperforms 

existing methods, thanks to the Duval method’s weak supervision, the regularization 

task, and parameter transfer. 

 

Research Thrust 3:  Embedding a Severity DGA Level into a Generative 

Adversarial Network  

Research thrust 3 develops a generative adversarial network that embeds a 

severity DGA level. In actual industrial transformers, fault identification and severity 

estimation are essential to decide on a maintenance plan that can inform decisions 

about whether the system can operate normally or if repair or replacement is 
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necessary. However, the conventional artificial intelligence based method, which is 

trained with only labeled fault types, does not include the severity level. Thus, 

engineers must apply a different rule-based approach to estimate severity. Further, 

since the fault mode is challenging to obtain in industry settings, while rule-based 

methods simply annotate the severity, there is an unbalanced unlabeled data issue 

between the two states. Therefore, this research proposes a generative adversarial 

network with an embedding severity (GANES) DGA level. As a fundamental 

approach to alleviate the imbalanced problem between two classes of labeled fault 

types and severity levels, an auxiliary classifier of the generative adversarial network 

(ACGAN) was applied. To solve the unlabeled fault types that remain even with the 

ACGAN, this study employs a semi-supervised approach. The proposed method is 

demonstrated by studying massive Korea Electric Power Corporation (KEPCO) and 

IEC TC 10 databases. The results show that the proposed method not only 

outperforms conventional AI-based methods but also extracts both fault types and 

severity levels. 

 

1.3 Dissertation Layout 

The layout of this dissertation is as follows. Chapter 2 provides a literature review 

of power transformer fault diagnosis. Chapter 3 suggests extracting health feature 

space via semi-supervised autoencoder with an auxiliary task. Chapter 4 introduces 

a fault diagnosis method that bridges a rule-based Duval method and a deep neural 

network. Chapter 5 proposes a generative adversarial network with embedding a 

severity DGA level. Finally, chapter 6 concludes the dissertation by summarizing 
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the research and suggesting future research. 
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Chapter 2  Literature Review 

Equation Chapter 2 Section 1 

Literature review 

 

This chapter reviews the literature related to fault diagnosis of power transformer 

using dissolved gas analysis (DGA), specifically the review provides: (1) description 

of DGA, (2) an overview of rule-based fault diagnosis of transformer, and (3) an 

overview of conventional AI-based fault diagnosis. 

 

2.1 A Brief Overview of Rule-Based Fault Diagnosis 

Dissolved gas analysis is the most widely well-known method of diagnosing oil-

filled power transformers. This is because through DGA, the internal insulation 

health state of the transformer can be estimated by analyzing the amounts of 

combustible gases and patterns generated by decomposition of insulating paper and 

insulating oil due to mechanical, electrical, and thermal stress.   

From 1927 [19], there are a lot of rule-based methods that diagnose a fault types. 

Among them, five major fault diagnosis methods are as follows: 

(1) Key gas method [20]: Unlike other rule-based methods, this method 

diagnoses a failure according to the concentration of each gas closely related 
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to the fault type. For example, if (1) O2 or N2 occurs, it is determined as 

normal. (2) Low temperature overheating of oil when CH4 and C2H6 occur, 

(3) high temperature overheating of oil when there is a lot of C2H4, (4) 

overheating of cellulose insulation when CO and CO2 are high, and (5) 

when H2 occurs corona, (6) C2H2 is arcing. 

(2) Dornenburg ratio method [19]: Identifying faults (thermal, corona, 

discharge and arching)) by gas concentration ratios such as CH4/H2, 

C2H2/CH4, C2H4/C2H6 and C2H2/C2H4. The detailed flow chart is as 

follows: 

(3) Rogers ratio method [21]: Compared to the Dornenburg ratio method, it uses 

following four gas concentration ratios such as CH4/H2, C2H6/CH4, 

C2H4/C2H6 and C2H2/C2H4. Rogers ratio method is more suitable to 

identify thermal fault than Dornenburg ratio method. The detailed flow 

chart is similar with as Dornenburg’s flow chart: 

(4) IEC ratio method [22]: The international electrotechnical commission (IEC) 

ratio method is similar to the Rogers ratio method, but excludes the 

C2H6/CH4 ratio. It identifies normal, partial discharge of low and high 

energy, thermal faults and electrical faults. However, it does not identify 

specific thermal and electrical subtypes. 

(5) Duval triangle method [10]: Among rule-based methods, the Duval’s 

method has been widely used due to its high accuracy and reliability. The 

basic technique is to extract three gas ratios, shown in (2.1), as handcrafted 
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features: 

  
3

2 2 2 4 4

1

Gas Gas whereGas C H ,  C H ,  CH .i i i i

i

R
=

=   (2.1) 

The main concern of the Duval’s method is to identify seven fault types 

(partial discharge, high energy discharge, low energy discharge, thermal 

fault 1, thermal fault 2, thermal fault 3, and thermal and discharge fault). 

However, all rule-based methods, features based on human experience usually 

underperform the diagnosis capability of AI-based methods, which are based on 

sufficient mathematical formulations and statistical approaches. 

 

2.2 A Brief Overview of Conventional AI-Based Fault 

Diagnosis 

In recent years, AI-techniques have been incorporated in power transformer fault 

diagnosis to improve accuracy. AI techniques include fuzzy logic [23-31], support 

vector machine [17, 32-39], artificial neural network, and multilayer perceptron [27, 

32, 40-51]. To select optimal features and address imbalanced problems of DGA 

data, a genetic algorithm approach [16-18, 32, 52-54] and an adaptive over-sampling 

method [35, 55, 56] have been applied, respectively. Despite some achievements 

using such supervised learning approaches, these studies take only labeled DGA 

datasets into account. In other prior work, a semi-supervised learning approach using 

a low-dimensional scaling was developed to consider unlabeled DGA data [57]. 

However, this approach has difficulty performing health feature selection for 
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unlabeled datasets. Motivated by this challenge, several additional methods for 

extracting health features have been reported. A principal component analysis with 

fuzzy C-means method was presented as an unsupervised feature extraction method 

in [58, 59]. Besides, self-organizing maps (SOM) of unsupervised neural network 

methods extracted feature maps of several fault types [58, 60-63]. 

Furthermore, deep learning techniques, such as sparse autoencoder [64] and 

deep belief network [65], have been used to pre-train the network via unsupervised 

greedy layer wise training with deep hierarchical hidden layers. A previous deep 

learning approach for transformer fault diagnosis consists of two training steps: 1) 

pretraining the initial network by unsupervised learning, and 2) finetuning the 

network with labeled information by softmax classifier. 

While these advances have been developed based on academic fields, there are 

several practical issues in applying them to industrial power transformer fields. 

Among them, in this doctoral dissertation, three practical issues such as 1) 

visualization of health trendability, 2) insufficient data, and 3) diagnosis of fault 

types with severity level are studied in Chapter 4, Chapter 5, and Chapter 6. 

 

 

 

 

 



13 

 

Chapter 3 Extracting Health Feature Space via Semi-Supervised Autoencoder with an Auxiliary Task (SAAT) 

Equation Chapter 3 Section 1 

Extracting Health Feature Space 

via Semi-Supervised Autoencoder 

with an Auxiliary Task (SAAT) 

 

Conventional AI-based approaches have the following three limitations. First, 

despite the necessity of a large amount of DGA data to represent generalized 

diagnosis results, it is difficult to obtain the large amount of required DGA data in 

real-world applications. Significant financial cost is required to periodically maintain 

all transformers and measure DGA data in the field. Second, most previous studies 

have focused on fault detection and identification features; little effort has been made 

to analyze the health degradation features. If degradation features are newly 

developed, it is worth pointing out that they enable to exhibit the monotonic health 

trendability from normal to fault, thus potentially estimating health states for 

unlabeled data or diagnosing fault states in advance. Lastly, visualization of the 

monotonic health trendability in 2D space has ye be addressed by other research. 

Since 2D graphics provide the most obvious and readable space representation for 

the human eye, a 2D health feature space (HFS) can intuitively show diagnosis 

results [67]. 
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Thus, in this Chapter 3, we propose a novel semi-supervised autoencoder with 

an auxiliary task (SAAT) to extract an HSF, considering a large amount of DGA 

data. The proposed SAAT approach comes from a semi-supervised autoencoder 

(SSAE) that can simultaneously learn unsupervised and supervised tasks with shared 

hidden layers. Unsupervised and supervised tasks play roles in the representative 

health feature extraction and the fault identification, respectively. Here, by putting 

an auxiliary task (fault detection) in the loss function of SSAE, the trained shared 

parameters provide the health features, which additionally enable representation of 

the health degradation properties. By structuring the two nodes in the end of the 

shared hidden layers, two health features can be directly visualized into 2D space 

without an additional dimension reduction. In this paper, a large amount of DGA 

data, provided by Korea Electric Power Corporation (KEPCO), is considered. In 

addition, IEC TC 10 databases are used for validation tests 

The rest of section is organized as follows. In the Section 3.1 describes the 

background of SAAT. Section 3.2 and Section 3.3 demonstrate the proposed method 

and experimental results, respectively. Finally, the conclusions and future works of 

this study are outlined in Section V.  

(a)                      (b)                             (c) 

Figure 3-1 Architectures of AE, SC, and SSAE: (a) pre-training in the AE; 
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3.1 Backgrounds of Semi-supervised autoencoder (SSAE)  

Two basic algorithms (i.e., an autoencoder (AE) and a softmax classifier (SC)) of 

the proposed SAAT are described in 3.1.1 and 3.1.2, respectively. In Section 3.1.3, 

SSAE is explained in terms of the AE and the SC. 

 

3.1.1 Autoencoder: Unsupervised Feature Extraction 

An AE, a well-known unsupervised neural network, consists of an encoder part and 

a decoder part with a hidden layer, as shown in Figure 3-1 (a) [68-71]. For given 

training samples x={x(1), x(2), ∙∙∙ , x(N)} where N is the number of samples and x(m)ℝd 

(m=1, 2, ∙∙∙ , N), an encoder function fen compresses the dimension of the training 

samples from ℝd to ℝdʹ (d>dʹ) with a set of encoder parameters θen (i.e., a weight 

matrix Wenℝdʹ˟d and a bias vector benℝdʹ ), as: 

 
( )( ) ( ) ( )( )en AE en enm m m

i j ji i jf x h W x b= = +  (3.1) 

where σAE is an activation function, such as a sigmoid, a rectified linear unit (ReLU), 

and an exponential linear unit (ELU) that transforms x(m) into a representative feature 

vector h(m)ℝdʹ with θen. Then, in the decoder part, h(m) is reconstructed to 
( )ˆ m

x ℝd 

by a decoder function fde, with a set of decoder parameters θde (i.e., a weight matrix 

(b) fine-tuning in the SC with initialized parameters; and (c) simultaneous learning 

of the supervised and unsupervised learning parts in SSAE. 
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Wdeℝd˟dʹ , and a bias vector bdeℝd ) as: 

 
( )( ) ( ) ( )( )de AE de deˆm m m

j k kj j kf h x W h b= = +  (3.2) 

where σAE transforms h(m) into 
( )ˆ m

x . 

In general, the loss function LAE is the mean square error between x(m) and ( )ˆ m
x  

as: 

 ( ) ( ) ( ) ( )
2

en de

AE AE

1 1

1 1
ˆ,  

2 2

N N
m m m

m m

L L
N N= =

= − = θ θ x x  (3.3) 

where 
( )

AE

mL
 represents the m-th loss function. To minimize LAE, the parameters 

θAE={θen, θde} are updated using a backpropagation method with mini-batch gradient 

descent algorithms. Using chain rules, the procedure of the parameter update is 

organized as:  

 

( ) ( ) ( )
( )de de de deAE AE

de de de

mm m
mk

kj kj k k j

kj kj kj

zL L
h    

  

  
 − = = 

    

 (3.4) 

 

( ) ( ) ( )
( )en en en enAE AE

en en en

mm m
j m

ji ji j j i

ji ji ji

zL L
x    

  

  
  − = =
   
 

 (3.5) 

where η is a learning rate; 
( )m

kz , de

k , ( )m

jz , and 
en

j  are defined, respectively,  as: 

 
( ) ( )de dem m

k kj j kz W h b= +  (3.6) 

 
( )

( )

( )( )
( )

( )

de AE '
m m

m

k km m

k k

L L
z

z x

 
 

 =
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 (3.7) 

 
( ) en ( ) enm m

j ji i jz W x b= +  (3.8) 

 
( )

( )

( )

( )

( )

( )

( )( )en AE deAE AE '

mm m
mk

j j kj km m m
k kj k j

zL L
z

z z z
   

 
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   (3.9) 
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de

k  and 
en

j  are errors in the decoder layer and the encoder layer, respectively. This 

process is called pre-training. Using the optimized θAE derived through (3.3) to 

(3.9), AE can extract h(m). Please note that the number of hidden layers in the encoder 

and the decoder can be extended. 

 

3.1.2 Softmax Classifier: Supervised Classification 

SC has been widely used for the purpose of classifying multi-classes by utilizing the 

extracted high-level features in AI-based algorithms [64, 65, 70]. When 

incorporating the SC into the AE, h(m) can be the input data of a softmax function, as 

shown in Figure 3-1 (b). Training samples are a set of ordered pairs (x(m), y(m)) as 

{(x(1), y(1)), (x(2), y(2)), ∙∙∙ , ( ( )N
x , 

( )N
y )} where y(m){1, 2, ∙∙∙ , C} is a virtual discrete 

number of a target label that corresponds to x(m) . y(m) is a one-hot encoding vector 

that has C classes, expressed as y(m)=( ( )
1

m
y , ( )

2

m
y , ∙∙∙ , ( )m

Cy ). Using the softmax 

function q, the probability of each element in y(m) can be calculated with respect to 

θen* and θcl (i.e., a weight matrix WclℝC˟dʹ , and a bias vector bclℝC), as follows: 

 
( )( )( ) ( )

( )

( )

( )

( ) ( ) en en* cl ( )

( )

1

exp
ˆ | ; ,

exp

m

nmm m m

n n C
m

n

n

z
y P n f q z

z
=

= = = =


y x θ θ  (3.10) 

where 
( )m

nz
 is defined as: 

 
( ) ( )cl clm m

n nj j nz W h b= +  (3.11) 

Note that n means the n-th element in y(m), as well as the number n in {1, 2, ∙∙∙ , C}. 

( )ˆ m

ny should satisfy 
( )ˆ m

ny [0,1] and ( )

1

ˆ 1
C

m

n

n

y
=

= . 
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For the best classification performance, it is worth noting that finding optimized 

parameters θen* and θcl is an essential procedure to match 
( )ˆ m

y
 with y(m). To 

minimize the discrepancy between 
( )m

y
 and 

( )ˆ m
y

, the cross-entropy loss function 

Lcl has been widely used as [2]: 

 ( ) ( ) ( )( )en* class

cl

1

1
ˆ,  log

N
m m

m

L
N =

= − θ θ y y  (3.12) 

Likewise, θen* and θcl are updated by mini-batch gradient descent algorithms as: 
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where 
( )m

nz , cl

n , and 
en*

j are defined, respectively, as: 
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This process is called fine-tuning. Using the feature extraction developed through 

the pre-training in the AE, the classification accuracy can be dramatically enhanced, 

as compared with SC in the absence of AE. 

 

3.1.3 Semi-supervised Autoencoder 
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Disjoint learning between the pre-training and the fine-tuning –  by sequentially 

performing AE and SC – can lead to the extraction of features that are uncorrelated 

with the target information of the labeled data or to distortion of the underlying 

characteristics of the input training samples [72]. With this motivation, SSAE has 

been proposed, as shown in Figure 3-1 (c). Compared with the previous sequentially 

executed training process, SSAE achieves extraction of high-level features that are 

highly correlated with both the input data x and the labeled information y, by 

simultaneously optimizing  θAE and θcl [67, 72-75]. 

A loss function LSSAE of SSAE is a summation of the two loss functions 

presented in (3.3) and (3.12) with a weight α as: 

 ( ) ( ) ( ) ( )shd de cl shd de shd cl

SSAE AE cl,  , ,  1 ,  L L L = + −θ θ θ θ θ θ θ  (3.18) 

where the shared parameters θshd, which play the same role as θen in AE, are 

simultaneously optimized when training the representative feature extraction task of 

AE and the classification task of SC. For example, the procedure to update the 

parameters to minimize LSSAE is demonstrated as: 

 

( ) ( )
( ) ( ) ( )shd shd AE clSSAE SSAE

shd shd
 1

m m
m m

ji ji j i j i

ji ji

L L
x x     

 

  
 − = + − 

 
 

 (3.19) 

where 
AE

j  and 
cl

j  are equal to (3.9) and (3.16), respectively. Finally, the shared 

hidden layers with θshd are able to concurrently extract representative features of x in 

the unsupervised learning and the labeled information of y in the supervised learning. 

For power transformer fault diagnosis, it can be inferred that SSAE enables 

identification of the thermal/electrical fault types and normal state, as well as 

extraction of high-level features with a large amount of real-world DGA data. 
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3.2 Input DGA Data Preprocessing 

This In the field of AI, normalizing raw input data and balancing imbalanced data 

are essential steps to avoid overfitting problems and to enable better classification 

performance [57]. Furthermore, from the viewpoint of power transformer fault 

diagnosis, handcrafted features of dissolved gas ratios, which were previously 

studied in rule-based methods, have been incorporated into AI-based methods to 

enhance the diagnosis performance [57]. Details of each preprocessing step are 

described as follows. 

(1) Scaling of Industrial DGA Data 

Dissolved gas concentrations have significantly skewed distributions because 

their concentrations tend to dramatically increase in a fault state, as compared with 

those in a normal state. For example, the gas concentrations changed from a few ppm 

(parts per million) to thousands of ppm in previous studies [57]. Thus, the input DGA 

data is transformed into a logarithmic scale. Further, to keep numerical operations 

(e.g., stochastic gradient descent) stable, the logarithmic-scaled DGA data is 

normalized from zero (min) to one (max). 

(2) Balancing of Imbalanced Industrial DGA Data 

Since real-world industrial transformers have highly imbalanced data between 

normal and fault states, this imbalance could disturb AI-based methods [57]. For 

example, if fault datasets occupy only 1 % among the training datasets, most AI-

based algorithms will be more focused on the classification of major normal datasets. 

Thus, an accuracy of 99 % would be obtained by ignoring the minor – but critical – 
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fault datasets and classifying all datasets as normal. To address these imbalance 

problems, oversampling techniques are applied into the fault datasets [57]. 

(3) Combining Additional Features Related to Gas Ratios 

We consider six combustible gases (i.e., H2, C2H2, C2H4, C2H6, CH4, and CO). 

Each of the combustible gases is denoted as DGAi where i ranges from one to six. 

Normalized DGAi in the logarithmic scale is expressed as minimax(log([DGAi])). In 

rule-based methods, it is well known that the absolute values of gas concentrations 

can be useful for the fault detection; however, it is desirable to investigate the ratio-

like relationships between the gas concentrations for fault identification [57]. 

Therefore, we consider six ratios of gas concentration DGAi to total gas 

concentration ∑iDGAi in the logarithmic scale, as log([DGAi]/[∑iDGAi]). Further, 

three ratios, developed by Duval triangle methods, are considered; these features are 

widely used in diagnosing transformer fault types [49, 76]. The total preprocessed 

input data lies in 15 dimensions. 

 

3.3 SAAT-Based Fault Diagnosis Method  

The main concern of rule-based approaches is to monitor fault types. Since they do 

not take the normal state into account, it is difficult to visualize the overall health 

degradation properties. Further, in AI-based approaches, only a few prior studies 

have been devoted to investigating health degradation features. Since trends of 

measured dissolved gases present nonlinear properties over time while the health 

state is monotonically degraded, it is desirable to extract new health features that 
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could also represent the monotonic health trendability from normal to fault. 

Moreover, as it requires a tremendous cost to perform thorough visual 

inspection to recognize incipient faults every time, most DGA data in industrial 

fields is unlabeled. Since sparse, fault-labeled data results in limitations in the ability 

to confirm reliable quantitative results, additional qualitative methods have been 

developed, such as high-level feature visualization in 2D space using unsupervised 

dimension reduction algorithms (e.g., t-stochastic neighbor embedding (t-SNE) and 

self-organizing map (SOM)) [2, 63]. However, it is worth noting that some key 

information associated with fault diagnosis can be lost during the dimension 

reduction procedure. Moreover, since both t-SNE and SOM have the ability to 

cluster the neighboring data, the correlation between high-level features cannot be 

guaranteed [61, 63, 77]. 

Thus, we propose a SAAT that an auxiliary detection task, which is inserted 

into the loss function of SSAE, that can achieve health degradation feature extraction. 

Further, SAAT-based fault diagnosis model can directly visualize the two high-level 

features in 2D, called the HFS, without additional dimension reduction, while 

representing not only the fault identification but also the health degradation 

properties. Details are described as follows. 
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3.3.1 Roles of the Auxiliary Detection Task 

Since the fault identification task in the supervised learning part of SSAE recognizes 

the three classes as independent classes, it is not aware of whether both classes of 

electrical/thermal fault types are involved in fault states. Thus, the only identification 

task can lose the underlying characteristics of the fault detection. For example, when 

envisaging a 2D feature space, there could be two independent directions that 

represent the health trendability, as shown in Figure 3-2 (a); this is against the 

physical phenomenon of monotonic health degradation. Here, it is important to note 

that the fault detection task has the potential to present the monotonic health 

trendability in a single direction, as shown in Figure 3-2 (b). An auxiliary detection 

task, which can tie the two classes of electrical/thermal fault states into one fault 

state, is thus newly added. The proposed SAAT method has three tasks: 1) 

unsupervised learning to represent the input data characteristics, 2) supervised 

learning for fault identification, and 3) supervised learning for auxiliary detection. 

The parameters θSAAT of the proposed SAAT are as: 

 

Figure 3-2 Conceptual diagrams of the health feature space: (a) fault 

identification task case in SSAE and (b) fault detection task case in SSAE 

Normal Electrical fault Thermal fault 

(a) (b) 
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  SAAT shd, iden de, aux, ,  ,  p q=θ θ θ θ θ  (3.20) 

where θshd,p, θiden, θde,q, and θaux are shared parameters, identification parameters, 

decoder parameters, and auxiliary detection parameters, respectively. Superscripts p 

and q stand for the p-th and q-th hidden layers in the shared network and the decoder, 

respectively. When training the tasks, the backpropagation method is used to 

optimize the parameters. In this study, this method transmits errors between key 

information (e.g., labeled information of electrical/thermal fault types and normal 

state for the identification task) and the output layer in each task, backward to each 

layer in the shared network. Training each task is simultaneously executed with by 

optimizing θshd,p. Hence, θshd,p would possess all information of output layers, θiden, 

θde,q, and θaux. 

A loss function LSAAT of the proposed SAAT is defined as: 
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L


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=

+ − +

θ θ θ θ

θ θ θ
 (3.21) 

where LSSAE is similar to (3.18); the differences are that the number of layers are 

much more in (3.21) and θcl in (3.18) is changed to θiden. The loss function Laux of 

the auxiliary detection task is newly proposed in (3.21). A hyperparameter β is the 

weight between LSSAE and Laux. In addition, to avoid overfitting problems, a L2 

regularization term 0.5λ||θSAAT||2 is put in (3.1) with a hyperparameter λ [78-80]. 

SAAT can be trained by updating θSAAT to minimize LSAAT. For example, in the 

case of θshd,end that are parameters in the end of the shared hidden layers and directly 

related to health feature extraction, the procedure of updating the parameters is 



25 

 

demonstrated as: 
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 −
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Similar to (3.19), the second term in the right-hand side of (3.22) can be 

decomposed as: 
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where 
shd,end

ih  are high-level features obtained at the end of the shared hidden layers. 

Here,
SSAE,end

j  and 
aux

j  are expressed, respectively, as: 

 ( ) ( ) ( )SSAE,end de de,1 de,1 iden iden iden

' '

'

' 1 'j j kj k j k j k

k k

z z        =  + −    (3.24) 

 ( )aux aux aux aux

'' ''

''

'j j k j k

k

z   =   (3.25) 

where k, kʹ, and kʹʹ are dimensions of output nodes in the first layer of the decoder, 

fault identification, and auxiliary detection tasks, respectively. By inserting (3.24) 

and (3.25) into (3.23), θshd,end are updated as (3.22). Finally, high-level features 

obtained by the proposed SAAT could play roles in exhibiting both fault 

identification and health degradation. 
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Table 3-1 Parameters in the architecture of the proposed SAAT 

Layer Activation Node # Parameter # 

Input - 15 - 

Shared layer 1 ELU 10 160 

Shared layer 2 ELU 6 66 

Shared layer 3 ELU 2 14 

Decoder1 ELU 6 18 

Decoder2 ELU 10 70 

Output1 

(Representative feature 
extraction task) 

ELU 15 165 

Output2 

(Fault identification task) 
Softmax 3 9 

Output3 

(Auxiliary detection task) 
Sigmoid 1 3 

 

 

Figure 3-3 Architecture of the proposed SAAT: colors with orange, gray, and 

green in the shared hidden layers stand for the features related to the fault 

identification, representative characteristics of DGA data, and  health 

trendability 
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3.3.2 Architecture of the Proposed SAAT 

As shown in Figure 3-3, the proposed SAAT consists of three shared hidden layers, 

three decoder hidden layers, and one hidden layer for each supervised task. 

Activation functions of all hidden layers, except for the supervised tasks, are ELUs; 

this function has the advantages of not only increasing computational learning speeds 

in deep neural networks [81-83] but also achieving robust optimization in 

backpropagation methods. Activation functions of the output hidden layers in cases 

of fault identification and auxiliary detection tasks are the SC and the logistic 

regression for binary classification, respectively. Detailed parameters in SAAT 

architecture are summarized in Table 3-1. Both the number of epochs and batch size 

are set as 200. α, β, λ, and η are set as 0.25, 0.4, 0.0001, and 0.001, respectively. 

Note that we consider a compressed-type structure in the shared hidden layers. 

For the purpose of extracting only two high-level health features hHFℝ2 that could 

be directly visualized in the 2D space, the end of the shared hidden layer is set as 

having two nodes. These two nodes are connected with the three tasks. 
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Figure 3-4 Visualization scheme of HFS with labeled and unlabeled data 
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3.3.3 Health Feature Space Visualization 

Figure 3-4 depicts interpretation schemes for HFS. HFS is directly visualized into 

2D space (x-y plane); the features are denoted as ‘Health Feature 1 (HF1)’ and 

‘Health Feature 2 (HF2)’, respectively. x- and y-axes correspond to HF1 and HF2, 

respectively. Here, to show the degree of health degradation, the extracted health 

features are arranged to increase over time. 

It is expected that hHF for the training/test datasets can be visualized with a set 

of four dots, as shown in Figure 3-4. Further, from the fault identification task, the 

identification decision boundaries can be obtained and visualized. It is important to 

emphasize that the decision boundaries in 2D HFS have the following merits: 1) 

health states or fault types can be determined for the labeled data and 2) the classes 

for the unlabeled data can be predicted (pseudo-labeled) by investigating to which 

health state region the unlabeled data belongs. 

Moreover, thanks to the auxiliary detection task, the monotonic health 

trendability from normal to fault will be observed in 2D HFS.  In real-world 

applications, normal transformers gradually degrade as time passes. Then, one of the 

thermal/electrical fault types will occur at a certain point. From this physical 

interpretation, the monotonic trend of the two health features in 2D HFS can be 

shown up to a certain point; it tends to be slightly separated into one of two ways 

toward the thermal or electrical fault regions, which are divided by the decision 

boundaries. Therefore, it is worth noting that the proposed 2D HFS also enables 

intuitive visualization of the historical health degradation information in terms of 1) 

the monotonicity between the health features and 2) the monotonic health 

trendability. 
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3.3.4 Overall Procedure of the Proposed SAAT-based Fault Diagnosis 

Figure 3-5 illustrates the flowchart of the proposed SAAT-based fault diagnosis 

method. The first step is to organize the collected DGA data into four groups: an 

unlabeled DGA dataset {Xun}, a labeled DGA dataset {Xla}, and labeled information 

datasets {Yiden} and {Yaux} for the supervised tasks. After preprocessing, the input 

DGA datasets are denoted as {Xun*} and {Xla*}. To train SAAT model and evaluate 

its performance, datasets, {Xun*}, {Xla*}, {Yiden} and {Yaux} are randomly separated 

into training datasets and test datasets. 

The next step is to construct and stabilize SAAT-based fault diagnosis model 

using the training datasets. Parameters in SAAT are randomly initialized. For given 

parameters, Liden, LAE, and Laux are calculated. With the given batch size, the 

backpropagation method in the mini-batch gradient descent method can train SAAT 

model by repetitively updating parameters. In addition, loss function calculation and 

 

Figure 3-5 Overall procedures of the proposed SAAT-based fault diagnosis 

method 
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parameter updates are iteratively implemented until satisfying the given maximum 

epoch. 

After completing the training process, the health states of the unlabeled test 

datasets are pseudo-labeled by the decision boundaries obtained in the fault 

identification task. Furthermore, several evaluation metrics are calculated as 

diagnosis results for the labeled and pseudo-labeled test datasets. Finally, by directly 

visualizing hHF in 2D space, the diagnosis results can be pictorially monitored. 

 

3.4 Performance Evaluation of SAAT 

This section is devoted to performance evaluation of the proposed SAAT method. 

Section 3.4.1 presents a description of datasets provided by KEPCO and 

implementation of the proposed method. In Section 3.4.2, the experimental setup is 

demonstrated. Lastly, the experimental results and discussion are covered in Section 

IV.C. 

 

3.4.1 Data Description and Implementation 

We obtain 110,000 normal data, categorized into 73 thermal fault data, and 48 

Table 3-2 KEPCO maintenance standards for power transformer 

Cond. 

Gas 
Normal 

Caution 
Abnormal 

Danger 

(>ppm) Ⅰ Ⅱ 

H2 <200 201~400 400~800 >800 - 

C2H2 <10 11~20 21~60 61~120 >120 

C2H4 <100 100~200 201~500 >500 - 

C2H6 <150 151~250 251~750 >750 - 

CH4 <200 201~350 351~750 >750 - 

CO <800 801~1200 1200 - - 
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electrical fault data as similar to IEC TC 10 fault types. As an example, historical 

DGA data for four samples of KEPCO is listed in Table 3-3. Next, unlabeled data 

was obtained from cases where some gas concentrations were over the threshold 

values but visual inspection was not executed. The number of unlabeled data is 

24,405. Note that the amount of DGA data used in this study is much larger than that 

used in previous studies (e.g., 4,642 DGA dataset in [65] and 3,000 DGA dataset in 

[84]). To validate the effectiveness of the proposed SAAT, two test datasets are 

examined: 1) 20% of KEPCO datasets and 2) IEC TC 10 datasets. It should be noted 

that 100 electrical/thermal faults were selected in the IEC TC 10 databases. Even 

though the transformer specifications of the IEC TC 10 and KEPCO datasets are 

different, the scale of DGA data in the KEPCO databases is comparable to that in 

the IEC TC 10 databases. The difference between the two datasets is that only DGA 

data for fault states is provided in the IEC TC 10 databases. 

The implementation of the proposed approach was executed on a desktop 

computer equipped with an Intel Core i7-6700K processor (4.00 GHz), 32 gigabytes 

of RAM, and an NVIDIA GeForce GTX 1080 graphics card (3072 CUDA cores, 24 

gigabytes of GDDR5 memory). The training of the proposed SAAT was conducted 

with the NVIDIA graphics card, while the other tasks (e.g., DGA data loading, fault 

classification and identification, and HFS extraction) were conducted with the Intel 

processor. The computer was controlled by Windows 10 and Python version 3.7. 

Computational times for each step were as follows: 1) loading the 110,000 DGA and 

preprocessing the dataset took 20 sec with the Intel processor, 2) training the 

proposed method SAAT consumed 61 sec, and 3) extracting the HFS took 15 sec. 

Thus, the overall computational time took 96 sec. 



33 

 

 

3.4.2 An Outline of Four Comparative Studies and Quantitative 

Evaluation Metrics 

The first comparative study aims to validate the effectiveness of the auxiliary 

detection task in SSAE-based fault diagnosis model. We consider the following two 

models: 1) SSAE-DU and 2) SSAE-IU. Notations ‘D’, ‘I’, and ‘U’ stand for ‘fault 

detection task’, ‘fault identification task’, and ‘representative feature extraction task’, 

respectively. Here, SSAE-DI is not considered, since a large portion of DGA data is 

unlabeled. Next, the validity of the proposed visualization method is elucidated in 

the second study. The following comparative methods are considered: 1) t-SNE and 

2) SOM. Depending on how the high-level features hHF in SAAT are visualized, we 

investigate whether the monotonic health trendability can be represented in each 

method. In the third comparative study, we compared SAAT with existing methods 

to demonstrate the superior diagnosis performance of the proposed SAAT approach. 

Table 3-3 Historical DGA data of four samples provided by KEPCO 

Sample Year H2 C2H2 C2H4 C2H6 CH4 CO Health State 

No.1 

1999 0 0 2 2 6 172 N 

2000 0 0 13 9 25 282 N 

2001 0 0 37 31 35 163 N 

2002 0 0 28 85 44 209 N 

2003 251 1064 256 123 139 269 E 

No.2 

2011 10 0 2 5 7 57 N 

2012 13 0 3 26 11 71 N 

2013 48 14 12 63 24 214 N 

2015 335 1123 1324 150 246 105 E 

No.3 

2000 0 0 5 0 1 91 N 

2002 0 0 11 14 7 169 N 

2003 0 0 150 99 64 169 N 

2004 218 7 1743 264 744 371 T 

No.4 

2000 5 0 4 9 44 802 N 

2001 6 0 10 9 42 858 N 

2002 6 0 12 10 44 617 N 

2003 7 0 12 10 56 900 N 

2004 628 2.8 1873 351 1381 805 T 
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Here, existing methods that can perform the unsupervised task were considered, such 

as principal component analysis (PCA) [59], sparse autoencoder (SAE) [64], and 

deep belief network (DBN) [65]. Finally, the diagnosis performance of state-of-the-

art, semi-supervised deep learning algorithms – such as a semi-supervised variational 

autoencoder (SVAE) and semi-supervised generative adversarial network (SGAN) 

– are described in the last comparative study. To perform a one-to-one comparison, 

SGAN and the SVAE have the same three tasks as the proposed SAAT. We set 

parameters in SAE, DBN, SVAE, and SGAN, such as hyperparameters, layer and 

node sizes, activation functions in each layer, and the regularization terms, to be the 

same as those in the proposed SAAT. 

When the given data suffers from imbalanced problems (e.g. the amount of data 

from the normal state is more than 1000 times that of the fault state, as in this study), 

several metrics are required to investigate the fault detection and identification 

performance. For the detection task, the following three metrics are under 

consideration [85]: positive predictive value (PPV), fault detection rate (FDR), and 

balanced accuracy rate (BAR). For the fault identification task [57], standard 

accuracy (I-Acc) is considered. With the confusion matrix presented in Table 3-4, 

these four metrics can be mathematically expressed as: 
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In addition, as the quantitative evaluation metrics of health degradation 

performance in HFS, the following three metrics are under consideration [86]: 1) the 

trendability (Tre) of each health feature in terms of time, 2) the consistency (Con) 

between health features in HFS, and 3) the monotonic correlation coefficient (MCC) 

between health features in HFS. These metrics can be mathematically expressed as: 

 1 1 1

2 2

2 2

1 1 1 1
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where K and N are the number of measured time points and that of points in HFS, 

respectively; HF1k (or HF2k) and HF1n (HF2n) are health features at the time tk and 

those at a certain point n in HFS, respectively; ConHF1 (or ConHF2 ) and MCCHF1  (or 

MCCHF2 ) are mean values of the health features at all times and those at all points in 

HFS, respectively. For one given sample, Tre aims at investigating the health 

Table 3-4 A confusion matrix for fault detection and identification evaluation 

metrics 

True 
Predicted 

Thermal fault Electrical fault Normal state 

Thermal fault C11
 C12 C13 

Electrical fault C21 C22 C23 

Normal state C31 C32 C33 
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degradation properties (or monotonic health trendability) in the time domain and 

Con shows the correlation between health features. On the other hand, MCC 

represents the degree of the linearity between two health features for all samples, 

which are scattered in HFS. These metrics are bounded from -1 to 1; these bounds 

in Tre and Con mean that the features are the strongest negative or positive linear 

correlation with time, respectively; those in MCC mean the highest monotonicity in 

the space. Please note that our IEC TC 10 datasets are only used for the I-Acc, since 

they do not have any historical information or normal state data. 

 

3.4.3 Experimental Results and Discussion 

(1) Comparative Study 1: Effectiveness of the auxiliary detection task 

The first comparative study is to investigate the effectiveness of the auxiliary 

detection task in SSAE-based fault diagnosis model. Table 3-5 summarizes the 

quantitative results of the fault detection and identification for SAAT, SSAE-DU, 

and SSAE-IU. For PPVs, SAAT shows the best fault detection performance, which 

reaches up to 92.8%, as compared with the others. FDRs of both SAAT and SSAE-

IU are 100%, while that of SSAE-DU is 97.9%. For BARs, three diagnosis models 

exhibit more than 99%. It can be found that SAAT and SSAE-IU show better fault 

detection performance than SSAE-DU, although SAAT and SSAE-IU use the fault 

identification task that does not recognize whether the classes of the 

electrical/thermal fault types belong to the fault state. This can be interpreted from 

the number of classes; since SAAT and SSAE-IU have more classes to identify the 

fault types, they have more opportunities to impose more weights into the two classes 
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(electrical/thermal fault types) in the fault identification task than one class (fault 

state) in the fault detection task. In the case of the fault identification performance, 

both SAAT and SSAE-IU show I-Acc of 100% for KEPCO datasets. It is worth 

pointing out that SSAE-DU cannot calculate I-Acc due to the lack of fault type 

information. For the IEC TC 10 datasets, SAAT presents a slightly better 

performance of 95.7% than that of SSAE-IU. 

In terms of qualitative results, Figure 3-6 (a) and (b) present HFSs that 

correspond to SSAE-IU and SSAE-DU, respectively. With the obtained decision 

boundaries, the results of the fault detection and/or identification can be visualized. 

However, it should be emphasized that Figure 3-6 (a) cannot illustrate the 

monotonicity between health features and monotonic health trendability, as we 

expected in Figure 3-2 (a). To support this interpretation, Figure 3-6 (a) and (d) show 

the trends of health features for four samples, which are presented in Table 3-3, in 

HFS, and in the time domain, respectively. As shown Figure 3-6 (a), two independent 

ways for the health trendability are observed. Moreover, Figure 3-6 (d) presents that 

HF1s of the thermal faults (No. 3 and 4) tend to decrease, while HF2s gradually 

increases. Since these opposite trends are contradictory to the physical phenomenon, 

it is difficult for the two health features of SSAE-IU to represent the health 

degradation. For SSAE-DU, Figure 3-6 (b) depicts the monotonic health trendability, 

Table 3-5 Fault diagnosis performance of SSAE-IU, SSAE-DU, and the 

proposed SAAT 

Methods 

Fault detection (%) Fault identification (%) 

KEPCO KEPCO IEC TC 10 

PPV FDR BAR I-Acc I-Acc 

SSAE-IU 85.4±0.02 100 99.9±0.00 100 94.3±0.00 

SSAE-DU 80.3±0.01 97.9±0.01 99.1±0.67 - - 

SAAT 92.8±0.02 100 99.9±0.00 100 95.7±0.01 
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as well as the high linearity between health features, as we expected in Figure 3-2 

(b). Further, from Figure 3-6 (e), it can be found that both health features steadily 

increase. This implies that the fault detection task has the ability to present the health 

degradation features; however, as presented in Table 3-5, the fault identification 

performance cannot be evaluated. 

In summary, HFSs of SSAE-IU and SSAE-DU indicate that SSAE-IU can 

extract adequate health identification features, while SSAE-DU can extract adequate 

health degradation features. Therefore, by adding the auxiliary detection task into 

the loss function of SSAE-IU, HFS of SAAT, shown in Figure 3-6 (c), enables 

pictorial visualization not only of the health identification results but also of the 

slightly separated monotonic health trendability from normal to each fault type.  

Furthermore, from four samples in Figure 3-6 (c) and (f), it can be seen that SAAT 

can successfully realize the representation of the health degradation properties in 

HFS. We devise a strict meaning of HFS as 2D space that can provide important 

information about both the health identification and health degradation.  



39 

 

Table 3-6 summarizes the quantitative results of the health degradation. In the 

case of SSAE-IU, it can be confirmed that Tres of HF1 for the thermal fault have a 

negative sign, despite the health degradation properties. Therefore, unlike the results 

of SSAE-DU and SAAT, Cons for the electrical fault in SSAE-IU become the 

negative sign. These results are consistent with the intuitive interpretation from Fig. 

Figure 3-6. In addition, MCCs of 0.96 and 0.88 for SSAE-DU and SAAT are much  

Table 3-6 Health degradation performance of SSAE-IU, SSAE-DU and the 

proposed SAAT 

Fault type Dataset Evaluation metrics  SAAE-IU SAAE-DU SAAT 

Electrical fault 

No.1 

Tre (HF1) 0.52 0.97 0.98 

Tre (HF2) 0.98 0.97 0.89 

Con 0.67 0.99 0.95 

No.2 

Tre (HF1) 0.94 0.98 0.98 

Tre (HF2) 0.98 0.97 0.97 

Con 0.92 0.99 0.99 

Thermal fault 

No.3 

Tre (HF1) -0.89 0.97 0.97 

Tre (HF2) 0.98 0.97 0.98 

Con -0.91 0.99 0.99 

No.4 

Tre (HF1) -0.90 0.90 0.91 

Tre (HF2) 0.89 0.91 0.91 

Con -0.98 0.99 0.98 

Test dataset MCC 0.69 0.96 0.88 
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Figure 3-6 Results of comparative study 1: HFSs in (a) SSAE-IU, (b) SSAE-DU, and (c) the proposed SAAT; the trends 

of two health features with time for four samples in (d) SSAE-IU, (e) SSAE-DU, and (f) the proposed SAATverall 

procedures of the proposed SAAT-based fault diagnosis method 
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(a) (b) 

Figure 3-7 Results of comparative study 2: HFSs in (a) t-SNE and (b) SOM 
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closer to 1 than that of the 0.69 result for SSAE-IU. Thus, MCC, which stands for 

the monotonicity between health features, can indirectly represent the health 

degradation performance of the health trendability in the time domain. Thus, it can 

be concluded that the auxiliary detection task significantly improves the health 

degradation performance that would otherwise be a challenge for SSAE-IU to 

represent. 

(2) Comparative Study 2: Effectiveness of the Visualization Method 

The second comparative study is to investigate the effectiveness of the 

visualization method in the proposed SAAT approach. Here, there are two important 

points of emphasis. First, the feature spaces of t-SNE and SOM are obtained from 

the same values of HF1 and HF2 that were used when obtaining HFS in Figure 3-6 

(c). Second, since two high-level features obtained from two nodes are visualized in 

2D, issues of the dimension reduction do not exist in t-SNE or SOM. Figure 3-7 (a) 

and (b) illustrate the obtained feature spaces that correspond to t-SNE and SOM, 

respectively. In Figure 3-7 (a), both electrical and thermal faults are well clustered. 

However, it can be confirmed that the monotonic health trendability from normal to 

fault is not observed. The results of the samples (No. 1 to 4) do not show any specific 

trend. These observations are attributed to the characteristics of t-SNE. t-SNE 

converts similarities between the given high-level features into joint probabilities 

and tries to minimize the Kullback-Leibler divergence between the joint probabilities 

of the original features and converted features. During this process, the historical 

health degradation information in features can be significantly lost or distorted; thus, 

t-SNE is not suitable for representing the health degradation properties. In Figure 

3-7 (b), the color map presents the results of the clustering. Since SOM has the ability 
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to map an ordered pair of the given high-level features HF1 and HF2 into a grid 

space, a certain point in the grid space can represent a grouping of similar features. 

The color close to one (white), indicates that the grid region consists of 

distinguishable features. On the other hand, the color close to zero (black), means 

that the grid region is clustered with similar features. It can be seen that in the feature 

space for SOM it is difficult to distinguish the fault states from the normal state. 

SOM is not suitable even for fault detection and identification before investigating 

the health degradation characteristics of the transformers. Therefore, it can be 

concluded that the proposed direct visualization method enables depiction of both 

fault diagnosis results and monotonic health trendability; it is otherwise a challenge 

for t-SNE and SOM to represent these results. 

(3) Comparative Study 3: Conventional Fault Diagnosis Methods 

Next, we compare the fault diagnosis performance of conventional methods 

with those of the proposed SAAT. PCA, SAE, and DBN consider SC in the fault 

identification task. For PCA, extracted features from the unsupervised PCA 

algorithms are used to obtain diagnosis results. For SAE and DBN, sequential 

learning approaches are used; the methods of Restricted Boltzmann Machines and 

Table 3-7 Fault diagnosis and health degradation performance for conventional 

methods and state-of-the-art methods 

Methods 

Fault detection (%) Fault identification (%) 
Health 

degradation  

KEPCO KEPCO 
IEC TC 

10 
KEPCO 

PPV FDR BAR I-Acc I-ACC MCC 

Conventional 

PCA 2.00±0.00 55.0±0.04 76.5±1.78 38.3±4.00 69.6±0.02 0.00 

SAE 86.6±0.04 93.2±0.03 97.1±0.67 94.6±1.73 94.8±0.01 0.41 

DBN 55.7±0.01 100 99.7±0.00 100 92.3±0.01 0.42 

State-of- 

the-art 

SVAE 92.6±0.01 94.9±0.02 97.5±0.82 95.0±0.02 93.7±0.01 0.44 

SGAN 6.10±0.05 100 98.7±0.63 100 94.9±0.01 0.05 
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AE are under consideration in the pre-training part of SAE and DBN, respectively.  

Figure 3-8 presents the quantitative results of fault detection and identification 

for PCA, SAE and DBN. It can be seen that PCA exhibits the worst diagnosis 

performance among the four models. Unlike other conventional and proposed 

methods, PCA is based on a fully unsupervised learning approach. The lack of 

labeled information makes it difficult to guarantee that the extracted features have 

correlation and consistency with the target labeling, thus worsening the detection and 

identification performance. Except for PPV, it can be seen that SAAT, SAE, and 

DBN show quite similar diagnosis performance; however, PPV of 92.8% in SAAT 

is much higher than those of 86.6% and 55.7% for SAE and DBN, respectively. 

These results indicate two important findings. First, from the viewpoint of fault 

identification results, it can be regarded that SAE and DBN were trained correctly in 

this study, because the results show reasonably high performance, as presented in 

previous studies [64, 65]. Second, although the first result satisfies the existing 

performance, since SAE and DBN are prone to Type I error (i.e., estimating truly 

normal data as a fault), they could frequently raise a false alarm, which would be a 

vulnerability in terms of fault detection performance.
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Figure 3-8 Results of comparative study 3: HFSs in (a) PCA, (b) SAE, and (c) DBN 
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For qualitative results, Figure 3-8 (a) to (c) present HFSs that correspond to 

PCA, SAE, and DBN, respectively. Figure 3-8 (a) depicts that several normal points 

are misdiagnosed into fault regions; thus, the poor diagnosis performance of PCA 

can be confirmed. This is consistent with the quantitative results of fault detection 

and identification. In Figure 3-8 (b) and (c), it can be seen that SAE and DBN can 

well classify the three classes; however, it is worth noting that they have difficulty 

representing the overall monotonicity between health features. The directions from 

the normal to the two fault regions are independent. This interpretation can be 

strengthened through the quantitative results of the health degradation, as shown in 

Table 3-7. MCC of 0.88 in SAAT is much closer to 1 than those of 0.00, 0.41 and 

0.42 in PCA, SAE and DBN, respectively. Therefore, it can be concluded that the 

proposed SAAT approach outperforms conventional methods, with respect to the 

representation of health degradation in HFS. 

(4) Comparative Study 4: State-of-the-art Semi-supervised Deep Learning 

Lastly, we investigate whether the auxiliary detection task can be useful not 

only for SSAE method but also with other state-of-the-art, semi-supervised deep 

learning methods. The auxiliary detection task is added to the classifier part in SVAE 

and to the discriminator part in SGAN, respectively. Table 3-7 presents the 

quantitative results of fault detection and identification for SVAE and SGAN. Except 

for PPV, it can be seen that SVAE, SGAN, and SAAT show quite similar diagnosis 

performance; however, PPVs of 92.8% in SAAT and 92.6% in SVAE are much 

higher than that of 6.10% in SGAN. This indicates the following two messages: 1) 

SGAN is prone to Type I error, since it could be unstable when optimizing 

parameters under an adversarial learning process, and 2) SVAE with the auxiliary 
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detection task exhibits the best performance for fault detection and identification. 

As qualitative results, Figure 3-9 (a) and (b) present HFSs that correspond to 

SVAE and SGAN, respectively. In Figure 3-9 (a), it can be seen that SVAE can well 

classify the three classes; it is worth pointing out that it is difficult to represent the 

overall monotonicity between health features, since the distribution of the latent 

space of SVAE follows the Gaussian distribution. The directions from normal to the 

two fault regions are independent. In Figure 3-9 (b), it can be seen that SGAN 

misdiagnoses the normal points in the fault regions; thus, the poor diagnosis 

performance of SGAN can be confirmed and monotonicity between health features 

is not observed due to the unstable parameter optimization procedure. The 

quantitative results of the health degradation are summarized in Table 3-7. MCC of 

0.88 in SAAT is much closer to 1 than those of 0.44 and 0.05 in SVAE and SGAN, 

respectively. Therefore, it can be concluded that the auxiliary detection task can be 

well executed only for SSAE-based fault diagnosis model. 
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(a) (b) 

Figure 3-9 Results of comparative study 4: HFSs in (a) SVAE and (b) SGAN 
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3.5 Summary and Discussion 

In this study, a semi-supervised autoencoder with an auxiliary task (SAAT) was 

newly proposed to diagnose industrial power transformers using dissolved gas 

analysis (DGA). The method was tested using a large amount of DGA datasets 

provided by Korea Electric Power Corporation (KEPCO). The proposed idea 

consists of three main steps: 1) preprocessing DGA data, 2) extracting two health 

features by SAAT method, and 3) visualizing the two health features into two-

dimensional space, a so-called health feature space (HFS). We evaluated the fault 

diagnosis and health degradation performance of the proposed approach in four 

comparative studies. The first study investigated the effectiveness of the auxiliary 

detection task in a semi-supervised autoencoder (SSAE)-based fault diagnosis model. 

The quantitative results of the fault detection and identification show that SAAT 

achieves over 90% performance in all metrics. Qualitative results of HFS show that 

SAAT represented the integrated characteristics of fault identification features in 

SSAE-IU and health degradation features in SSAE-DU. In the second comparative 

study, the proposed method of directly visualizing heath features without 

transformation or dimension reduction intuitively illustrates the health degradation 

properties as compared with conventional visualization methods (t-stochastic 

neighbor embedding (t-SNE) and self-organizing map (SOM)). In the third study, 

SAAT outperformed all conventional fault diagnosis methods (principal component 

analysis (PCA), sparse autoencoder (SAE), and deep belief network (DBN)) in terms 

of both quantitative and qualitative results of the health degradation performance. 

The last study investigated whether the auxiliary detection task can be useful not 

only for SSAE method but also for other state-of-the-art, semi-supervised deep 
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learning methods (semi-supervised variational autoencoder (SVAE) and semi-

supervised generative adversarial network (SGAN)). It was found that the auxiliary 

detection task can be well executed only for SSAE-based fault diagnosis model. 

Therefore, these experimental results examining real-world DGA datasets confirm 

that the auxiliary detection task in SSAE provides the opportunity to investigate not 

only fault identification but also health degradation; further, HFS helps to intuitively 

monitor the health state of power transformers. 
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Chapter 4 Learning from Even a Weak Teacher: Bridging Rule-based Duval Weak Supervision and a Deep Neural Network (BDD) for Diagnosing Transformer 

Equation Chapter 4 Section 1 

Learning from Even a Weak 

Teacher: Bridging Rule-based 

Duval Weak Supervision and a 

Deep Neural Network (BDD) for 

Diagnosing Transformer 

 

The prerequisite for stable and reliable results for conventional AI-based fault 

diagnosis is that sufficient labeled datasets must be available for the training process. 

Unfortunately, as thorough visual inspection requires tremendous cost and time to 

consistently recognize incipient faults, most massive DGA datasets are unlabeled. 

Emerging research in computer vision and image recognition has also examined 

real-world industrial settings, where data is overwhelmingly unlabeled [87]. In these 

fields, rather than developing a new complex model, there have been several 

attempts to integrate existing pre-trained models to make use of the advantages of 

each model, while minimizing the disadvantages [2, 88-92]. It implies that the 

combination of one model’s weak supervision with the other deep-learning-approach 

can be one promising solution. For fault diagnosis, it is reasonable to combine the 
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advantages of rule-based methods, which enable to identify the unlabeled data, with 

those of deep learning-based methods, which do not require handcrafted features. 

Despite this physical insight, only a few studies have worked to bridge these two 

different methods for use in industrial applications [93, 94]. In the field of 

transformer fault diagnosis, this approach has yet to be explored. 

Thus, in this Chapter 4, we propose a new framework, called BDD, which 

bridges Duval’s rule-based weak supervision with a deep neural network (DNN) for 

transformer fault diagnosis using DGA. Key points in BDD are Duval’s method, 

DNN, and parameter transfer method. The Duval’s method (the teacher) virtually 

pseudo-labels health states for massive unlabeled data. Although the teacher does 

not always provide correct answers, it paves the way for AI (the student) to take 

expert knowledge into account. To learn the teacher’s knowledge, as well as to 

reduce the effects of answers that might be overfitted, a DNN model with an 

auxiliary unsupervised task is used to both train and regularize the pseudo-labeled 

source data. Then, the pre-trained DNN model is transferred to sparse, but similar, 

labeled target data. Here, since the size of the target data is much less than that of the 

source data, a parameter-freezing technique is used to update the pre-trained DNN 

model, resulting in a re-trained DNN model [2]. The validity of BDD is demonstrated 

by massive unlabeled source data, provided by Korea Electric Power Corporation 

(KEPCO), and sparse target data, provided by IEC TC 10 database 

The rest of this section is organized as follows. Section 4.1 outlines 

backgrounds of Duval’s method and of parameter transfer of DNN. Sections 4.2 and 

4.3 demonstrate the proposed method and experimental results, respectively. Finally, 

the conclusions of this work are provided in Section 4.4. 
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4.1 Backgrounds of BDD 

4.1.1 Rule-based method: Duval Method 

Among rule-based methods, the Duval’s method has been widely used due to its high 

consistency and reliability [10]. The basic technique is to extract gas ratios, shown 

in  (4.1), as handcrafted features: 

  
3

2 2 2 4 4

1

Gas Gas whereGas C H ,  C H ,  CHi i i i

i

R
=

=   (4.1) 

The main concern of the Duval’s method is to identify seven fault types by 

using given thresholds, as presented in Table 4-1. Here, the thresholds were 

heuristically determined by pervious humans’ experience and laboratory-level 

experiments. From the thresholds, the fault identification results can be intuitively 

depicted on the triangular coordinate system (Table 4-1) in terms of gas ratios. For 

example, when (R1, R2, R3) is equal to (0.13, 0.4, 0.57), the health state is identified 

to T3. However, the rule-based method usually underperforms the AI-based method 

due to a lack of sufficient mathematical formulations and statistical approaches. 

Table 4-1 Fault identification of the Duval triangle method 

R1 R2 R3 Faults Duval’s triangle coordinate 

0.00-0.02 0.98-1.00 0.00-0.02 PD 

 

0.00-0.04 
0.46-0.80 0.20-0.50 T1 

0.76-0.98 0.02-0.20 T2 

0.00-0.15 0.00-0.50 0.50-1.00 T3 

0.04-0.13 0.47-0.96 0.00-0.40 

DT 0.13-0.29 0.21-0.56 0.40-0.50 

0.15-0.29 0.00-0.35 0.50-0.85 

0.13-0.29 0.31-0.64 0.23-0.40 D1 

0.29-0.77 0.00-0.48 0.23-0.71 D2 
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4.1.2 Deep learning Based Method: Deep Neural Network 

A DNN is a hypernym of convolutional neural network (CNN) or recurrent neural 

network. However, since the DGA data is not a sort of images or time-series data, 

we limited the definition of the DNN to deeply stacked hidden layers consisting of 

nodes and activation functions that relate input and output responses in nodes [95]. 

A training sample is a set {(x(1), y(1)), ∙∙∙ , (x(p), y(p))}; p is the number of DGA samples. 

Input DGA data x(m) and one-hot encoded labeling information y(m) are in the D- and 

C-dimensions (x(m)ℝD and y(m) ℝC), respectively. 

A non-linear activation function f, such as a rectified linear unit and an 

exponential linear unit, linearly compresses input DGA data x(m) into activated DGA 

data z(m) (z(m)ℝDʹ) with parameters θ (i.e., a weight matrix WℝDʹ˟D and a bias 

vector bℝDʹ ) and then converts it into a hidden unit h(m) as follows: 

 
( ) ( )( ) ( )( )m m m

f f= = +h z Wx b  (4.2) 

If f is defined as the softmax function, qsm is presented as: 

 
( )( ) ( )( ) ( )( )sm

1

exp exp
C

m m m

n n n

n

q
=

= z z z  (4.3) 

where the dimension (Dʹ) of z(m) is equal to that (C) of y(m). Then, h(m) becomes a 

one-hot encoded vector ŷ
(m)

 that contains the probability of y(m). When DNN has N 

hidden layers, ŷ
end

(m)
 at the last hidden layer can be expressed as 

 
( ) ( )( )( )( )end sm 1 1 1 1

ˆ m m

N N N Nq f f− −= + +y W Wx b b  (4.4) 

To match ŷ
end

(m)
 with y(m), the parameters θ in each layer need to be optimized by 

minimizing the loss function L(y, ŷ
end

), which represents the discrepancy between 

y and ŷ
end

. Here, the cross-entropy loss function has been widely used as: 
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 ( ) ( ) ( )( )end end

1
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ˆ ˆ,  log
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m

L
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= − y y y y  (4.5) 

Thanks to the backpropagation method with mini-batch gradient descent algorithms, 

the parameters θ are updated. For example, in the case of θN, which are parameters 

in the last hidden layer, the procedure to update θN is organized as: 

 

( ) ( ) ( )
( )

mm m
mN N L Ln

nj nj n n jN N N

nj nj nj

zL L
h    

  

  
 − = = 

    

 (4.6) 

where η is a learning rate; an error δn
N

 is defined as:  
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 
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 (4.7) 

After parameter optimization, the DNN is able to identify the labels and extract high-

level features that relate input DGA x(m) to labeling information y(m). 

 

4.1.3 Parameter Transfer 

One important issue in fault diagnosis research is that fault data or labeled data are 

typically insufficient due to the tremendous maintenance cost that would be required 

to collect it. Deep learning works well under the general assumption that both 

training and test data are drawn from the same distribution. However, this 

assumption fails in many real-world engineering applications. Parameter transfer 

learning is one promising solution to address this issue. Briefly, parameter transfer 

seeks to store knowledge (e.g., optimized parameters) obtained in an engineering 

problem (called the source data) and transfer it to a different, but related, problem 

(called the target data). Trained models in the source and target data are called pre-

trained and re-trained models, respectively. Transfer learning plays a vital role in 
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achieving a dramatic improvement in fault diagnosis performance in the target data 

by reusing the pre-trained model. Note that several parameter transfer approaches 

exist, depending on the target data size: freezing, partial freezing, fine-tuning, and 

selective parameter freezing. If the source data is similar, but much larger than the 

target data, the freezing method has been mainly used [2, 88-91, 96, 97] 

 

4.2 BDD Based Fault Diagnosis 

 

4.2.1 Problem Statement 

As shown in Figure 4-1, in the early days of research that has incorporated shallow 

learning techniques and handcrafted features into fault diagnosis, supervised (Model 

B) or semi-supervised (Model C) learning approaches were prevalent. Recently, to 

apply a fault diagnosis method that was developed for one system (source) into 

another but a similar, system (target), several deep learning studies that utilize 

transfer learning (e.g., parameter transfer (Models A and A*)) have been frequently 

reported. Here, the prerequisite of the parameter transfer is that a little labeled source 

data should be given. However, it should be emphasized that it is struggling to obtain 

 

Figure 4-1 Problem statement of conventional and proposed method 
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the labeled DGA in industrial power transformers. For example, although KEPCO 

has stored DGA data from thousands of transformers in South Korea for three 

decades, most of them are recorded as unlabeled data. Thus, in order to investigate 

the parameter transfer, when label data is absent, pseudo-labeling is performed based 

on prior knowledge of the rule-based Duval method. This is why the proposed 

approach attempts to bridge rule-based and deep learning methods. 

However, it is worth pointing out that pseudo-labeling via rule-based methods 

also has limitations. Rule-based methods can convey some prior pseudo-labeled data; 

however, since the Duval’s method is not always correct, there will be wrong or 

noisy labeled data. Thus, it is necessary to develop a deep-learning-based fault 

diagnosis model that is somewhat robust to noisy labeled data. A further step is 

required to update pre-trained models to reflect true labeling information. This is 

why we consider both DNN with a regularization task and parameter transfer 

learning. 

 

4.2.2 Framework of the Proposed BDD 

(1) Scaling input industrial DGA 

The underlying characteristics of the measured DGA data are highly skewed 

distributions of gas concentrations. When a transformer suffers from a fault state, the 

concentrations suddenly rise to amounts hundreds or thousands of times the amounts 

of the prior concentration [57]. Motivated by this, DGA data is converted to a 

logarithmic scale. Normalizing the log-scale DGA data into a range [0, 1] helps to 

stabilize the numerical operations [57]. In Figure 4-2, the input DGA data without 
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and with scaling is denoted as X and X*, respectively. Unlike previous studies, we 

use only raw DGA data, without any augmented handcrafted features. This is in 

contrast to previous studies, which generally added a numerical combination of gas 

ratios and concentrations in input DGA data [64, 65]. 

(2) Pseudo-labeling unlabeled source DGA data by Duval weak supervision 

A strong advantage of Duval’s method is to identify fault states of unlabeled 

data from three gas ratios. This infers that Duval’s method enables pseudo-labeling 

of unlabeled data. However, it is important to note that Duval’s method includes two 

steps: (i) classification of the normal and fault states in advance using a rule-based 

method, called IEC 60599 (Table 4-2), and (ii) identification detailed fault states 

using the Duval’s triangle (Table 4-1) [10]. 

The first step is to annotate the normal or fault states of given unlabeled source 

data using the several heuristic criteria of gas concentrations provided in IEC 60599 

[66]. The unlabeled source data is classified as the fault state. The second step is to 

transform the gas concentrations of three gases (C2H2, C2H4, and CH4) into gas ratios 

as presented (4.1). The last step is to pseudo-label the detailed fault states by 

spanning the transformed gas ratios into the Duval’s triangle and identifying the fault 

states, as shown in Figure 4-2. Xs
* and Ỹs stand for the scale-transformed source 

data and corresponding pseudo-labeling information, respectively. 

(3) Pre-training the DNN with an auxiliary unsupervised regularization task 

Table 4-2 Thresholds for normal values in IEC 60599 

Gas H2 C2H2 C2H4 C2H6 CH4 

Threshold [ppm] 60~150 3~50 60~280 50~90 40~110 
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With Xs
* and Ỹs, DNN needs to understand and follow up on the knowledge 

of the teacher (i.e., the Duval’s method). This learning process can be regarded as 

parameter updating in the direction of minimizing the loss function Lsu of the 

supervised task. As presented in (4.3), Lsu is a cross-entropy loss function that 

represents the discrepancy between pseudo-labeled fault states Ỹs by the Duval’s 

method and the estimated faults states Ŷend by DNN. Here, the pseudo-labeled data 

is considered to be the 100% correct answer from the viewpoint of the DNN; 

however, it is not guaranteed that it is always true in reality. Therefore, to achieve 

robust diagnosis performance under noisy labeling problems, this paper newly adds 

an auxiliary unsupervised task term Lun in (4.2).  Lun is a cross-entropy loss function 

that represents the discrepancy between the given DGA data Xs
*  and estimated 

DGA data 𝐗̂end
*  at the end layer of DNN. A well-known unsupervised autoencoder 

takes charge of extracting representative features of input source data by learning 

itself. Thus, Lun can work as a regularization effect to avoid overfitting problems of 

supervised learning [72, 98]. Finally, the loss function LDNN can be expressed as: 

 ( ) ( ) ( ) ( )* *

DNN su s end un s end
ˆ ˆ1 ,  ,  L L L = − +θ Y Y X X  (4.8) 
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Figure 4-2 A framework of the proposed BDD 
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where the hyperparameter α is the weight between Lsu and Lun. Therefore, DNN pre-

trains not only the pseudo-labeled source data but also the input DGA source data to 

simultaneously extract both estimated labeled data (Lsu) and representative features 

(Lun). Although this approach has been widely used in computer vision and image 

recognition [99-103], little attention has been paid in the field of transformer fault 

diagnosis. 

A process to optimize the parameters is as follows: 

 ( ) ( ) ( )( )su un1
m m

nj nj n j n jh h      − − +  (4.9) 

where  δn
su

 and δn
un

 are defined, respectively, as: 
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Eqs. (4.3) and (4.4) represent the updating process to learn Ỹs   and Xs
* , 

respectively. Finally, with the optimized parameters of the supervised and 

unsupervised tasks presented in (4.5), the pre-trained DNN model enables both 

regularizing and extracting the labeling information for fault diagnosis. 

(4) Re-training the DNN with parameter transfer 

With the transformed target training DGA data Xt
*and corresponding true fault 

states Yt, the pre-trained DNN model must be updated via parameter transfer. Recall 

the research backgrounds presented in Section II.B and the problem statement in 
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Section III.A. When the source data is similar, but much larger than the target data, 

the freezing method has been mainly used. Therefore, the parameters in all layers of 

the pre-trained model, other than the last layer, are frozen. Furthermore, since the 

main focus of the re-training is to reflect the true labeled target data as much as 

possible, the parameters in the unsupervised regularization task are also frozen. This 

parameter freezing approach can be mathematically expressed as: 

 
,  = &Supervised task (Re-training)

0,  otherwise(Freezing)

DNN

DNN m

m

L
m NL





 

= 
 



 (4.12) 

where m is the m-th hidden layer and N is the number of total layers. Similar to the 

procedure in(4.9) to (4.12), the parameters in the supervised task can be re-
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optimized. Thus, the proposed BDD can consider both characteristics of the massive 

unlabeled source and sparse labeled target data. This approach is distinguished from 

conventional studies, which were conducted under ideal conditions of well-

organized, labeled data [64]. 

 

4.2.3 Overall Procedure of BDD-based Fault Diagnosis 

Figure 4-3 illustrates the overall procedure of the proposed BDD-based fault 

diagnosis. The first step is to transform a scale of both unlabeled source {Xs} and 

labeled target data {Xt}. After preprocessing, each input data is denoted as {Xs
*} and 

 
Figure 4-3 Overall procedure of the proposed BDD-based fault diagnosis- 
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{Xt
*}, respectively. The next step is to weakly supervise {Xs*} by pseudo-labeling 

as Ỹs, using the Duval’s method. The third step is to construct and stabilize the 

DNN-based fault diagnosis model using {Xs*, Ỹs }. For randomly initialized 

parameters, Lsu, and Lun are calculated. For a given batch size, the backpropagation 

method with a mini-batch gradient descent method trains the BDD-based model. The 

last step is to re-train the pre-trained DNN model from {Xt
*, Yt} with parameter 

freezing. Here, only parameters in the supervised task are updated until the epoch 

reaches the given maximum value, while minimizing LDNN. To evaluate the 

effectiveness of the BDD-based fault diagnosis method, the preprocessed target test 

data is used and fault diagnosis performance can be finally calculated. Besides, the 

diagnosis results can be visualized in two-dimensional (2D) space with the help of t-

stochastic neighboring embedding (t-SNE) to depict diagnosis results. 

 

4.3 Performance Evaluation of the BDD 

4.3.1 Description of Data and the DNN Architecture 

DGA data used in this study was provided by KEPCO. Due to maintenance and 

visual inspection costs, 4,000 KEPCO datasets are unlabeled; thus, they are defined 

as the source data. KEPCO has measured five combustible gases (i.e., H2, C2H2, C2H4, 

C2H6, and CH4) once a year, when the transformers are in a normal state. In abnormal 

or urgent situations, the gases have been measured once a month or once a week. 

The target data is IEC TC 10, which has 117 datasets; this is a unique and official 

open DGA dataset [66]. Despite the different specifications and operating periods of 

transformers in the KEPCO and IEC TC 10, there is a similarity between them in 

that the scale and distribution of gas concentrations are comparable. These properties 
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support the validity of our approach to make use of the parameter freezing. The IEC 

TC 10 includes five fault states: PD, T12 (T1 & T2), T3, D1, and D2. Here, it should 

be noted that the lack of labeling information in KEPCO leads to utilizing these 

datasets as training data. On the other hand, the IEC TC 10 data, which has true 

labeling, is divided into two folds: training data (80%) and test data (20%). 

Table 4-3 summarizes the DNN architecture. Unlike a convolutional neural 

network [88], there is a lack of standardized guidelines of DNN architecture. 

Referring to previous studies of transformers [64, 65, 98], the considered DNN 

consists of three shared hidden layers and one end layer with two tasks. Each shared 

hidden layer has 30, 20, and 15 nodes, respectively. Supervised and unsupervised 

tasks in the end layer has six and five nodes, respectively. Six nodes are for one 

normal and five fault states. Five nodes are for five dissolved gases. The activation 

function of the supervised task is the softmax function, presented in (4.6), while the 

activation function of other layers – including the unsupervised task – is the 

exponential linear unit for robust and stable computation. The batch size is 200. 

Epochs in pre-training and re-training are 200 and 20, respectively. 

 

 

Table 4-3 Parameters in the DNN 

Layer Activation Node # Parameter # 

Input - 5 - 

Shared layer 1 ELU 30 35 

Shared layer 2 ELU 20 630 

Shared layer 3 ELU 15 320 

Output1 (supervised) SM 6 96 

Output 2 (unsupervised) ELU 5 80 
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4.3.2 Experimental Results and Discussion 

When the Duval’s weak supervision is incorporated into other AI-based methods, 

the first case study aims to demonstrate the effectiveness of BDD, as compared with 

conventional shallow and deep learning methods. The shallow learning methods 

include linear support vector machine (L-SVM), SVM with radial basis function (R-

SVM), K-nearest neighbors (KNN) algorithm, and a neural network with one hidden 

layer (1-NN). The deep learning methods include deep autoencoder (DeA) and DNN. 

For DNN, there are four cases, namely DNNFT
Non , DNNPF

Non , DNNFT
Aux , and the 

proposed BDD. Superscripts ‘Non’ and ‘Aux’ stand for ‘without the auxiliary task’ 

and ‘with the auxiliary task,’ respectively. Subscripts ‘PF’ and ‘FT’ stand for 

‘parameter freezing’ and ‘fine tuning,’ respectively. When the auxiliary 

regularization term is given, the second case study is proposed to validate the 

effectiveness of the freezing approach in BDD with respect to the feature space and 

confusion matrix. In light of the Duval’s weak supervision, the third case study is to 

validate the robustness of the auxiliary regularization task under various percentages 

of noisy pseudo-labeled source data. The last case study investigates how the fault 

diagnosis performance of the BDD is sensitive to hyperparameters (learning rate η 

and a weight α). 

(1) Case Study 1. Comparison with Existing Methods 

Table 4-4 summarizes the fault diagnosis accuracy of the BDD approach and 

several AI-based methods with respect to three aspects. To clearly figure out the 

effects of parameter freezing and auxiliary task, Figure 4-4 pictorially describes the 

results of DNNFT
Non, DNNPF

Non, DNNFT
Aux, and BDD. The first point investigates the 

diagnosis performance according to the amount of target training data X. In Table 
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4-4, 4~80% presents the percentage of target training data in the entire IEC TC 10. 

The number of each data is 5, 24, 45, 60, and 94, respectively. The result implies that 

while other AI methods are vulnerable to the amount of labeled data, BDD can be 

relatively robust even in extremely rare cases for labeled data. This is because AI-

algorithms  
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Table 4-4 Evaluation of the fault diagnosis accuracy 

Learning 

approaches 
Methods 

Ratio (%) of labeled training data 
Unlabeled 

5 10 30 60 80 

Supervised 

learning 

L-SVM 50.0 54.5 63.6 68.2 68.2 

X 

R-SVM 40.9 40.9 45.5 50.0 54.5 

KNN 40.9 40.9 59.1 72.7 72.7 

1-NN 50.0 40.9 50.0 50.0 59.1 

DeA 13.6 18.2 22.7 77.2 86.4 

DNN 50.0 63.6 68.2 81.8 90.9 

Semi-

supervised 

learning 

L-SVM 40.9 45.5 63.6 63.6 59.1 

O 

R-SVM 50.0 63.6 72.7 77.3 68.2 

KNN 45.5 50.0 59.1 63.6 68.2 

1-NN 40.9 63.6 63.6 63.6 72.7 

DeA 50.0 54.5 68.1 77.2 86.4 

DNN 50.0 63.6 72.7 77.3 86.4 

Rule-based 

knowledge 

learning 

L-SVM 45.5 45.5 45.5 50.0 50.0 

△ 

R-SVM 63.6 72.7 77.3 81.8 81.8 

KNN 54.5 54.5 59.1 63.6 63.6 

1-NN 59.1 63.6 63.6 77.3 72.7 

DeA 63.6 68.2 77.3 81.8 81.8 

BDD 86.4 90.9 95.4 95.4 95.4 
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usually tend to lose generalized diagnosis performance if an insufficient amount of 

true labeled data is provided. However, since BDD takes rule-based knowledge in 

advance, it seems to overcome the limitation of the amount of labeled data. 

The second point examines the effects of the learning approach. Performance 

evaluation is executed for three cases: supervised learning (Model B in Figure 4-1) 

without unlabeled Xs, semi-supervised learning (Model C in Figure 4-1) with 

unlabeled Xs, and rule-based knowledge learning (Models D and D* in Figure 4-1) 

with unlabeled Xs. Here, the last learning is the proposed method that bridges the 

Duval’s pseudo-labeling and AI-algorithms. Since the transfer learning (Models A 

and A* in Figure 4-1) cannot operate directly in the absence of labeled source data, 

it is not included in this paper. For AI-based methods other than DNN, the proposed 

rule-based knowledge learning improves diagnosis performance to some extent; 

however, that is not always guaranteed. According to previous studies, these 

algorithms react sensitively to what features are newly added at the stage of 

preprocessing [17]; thus, only raw DGA data does not yield consistent results. On 

the contrary, all cases (DNNFT
Non , DNNPF

Non , DNNFT
Aux , and BDD) in rule-based 

knowledge learning outperform DNN in supervised and semi-supervised learning. It 

 
Figure 4-4 Evaluation of the fault diagnosis accuracy in terms of DNN with a 

transfer learning and an auxiliary task. 
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implies that the combination of rule-based knowledge learning and an auxiliary 

regularization task or parameter freezing can significantly enhance the diagnosis 

performance. 

The third point is the effects of the auxiliary regularization task and parameter 

freezing in DNN. In the case of the regularization task, the diagnosis performance of 

both BDD and DNNFT
Aux  are larger than those of DNNPF

Non  and DNNFT
Non , 

respectively, for all amounts of target data. In the case of the parameter freezing, the 

diagnosis performances of BDD and DNNPF
Non are larger than those of  DNNFT

Aux 

and DNNFT
Non, respectively. We confirm that BDD, has both regularization task and 

parameter freezing, shows the best diagnosis performance of 95.4%, when 80% of 

target data is given. 

Here, there are two things that should be emphasized. First, the proposed BDD 

method exhibits the best diagnosis performance of 86.4%, as compared with other 

algorithms, even if an extremely sparse amount (5%) of labeled training DGA data 

is used. This is a situation in which only one data sample for each fault (PD, D1, D2, 

T12, and T3) is given. Second, the diagnosis performance quickly reaches the 

maximum value, obtained from 80% of true labeled data, even with sparse (30%) 

true labeled data. Comprehensive analyses of these points infers that the proposed 

BDD approach can be sufficiently applicable even in engineering situations where 

only a few labeled DGA data points are provided. 

(2) Case Study 2. The effectiveness of parameter freezing via feature space 

investigation 
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To deeply understand the effectiveness of parameter freezing approach, 2D 

feature space is analyzed where hidden features (i.e., estimated labeled data), 

obtained from the supervised task, are projected via t-SNE. Figure 4-5 illustrates the 

feature space results of the following three cases: (i) a pre-trained DNN model before 

re-training (Figure 4-5 (a)), (ii) a re-trained BDD model with parameter freezing 

(Figure 4-5 (b), the proposed method), and (iii) a re-trained DNN model with a fine 

tuning approach (Figure 4-5 (c)). To support the qualitative results, the quantitative 

results of the confusion matrix for each case are presented in Figure 4-6. 

 In Figure 4-5 (a) and Figure 4-6 (a), three samples in T12 (star-purple) are 

classified into PD, T12, and T3, respectively; thus, the fault identification of T12 

does properly work. In Figure 4-5 (c) and Figure 4-6 (c), only one of them is 

misdiagnosed into T3; however, two of nine in D2 (plus-red) are diagnosed in D1, 

which was not observed in both Figure 4-5 (a) and Figure 4-6 (a). For the proposed 

parameter freezing approach (Figure 4-5 (b) and Figure 4-6 (b)), all samples in T12 

(star-purple) and D2 (plus-red) are well classified into corresponding fault states. 

Therefore, the parameter freezing approach can exhibit much better fault diagnosis 

performance. 

When the parameter freezing approach is adopted, there are two things that 

should be emphasized: (i) different properties become farther apart and (ii) similar 

properties become closer together in Figure 4-5. In detail, the fault zone of PD 

becomes farther from the thermal fault zone (dt1<dt1′) and the thermal fault zone of 

T3 (highlighted with solid-pink) becomes farther from the electrical fault zone 

(dt3<dt3′). On the other hand, the zone of PD (highlighted with solid-orange) 

becomes closer to the electrical fault zone (dt2>dt2′). It is a fact in the field of
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Figure 4-5 2D Feature space using t-SNE of the following three cases: (a) pre-trained DNN model before re-training, (b) 

re-trained BDD model with parameter freezing (the proposed method), and (c) re-trained DNN model with fine 

tuning approach. 
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transformers that the fault properties of electrical faults and partial discharge are 

considerably similar [104]. Furthermore, it can be seen that the remote zones of D1 

(highlighted with dashed-green) and PD (highlighted with dashed-orange) go back 

and are clustered into corresponding fault zones. In addition, unlike the parameter 

freezing approach, in which the fault zones are clearly classified as a whole, several 

overlapped fault zones (highlighted with solid-gray) are observed for the fine-tuning 

approach. Therefore, it is implied that the parameter freezing approach in BDD 

enables it to present better fault identification and clustering performances. 

(3) Case Study 3. The effectiveness of the auxiliary regularization term under 

noisy labeled ratios 

In preliminary experiments, it was found that Duval’s method had a fault 

diagnosis accuracy of 76% for the given data. Therefore, we should investigate how 

the BDD approach is robust to the noisy labeled data. Since the diagnosis 

performance of the BDD converges to the maximum value from 30% of the true  

 
Figure 4-6 Confusion matrix results for the following three cases: (a) pre-trained 

DNN model, (b) re-trained BDD model with parameter freezing (the 

proposed method), and (c) re-trained DNN model with fine tuning 

approach. 
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Table 4-5 Robustness performance under noisy labeled ratios 

Learning 

approaches 
Methods 

Ratio (%) of the noisy labeled data 

30 40 50 70 90 

Rule-based 

knowledge 

learning 

L-SVM 45.5 45.5 45.5 54.5 54.5 

R-SVM 77.3 77.3 77.3 63.6 54.5 

KNN 59.1 59.1 59.1 54.5 59.1 

1-NN 63.6 59.1 59.1 59.1 59.1 

DeA 81.8 77.2 77.2 63.6 54.5 

DNNFT
Non 81.8 77.3 77.2 63.6 63.6 

DNNFT
Aux

 81.8 81.8 77.2 77.2 63.6 

DNNPF
Non

 81.8 81.8 72.7 63.6 54.5 

BDD 90.9 86.3 81.8 81.8 63.6 
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labeled data, as shown in Table 4-4, the amount of true labeled data is fixed to 30%. 

Table 4-5 summarizes the diagnosis results from 30% to 90% of the noisy labeled 

data in the case of the rules-based knowledge learning. Here, the N% of noisy label 

means that (N-24) % of pseudo-labeled samples are randomly selected and the health 

state of the corresponding sample is randomly changed to the remaining health states. 

In shallow learning, when the noise is small enough, the accuracy is 

considerably low; however, it can be seen that the diagnosis performance is not 

sensitive enough to the change, even though the degree of noise increases. This is 

because shallow learning needs handcrafted features to avoid the overfitting problem 

[17, 98]; thus, it already suffers from overfitting with raw data, whether noise is 

involved or not. These results are similar to the idea that poor students generally have 

poor grades no matter the teacher’s ability. On the other hand, deep-learning-based 

methods show relatively high performance; however, it can be seen that the accuracy 

decreases as the noise level increases. When the noise reaches 90%, the performance 

of both shallow and deep learning looks similar. However, it should be noted that 

when the noise is up to 70%, DNNFT
Aux and the proposed BDD, which have the 

auxiliary regularization term, show a high accuracy (>75%) and outperform 

DNNFT
Non and DNNPF

Non. These results support that the auxiliary regularization term 

makes the fault diagnosis model less sensitive to the noisy labeled data. 

(4) Case Study 4. Effects of Hyperparameters on Fault Diagnosis 

The main concern of this case study is to evaluate how the fault diagnosis 

performance of the proposed BDD varies with hyperparameters (i.e., the learning 

rate η and weight α). In the gradient descent algorithm, the learning rate η indicates 
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how much the parameters move to certain minimum points while decreasing the 

slopes. If an improper learning rate is given, the cost function can deviate from the 

minimum value, so-called overshooting. The weight α determines the ratio between 

the supervised and unsupervised tasks. This has an important meaning, as the 

unsupervised task is used to solve the overfitting problem that may be induced by 

the Duval’s weak supervision. Table 4-6 summarizes the calculated accuracy. Here, 

depending on the given amount of labeled data, three cases of 10%, 30%, and 60%, 

are under consideration. As shown in Table 4-6, depending on the learning rate η 

and weight α, it can be seen that the accuracies at 10%, 30%, and 60% exhibit non-

linear trends. It should be noted that maximum accuracies are obtained when η and 

α are 0.0005 and 0.01, respectively, via Bayesian optimization. Therefore, case 

studies 1 to 3 were performed with these values. 

 

4.4 Summary and Discussion 

A framework for power transformer fault diagnosis, called BDD, was newly 

proposed to bridge the Duval’s rule-based weak supervision and the deep neural 

network (DNN) approach using dissolved gas analysis (DGA). BDD overcomes 

problems found in real-world industrial settings, where a large amount of DGA data 

is unlabeled, and an extremely small size of data is labeled. In this paper, we tested 

the proposed approach using massive unlabeled Korea Electric Power Corporation 

(KEPCO) databases and sparse-labeled IEC TC 10 databases. The proposed BDD 

approach achieved an accuracy of 95.4%, outperforming existing methods. It should 

be noted that BDD exhibited high accuracy even under situations in which extremely 
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small labeled target or noisy pseudo-labeled source data were given. 
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Table 4-6 Effects of hyperparameters on accuracy of BDD 

η 0.00005 0.0001 0.0005 0.001 0.005 0.01 

Acc60% 95.4 90.9 95.4 86.4 86.4 86.4 

Acc30% 90.9 86.4 95.4 86.4 81.8 81.8 

Acc10% 86.4 86.4 90.9 86.4 81.8 72.7 

α 0.001 0.05 0.01 0.1 0.5 0.9 

Acc60% 90.9 95.4 95.4 90.9 86.4 81.8 

Acc30% 90.9 90.9 95.4 95.4 90.9 81.8 

Acc10% 90.9 90.9 90.9 90.9 86.4 81.8 

 

 

 

 

 

 

 

 

 

 



79 

 

 

Chapter 5 Generative Adversarial Network with Embedding Severity DGA Level 

Equation Chapter 5 Section 1 

Generative Adversarial Network 

with Embedding Severity DGA 

Level 

 

Chapter 5 is dedicated to diagnose the fault severity level as well as the fault types. 

Although the conventional AI-based approaches, which are described in Chapter 1 

and Chapter2, have been done in power transformer fault diagnosis, there are two 

limitations as follows. The first problem is the absence of severity level for AI-based 

power transformer diagnosis. The transformer severity level was diagnosed 

according to the threshold of the DGA concentration, which is estimated through the 

power utility company and in the academic field. This transformer severity suggests 

to the field engineer when to measure the DGA data. For example, if the state is 

caution 1, the next measurement will be measured after 12 months, but in an 

abnormal condition, DGA data is measured after a month. In addition, most failure 

modes are diagnosed except for the usual case, using the rule-based or AI-based 

method, which is described in the previous chapter is utilized. Thus, the existing fault 

diagnosis methods first obtained DGA data, diagnosed the severity level based on 

rules, and then diagnosed the fault mode, which could be a cumbersome method. 

The second drawback is that even if it has a chance to devise a method that can 
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perform two different tasks at the same time (multi-task learning), there is a problem 

that the information of the two classes is imbalanced. Specifically, since the severity 

level is diagnosed based on rules, the severity level information is always annotated 

in most DGA data, while the fault type is challenging to obtain. This is because it is 

very difficult to diagnose the complex internal systems of the transformer to identify 

specific fault types, and it cost a huge economic loss to shut down the transformer 

for visual inspection. 

To address the two different diagnostic tasks simultaneously in an imbalanced 

condition between severity level and fault type, we propose an auxiliary dual 

classifier of generative adversarial network for diagnosing fault severity levels and 

types (GAST). We devise a dual classifier for diagnosing fault types and severity 

levels by training two labeled DGA dataset. The industrial DGA data, however, that 

should contain two different label information, usually only has a severity level, and 

fault types are unlabeled, so the two tasks cannot be trained simultaneously with a 

conventional supervised learning approach. For such an imbalanced problem in 

transformer fault diagnosis, sampling techniques were developed, but it is known 

that these sampling techniques only generate similar data and it is difficult to 

generate various data. Therefore, we tackle two imbalanced conditions through 

generative adversarial network (GAN), which achieved great performance in today’s 

data generation.  

The rest of this paper is organized as follows. Section 5.1 outlines backgrounds 

of neural network and generative adversarial network. Sections 5.2 and 5.3 

demonstrate the proposed method and experimental results, respectively. Finally, the 

conclusions of this work are provided in Section 5.4. 
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5.1 Backgrounds of Generative Adversarial Network 

GAN is a framework devised by Ian Goodfellow to generate data [105]. Instead of 

single generative network, it contains a generative network G and a discriminative 

network D forming an adversarial framework, as shown in Figure 5-1. The term 

"adversarial" is that the generator is designed to confuse the discriminator by making 

the fake data as similar as real data. In contrast, the discriminator is designed to 

distinguish between fake and real data correctly. 

The generator consists of input and output, where random noise vectors z 

(usually normal or uniform distribution, p(z)) are imported into the input and output 

fake samples via generator G(z; θg) where θgindicates the parameters of generator.  

And, the discriminator D is inputted by real data x or G(z) to distinguish real from 

fake data by D(x; θd)  or D(G(𝑧); θd)  where  θd  denotes the parameters of 

discriminator. Besides, it can be interpreted that D(x)=1 when x~p(x) and D(x)=0 

when x was generated from G. More formally, these objective loss function can be 

trained by minimax two-player game expressed as: 

 ( ) ( ) ( ) ( )( )( )~ ~
minmin log log 1

data noisex p x z p z
G D

D x D G z   + −   
 (5.1) 

Eq (5.1) is solved by optimizing each parameter,  θd and  θg, by gradient updates 

as follows: 

 
Figure 5-1 Architecture of GAN 
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where (5.2) and (5.3) used a minibatch algorithms, m indicates a minibatch size, 

and the first term of (5.1) was ignored in (5.3) because G only takes noise vector 

z, not a real data x. 

Goodfellow et al. [105] described that if D and G are guaranteed to have 

sufficient parameters and computational amount, (5.1) can find the global minimum 

value to generate realistic data. However, many research areas have shown that GAN 

is unstable in many applications. 

 

5.2 GANES based Fault Diagnosis 

In this section, we propose a diagnosis technique for power transformer that uses the 

auxiliary classifier with generative adversarial network for embedding severity level 

and fault types (GANES). This approach is designed to extract features and fault 

diagnosis by simultaneously learning severity level and fault types under imbalanced 

dataset. As shown in Figure 5-2, the details of the loss function and architecture are 

described in next section. 

 

5.2.1 Training Strategy of GANES 

(1) Training of the Discriminator: Embedding Severity DGA Level for 

Supervised and Unsupervised Learning 



83 

 

 

Although ACGAN's discriminator is known to be able to classify classes and 

distinguish between fakes and reals, another task, semi-supervised learning, is not 

attempted in fault diagnosis and has not been noticed, especially in transformer fault 

diagnosis. Moreover, the classification of multiclass for two tasks (severity level and 

fault types) is challenging, rather than the classification of multiclass for single task. 

Therefore, the training of GANES’s discriminator is specifically described. 
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Figure 5-2 Architecture of GANES 
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Firstly, the most important role in the discriminator is to identify the f(x) or 

logits that has been transformed into a high-level feature through the hidden layer of 

the input X to match the true fault type, where f(x) is organized with discriminator’s 

parameter θdis . To conduct identification p
model

(y = j | x) , we applied softmax 

function to the f(x) for transforming K (normal, PD, DL, DH, TL, TH) dimensional 

vector into probability vector as follows: 

 ( )
( )( )
( )( )

model

1

exp
|

exp

j

K

kk

f x
p y j x

f x
=

= =


 (5.4) 

where j is the one of the health states and to minimize the discrepancy between 

p
model

(y = j | x)  and true label Y, the cross-entropy loss function is applied for 

supervised learning of the identification task as follows: 

 
( ) ( )it model, ~ ,

log | , 1
dataX Y p x y

L p y x y K= −  +  (5.5) 

here, instead of p
model

(y = j | x), we have to consider the unlabeled data, so if it is 

less than K+1 that extends one dimension, we identify as p
model

(y = j | x, y < K+1). 

The second role of the discriminator for diagnosing a severity level is newly 

added in this study. The second task of classifying a severity level of normal, 

cautious 1,2, abnormal, and danger is similar to the identification task but plays an 

essential role in generating various DGA data. The reason is that most of the DGA 

concentration value (ppm) of the actual failure transformer (IEC TC 10 database) is 

almost lies at a dangerous level in terms of the severity level, so it is challenging to 

generate various fault types in the remaining severity levels, also known as mode 

collapse. A detailed model is as follows: 
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 (5.6) 

where l indicates the one of the severity levels, S represents the number of severity 

levels, and f(x) is same as the outcome of the identification task, which means it 

shares the same parameters. The loss function of diagnosing a severity level task is 

also cross-entropy as follows: 

 
( ) ( )st model, ~ ,

log |
dataX Y p x y

L p y x= −  (5.7) 

here, the condition of y<S+1 is omitted because the severity level is labeled in all 

DGA data. 

The last task is the principal role of the discriminator, which distinguish 

between real and fake data. We sampled the real data X ~ pdata(x) from KEPCO and 

IEC TC 10. The goal of the loss function is to minimize the following function: 

 
( ) ( )

( ) ( )

un model~

model~

log 1 1|

log 1|

data

noise

X p x

Z p z

L p y K x

p y K x

= −  − = +  

−  = +  

 (5.8) 

where we defined as unsupervised loss Lun because it does not consider the labeled 

information, the first term represents the negative log-likelihood of real data x 

belongs to any other labeled data and the second term indicates the negative log-

likelihood of fake data belongs to “generated” class of y = K+1. In addition, 1-

p
model

(y=K+1|x) corresponds to D(x) in the original GAN framework and it can be 

substituted as follows:  

 ( ) ( ) ( )( )( ) un ~~
log log 1

data
z noiseX p x

L D x D G z= − + −  (5.9) 

Through the Eq. (5.9) of the discriminator, the imbalanced two-class problem is 

balanced from the generator by generating a real-like fake data with different 
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severity including fault mode. 

(2) Training of the generator 

The purpose of the GAN’s generator for the transformer fault diagnosis is to generate 

virtually real data (fake) that could overcome the imbalanced issues between fault 

types and severity levels in the real industry. To train the generator, the original 

GAN’s loss function of (5.3) could be used, but to extract health features of fault 

types and severity levels, we modified generator’s loss term in according to the 

feature matching loss term [106]. Originally, the feature matching loss term is 

developed to stabilize the mode collapse of GAN. Additionally, we expected that the 

health feature, which includes both fault types and severity levels, can be visualized 

in a low-dimensional space more clearly identified and explained. Specifically, the 

objective of feature matching loss function is defined as: 

 ( ) ( ) ( ) ( )( )
2

gen ~ ~
2data noiseX p x Z p z

L f x f G z= −  (5.10) 

by matching the high-level features of real and fake data, Lgen could regularize the 

generator to find the underline distribution of the real data [106]. 

 

5.2.2 Overall procedure of GANES 

Figure 5-3 illustrates the flowchart of the proposed GANES-based fault diagnosis 

method. There first step is the data acquisition which obtains the real dataset and 

samples a noise data from a multi-normal distribution. An unlabeled fault type with 

the severity level {Xun+sl}, a labeled fault type with the severity level {Xla+sl}, 

labeled fault target data {Yla}, severity levels with unlabeled fault target data {Y}, 
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and severity levels with labeled fault target data {} is described. After defining the 

dataset, preprocess is applied in DGA data {}. 
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Figure 5-3 Flowchart of the GANES 
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The next step is the training session where it optimizes the GANES-based fault 

diagnosis model. Firstly, parameters in GANES, as described in Table 5-1, are 

randomly initialized. For discriminator’s loss function it consists three tasks: 

supervised learning-based fault identification, severity diagnosis, and unsupervised 

learning-based discriminating real and fake data. Notably, it can be expressed as 

follows: 

 ( )dis su un

1

2
L L L= +  (5.11) 

where Lun is same as (5.9), and Lsu is a summation of fault identification task and a 

severity level task as follows: 

 ( )it st

1

2
suL L L= +  (5.12) 

in order to balance a number of data between unlabeled and labeled data, we 

augmented noise to the original fault labeled data, X = X + ϵ, so changing half of 

our labeled data set consist of labeled fault data with the severity level and half of it 

is unlabeled with the severity level. Then, the generator trains according to the 

Table 5-1 Parameters in the architecture of GANES 

Discriminator 

Layer Activation Node # Parameter # 

Input - 5 - 

Shared layer 1 Softplus 30 35 

Shared layer 2 Softplus 20 630 

Shared layer 3 Softplus 15 320 

Identification layer Softmax 6 96 

DGA lever layer Softmax 5 80 

Generator 

Layer Activation Node # Parameter # 

Input - 7 - 

Layer 1 Softplus 10 35 

Layer 2 Softplus 10 630 

Layer 3 Softplus 5 320 
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feature matching loss function Lgen. When the loss function reaches the Nash 

equilibrium iteration will be finished. Finally, to test the result, GANES-based model 

runs a test data to investigate the diagnosis accuracy and qualitative result is also 

derived. 

 

5.3 Performance Evaluation of GANES 

5.3.1 Description of Data 

DGA data used in this study was provided by KEPCO. The company has stored 

DGA data from numerous transformers in South Korea for three decades. KEPCO 

has measured five combustible gases (i.e., H2, C2H2, C2H4, C2H6, and CH4) once 

a year, when the transformers are in a normal state. In abnormal or urgent situations, 

the gases have been measured once a month or once a week. Due to maintenance 

and visual inspection costs, 4,000 KEPCO datasets are unlabeled, however, with the 

help of KEPCO’s severity plan we could annotate DGA level on each sample. We 

use IEC TC 10, which has 117 datasets and we ignored 20 datasets of communicated 

OLTC which has different spec on KEPCO’s transformer. The IEC TC 10 includes 

five fault states: PD, T12 (T1 & T2), T3, D1, and D2. 

 

5.3.2 Outlines of Experiments 

Since GAN, which is difficult to learn and stabilize, is applied for the first time in 

transformer fault diagnosis, we first investigated preliminary experiments whether it 

is possible to learn DGA data. The preliminary experiment was divided into two 

experiments according to the fault label information. Firstly, we tested various 



92 

 

 

objective function optimization based GANs such as Wassestein GAN (WGAN), 

WGAN with gradient penalty (WGAN-GP), least square GAN (LSGAN) and 

adversarial autoencoder (AAE) to investigate a stabilization and generative 

performance in a large amount of unlabeled DGA data. Specifically, these various 

GANs are summarized in Table 5-3 with their objective loss function and parameters. 

It should be noted that parameters are kept same as the proposed method. Secondly, 

we experimented a various condition-based objective function optimization GANs 

(condition-based GAN (CGAN), semi-supervised GAN (SGAN), and auxiliary 

classifier GAN (ACGAN)) with a small amount of labeled fault data (IEC TC 10). 

Detailed parameters and the architectures are summarized in Table 5-4. In addition, 

their conceptual architecture are also shown in figure []. 

 

Table 5-2 Comparative ACGAN for GANES 

Methods Discriminator loss Generator loss 

FI

OGACGEN  dis FI unL L L= +  gen ganL L=  

FI+SL

OGACGAN  ( )dis FI SL un1L L L L = + − +  gen ganL L=  

FI

FMACGAN  dis FI unL L L= ++  gen FML L=  

GANES ( )dis FI SL un1L L L L = + − +  gen FML L=  

 



93 

 

 

Table 5-3 Various GANs for unlabeled DGA data 

Method Parameter Gen. Dis. Model Objective function 

AAE 
# Layers 2 3 5 ( ) ( ) ( )( )( )~ ~

log log 1
data

AAE

D x p z p z
L D x D G z = − − −    

 

# Neurons 15/10 15/15 15/10/15/15 ( ) ( )( )~
logAAE

G z p z
L D G z = −    

GAN 
# Layers 2 3 5 ( ) ( ) ( )( )( )~ ~

log log 1
data

GAN

D x p z p z
L D x D G z = − − −    

 

# Neurons 15/10 15/15 15/10/15/15 ( ) ( )( )( )~
log 1GAN

G z p z
L D G z = −

 
 

LSGAN 

# Layers 2 3 5 ( )( ) ( ) ( )( )( )
22

~ ~

1 1

2 2data

GAN

D x p z p z
L D x b D G z a  = − + −

    
 

# Neurons 15/10 15/15 15/10/15/15 ( ) ( )( )( )
2

~

1

2

GAN

G z p z
L D G z c = −

  
 

WGAN 
# Layers 2 3 5 ( ) ( ) ( )( )~ ~data

WGAN

G x p z p z
L D x D G z = − +      

# Neurons 15/10 15/15 15/10/15/15 ( ) ( )( )~

WGAN

G z p z
L D G z = −    

WGAN 

GP 

# Layers 2 3 5 ( ) ( ) ( )( )( )( )
2

, ~ ,
1 1WGANGP WGAN

D D x z p x z
L L D ax G z 

 
= +  − − −  

 

# Neurons 15/10 15/15 15/10/15/15 
WGANGP WGAN

G GL L=  

DRAGAN 
# Layers 2 3 5 ( ) ( ) ( )( )( )~ ~

log log 1
data

GAN

D x p z p z
L D x D G z = − − −    

 

# Neurons 15/10 15/15 15/10/15/15 ( ) ( )( )( )~
log 1GAN

G z p z
L D G z = −

 
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Table 5-4 Various supervised GANs 

Method Objective function Parameter Gen. Dis. Model 

ACGAN 

( ) ( ) ( )( )~ ~
| |

data

ACGAN GAN

D D x p z p z
L L p y k x p y k G z = − = − =      # Layers 2 4 5 

( ) ( )( )~
|ACGAN GAN

G G z p z
L L p y k G z = − =   # Neurons 15/10 15/15/5/2 15/10/15/15/5/2 

SGAN 

( )~ | , 1SGAN WGAN

D D x pL L p y k x k c= − =  +    # Layers 2 3 5 

( ) ( )( )
2

~ ~

SGAN WGAN

G G x p z pL L E f x f G z= + −  # Neurons 15/10 15/15 15/10/15/15 

CGAN 

( ) ( ) ( )( )( )~ ~
log , log 1 ,

data

GAN

D x p z p z
L D x c D G z c = − − −    

 # Layers 2 3 5 

( ) ( )( )( )~
log 1 ,GAN

G z p z
L D G z c = −

 
 # Neurons 15/10 15/15/5 15/10/15/15/5 
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After we demonstrate the stability of various GANs, the proposed method of 

embedding severity DGA level experiments were conducted with four case studies. 

The first comparative study aims to validate the effectiveness of the auxiliary 

severity diagnosis task for stabilizing the performance in SGAN-based fault 

diagnosis model. We consider the following three models: 1) SGANFM, 2) SGANSL 

and 3) SGAN. Notations ‘FM’ stands for ‘feature matching’ which substitute the 

generator’s loss function, ‘SL’ stands for ‘severity level’ that puts an auxiliary 

classifier task at the discriminator, and SGAN indicates that none of the above 

techniques are implemented. A detailed description is shown in Table 5-2. Next, the 

diagnosis performance of identifying the fault types is evaluated in the second study. 

Here, we also compared the above three methods and additionally compared with 

the existing fault diagnosis methods such as semi-supervised based Linear-SVM 

(LSVM), RBF-SVM (RSVM), KNN, one-hidden layer of neural network (1-NN), 

deep autoencoder (DeA). Besides, we investigate the robustness under extremely 

small amount of labeled data. In order to investigate thoroughly the performance 

degradation according to the number of label data, not only the semi-supervised 

method but also the supervised learning method were compared. Finally, to give 

more clarity of the severity DGA level effects, we visualize the features by projecting 

into low dimensional space by using tSNE. 

 

5.3.3 Preliminary Experimental Results of Various GANs 

(1) Stabilization Analysis 1. Unlabeled DGA Data (KEPCO) 

Fig. 4 indicates the quantitative results of various unsupervised GAN’s 
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discriminator and generator loss function, respectively. Although there is no absolute 

metrics to evaluate discriminator, WGAN and WGAN-GP show the best 

performance since those of discriminator loss function closely reaches up to 0.5. The 

discriminator loss of WGAN and WGAN-GP that reaches to 0.5, indicates that the 

probability of x being real is 1/2 [], when the optimized discriminator is 

 ( )
( )

( ) ( )
( ) ( )( )* 1

,  when 
2

data

G d g

data g

p x
D x p x p x

p x p x
= = =

+
 (5.13) 

However, the discriminator's loss value that achieved a 0.5 does not validate 

that the GAN's performance is good because the generator can generate the same 

DGA data to deceive the discriminator (mode collapse). LSGAN is the closest to 0, 

followed by WGAN, the second-lowest in the generator loss function. For WGAN-

GP and GAN, the generator's loss function is slightly higher but exhibits an 

unfluctuating and stable loss pattern, as LSGAN or WGAN shown. Despite the fact 

that the GANs generator loss is stable or close to zero, like the discriminator loss, it 

does not also guarantee the performance of the GANs.  

Therefore, due to the lack of quantitative indicators, the DGA data and actual  

 
Figure 5-4 Unsupervised various GANs loss 
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data generated from the generator are displayed in Table 5-5. Although we confirmed 

that the virtually generated data were similar to the actual DGA data, it is difficult to 

determine which method performs the best. Still, it can be seen from the table that 

WGAN learns faster than other discriminator's methods and has achieved the 

Table 5-5 Generated DGA samples from various GANs and real DGA data 

Generated/sampled H2 C2H2 C2H4 C2H6 CH4 

Real 

100 20 100 20 100 

5 5 5 5 5 

30 6 30 6 30 

4 5 4 5 4 

AAE 

10 20 100 20 100 

16 512 5 51 2 

346 0 30 833 303 

1 225 4 5 45 

GAN 

100 20 100 20 100 

5 5 5 5 5 

30 63 30 6 30 

4 0 4 5 4 

LSGAN 

100 20 100 20 100 

5 5 5 5 5 

30 6 30 6 30 

4 52 4 5 4 

WGAN 

100 310 36 420 10 

515 4 5 5 5 

2 1003 20 6 30 

46 3 6 55 42 

WGAN 

GP 

100 0 100 20 100 

54 523 0 53 5 

30 2 30 612 350 

4 5 4 5 4 

DRAGAN 

100 23 1003 20 1050 

54 5 3 6 5 

30 6 0 100 30 

6 19 523 0 4 
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minimum loss in the generator. 

(2) Stabilization Analysis 2: Labeled DGA Data (Fault types of IEC TC 10 and 

Severity Level with KEPCO) 

Quantitative results of various supervised GAN discriminator and generator 

loss functions are depicted in Figure 5-5. For discriminator loss, training ACGAN is 

higher than CGAN, and SGAN. After 300 around epochs later, ACGAN is less than 

other GANs, representing that ACGAN’s generator is more likely to generate virtual 

fake DGA data. Moreover, in the generator’s loss function, ACGAN is gradually 

stabilized as generator optimized, as shown in Figure 5-5 (b), whereas SGAN and 

CGAN keep the same loss, which could be interpreted as the generator is not working 

or generating similar data. In the case of CGAN’s generator, as it diverges, it may 

be considered that training is not being optimized. To investigate the generated fake 

DGA data according to the fault labeled information, table 6 reveals several fake 

samples compared with an IEC TC 10 database. It should be noted that since the 

generated fake data keeps generating the same or similar fault data, which is 

occurring a mode collapse, supervised learning-based GAN failed to learn a small 

number of fault labeled data. 

 
Figure 5-5 Supervised various GANs loss of IEC TC 10 data 
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On the other hand, although there is no fault types in KEPCO, the result of 

learning a large amount of KEPCO data given a severity is shown in the figure. The 

result indicates that if certain label information is assigned to a large amount of data, 

GAN can be more stable for learning; in particular, ACGAN outperforms. excellent. 

 

5.3.4 Experiments for the Effectiveness of Embedding Severity DGA 

Level 

From the previous preliminary experiments, it was found that there is a limitation to 

evaluating the performance of GAN through the loss function or the generated DGA 

data. Therefore, to evaluate the GANES proposed in this study, the accuracy of fault 

diagnosis was investigated. However, as an extension of the previous experiment, 

we first performed a stabilization experiment according to the feature matching that 

constitutes GANES and the severity level additionally entered into the discriminator, 

and then the accuracy and characteristics were demonstrated. 

(1) Case Study 1: Stabilization 

Figure 5-7 shows the quantitative results of the SGANFM, SGANSL, SGAN and 

 
Figure 5-6 Supervised various GANs loss of severity level informed in KEPCO 
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GANES, to investigate the effectiveness of feature matching and auxiliary task of 

severity level that we proposed. Figure 5-7 depicts three major loss function: (a) 

represents a loss function of generator, (b) indicates the unsupervised loss function 

which discriminates the fake and real, and (c) investigates the supervised loss 

function of fault identification. At about 150 epochs, the result of Figure 5-7 (a) 

shows the stabilized generator’s loss function of GANES. On the other hand, the 

generator’s loss function of SGANFM, SGANSL, and SGAN keep increasing when 

they are trained. We could expect that the generator of GANES may more stable than 

other comparison methods. Moreover, for Figure 5-7 (b) is the discriminator loss 

function of SGANFM, SGANSL, and SGAN, which are below than 0.5, while GANES 

closely reaches to the 0.5. It implies that the distribution of GANES generator is 

more likely to follow the real DGA data. Finally, as shown in Figure 5-7 (c) of the 

supervised loss function of fault identification, we could confirm that the GANES 

achieves the best performance than other comparison methods. A detailed fault 

identification accuracy is described in following section. 
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Figure 5-7 Multi-task ACGAN loss 
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(2) Case Study 2: Fault Diagnosis Accuracy 

Figure 5-8 summarizes the fault type diagnosis performance of GANES, 

ACGAN1, ACGAN2, and ACGAN3. The accuracy of ACGAN2 and ACGAN3 is 

the same at 89.7, but the diagnosis result of the fault type is different. It is certain 

that each method improves diagnostic performance, but it is difficult to interpret 

which one is superior. In addition, the accuracy of severity level estimation for 

GANES and ACGAN3 is 95.6% and 93.6%, respectively. Furthermore, the accuracy 

of GANES with both FM and SL is 93.1%, which is superior to the other three 

methods. Therefore, we could expect that SL and FM complement each other for 

GANES and improve the diagnosis performance. 

 
Figure 5-8 Fault diagnosis accuracy of fault types 
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(3) Case Study 3: Visualization of Expected Features 

In the previous two case studies, it was examined whether the loss function was 

quantitatively stabilized or the fault diagnosis performance for identifying fault types 

was improved by additionally learning the severity DGA level. In this study, we 

investigate the qualitative effectiveness of inserting severity DGA level for 

diagnosing the fault types. Figure [] represents that GANES or ACGAN3 method 

could distinguish not only the failure mode but also the severity level features 

simultaneously. Figure 8 (a) is represented by failure mode, and (b) is represented 

by severity. Both are low-dimensional projections of features extracted by the 

GANES method and are expressed according to their respective viewpoints. On the 

other hand, Figures (c) and (d) are SGANs that have not been studied severity, and 

each plot indicates the fault mode and severity, respectively. 
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5.4 Summary and Discussion 

In this study, we develop a generative adversarial network that includes severity 

DGA levels. In actual industrial transformers, fault identification and severity 

estimation are essential to decide on a maintenance plan that can inform decisions 

about whether the system can operate normally or if repair or replacement is 

necessary. However, traditional artificial intelligence-based methods trained only by 

labeled fault types do not include severity levels. Therefore, engineers must apply 

different rule-based approaches to estimate severity. Moreover, because fault modes 

are difficult to obtain in an industrial environment, rule-based methods simply 

annotate severity, resulting in unbalanced labeled data problems between the two 

states. Therefore, this research proposes a generative adversarial network with an 

embedding severity (GANES) DGA level. As a fundamental approach to alleviating 

the imbalanced problem between two classes of labeled fault types and severity 

levels, an auxiliary classifier of the generative adversarial network (ACGAN) was 

applied. The proposed method is demonstrated by studying massive Korea Electric 

Power Corporation (KEPCO) and IEC TC 10 databases. The results show that the 

proposed method not only outperforms conventional AI-based methods but also 

extracts both fault types and severity levels. 

 

  

Sections of this chapter have been published or submitted as the following journal 

articles:  

1) Sunuwe Kim, Soo-Ho Jo, Heonjun Yoon, Yong Chang Shin, and Byeng D. Youn, “A 

Graded Phononic Crystal with Decoupled Double Defects for Broadband Energy 

Localization,” International Journal of Mechanical Sciences, Vol. 183, pp. 105833, 

2020. 
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Chapter 6 Conclusion 

 

Conclusion 

 

6.1 Contributions and Significance 

The proposed research in this doctoral dissertation aims at overcoming practical 

issues in industrial power transformers via deep learning based methods. This 

doctoral dissertation is composed of three research thrusts: (1) semi-supervised 

autoencoder with auxiliary detection task to extract health feature space; (2) bridging 

a rule-based Duval method and deep learning-based DNN; and (3) a generative 

adversarial network with embedding severity level. It is expected that the proposed 

research offers the following potential contributions and broader impacts in 

industrial power transformer fault diagnosis. 

 

Contribution 1: Extraction of the Health Feature Space to Visualize a 

Degradation Trendability 

This doctoral dissertation suggests a semi-supervised autoencoder with an auxiliary 

task (SAAT) to extract a health feature space for power transformer fault diagnosis 

using dissolved gas analysis (DGA). This is the first attempt to diagnose real-world 
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power transformers using a large amount of DGA data. By using the industrial DGA 

dataset, the proposed SAAT extracts the health degradation properties as well as to 

identify normal and thermal/electrical fault types. In addition, by directly visualizing 

health features without transformation or dimension reduction, the proposed 2D HFS 

can pictorially demonstrate the monotonic health trendability of transformers. 

 

Contribution 2: Learning from Even a Weak Teacher via Bridging Rule-based 

Duval Weak Supervision and a Deep Neural Network for 

Diagnosing Transformers 

This doctoral dissertation provides a new framework, named BDD, that bridges 

Duval method with a deep neural network approach for transformer fault diagnosis. 

The main concept of our approach – incorporating a rule-based method into an AI-

based method – is newly proposed in the field of transformer fault diagnosis. Besides, 

an auxiliary unsupervised loss task is added to regularize the rule-based method’s 

partially incorrect knowledge. After that, a parameter transfer learning approach is 

incorporated into DNN to deliver rule-based knowledge from the pseudo-labeled 

source data to the labeled target data. The results indicates that  

 

Contribution 3: Improvement of Transformers Fault Diagnosis by Elucidating  

Fault Types with Severity Levels 

This doctoral dissertation aims to diagnose not only fault types but also severity 
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levels of transformers. To the best of authors’ knowledge, the unique contributions 

of this study are two-fold. First, since labeled information of severity level and fault 

types are imbalanced, an auxiliary classifier of the generative adversarial network is 

newly proposed for balancing as well as diagnosing two different conditions. Second, 

in the low dimensional space, the extracted health features elucidate severity levels 

as well as fault types properties. 

 

6.2 Suggestions for Future Research 

Although the technical advances proposed in this doctoral dissertation successfully 

address practical issues in the industrial field of power transformer fault diagnosis, 

there are still several research topics that further investigations and developments are 

required to bring deep learning-based fault diagnosis method into an alternative 

solution for industrial transformer PHM. Specific suggestions for future research are 

listed as follows. 

Suggestion 1: Enhancement of the Health Feature Space  

For research thrust 1, future research is suggested, as follows. First, the prediction of 

health state and/or remaining useful life of industrial power transformers should be 

performed using the proposed SAAT and its performance should be evaluated. 

Second, the proposed SAAT method should be verified with other systems where the 

health degradation is an important issue, (e.g., batteries and rotary machinery). 

Finally, more detailed fault types should be investigated, such as partial discharge 

faults, electrical faults of low and high discharge, and thermal faults of low, medium 
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and high level. 

 

Suggestion 2: Extract Health Feature Space to Visualize Fault Types and 

Severity 

In this doctoral dissertation, GANES was newly proposed in transformers fault 

diagnosis to diagnose fault types and severity. However, it should be examined more 

experiments and interpretation for health feature space to demonstrate degradation 

property. Future work is suggested as follows. First, more clear health feature space 

need to be extracted for visualizing degradation properties of severity and fault types. 

Second, more case studies need to be performed for various GANs methods. 

 

Suggestion 3: Implementation of the BDD Framework in Other Fields 

In this doctoral dissertation, a new framework of bridging a rule-based and AI-based 

method was investigated. However, it should be examined more experiments and 

applied to other applications to demonstrate BDD performance. Future work is 

suggested as follows. First, more case studies need to be performed for various rule-

based methods. Second, more techniques for handling the noisy labeled problems, 

used in other research fields, should be further studied, in place of the regularization 

task used here. Finally, in-depth investigation of parameter transfer should be 

conducted by adjusting the hyperparameters (e.g., learning rate in re-training). 
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국문 초록 

 

비표지 고장 데이터와 

유중가스분석데이터를 이용한 

딥러닝기반 주변압기 고장진단 연구 
 

서울대학교 대학원 

기계항공공학부 

김 선 의 

 

오늘날 산업의 급속한 발전과 고도화로 인해 안전하고 신뢰할 수 

있는 전력 계통에 대한 수요는 더욱 중요해지고 있다. 따라서 실제 산업 

현장에서는 주변압기의 안전한 작동을 위해 상태를 정확하게 진단할 수 

있는 prognostics and health management (PHM)와 같은 기술이 

필요하다. 주변압기 진단을 위해 개발된 다양한 방법 중 인공지능(AI) 

기반 접근법은 산업과 학계에서 많은 관심을 받고 있다. 더욱이 방대한 

데이터와 함께 높은 성능을 달성하는 딥 러닝 기술은 주변압기 고장 

진단의 학자들에게 높은 관심을 갖게 해줬다. 그 이유는 딥 러닝 기술이 

시스템의 도메인 지식을 깊이 이해할 필요 없이 대량의 데이터만 

주어진다면 복잡한 시스템이라도 사용자의 목적에 맞게 그 해답을 찾을 
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수 있기 때문에 딥 러닝에 대한 관심은 주변압기 고장 진단 분야에서 

특히 두드러졌다. 

그러나, 이러한 뛰어난 진단 성능은 아직 실제 주변압기 산업에서는 

많은 관심을 얻고 있지는 못한 것으로 알려졌다. 그 이유는 산업현장의 

비표지데이터와 소량의 고장데이터 때문에 우수한 딥러닝기반의 고장 

진단 모델들을 개발하기 어렵다. 

따라서 본 학위논문에서는 주변압기 산업에서 현재 대두되고 있는 

세가지 이슈를 연구하였다. 1) 건전성 평면 시각화 이슈, 2) 데이터 부족 

이슈, 3) 심각도 이슈 들을 극복하기 위한 딥 러닝 기반 고장 진단 

연구를 진행하였다. 소개된 세가지 이슈들을 개선하기 위해 본 

학위논문은 세 가지 연구를 제안하였다.  

첫 번째 연구는 보조 감지 작업이 있는 준지도 자동 인코더를 통해 

건전성 평면을 제안하였다. 제안된 방법은 변압기 열하 특성을 시각화 

할 수 있다. 또한, 준지도 접근법을 활용하기 때문에 방대한 

비표지데이터 그리고 소수의 표지데이터만으로 구현될 수 있다. 

제안방법은 주변압기 건전성을 건전성 평면과 함께 시각화하고, 매우 

적은 소수의 레이블 데이터만으로 주변압기 고장을 진단한다.  

두 번째 연구는 규칙 기반 Duval 방법을 AI 기반 deep neural 

network (DNN)과 융합(bridge)하는 새로운 프레임워크를 제안하였다. 

이 방법은 룰기반의 Duval을 사용하여 비표지데이터를 수도 

레이블링한다 (pseudo-labeling). 또한, AI 기반 DNN은 정규화 기술과 

매개 변수 전이 학습을 적용하여 노이즈가 있는 pseudo-label 

데이터를 학습하는데 사용된다. 개발된 기술은 방대한양의 

비표지데이터를 룰기반으로 일차적으로 진단한 결과와 소수의 실제 
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고장데이터와 함께 학습데이터로 훈련하였을 때 기존의 진단 방법보다 

획기적인 향상을 가능케 한다. 

끝으로, 세 번째 연구는 고장 타입을 진단할 뿐만 아니라 심각도 

또한 진단하는 기술을 제안하였다. 이때 두 상태의 레이블링된 고장 

타입과 심각도 사이에는 불균일한 데이터 분포로 이루어져 있다. 그 

이유는 심각도의 경우 레이블링이 항상 되어 있지만 고장 타입의 경우는 

실제 주변압기로부터 고장 타입 데이터를 얻기가 매우 어렵기 때문이다. 

따라서, 본 연구에서 세번째로 개발한 기술은 오늘날 데이터 생성에 

매우 우수한 성능을 달성하고 있는 generative adversarial network 

(GAN)를 통해 불균형한 두 상태를 균일화 작업을 수행하는 동시에 

고장 모드와 심각도를 진단하는 모델을 개발하였다. 
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