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Abstract

Fault Diagnostics of Planetary Gears under Variable-speed
Conditions Using Time-frequency Analysis

Jungho Park

Department of Mechanical and Aerospace Engineering
The Graduate School

Seoul National University

Unexpected failures of a planetary gear may result in substantial economic losses
and safety problems. Therefore, extensive prior studies have been performed to develop
diagnostic methods for planetary gears. However, most of the studies assumed that the
planetary gears operate under constant speed condition although many planetary gears
in practical application rotate under variable speeds. Therefore, in this dissertation, fault
diagnosis methods are developed for planetary gears under variable-speed conditions.
In developing the methods, time-frequency analysis is used to reveal time-varying
spectral behaviors of planetary gear vibration signals. However, there are several
challenges in developing the fault diagnosis methods for planetary gears under variable
speeds: 1) fault sensitivity, 2) computation time, and 3) complex speed profile. To
cope with these challenges, this dissertation is composed of three research thrusts. The
first thrust proposes a fault diagnosis method with enhanced sensitivity. The method
could improve fault sensitivity of the diagnostic method by minimizing effects from
variable-speed conditions using the time-frequency analysis. Further, the faulty signals
in the time-frequency analysis are enhanced in the developed method. Next, the second

research thrust presents a time-efficient fault diagnosis method. In the method, time-



efficient time-frequency analysis is used to reduce computation time. However, the
fault sensitivity is inherently reduced by using the time-efficient time-frequency
analysis. Therefore, in the proposed method, the reduced fault sensitivity from the time-
efficient time-frequency analysis is compensated by utilizing characteristics of signal
and system. Finally, the third research thrust develops an image-based fault feature,
which could extract fault-related characteristics independent of speed profiles. In the
method, only faulty components are exploited from the time-frequency image data. The
feature is independent of other components using the image analysis technique.
Therefore, the proposed method could be applied to planetary gears under complex
speed profiles. Validity of the proposed methods is demonstrated using planetary gears
of simulation and experiment signals. Each developed method could be used for
planetary gears under variable-speed conditions for their use, i.e., fault sensitivity, time-

efficiency, and complex speed profiles.
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Chapter 1

Introduction

1.1 Motivation

Planetary gears are widely used in many engineering applications, such as wind
turbines, excavators, industrial robots, and helicopter transmission systems. As
multiple planet gears can share a load, a planetary gear has a unique advantage in
systems, where the intensity of transmitted loads is extremely high. Therefore,
planetary gears are usually exposed to severe loading conditions, which could lead
to failures such as fatigue crack and pitting [1]. For example, 59.4% and 19.1% of
the whole failures in wind turbines and helicopter transmission are from the gearbox
failures [2, 3]. Unexpected failures of a gear may result in substantial economic
losses and safety problems. Thus, fault detection and diagnosis for planetary gears
has received significant attention in recent decades. Most currently available
techniques were developed by analyzing data from either vibration sensors or
acoustic emission (AE) transducers. In addition, other fault diagnosis techniques that
used different physical quantities than acceleration, such as strain, acoustic emission,

or transmission error signals, were also conducted [4-7].



However, previous studies have mainly focused on fault diagnosis under
constant speed conditions, despite the fact that many practical applications operate
under variable speeds [8-10]. To date, studies on fault diagnosis methods for
planetary gears under variable speeds are very limited. Recently, a signal selection
method based on two order-tracking techniques (i.e., the computed order tracking
and the Vold-Kalman filter order tracking [11]), was developed to deal with
diagnosing planetary gear faults under non-stationary conditions. However, those
methods that are based on order-tracking techniques required synchronized angular
information in addition to acceleration signals. This necessitates measurement

devices other than accelerometers and requires additional signal processing.

Thus, this doctoral dissertation aims at developing fault diagnosis methods for
planetary gears under variable-speed conditions that uses only acceleration signals.
In this regard, time-frequency analysis is exploited to observe time-varying spectral
behaviors of the vibration signals. The previous studies that uses time-frequency
analysis for fault diagnosis have several drawbacks in their application to
acceleration signals of the planetary gear. First, fault sensitivity values of the
previous methods could be limited. Previous techniques simply distinguish between
normal and faulty states using time-frequency coefficients. Therefore, the methods
could not effectively highlight the fault features represented on the time-frequency
axis. Second, the previous techniques could require huge computation time. For
example, wavelet transform often needs a lengthy computation time due to its high
resolution at high frequency regions. Third, the previous techniques cannot be
applied to complex speed profiles. The effects of speed profiles on the fault diagnosis

methods are minimized in the previous techniques. However, the performance of the



previous method could be limited if the system operates under complex speed

profiles.

1.2 Research Scope and Overview

This doctoral dissertation thus aims at developing three essential techniques for
fault diagnosis of the planetary gears under variable-speed conditions: (1) Research
Thrust 1 — positive energy residual (PER) method for enhance fault sensitivity by
minimizing effects of variable-speed conditions; (2) Research Thrust 2 — variance of
energy residual (VER) method for computational efficiency using time-efficient
time-frequency analysis; and (3) Research Thrust 3 — image-based fault feature for

complex speed profiles.

Research Thrust 1: Positive enerqy residual (PER) method for enhanced

fault sensitivity by minimizing effects of variable-speed conditions

Research Thrust 1 proposes a positive energy residual (PER) method, for fault
diagnosis of planetary gears under variable-speed conditions with enhanced
sensitivity. The proposed PER algorithm is based on two techniques, the wavelet
transform (WT) and the Gaussian process (GP), which are used to remove the
variability of the signals while extracting the faulty signals. Further, a fault feature
is presented that is able to effectively quantify the characteristics of faulty signals.
The performance of the proposed method is demonstrated using two case studies:

vibration signals from a simulation model and vibration signals from a real test-bed.



A comparison study with other methods, WT and energy residual (ER), is also

presented to clarify the performance of the proposed PER algorithm.

Research Thrust 2: Variance of enerqgy residual (VER) method for

computational efficiency using time-efficient time-frequency analysis

Research Thrust 2 proposes a variance of energy residual (VER) method for
more time efficiency based on time-efficient time-frequency analysis. The proposed
VER method offers the potential to reduce computation time by using short-time
Fourier transform (STFT) instead of other time-frequency techniques. Then, GP
technique is used in the method similarly with the PER method. In addition, system
and signal characteristics are exploited to compensate fault sensitivity, which is
reduced due to STFT. To demonstrate the performance of the proposed VER method,
we calculate the fault sensitivity and computation time of the VER method using

both simulation and experimental signals.

Research Thrust 3: Image-based fault feature for complex speed profiles

Research Thrust 3 proposes an image-based fault feature, which is independent
of speed conditions. Therefore, the feature could be applied to planetary gears under
complex speed profiles. First, time-frequency analysis is performed using vibration
signals of normal and fault planetary gears. Then, 2-dimensional Fourier transform
is used to represent faulty behaviors in time-frequency data. In the spatial frequency

domain, which is results of 2-D FT, the vertical lines of time-frequency image data



are transformed in the horizontal center components. Finally, mean square values
are calculated in the horizontal center components from spatial frequency domain to
quantify faulty severity. The fault feature is also validated using the simulation

model and experiment signals of the planetary gear.

1.3 Dissertation Layout

The layout of this doctoral dissertation is organized as follows. Chapter 2
reviews the literature regarding fault diagnosis methods for the planetary gear.
Chapter 3 describes the data used for validation of each proposed research thrust.
Chapter 4 proposes a positive energy residual (PER) method to enhance fault
sensitivity (Research Thrust 1). Chapter 5 presents a variance of energy residual
(VER) method for time-efficient fault diagnosis method. (Research Thrust 2).
Chapter 6 addresses an image-based fault feature for complex speed profiles
(Research Thrust 3). Then, Chapter 7 summarizes the dissertation with its

contributions and suggested future research.



Chapter 2

Literature Review

This chapter intends to provide previous studies about fault diagnosis techniques
of planetary gears. First, | review the fault diagnosis methods for the gears under
constant condition. Then, the limitations of the previous methods in applying to the
variable speed cases are presented. Next, fault diagnosis methods for the planetary
gears under variable-speed conditions are investigated. | also summarize the
previous health data that are used to quantify health states of planetary gears. Finally,
we discuss limitations of the previous studies, and present how each research thrust

is presented in the following sections.

2.1. Fault Diagnosis of a Planetary Gear under the Constant-
speed Conditions

Previously, many studies have been conducted to diagnose the faults of the gear
systems under constant-speed conditions [12-17]. First, fault diagnosis methods
were developed using time-domain signals for nomal and two different types of
faults as shown in Figure 2-1 [12]. In the figure, normal and two different types of
faults (distributed and local) signals are shown. We could differentiate faulty states

from the normal state if there are small noise sources. Wang and Wong [13]



developed fault diagnosis of the gear using an autoregressive (AR) model in the time-
domain. An optimal sinusoidal modelling technique was developed based on a batch
learning of the least squares techniques to simulate the time-domain gear mesh
signals [14]. A minimum entropy deconvolution (MED) tehcnique was further
combined with the previous AR model to signify the fault signals in the gear signals
by Endo and Randall [15]. The MED technique could enhance the fault signals by

using phase information from higher-order statistical characteristics.

However, if the time-domain signals are covered by severe noises, as can be seen
in the second row of the figure, we could not differentiate the faulty states from the

normal state. Therefore, many methods have been developed using the vibration
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Figure 2-1 Fault diagnosis of gears under constant-speed conditions using time-

domain data: (a) Normal signals, and (b) faulty signals
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Figure 2-2 Fault diagnosis of gears under constant-speed conditions using
frequency-domain data: (a) Normal signals, and (b) faulty signals

signals of the gear system in the frequency domain. Figure 2-2 shows the normal and

two different types of faults in the frequency domain.

As can be seen, we could observe side-band behaviors, or other frequency
components other than normal gear signals in the frequency domain. Mcfadden and
Smith [18] investigated the side-band behaviors of the planetary gear, which were
induced by modulated vibration characteristics. Bi et al. [19] developed a fault
feature named slice spectral correlation density (SSCD). The feature could quantify
the faulty vibration behaviors from amplitude- and frequency modulation. Ratios of
rotational-harmonic amplitudes in the frequency domain of the vibration signals
were proposed [20]. The method could detect the fault in the ring gear tooth in the
planetary gear by considering noises and manufacturing errors. Lei et al. developed

the normalized summation of positive amplitudes of the difference spectrum



between the unknown signal and the healthy signal (NSDS) in the frequency domain
to sensitively diagnose the faults in the planetary gear. Mark investigated the fault
diagnostic method that could minimize the effects of transducers and transmission
path [21]. However, the previous methods were basically only applicable to the gear
system under constant-speed conditions, and could not be applied to the planetary
gears under variable-speed condition because the frequency-domain signals would

be changing continuously at each time in varying speed conditions.

There have been also other methods that use other various signal processing
methods using vibration signals [22-35]. Zhang et al. used a blind deconvolution
denosing method to diagnose the fault of the gear in the helicopter [22]. Barszcz and
Randall introduced a spectral kurtosis technique for planetary gear fault detection
[23]. The technique could find the spectral band that contain the most impulsive
signals. Zimroz and Bartelmus studied cyclostionarity of the planetary gear vibration
signals to develop a diagnostic feature [24]. Lei et al. investigated use of a stochastic

resonance technique in the field of diagnosing the planetary gear faults [25].

Simulation models of the planetary gear also have been used to investigate
dynamic behaviors of the planetary gear, and extract fault-related feature [1, 36-41].
Parra and Vicuna compared the two methods, phenomenological model and lumped
parameter model, used for modelling vibration signals of the planetary gear [36].
Liang et al. studied the effects of crack in the gear tooth for the gear mesh stiffness
[37]. Feng et al. developed the models for the vibration signals of the planetary gear
under faulty conditions [38]. Chen and Shao developed a simulation model to

investigate a planetary gear with tooth root crack in the ring gear [39].



Additionally, other physical quantities like strain, displacement, current, and
acoustic emission signals have been used to diagnose the fault of the planetary gear
[4, 5, 42-45]. Yoon et al. analyzed strain sensor signals, which is free from
modulation effects due to planetary gear transmission effects [4]. Park et al.
constructed a dynamic model of the planetary gear, and calculated the transmission
error based on rotational displacement of the planetary gear. They could find that the
transmission error signals could detect fault of the planet gear [5]. Induction motor
current signals were also used to avoid modulated behaviors in the planetary gears
[42]. Acoustic emission signals were used to incipient faults of the wind turbine

gearbox based on the time of arrival (TOA) [43].

2.2. Fault Diagnosis of a Planetary Gear under the Variable-
speed Conditions

This section will review the fault diagnosis techniques developed for the
planetary gears under variable-speed conditions. As mentioned in the first section,
the previous frequency-domain method could not be used for time-varying vibration
signals of the planetary gears. Therefore, the fault diagnosis methods have been
developed so that variability in the vibration signals from the variable speed could
be reduced. In this section, 1) angular resampling, 2) time-frequency analysis, and 3)

image-based approach will be reviewed.

2.2.1. Angular Resampling

This sections will review the previous studies about the angular resampling

10



technique. Figure 2-3 shows the basic principle of the angular resampling technique.
Figure 2-3(a) show how the angle and vibration shows when the speed of the gear is

increasing.

As can be seen, the angular speed is getting larger, and the periods in the vibration
is getting shorter. Basically, the angle and vibration values are sampled by the
encoder and accelerometer at the same time interval . The idea of the angular
resampling is to resample the measured data at the same angle. After resampling, we

could observe how the vibration signals behave in the angular domain.

Then, many studies have been performed based on the angular resampling
techniques [46-50]. He et al. developed a new order tracking method for angular

resampling based on discrete spectrum correction [46]. The method could improve
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Figure 2-3 Transformation of vibration data using angular resampling: (a) before

and (b) after angular resample
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robustness of the previous using the meshing frequency characteristics of the
planetary gearbox in the wind turbine. A signal selection method based on two order-
tracking techniques (i.e., the computed order tracking and the Vold-Kalman filter
order tracking [47]), was developed to deal with diagnosing planetary gear faults
under non-stationary conditions. The time-domain features calculated after order-
tracking technigues showed about an eight-fold difference for the tooth wear case.
Li etal. extracted fault features using signal sparse decomposition and order tracking
[48]. However, those methods that are based on order-tracking techniques using
angular resampling required synchronized angular information in addition to
acceleration signals. This necessitates measurement devices other than

accelerometers and requires additional signal processing

2.2.2. Time-frequency Analysis

In this chapter, | will review the time-frequency analysis techniques used for fault
diagnosis of the planetary gear under variable-speed conditions. Figure 2-4 shows
the basic principle of the time-frequency analysis. There are two different time-
varying vibration signals in the left hand sided of the figure. In the upper one, 50 Hz
of the signals come first, and 400 Hz of the signals come later. In the lower one, 400
Hz of the signals come first, and 50 Hz of the signals come later. In the frequency
analysis which can be observed by right upper figure, the two different signals cannot
be differentiated, because the frequency analysis only could quantify the frequency
component in the signals. However, In the time-frequency analysis which can be
observed by right lower figure, we could also observe how each frequency

components behave along the time. Therefore, there have been several attempts to
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Figure 2-4 Frequency analysis and Time-frequency analysis for the two different

time-varying vibration signals

diagnose the fault of the planetary gear under variable-speed conditions using time-
frequency analysis [1, 33, 51-62]. Feng and Liang exploited adaptive optimal kernel
method to show time-frequency behaviors of the faulty planetary gear [51]. The
method showed better time-frequency resolution than previous approaches, and was
free from cross-term. The method was validated using planetary gears in experiment
setup and a real wind turbine. Chen and Feng used the torsional vibration signals for
time-frequency analysis, and observed resonance regions to find faulty characteristic
component in the time-frequency domain [52]. Morelet wavelet and singular value
decomposition (SVD) were combined to extract fault features of a wind turbine

planetary gearbox [53]. However, huge computation time is usually required for the

=
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wavelet method. This is especially true when WT is performed for vibration data
with wider frequency ranges. Wide frequency ranges are mandatory for successful
fault detection; thus, use of WT as part of the PER method requires huge computation

power [63].

2.2.3. Image-based Approach

There have been fault detection methods that consider 2-dimensional time-
frequency coefficients as image data. These approaches particularly have been
developed in medical applications for human disease detection [64-69]. Boashash et
al. analyzed nonstationary electroencephalogram (EEG) signals using time-
frequency image data from Wigner-Ville distribution (WVD), Gaussian Kernel
distribution (GKD), and modified-B distribution (MBD). In the image data,
morphometric features were proposed based on the geometric shapes of the data [64].
Boashash and Ouelha combined statistical features obtained from time-frequency
image data with machine learning techniques [65]. Then, they used the developed
method to detect abnormality in the newborn EEG seizure case. Boashash et al. [66]
also used the texture-based features from the time-frequency image data for the EEG
seizure detection of the newborn. Figures 2-5 (a) and (b) show how the texture-based

features, Haralick and local binary pattern (LBP) [70, 71].
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In the Haralick feature, the technique first transforms the data into 4 levels of data.
Then, gray-level co-occurrence matrix (GLCM) is constructed based on the adjacent
values of each elements in the 4-level image data. After normalizing the GLCM
matrix, the Haralick features could be calculated. For the LBP feature, the image
data are transformed into zero or one after comparing the magnitudes of each
adjacent values of image data with the center values of matrix. Then, the center
values are transformed based on binary calculation of the each adjacent. For the LBP
feature, the image data are transformed into zero or one after comparing the
magnitudes of each adjacent values of image data with the center values of matrix.
Then, the center values are transformed based on binary calculation of the each

adjacent values. Then various LBP features could be derived based on histogram of

Haralick features
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Figure 2-5 Basic principles of the texture-based features, (a) Haralick and (b) local
binary pattern (LBP)
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the transformed data.

Above-mentioned methods are basically based on extracting features from the
image data of the time-frequency analysis, like short-time Fourier transform (STFT),
wavelet transform (WT), and WVD. Recently, deep learning techniques have shown
good performances in image data classification [72-80]. In the methods, the user
does not have to extract features based on the domain knowledge, and the features
could be calculated autonomously during executing the method. Therefore, the fault
diagnosis methods using the techniques have been extensively used for fault
diagnosis of the planetary gears and other rotating machinery [81-83]. Zhao et al.
used deep residual networks (DRN) and  dynamically  weighted  wavelet
coefficients (DWWC) for fault diagnosis of planetary gears [81]. In the method, they
could improve the diagnostic performance, and find the frequency zones with the
most faulty information. Oh et al. used deep belief networks with vibration image
measured from journal bearings of rotor systems [82]. In the method, they could
improve diagnostic accuracy, and the fault features were extracted automatically. A
Gaussian-Bernoulli deep Boltzmann machine (GDBM) was also employed for time-
frequency data of the vibration signals from the gearboxes [83]. Especially,
convolutional neural networks (CNN) have been widely used for time-frequency
image data because the technique is known to show good classification results in
image data [31, 84, 85]. Figure 2-6 shows the basic principles of the CNN. The most
important property of the CNN is that it uses convolution operation for the image
data. The feature maps could be constructed from convolution process of the image
data. Then, the sizes of the feature maps could be reduced by subsampling. By

repeating these procedures, the output of the CNN could be calculated as can be seen
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Figure 2-6 Basic principles of convolutional neural networks (CNN)

in the Figure 2-6. Jing et al. developed a CNN based feature learning method using
time-frequency image data of the gearbox vibration signals [84]. They compared the
effectiveness of the proposed method with previous features from time-domain,
frequency-domain, and wavelet method, and confirmed that the proposed method
showed the best performance. And, an adaptive data fusion method was developed
for multi-sensor data based-on deep convolutional neural networks (DCNN) [85].
The method, could extract optimal fault features without domain knowledge and
human labor. Liu et al. combined variational mode decomposition (VMD) with the
CNN for fault feature extraction of the planetary gear [31]. The method could not
only enhance fault sensitivity, but also identify different types of faults in the
planetary gear. However, most of the methods could not present exact physical
relationship of the proposed fault features with actual faults. Although there have
been several approaches using simulation models of the planetary gears under
variable-speed conditions, physical meanings of the faults were difficult to reveal

under the variable-speed conditions [86-92].

2.3. Health Data
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Appropriate selection of health data is crucial in the field of prognostics and
health management [93-100]. There have been many attempts to summarize the
health data employed for fault diagnosis of the gears [101-105]. In this section, | will
review the widely used health data, which are used to quantify health states of the

rotating machinery including planetary gears.

RMS

The RMS is well-known for quantifying the overall degradation degree of the
system in the time domain , albeit insensitive to incipient failure [102]. The measure
could quantify overall kinetic energy level in the measured vibration signals, and can

be expressed as below equation,
1
RMS = |~ n L vf (2.1)
where v; is the ith time data point, n is the total number of data samples.

Kurtosis

The kurtosis measures the peakedness of a distribution with respect to normal
distribution and the tail thickness [106]. Kurtosis is used to show degree of the
vibration signal’s deviation from the mean value due to the fault of the gear. The

kurtosis values could be calculated as below equation,
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where u is the mean of the data, ¢ is the standard deviation of the data.

Frequency center (FC)

FC calculates the mean of the frequency component and is used to observe the
transition of the main frequency components. As gear faults are known to induce
phase modulation [107], the FC can show how the faults affect the frequency

components of the system. We can express FC as

T es(nar

FC="5——
I s(hdr

(2.3)

where f is the frequency of the data, s(f) is the amplitude of the frequency

components.

Figure-of-merit zero (FMO0)

The FMO is calculated by dividing the peak-to-peak (P2P) value of the signals
by the sum of the amplitude of the gear mesh frequency. The FMO is known to detect
localized faults in the measured signal [108]. The FMO indicates the increase of
magnitude of TE by calculating P2P values and the reduction in amplitude of the

main frequency due to the fault signal. It can be formulated as
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(2.4)

where P2P is the peak-to-peak value of the data, fl.g is gear mesh frequency and its

jth harmonics, and | is the total number of harmonics.

Variance

The variance value could quantify the spread of the data from the mean values.

The equation for the variance value for the data vi
variance = ﬁZ?:ﬂVi — u)? (2.5)

It can be treated as the second statistical moment of the probability distribution.

SER (Sideband energy ratio)

Sideband energy ratio (SER) is defined to quantify the faulty components of the
spectrum of the vibration signals, which are represented in vicinity of the gear main
harmonics. The health datum can be expressed as

N; 1
2'_slldeband A(slf )

SER = == (2.6)

where A(si"') is amplitude of i" sideband of fundamental gear mesh frequency,

Nsidebands 1S the number of sidebands. The SER have been widely used to detect faults

in the wind turbine gearboxes [109].
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2.4. Summary and Discussion

First of all, in this dissertation, | focus on fault diagnostics of planetary gears
under variable -speed conditions. In real-world situations, planetary gears are usually
operated under varable-speed conditions. Therefore, | intend to develop fault
diagnostic methods that can be also applied to variable-speed conditions. In addition,
the method would not need other measurement devices than acceleration signals.
Although many diagnostics methods based on the angular resampling technique
showed good performance, additional devices are need to measure angular data, and
they also need additional signal processing. In this context, we focus on below three

points.

Fault sensitivity enhancement by minimizing effects of variable-speed

conditions

The angular resampling technique could reduce the effects of variable-speed in
the measured vibration signals by resampling the data in the angular domain as
mentioned in 2.2.1. However, the use of angular data is only possible by using
additional measurement devices. Although time-frequency analysis could be used to
investigate time-varying behaviors of the vibration signals, fault sensitivity of the
method could be limited when the effects of variable speed in the results of the time-
frequency analysis are not removed [51, 52]. Therefore, in this dissertation, | intend
to minimize the effects of variable speed by only using vibration signals for fault
diagnosis of the planetary gears under variable-speed conditions. In this regard, we

could enhance fault sensitivity of the diagnostic method for the planetary gear under
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variable-speed conditions. In addition, we would not need any other measurement

devices other than an accelerometer.

Time efficiency of the diagnostic method

As mentioned in Section 2.2.2, the use of time-frequency analysis for vibration
data often results in huge computation time, and it could not be used for real-time
monitoring [63]. In this regard, time efficiency of the diagnostic method is also an
important issue. However, when we choose the other time-frequency methods to
reduce computation time, the fault sensitivity could be reduced [110]. Therefore, in
this dissertation, | intend to develop time-efficient diagnostic method for planetary
gears under variable-speed conditions while compensating reduced fault sensitivity

by exploiting signal and system characteristics.

Image-based features for complex speed profiles

In Section 2.2.3, | reviewed the image-based method that used time-frequency
analysis. First, image-based features have been developed for medical applications.
Although they showed good performance in the medical field, the features could be
limited to fault diagnosis of the planetary gears because they do not fully utilize
faulty characteristics of the planetary gears. In addition, recently, deep learning
techniques have been actively employed to train the fault features of the time-

frequency image data. Especially, the CNN technique has been extensively used
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when the image data are used for training data, as the method is known for its good
classification ability for image data. However, the deep learning techniques do not
have close physical relationship with faulty characteristics of the planetary gear. In
this regard, | will develop an image-based fault feature, which could extract faulty
information of the planetary gear. Further, the feature would be independent of speed
profiles of the planetary gear, and could be applied to the gear with complex speed

profiles.
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Chapter 3

Data Description

In this chapter, | will describe the data | used to validate the proposed method. |
used the two types of data, simulation data and experiment data. First, | will explain
how the simulation model was constructed including planetary gears under normal
and faulty states. Then, descriptions about experimental setup for the planetary gear

will be presented.

3.1. A Simulation Model for a Planetary Gear

This chapter will explain the details about the simulation models for a planetary
gear, which will be used for demonstrating the performance of the proposed methods
in this dissertation. The basic parameters of the planetary gear is shown in Table 3-
1, and they are same as the ones in the experimental setup, which will be given in

the Section 3.2.
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Table 3-1 Basic parameters of the planetary gear

Parameter Value
Ring gear tooth number, Z,uq 95
Planet gear tooth number, Z,une: 31
Sun gear tooth number, Z,, 31
Planet gear number, P 3

3.1.1. A Simulation Model for a Planetary Gear in a Normal State

Figure 3-1 shows the common configuration for measurement of planetary gear
vibration. The accelerometer is mounted on the outer ring gear. In this configuration,
the measured vibration signals would be modulated like those shown in Figure 3-
1(b) because the multiple planet gears pass through the mounted accelerometer. In
[111], Inapolat and Kahraman developed a model that simulates the modulated
vibration signals of the planetary gear; this is called a phenomenological model. The
phenomenological model is able to simulate the actual vibration signals measured
from the transducer on the planetary gear; whereas, the lumped-parameter model can
only explain the dynamic behaviors of the planetary gear observed by a ground-

based reference [36]. Therefore, in this research, we adopted the phenomenological

model based on the previous paper.
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Figure 3-1 (a) A cross-sectional view of a planetary gear with an accelerometer
mounted on the ring gear; and (b) vibration signals of the simulation

model developed by Inapolat and Kahraman [111]

In the modulated vibration signals, white noise was added to reproduce more
realistic signals. The variable-speed condition was given as (-300(t-3)? + 2800) rpm
of the sun gear rotation as shown in the Figure 3-2. Amplitudes of the vibration
signals varied in proportion to a magnitude of speed in this case [112]. Consequently,

the equation of the vibration signal of the jth planet vj(t) is as follows:
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Figure 3-2 The variable speed profile used in the simulation.

v(0) = A, OWw (£ = 2LT.) U;(0) T, Fye cos(kZywct + kZ, ;) +
Apr(t) + Apcos(2mf,t) (3.2)

where A,, A,, and A, are amplitude coefficients for variable-speed conditions,
random noise, and resonance Vvibration; V_VJ is a coefficient of the jth planet
weighting function for unequal load sharing in the carrier and gear manufacturing
error; w(t) is a window function based on a Hanning function; ¢; is a planet
position angle at the jth planet; Tc is a period of a carrier in a planet gear; Uj(t) is a
unit step function in the jth planet gear considering the effect of a transducer; Fic is
a Fourier coefficient for the kth harmonic of the jth planet gear dynamic force; w,
is an angular carrier velocity; r(t) is noncoherent random noise; and f, is a resonance
frequency. In this study, we assumed that the whole load sharing would be same
among the planets, and all W; values were set to 1. The total vibration signal v(t) is

then

v(t) = Xj=1v(0) 3.2)

1 O
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where P is a planet gear number. More details about the model can be found in [111].
In the model, seven harmonic components were considered. In addition, four levels
of planet gear local faults were added to observe the performance of the proposed
methods. The resonant frequency of this system was imposed as 10 kHz, and the

sampling rate of the vibration signal was 25,000Hz.

3.1.2. A Simulation Model for a Planetary Gear in a Faulty State

There could be planet, sun, ring gear fault types in the planetary gear.
Additionally, the fault could happen in the single side of the gear tooth, both sides
of the gear tooth, or the fault could be distributed cases [113]. Table 3-2 shows the
characteristic faulty frequencies which could happen in the planetary gear. In this

dissertation, we assume a planet gear singe fault in the planetary gear.
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Table 3-2 Characteristic faulty frequency of the planetary gear

Type Frequency
: fmesh
Single fplanet,l = Zmes
planet
_ f mesh
Planet fault Double fplanet2 = 2
Zplanet
. _ f mesh
Distributed folanetdist. = 7
planet
. _ fmesh
Single fsun = Z—Nplanet
Sun fault SR 7
Distributed foundist, = —mesh
Zsun
: fmesh
Single fring = Zminlanet
. ring
Ring fault 7
DiStributed fringldist, = Zrn—eSh
ring

Figure 3-3 shows how the vibration signals are simulated in this study. Figure 3-
3(a), (b), and (c) show the vibration signals from 1st, 2nd, and 3rd planet gears
indicated with black solid lines in the figure. Although all the gears are meshing with
other gears, the measured vibration signals from the accelerometer would be like
Figure 3-3(d) due to the signal transfer function of the planetary gear indicated as
red dotted line in the figure. Then, | will assume that the 3rd planet gear is a faulty
gear. Then, the faulty tooth of the gear would mesh with other gear periodically, and
the sequences are marked as red circles as shown in the figure. However, all the
faulty signals could be measured by accelerometers due to the signal transfer
function. Therefore, only one of the faulty meshes could be measured from the
accelerometer. The vibration signals are simulated using this principle, and we

assumed four different levels of faults in this cases. Figure 3-4 shows the simulated



vibration signals calculated from the described model of normal and four different

levels of faults.
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Figure 3-3 Meshing of a single faulty planet gear: (a) 1% planet gear vibration
signals, (b) 2™ planet gear vibration signals, (c) 3™ planetary gear
vibration signals, and (d) resultant vibration signals measured from
an accelerometer
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3.2. Experimental Setup for a Planetary Gear

This chapter will describe the experiment setup to measure the vibration signals
of the planetary gear. The overall configuration of the testbed is shown in Figure 3-
5(a) and the cross-section of the target planetary gearbox is shown in Figure 3-5(b).
The target for the experiment was a 2nd stage planetary gearbox. The specifications
of the planetary gear were same as those in the simulation study, where Zg, is 95,
Zpianet 1S 31, Ziing i 31, and P is 3. Three levels of faults were seeded artificially on
the planet gear, as shown in Figure 3-6, where the shapes of the faults are semicircles

with diameters of 0.75, 1, and 1.25mm, respectively.

_______________

1st stage i 2m stage

Drive motor planetary gearbox i_ planetary gearbox

1
i Load motor
1

Figure 3-5 (a) Overall configuration of the testbed, and (b) the cross-sectional view
of the target planetary gearbox (i.e., 2nd stage planetary gearbox)
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Figure 3-6 Gear tooth profiles for three levels of half-circle-shaped faults: (a)
level 1 (D =0.75mm), (b) level 2 (D = 1.0mm), and level 3 (D =
1.25mm)

In the experiment setting, | measured the acceleration signals 25,600Hz, and the
six accelerometers were attached around the planetary gearbox as can be seen in
Figure3-7. The accelerometers are mounted on the gearbox using the stud mounting

method as can be seen in the Figure 3-8.

Figure 3-9 shows measured vibration signals from the six accelerometers attached
to the planetary gearbox from normal and faulty states. The kurtosis ratios between
signals of each accelerometers from normal and faulty states are 1.06, 1.01, 1.16,
1.29, 1.10, and 1.15, respectively from 1st to 6th accelerometer. Based on these
results, we could find that the 4th accelerometers have the most sensitive results to
the gear fault. This results is expected to happen due to transmission path effect in

the planetary gear [114].
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Figure 3-7 Accelerometers attached to the planetary gearbox

(b)

Figure 3-8 (a) Stud mounting of the gearbox, and (b) an accelerometer attached
to the gearbox
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Figure 3-9 Vibration signals from the six accelerometers attached to the

planetary gearbox from normal and faulty states

The variable speed profile was considered to validate the proposed method, while
the torque and temperature were maintained constant at 4 Nm and 60°C, respectively.
Previous literature adopted different speed profiles to validate each method [115-
119]. In the variable speed profile, the speed was fluctuating from 1100 to 1500 rpm
with a sinusoidal curve with a period of 20 seconds as shown in Figure 3-10. Figure
3-11 shows the measured vibration signals from planetary gears of normal and three

different levels of faults.
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Figure 3-10 The variable-speed profile used in the experiment
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pp. 347-360, 2019.
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Chapter 4

A Positive Energy Residual (PER)
Method for Enhanced Fault
Sensitivity

The proposed PER method, which uses only the vibration signals acquired from
accelerometers, will be explained in detail in this section. As described in the
introduction, the proposed PER method was developed with the aim to detect faults
of planetary gears under variable-speed conditions. And, it aims at enhancing fault
sensitivity by minimizing the effects from the variable-speed conditions. In this
chapter, we first review the wavelet transform (WT), which is one of time-frequency
analysis techniques. Next, I will describe the details of the proposed PER method.
Then, performance of the proposed method will be demonstrated using two case
studies, a simulation model and experiment data. Finally, | will summarize and

discuss the results.

4.1. Review of Wavelet Transform and a Gaussian process

In this section, we review the WT and GP regression techniques that we used to

develop the new planetary gear fault diagnosis algorithm. First, basic principles of
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WT are reviewed. In addition, we investigate previous studies using WT for fault
detection and their limitations when applied to variable speed conditions. Next, we
explain how a GP is formulated and how it can be used for regression. Then, we
describe how GP regression can be used to quantify the statistical quantity in the

continuous domain.

4.1.1 Wavelet transform

WT decomposes time-domain signals v(t) at time t, like Fourier transform (FT).
While FT uses sinusoidal basis functions in decomposing the signals, WT uses a

wave-like function ¥ (t) called a wavelet [120]. WT can be expressed as
wt(u, s) = — [ v (=Dde 4.2
1] \/E s .

where u and s are the translation and the scale parameters, respectively; the
superscript * stands for a complex conjugate. The wavelet coefficient wt(u,s)
calculated from WT represents the degree of correlation between signals v(t) and the
wavelet at translation u and scale s [121]. The coefficients in the time-scale domain
can be interpreted into ones in the time-frequency domain as the relationship
between scale and frequency is inversely proportional. Various kinds of wavelets
like Hermite, Morlet, and Daubechies have been used to extract specific features in

the time-frequency domain according to the characteristics of the signals [120].

WT has been widely used for fault detection in various engineering applications
either solely or combined with other techniques [81, 122-128]. Wang et al. [129]

showed that WT could visually represent faulty symptoms of spur gears in the time-
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frequency domain. Wang et al. [121] proposed a unified framework that used FT
with WT to effectively process periodic fault features from wavelet coefficients.
Many studies combined WT with machine learning (ML) methods like support
vector machine and neural networks [130-133]. However, the previous studies are
limited to fault diagnosis under constant speeds because features extracted from FT

and ML techniques may vary according to speed conditions [115].

4.1.2 Gaussian Process

A GP can be defined as a collection of random variables at time t, while any of
the random variables are jointly Gaussian distributions [134]. The GP technique has
been widely used to predict system behaviors from the non-linear data [135-141]. A
GP is fully determined by its mean function m(t) = E[Y(t)] and covariance function

k(t, t') = E[Y()Y(t)] for a stochastic process Y(t), where Y(t) can be represented as
Y(t) ~GP(m(t), k(t,t)) (4.2)

The mean function is assumed to be a zero-mean function in most studies [142];
a squared exponential covariance function is commonly used for the covariance
function, as shown below
Jle=¢'|)”
5 -
k(t,t') = ofexp(— e (4.3)
where a,? and o? are hyper-parameters, which can be learned by maximizing the

likelihood function [134].
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Suppose that there are N noisy observations D = {(t;, y;)|i =1,...,N} from
y; = f(t;) + w;, where w; is (0,02). Then, the covariance between y; and y; is

computed as shown below

COV(yi,y]') = k(ti, t]) + O'Vzl,(sij (44)
where &;; is the Kronecker delta function. Alternatively, it can be expressed in
matrix form as

cov(y) = K(t,t) + 021 (4.5)

where vectorized forms are used for the identity matrix, I, t = (ty,...,ty)T, and
y = (y1,..,yn)T. Then, GP regression could predict the distribution for a new

observation (tpew» Ynew). 1he conditional distribution for the predictive output is

defined as
Ynew|D ~ N (M(tnew|D), Ghew (tnew| D)) (4.6)
where
M(tnew|D) = K(tnew ) (K(t,8) + 05Dy (4.7)
And

Oitew (tnew|D)) = 0f = k(tnew, )" (K(t,8) + o) k(tnew t)  (4.8)

In equations (4.7) and (4.8), k(thew,t) iSa covariance vector that calculates the

covariance that includes the new observation data.

As can be seen above, GP regression could predict statistical quantities (i.e., mean

43 ] r



and standard deviation) in the continuous domain along the time. In addition, GP
regression is a nonparametric method that uses only observations, not parameters.
Therefore, it is suitable for predicting non-linear behaviors of time-varying data. In

addition, it could consider the uncertainties in the observed data.

4.2. The Proposed PER Method

The proposed PER method, which uses only the vibration signals acquired from
accelerometers, will be explained in detail in this section. As described in the
introduction, the proposed PER method was developed with the aim to detect faults
of planetary gears under variable speed conditions. The flowchart of the proposed
PER algorithm is shown in Figure 4-1, and as can be seen, the proposed PER method
is composed of six steps aimed for testing vibration signals. After the six steps, the
ratios of fault features are calculated between training normal and testing data. Then,
the ratios are compared with the threshold value, which can be defined by training
normal and fault signals. The proposed PER method steps are described in detail as

following.
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Testing vibration signals

'

Step 1: Wavelet transform

Averaged

wavelet coefficients, wt
A

Step 2: Moving average & Down-sampling

|

Moving averaged/

| down-sampled coeff, Wiya ps

Step 3: Gaussian process (GP) regression

|

Predicted mean, m

A4

Step 4: Calculate energy residual (ER)

ER=wt—m

¥

Kurtosis of PER from training

Step 5: Calculate positive portions
in ER (PER)

normal data

l PER

Step 6: Calculate kurtosis of PER

Kurtosis of PER from training
fault data

!

Calculate ratios of kurtosis between
training normal and testing data

w

Yes No

! )

[ Faulty state J [

Normal state ]

Figure 4-1 A flowchart of the proposed PER method

4.2.1. Wavelet Transform

As explained in Section 2, WT is used to decompose the raw vibration signals in

the time domain to the time-frequency domain. For gear fault detection, wavelets

like Morlet and Daubechies [129, 143] are widely used for extracting faulty features

from the vibration signals. In this paper, Morlet wavelet is used as it is known to give

superior results as compared to other wavelets used for gear fault detection [129].
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Extracted Morlet wavelet coefficients from WT are represented in the time-scale

domain, as
=1 : ha 4.9
wt(u,s) = \/_Efv(t)lpMorlet(T) t ( . )

where v(t) is the raw vibration signal and Y por1e: (t) is the Morlet wavelet. Then,
all the wavelet coefficients wt(u, si) from the scale-domain are averaged at each time-

domain u as follows:
PR 1 MS
wt(u) = EZizllwt(u, sl (4.10)

where Ms is the whole number of scale parameters. The averaging is performed based
on same weights at each coefficient. wt(u) can also be expressed as wt(t)
because it is represented in the time-domain. From the averaged coefficients wt(t),
we can observe how the energy of the signal fluctuates through time due to speed
variation [144]. These coefficients could also express faulty behaviors, as the

damaged gears induce abrupt increases of the energy in the vibration signals.

(@) (b)

Time-domain Signals Wavelet Transform

W)l

Time (ms) Time (ms)

Figure 4-2 (a) Time-domain signals and (b) wavelet transform of the signals
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Figure 4-2 shows how WT could express time and frequency information of the time-
domain signals in the time-frequency domain. First of all, WT could express time-
varying spectral information as can be seen in the figure. We could see that the two
components have different frequency components. In addition, we could observe that
WT could extract singular behaviors in the middle of the two components. Although
the singularities are not clearly seen in the time-domain signals, we could obviously

see the singularity behaviors in the high-frequency regions of the WT results.

Figure 4-3 shows how the shapes of the signals change along the proposed ideas.
Figure 4-3(a) represents the averaged wavelet coefficients with faulty signals under
variable speeds with a frequency of 1 Hz. In this state, the averaged coefficients
wt(t) are not enough to be solely used for fault detection because the coefficients
also fluctuate due to the variable speeds. Therefore, additional steps are needed. The
averaging process could also be considered as marginalization without loss of

generality [145].

(@) (b) (c)
15 15
10 10
g
b 5 5
0 0
g kur. =1.82 5 kur. =2.25 . kur. = 8.28
0 0.5 1 0 0.5 1 0 0.5 1
Time () Time () Time ()

Figure 4-3 Changes of the shapes and kurtosis values at each step of the proposed
method: (a) wt, (b) ER, and (c) PER
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4.2.2. Moving Average and Down-sampling

The averaged wavelet coefficients wt(t) calculated from the previous step
could have inherent uncertainty from noise, or other disturbances. Therefore, the
wt(t) are moving-averaged to get smoothed, and time-varying behaviors of energy

flow. The moving-averaged coefficients for pth time data t, can be defined as
—_ 1 -
WtMA(tp) = ;Z?=1 Wt(tp-a-1)) (4.12)

where n is the number of periods in the moving average. To reduce the computational
cost in calculating the inverse of the covariance matrix in the next step, the moving-
averaged coefficients wtya(t) are down-sampled, and they become wtya ps(t),
which results in down-sampled, moving-averaged wavelet coefficients. Down-
sampled samples with down-sampling rate d have every dth sample from original

ones, and have d times smaller samples than original samples N.

4.2.3. Gaussian Process (GP) Regression

The moving-averaged and down-sampled wavelet coefficients wtya ps are then
processed with GP regression. In this paper, the zero-mean function and the squared
exponential covariance function are used as explained in Section 4.1.2. Then, a GP
model is fully defined by learning the hyper-parameters of the covariance function
(ie., a,? and ¢2). In this step, the accuracy of the regression model can be
evaluated using mean square error or other metrics [140]. Next, the predictive mean
value for down-sampled observation Dpg = {(ti, mMA,DS(ti)) |i =1, ...,NDS} is

calculated using equation (4.7) with a developed GP regression model, as
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mps(t) = m(t|Dps) = k(t, tps)T (K (tps, tps) + o5]) *Weyaps (4.12)

where vectorized forms are used for down-sampled observations, tpg =
(ty, s tyy)" and Weyaps = Wemaps(ts) -, Wmaps(tn,s))" - From these
mean values, we can estimate how the averaged wavelet coefficients behave under
variable speeds. Then, the predicted mean values mps(t) are up-sampled to be in the
same number of samples with wavelet coefficients. Then the up-sampled predicted

mean value is defined as m(t).

4.2.4. Energy Residual (ER) Computation

The ER is defined to remove the time-varying effects of wavelet coefficients from
variable speeds. ER values ER(t) can be calculated by subtracting the predicted mean

values m(t) from the averaged wavelet coefficients wt(t), and can be expressed as
ER(t) = wt(t) — m(t) (4.13)

The calculated ER(t) could express residual energy in the vibration signals by
subtracting the mean energy flow from the oscillating energy behaviors. The ER
values have peaked behaviors due to the large wavelet coefficients produced from
faulty vibration signals. Therefore, the ER values can express faulty behaviors when
the time-varying behaviors of vibration signals are excluded. In addition, the
calculation does not need any assumption of limited speed fluctuation. Figure 4-3(b)
represents ER signals, which indicate energy behaviors when the variable speed
condition is subtracted from the wavelet coefficients using GP regression. Therefore,
the ER signals oscillate around a zero value. However, ER values are not sensitive

enough to detect faults of small sizes. As can be seen in Figure 4-3(a) and (b), the

49



kurtosis value is not significantly enhanced using the ER values. Therefore, we

proposed the PER method, which can enhance the sensitivity of fault detection.

4.2.5. Positive Energy Residual (PER) Computation

In this step, the negative portions of ER are neglected, and only the positive
portions are taken. The faulty behaviors in ER appear as increases of the wavelet
coefficient wt(t), not as decreases. This is because the wavelet coefficients calculate
the degree of correlation between vibration signals and the pre-defined wavelet.
Therefore, only positive portions of the ER values are significant in quantifying the
faulty behaviors. As a result, taking only the positive portions enhances the
sensitivity of the proposed method to the presence (or not) of the faults. Figure 4-
3(c) represents the PER signal, which takes only the positive portions in the ER

signals in Figure 4-3(b).

4.2.6. Kurtosis from the PER Values

Next, a fault feature is calculated to quantify the faulty behaviors using PER. In
this study, kurtosis is used to effectively highlight the abrupt increase of fault
detecting capability [5] that arises from using the proposed PER method, which is

defined as

Y]
kurtosis = ZLa—#] (4.14)

o4

where u and o arethe mean and standard deviation of the data samples ai, and E[ -]
is the expectation. The kurtosis values calculated from the signals of averaged

wavelet coefficients wt, ER, and PER shown in Figures 4-3(a), (b), and (c) are 1.82,
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2.25, and 8.28, respectively. The main reason for the differences in the kurtosis
values is the variance value of each signal, which is the denominator in equation (14).
The variance values of wt, ER, and PER are 5.09, 0.59, and 0.15, respectively. For
averaged wavelet coefficients, they fluctuate along the variability of the speeds, and
the variance values are larger than the other cases. This results in the smallest
kurtosis value and makes it difficult to detect faults using only the averaged wavelet
coefficients wt. In the case of ER, as variability of the signals is subtracted, kurtosis
can better quantify the effect of fault signals. However, the kurtosis value does not
increase significantly when the fault symptoms are not severe. Therefore, the effects
of fault signals are enhanced in kurtosis values of PER by taking only the positive
portions of ER. In this case, the kurtosis values increased more than three times in
PER compared to those in ER. Figure 4-4 shows the overall procedure for the

proposed PER method.
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4.3.Case Studies

This section will demonstrate the proposed PER method using the case studies.
In Section 4.3.1, we will first use a simulation model of the planetary, which is
explained in Section 3.1. Then, the demonstration would be performed using the

experiment signals, which we explained in Section 3.2.

4.3.1. Case Study with the Simulation Model

In this section, we demonstrate the effectiveness of the proposed PER method
using the simulation models developed in Section 3.1. Figure 4-4 shows the results
from each step of the proposed method in a normal condition and through the four
levels of faults. Figure 4-4(a) shows the averaged wavelet coefficients wt
calculated from the Morlet wavelet. The coefficients were averaged from all the
scales, as described in Section 4. As can be seen, the averaged wavelet coefficients
fluctuate along the time due to variable speed conditions. In addition, the
modulations of vibration signals arising from contacts of planet gears make
oscillations of these coefficients. For the fault cases, the peaked vibration signals
appeared all around the signals, and they get larger for the larger sizes of faults.
Figure 4-4(b) shows GP regression results. The blue solid lines are averaged wavelet
coefficients wt calculated from previous steps and the green dotted lines are the
predicted mean values m calculated from the GP regression. Next, ER values were
calculated by subtracting predicted mean values m(t) from the averaged wavelet
coefficients wt(t), as defined in Eq. (4.5), and shown in Figure 4-4(c). Therefore,

the ER values oscillated around zero values. Finally, only positive values of the ER
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values were taken to determine PER, as shown in Figure 4-4(d). By following these
procedures, the effects from variable-speed condtions could be minimized while

enhancing fault sensitivity.
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Figure 4-6 and Table 4-1 show the ratios of kurtosis between normal and each
fault level (F1 = level 1, F2 = level 2, F3 = level 3, and F4 = level 4) using WT, ER,
and our newly proposed PER. In this procedure, kurtosis values were calculated
using all samples from zero to five seconds. For all fault levels, the proposed PER
method performed better than both the WT method and the ER method. In particular,
the proposed PER method could differentiate the smallest fault level (i.e., level 1)
while other methods could not. It should be noted that the ER method showed

slightly better performance than WT.

In Figure 4-7, we compared the performance of the proposed PER method with
the order-tracking method using the resampling technique. In the result, we could
see that the proposed PER method shows similar performance with the order-
tracking method. And, as noticed in the chapter 2, the proposed PER method does
not need angular measurement while the order-tracking method need angular

measurement.

Ratios of Kurtosis btw. Normal and Faults

5 . .

<4
PER

s
o
Z3 *
2 f +// ~

1 W;i;i;i;,;:;:;,:é; - -

F1 F2 F3 F4

Figure 4-6 Ratios of kurtosis between normal and each fault level using WT, ER,
and PER methods with simulation signal
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Table 4-1 Summary results of the ratios of kurtosis from normal and each fault

level using WT, ER, and PER methods with simulation signals

F1 F2 F3 F4

WT 1.03 1.20 1.56 2.18

ER 1.05 1.27 1.82 2.73

PER 1.07 1.70 2.86 435
10| |——Order

—+PER

Fault/Normal
(U]

Fl F2 F3 F4
Figure 4-7 Fault sensitivity results of the order-tracking method and the proposed
PER method for simulated vibration signals

Figure 4-8 shows ratios of kurtosis between normal and each fault level using the
proposed PER methods under different noise levels. We could see that the proposed

PER method shows less sensitive results as the noise level gets higher.
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Figure 4-8 Ratios of kurtosis between normal and each fault level using the
proposed PER methods with simulation signals under different noise
levels

Next, we also observed the online monitoring capability of the PER method by
injecting the fault in the middle of the signals. Figure 4-9 shows the simulated
vibration signals from the normal condition and the four levels of faults. The peaks
arising from the faults get larger as the fault gets more severe from levels 1 to 4. The
magnitudes of each fault are about 25, 50, 75, and 100% of the maximum amplitudes

of the normal vibration signals.
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Figure 4-10 shows the results from each step of the proposed method in a normal
condition and through the four levels of faults. Figure 4-10(a) shows the averaged
wavelet coefficients wt calculated from the Morlet wavelet. The coefficients were
averaged from all the scales, as described in Section 3. As can be seen, the averaged
wavelet coefficients fluctuate along the time due to variable speed conditions. In
addition, the modulations of vibration signals arising from contacts of planet gears
make oscillations of these coefficients. For the fault cases, the peaks appeared after
two seconds, and they get larger for the larger sizes. Figure 4-10(b) shows GP
regression results. The blue solid lines are averaged wavelet coefficients wt
calculated from previous steps and the green dotted lines are the predicted mean
values m calculated from the GP regression. Next, ER values were calculated by
subtracting predicted mean values m from the averaged wavelet coefficients wt(t),
as defined in Eq. (4.5), and shown in Figure 4-10 (c). Therefore, the ER values
oscillated around zero. Finally, only positive values were taken to determine PER,

as shown in Figure 6(d).
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Next, we calculated the differences of kurtosis between normal and faulty states from
PER values, to quantify the degradation level. In the calculation, we used differences
of kurtosis instead of ratios to observe the change of the kurtosis at the fault injection
time. The kurtosis values were calculated at each time sequence for a normal
condition and for each fault level. Figure 4-11 shows the cumulative sums of the
kurtosis differences between normal and each faulty state. We also calculated the
kurtosis values using WT and ER methods to compare the performance of the
proposed PER method. For all of the fault cases, the cumulative sums of kurtosis
were nearly zero from all the methods until the time of two seconds, when the faults
were injected. Then, the cumulative sums of kurtosis differences started to increase
for all cases. As can be seen in Figure 4-11, the fault detection performance was
slightly better when using ER than when using WT, however, the sensitivity of the
proposed PER method for fault detection was better than either of the previous two

methods, WT and ER.
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Figure 4-11 Cumulative sums of kurtosis differences using simulation signals with
WT, ER, and PER for (a) fault level 1, (b) fault level 2, (c) fault level 3,
and (d) fault level 4

4.3.2. Case Study with the Experiment Data

The proposed PER method was also applied to experimentally measured
acceleration signals from a planetary gearbox in a variable speed condition explained
in Section 3.2. Figure 4-12 shows the results from each step of the proposed PER
method when using the signals in a sinusoidal speed profile. WT could extract faulty
characteristics, but the behaviors were not significant due to the variable speed
conditions, as shown in Figure 4-12(a). GP regression could predict behaviors of
variable speeds, as shown in Figure 4-12(b). In Figure 4-12(c), ER values were

calculated by subtracting the predicted mean values from the averaged wavelet
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coefficients. Then, only positive portions were used to enhance sensitivity of the

PER, as shown in Figure 4-12(d).
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Figure 4-13 and Table 4-2 show the ratios of kurtosis between the normal
condition and each fault level (F1 = level 1, F2 = level 2, and F3 = level 3) using
WT, ER, and the newly proposed PER from the sinusoidal and the linearly
decreasing speed profiles. For all fault levels, the PER method outperformed the
other methods, WT and ER. For fault level 1, the performances of the ER and PER
were similar. However, as fault levels go higher to levels two and three, the
performace of the proposed PER method gets better than the other two methods,
wavelet coeffcients and energt residual. Therefore, we could conclude that the
proposed PER method enhance the fault sensitivity for the planetary gears under
variable-speed conditions from the previous methods that only use wavelet
coefficients. Further, the fault feature behaviors using kurtosis show linear behaviors

along the fault level.

Ratios of Kurtosis btw. Normal and Faults

o WT
51 ER
= —+ PER
g4
—
o
Z3
E
27
It | | |
F1 F2 F3

Figure 4-13 Ratios of kurtosis between normal and each fault level using WT, ER,
and PER methods with simulation signal
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Table 4-2 Summary results of the ratios of kurtosis between normal and each fault

level using WT, ER, and PER methods for signals from the experimental setup

F1 F2 F3
WT 1.11 1.38 2.98
ER 1.18 1.45 3.70
PER 1.19 1.69 5.04
8
——Qrder
=6 ——PER
&
—
S
Z 4
=
=
<
— 21
F1 F2 F3

Figure 4-14 Fault sensitivity results of the order-tracking method and the proposed
PER method for experiment vibration signals

In Figure 4-14, we show the performance of the proposed PER method for the
experiment signals with the order-tracking method. We could find that the proposed
method shows better performance than the order-tracking method.

Figure 4-15 shows ratios of kurtosis between normal and each fault level using the
proposed PER methods with the experiment signals under different noise levels. We
could see that the proposed PER method shows less sensitive results as the noise

level gets higher.

1 O
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Figure 4-15 Ratios of kurtosis between normal and each fault level using the

proposed PER methods with experiment signals under different noise
levels

4.4. Summary and Discussion

In this paper, a new, positive energy residual (PER) method was proposed to
detect faults in a planetary gear under variable speed conditions. In the proposed
method, WT was performed to extract both varying speeds and faulty characteristics
from the vibration signals. Then, GP regression was used to predict averaged
variable speeds, which were then subtracted from wavelet coefficients to obtain
energy residual (ER). Then, only the positive values of ER (PER) were taken to
enhance the sensitivity of the proposed method. Finally, kurtosis values were
calculated to effectively quantify the peaked signals in PER. From the two case
studies, which used simulated and experimental acceleration signals from a planetary
gear, it was demonstrated that the proposed PER method could detect faults of a
planetary gear under variable speeds while showing better performance than both the
WT and the ER methods in terms of sensitivity to the presence of faults. The benefits

of the proposed PER method are that it can be applied to large fluctuations of speeds,
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and it does not need angular information of the gears, unlike other methods based on
the order tracking algorithm. Future work can be conducted to validate the proposed
PER method to detect other types of planetary gear faults, such as tooth root crack,
tooth breakage, or pitting. Further, PER will be investigated and applied to other
rotating machinery like bearings, rotors, and electrical motors. However, one
drawback of the proposed method is that the method could require huge computation
time for analyzing wider frequency regions. Therefore, time-efficient fault diagnosis

methods are required.

Sections of this chapter have been published as the following journal articles:

1) J. Park, M. Hamadache, J. M. Ha, Y. Kim, K. Na, and B. D. Youn, "A positive
energy residual (PER) based planetary gear fault detection method under
variable speed conditions," Mechanical Systems and Signal Processing, vol. 117,
pp. 347-360, 2019.
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Chapter 5

Variance of Energy Residual (VER)
Method for Computational
Efficiency

The proposed VER method is described in detail in this section. The VER method
offers the potential to reduce computation time by using STFT, rather than the WT
approach used in the PER method. We first review basic principles of the STFT
technique, and explain how the technique is different from WT. We also show a
simple example to compare the characteristics of the STFT and WT techniques. Then,
detailed procedures for the proposed VER method are outlined. Finally, we will
present two case studies, a simulation model and experiment data, to demonstrate

the performance of the proposed VER method.

5.1. Review of Short-time Fourier Transform

Similar to WT, STFT is also a TFA technique that observes vibration signals in
the time-frequency domain. The computation time of STFT can be less than that
needed for WT due to the averaging effect from the chosen window function [146].

The basic formulation for STFT is as follows:
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STFT(z, f) = [v(t)g(t — T)e ?™tdt (5.1)

where g(t — 1) is a window function centered at t =, and f is frequency.
Therefore, STFT can be considered to be a windowed Fourier transform (FT) over
time. Although STFT requires less computation time due to the averaging from the
window function, the peak detectability is less than that of WT. Figure 5-1 shows an
example that compares the computation time and peak detectability of STFT and

WT.

Figure 5-1(a) shows the sinusoidal signals of 1,500 Hz and 2-second samples at
10,000 Hz, where the signal-to-noise (SNR) ratio is about 17 dB. In the vibration
signals, a singularity is added at 0.5 seconds to compare the peak detection
performance of STFT and WT. Figure 5-1(b) and Figure 5-1(c) show STFT and WT
results from the vibration signals. As can be seen, the main component can be
observed near 1,500 Hz in both STFT and WT results. However, the singularity
component at 0.5 seconds is less clearly represented in the STFT results than in the
WT results. In other words, the singularity is illustrated with more blurred images in

STFT than in WT. From the results we can see that WT has better fault diagnostic

(@) (b) (©
4 5 g T2 e e 5
_4 [ _4
2 T 5 =
< o : =3
0 B 2R
-2 () N 0 —
0 0.5 1 1.5 2 0.5 1 1.5 0.5 1 1.5 2

Time (s) Time (s) Time (s)

Figure 5-1 Comparison of computation time and peak detectability between STFT
and WT: (a) vibration signals with peak at 0.5 seconds, (b) STFT of the
vibration signals, and (c) WT of the vibration signals
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capability than STFT in this case. However, STFT requires less computation time.
In this case, it takes 0.13 seconds for the STFT analysis, while it takes 3.56 seconds
for the WT analysis. Therefore, from this example, we can conclude that STFT has
less fault sensitivity than WT, while it shows better computational efficiency. One
more thing of particular note is the fault symptom in both STFT and WT. In Figure
5-1(b), the fault symptom of STFT appears as spread in all the frequency regions.
However, in Figure 5-1(c), the fault symptom of WT appears as abrupt increases of

the wavelet coefficients.

5.2. The Proposed VER Method

The overall procedures used for the VER method for fault detection of planetary
gears under variable-speed conditions are shown in Figure 5-2. The flowchart in
Figure 5-2 is composed of four steps. The procedures are developed to determine
whether the testing signals are in a faulty state (or not) by comparing the VER values
with training normal and faulty VER values. As shown in Figure 5-2, the proposed
VER method only uses the vibration signals measured from accelerometers; it does
not need the angular information that is needed by order-tracking based methods. In
addition, the VER method could reduce computation time by adopting STFT for

TFA, instead of WT. A detailed description of each step is provided below.
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Training vibration signals Testing vibration signals

'

’ Step 1: Short time Fourier transform (STFT) ‘

A 4

Spectral kurtosis method } - » | Selectively gv_eraged
Frequency region ! STFT coefficients, STF T (T)

’ Step 2: Gaussian process (GP) regression

Predicted mean, m

A4

’ Step 3: Calculate energy residual (ER) ‘

A4

ER =STFTs (r) — m
VER method y
’ Step 4: Calculate variance of ER (VER) ‘
VER from training l
normal and faulty signals N Calculate ratios of VER between

training normal and testing data

—>

Yes No
[ Faulty state ] [ Normal state ]

Figure 5-2 A flowchart of the VER method for fault detection of planetary gears
under variable-speed conditions

5.2.1. Short-time Fourier Transform

A STFT technique is used to represent the faulty symptoms, as well as the time-
varying behaviors of vibrations signals. As noted in Section 5.1, the STFT technique
could reduce the computation time of the VER method compared to the WT
technique used in the PER method. In this step, the window type and length of the
window function need to be selected according to the characteristics of the given
signals and systems. Using the window function, as noted in Section 3.1, fault
sensitivity reductions could come at the expense of computational efficiency.

Therefore, in this research, additional processing is performed to enhance the fault
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detection performance of STFT. In previous research, the TFA coefficients were
averaged from all over the frequency range along time. However, in the proposed
VER method, STFT coefficients are averaged only in the selected frequency regions

to enhance fault sensitivity, as shown in the equation below,

STFTge () = ——— %1%, ISTFT(t, £ (5.2)

e—Ng+1 't

where Ns and Ne, respectively, are the starting and ending numbers of the sequence
for selected frequency range. The frequency ranges that contain the most faulty
behaviors are usually near the resonance frequency of the given system, as the
resonance frequency is known to be excited under faults in rotating machinery [147].
In the VER method, the frequency ranges are automatically determined using
spectral kurtosis. The spectral kurtosis is a method to find the frequency regions with
the most non-Gaussian faulty behaviors [23]. Therefore, fault sensitivity could be
improved by calculating selectively averaged STFT coefficients STFT,,; (t), which
were determined based on the spectral kurtosis technique. In this study, the
kurtogram is used to find the optimal central frequency and bandwidth of the

frequency regions [148].

5.2.2. Gaussian Process (GP) Regression

The selectively averaged STFT coefficients calculated in the previous step are
used to perform GP regression in this step. A GP could be defined as a
stochastic process where each of the components is joint Gaussian distribution. The

GP can be formulated as
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Y(t) ~ GP(m(t), k(t,t")) (5.3)

where m(t) is the mean function E[Y(t)] and k(t, t') is covariance function E[Y(t)Y(t")]
for stochastic process Y(t) [134]. The objective of the GP regression in the VER
method is to estimate the effects of the variable speed in the calculated STFT
coefficients; this can be achieved by calculating the mean function m(t) in the

predicted GP regression model.

5.2.3. Energy Residual (ER) Computation

In this step, ER is defined to remove the effects of the variable-speed conditions
in the calculated STFT coefficients. The ER is calculated by subtracting the
estimated mean function m(t) from the selectively averaged STFT coefficients

STFT,e (t) as
ER(t) = STFT, (t) — m(t) (5.4)

As noted in Step 1, the STFT coefficients could represent the time-varying behaviors
and faulty information of the vibration signals. In addition, the faulty information
could be enhanced by selectively averaging the coefficients. Therefore, subtraction
of the estimated mean function could minimize the effects of the time-varying
behaviors of the STFT coefficients, and thus highlight the effects of faults in the

system.

5.2.4. Variance from the ER Values

The calculated ER values need to be quantified as a fault feature to show the
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degree of fault severity. Fault features that are commonly used for gear diagnostics
include RMS, kurtosis, and Crest Factor, among others [101]. In this step, we use
variance for the fault feature of ER, in contrast to kurtosis, which was used for the
fault feature in the previous PER method. In the wavelet coefficients, as can be seen
in Figure 4-2(b) in Section 4, the fault symptom is characterized as the increase of
the coefficients. Therefore, kurtosis is able to effectively quantify the degree of the
faults in the signals, because kurtosis measures the thickness of the tail in the
distribution, or outliers in the data [149]. In the VER method, however, variance of

the data is used for the fault feature as

variance = ﬁ M la; — ul? (5.5)

where u and M are the mean and total number of data samples ai. In STFT, the fault
symptom of the calculated coefficient is represented as spread in all the frequency
regions, as noted in Section 3.1. Therefore, variance is used to quantify the degree

of faults in the ER values.

Table 5-1 shows the comparison between the proposed VER method and the
previous PER method. First, the PER method uses WT as TFA to enhance fault
sensitivity. The VER method uses STFT to reduce computation time by selecting
appropriate window sizes. However, the fault sensitivity of the STFT could be
smaller than WT. Therefore, the VER method selectively averages the TFA
coefficients in the sensitive frequency range, which can be determined automatically
using spectral kurtosis. The details of the spectral kurtosis methods could be found
in literature [23, 150-153]. In the PER method, the whole frequency ranges are used

to obtain the TFA coefficients. Finally, the previous PER method used kurtosis as a
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fault feature because fault symptom appears as increases of the wavelet coefficients.
In the VER method, however, we uses the variance as the fault feature because fault
symptom appears as spread in the whole frequency region. Therefore, in the VER
method, we could reduce the computation time for the fault detection method while

maintaining faulty sensitivity.

Table 5-1. Comparison between the VER and PER methods

PER VER
(Positive energy residual) (Varlanc.e of Energy
residual)

Time-frequency Short-time Fourier
analysis (TFA) Wavelet transform transform

Selected automatically

Frequency range Whole frequency region by spectral kurtosis

Fault feature Kurtosis Variance
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5.3. Case Studies
5.3.1. Case Study with the Simulation Model

Figure 5-4 shows all of the procedures of the VER method when the method is
applied to the simulated vibration signals shown in Figure 3-4. First, the time-
varying behaviors of the vibration signals are represented using the STFT technique
shown in Figure 5-4(a). The STFT is also able to reveal faulty information from the
spread of STFT coefficients over the frequency axis at each time. A hamming
window of 0.1 seconds in length was used with 0.05 seconds of overlap in this case.
Next, the STFT coefficients are averaged over the selected frequency range over
time, as shown in Figure 5-4(b). The selected frequency range for fault sensitivity
enhancement is 4kHz around the resonance frequency, 10 kHz, which was calculated
from the spectral kurtosis method. As can be seen in Figure 5-4(b), small fluctuations
of the averaged coefficients get larger as the fault level gets larger. In addition, the
large fluctuations represent the effects of the variable-speed condition on the STFT
coefficient, which will be achieved by the predicted mean values of GP in Figure 5-
4(c). By subtracting the predicted mean values from the averaged STFT coefficients,
ER values are achieved, as shown in Figure 5-4(d). Finally, variances of ER (VER)

values are calculated for each state to quantify the degree of faults.
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Figure 5-5 shows the results of the VER methods (i.e., Figure 5-4(d)) compared
with the PER method and variance values calculated from the selectively averaged
STFT coefficients (i.e., Figure 6(b)) in terms of fault sensitivity and calculation time.
Figure 7(a) shows the fault sensitivity results; these were achieved using the ratios
of features from each fault state and the normal state. Figure 7(b) shows the
calculation time result; it was based on 5 seconds of vibration signals. The sensitivity
values are 1.07, 1.70, 2.86, and 4.35 for the PER method; 1.18, 1.61, 2.95, and 4.98
for the variance of the STFT coefficients; and 1.21, 1.46, 3.07, and 7.95 for the VER
method used to examine fault levels one to four. As can be seen, the VER method
showed the best fault sensitivity among the three methods for all fault levels. The
calculation time of the PER method is about 140 and 11 times more than the variance
of the STFT coefficients and the VER method. Although the variance of the STFT
coefficients shows a smaller calculation time than the proposed VER method, the
fault sensitivity is smaller than the PER method. In addition, the result from the
variance of the STFT coefficients could be distorted because the effect of variable-
speed conditions was not removed in the method.

(@) (b)

——PER
Var. /
—VER /

14.3s

oo
—_
(9]

(o)

~
—_
]

~
\

Fault/Normal
Calulation time (s)

()]

1.3s

= 7 0.1s
Fl F2 F3 F4 PER Var. VER

Figure 5-5 Performance of PER, Variance, and VER for simulated vibration
signals: (a) fault sensitivity and (b) calculation time
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We also compared the performance of the VER method with the order-tracking
method. Figure 5-6 shows how the faulty raw signals could be transformed into
resampled signals using the order-tracking method. As can be seen, the time- and
frequency-domain signals were resampled in the sun gear rotation- and order-domain
from Figures 5-6(a) and (b) to Figures 5-6(c) and (d). We could find that the speed
variabilities of the signals in Figures 5-6(a) and (b) were removed in the resampled
signals in Figures 5-6(c) and (d). Figure 5-7 shows the faulty sensitivity results of
the order-tracking method and the proposed VER method. The sensitivity of the
order-tracking method was calculated using the variance values of the averaged
STFT coefficients from the resampled signals. The sensitivity values of the order-
tracking method were 1.00, 0.96, 1.09, and 1.46 for the four levels of fault. From the
results, we could find that the VER method have better performance in highlighting

the faulty characteristics of the signals than the order-tracking method.
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Figure 5-6 Transformation of the faulty simulated raw vibration signals into the
resampled signals using the order-tracking method: (a) raw signals in
time-domain, (b) raw signals in frequency-domain, (¢) resampled
signals in sun gear rotation-domain, and (d) resampled signals in order-
domain
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Figure 5-7 Fault sensitivity results of the order-tracking method and the proposed
VER method for simulated vibration signals

Figure 5-8 shows ratios of VER values between normal and each fault level under
different noise levels. We could see that the proposed VER method shows similar

results under noise levels 1 and 2, and sensitivity gets lower under noise level 3. .
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Figure 5-8 Ratios of VER values between normal and each fault level with
simulation signals under different noise levels

5.3.2. Case Study with the Experiment Data

Figure 5-9 shows how the proposed VER method was applied to the experimental
vibration signals. In Figure 5-9(a), the vibration signals from the STFT results show
time-varying behaviors due to the variable-speed condition. A hamming window
with a 0.05-second length and a 0.025-second of overlap was used in this case. In
the STFT results, the system responded sensitively near 7 kHz. Therefore, in this
part of the experiment, we chose 2 kHz near the 7 kHz to cover the frequency ranges
that showed sensitive behaviors for selective averaging based on the spectral kurtosis
method. In Figure 5-9(b), the selectively averaged STFT coefficients fluctuated
along the variable-speed condition, while peaked behaviors became more severe as
the fault level increased. The modulated behaviors of the STFT coefficients are
predicted by the mean values of the GP regression, as shown in Figure 5-9(c). Next,

the ER values were calculated by subtracting the predicted mean values from the

85 Al =T



STFT coefficients, as shown in Figure 5-9(d). The variance values were calculated
for each ER value (i.e., VER) to quantify the degree of faults in the signals of the

planetary gear under variable-speed conditions.
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The fault sensitivity of the proposed VER method is given in Figure 5-10(a),
along with the PER method and the variance of the STFT coefficients. To calculate
the fault sensitivity, we computed the average of the fault features using 10 samples
of the 20-second vibration data. The sensitivity values are 1.19, 1.81, and 5.37 for
the PER method; 2.58, 3.61, and 5.65 for the variance of the STFT coefficients; and
3.03, 4.46, and 7.66 for the VER method for fault levels one to three. The proposed
VER method performs the best for each fault level in terms of fault sensitivity. Figure
5-10(b) shows the calculation time required for each method, which is based on 20
seconds of normal and faulty experimental vibration signals. As can be seen in
Figure 5-10(b), the previous PER method showed the largest required computation
time. The proposed VER method showed much better computation efficiency than
the PER method; in fact, it required about 33 times less computation time. Although
the variance of the STFT coefficients showed reduced computation time compared
to the VER method, the variance values showed less fault sensitivity than the VER
method. In addition, the effect of the variable-speed condition is not removed in the

variance of the STFT coefficients.
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Figure 5-10 Performance of PER, Variance, and VER for experiment vibration
signals: (a) fault sensitivity and (b) calculation time signals: (a) fault
sensitivity and (b) calculation time

Again, we compared the fault sensitivity results of the VER method with the
order-tracking method. In Figure 5-11, we could see how the faulty experiment raw
signals could be resampled based on the order-tracking method. We could find that
variabilities of speed in the measured signals in Figures 5-11(a) and (b) were
removed after the order-tracking method as can be seen in Figures 5-11(c) and (d).
Then, we calculated fault sensitivity of the order-tracking method. Figure 5-12 shows
the fault sensitivity values of the order-tracking method along with the proposed
VER method. In the figure, we could find that the proposed VER method shows
better fault detection performance than the order-tracking method. Figure 5-13
shows ratios of kurtosis between normal and each fault level using the proposed VER
methods under different noise levels. We could see that the proposed VER method
shows similar results under noise levels 1 and 2, and sensitivity gets lower under

noise level 3.
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time-domain, (b) raw signals in frequency-domain, (¢) resampled
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domain
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5.4. Summary and Discussion

This chapter proposed an efficient method for fault detection of a planetary gear



under variable-speed conditions. In the proposed method, first, we used STFT to
express time-varying behaviors of vibration signals measured from a planetary gear.
In STFT, the faulty behaviors could also be represented as the spread in the
frequency domain. Next, STFT coefficients were averaged over time based on
selected frequency ranges to enhance fault sensitivity. The frequency ranges were
automatically selected based on the spectral kurtosis method, which find the
frequency regions with the most non-Gaussian signals. Then, we used GP regression
to predict the mean values of the STFT coefficients, which represent the effects of
the variable-speed condition. The predicted mean values were subtracted from STFT
coefficients, which results in the energy residual (ER). Finally, variance of ER (VER)
was used as a fault feature to quantify the spread of the STFT coefficients in the
frequency domain. The proposed VER method was found to be more efficient than
other methods because the method does not use angular information, which requires
an additional measuring device and further signal processing. In addition, the VER
method requires less computational cost by using the STFT technique, rather than
the WT technique used in the previous PER method. The calculation time of the
proposed VER method was about three times less than the target signals, while the
previous PER method took three time more than the target signals. From this result,
we could expect the VER method would be easily applicable to online condition
monitoring, which provide continuous fault detection using the measured signals. In
conclusion, the proposed VER method offers the potential to reduce the computation
time of the previous PER method, while showing better fault sensitivity performance.
However, one drawback of the proposed method is that system characteristics must
be consistent to determine the frequency range of selectively averaged STFT

coefficients. Therefore, future work related to this study will include development
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of the VER method for the continuously varying system characteristics. In addition,
we will also apply the VER method to other rotating machinery, including bearings,
motors, and rotors; as well as to other variable-speed conditions like random speed
fluctuations and linearly time-varying conditions. In addition, in the PER and VER
methods, we need to estimate the variable-speed conditions using GP. However, the
estimated speed condition could be accurate if the speed profiles are too complex.

Therefore, in next chapter, we will develop a fault diagnosis method that also can be

applied to complex speed profiles.

Sections of this chapter have been published as the following journal articles:

1) J.Park, Y. Kim, K. Na, and B. D. Youn, "Variance of energy residual (VER):
An efficient method for planetary gear fault detection under variable-speed
conditions," Journal of Sound and Vibration, vol. 453, pp. 253-267, 2019.




Chapter 6

Image-based Fault Feature for

Complex Speed Profiles

As described in the previous section, speed estimation is performed using the GP
technique in the PER and VER methods. However, the estimated speed profiles
could not be accurate if the speed profile is too complex. It could lead to inaccurate
fault diagnosis results. Therefore, in this chapter, I will develop the image-based fault
feature which can be applied for complex speed profiles. We will first review how
the time-frequency image data are represented for normal and faulty planetary gears.
Then, the 2-dimensional (2-D) Fourier transform technique, which we used in the
proposed fault diagnosis method, will be explained. Then, | will propose the fault
feature, which can be extracted time-frequency image data. The performance of the
proposed fault feature would be demonstrated using the simulation model and

experiment data.
6.1. Time-frequency Image from Normal and Faulty

Planetary Gears

In this section, we first analyze the time-frequency analysis results of the normal
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and faulty planetary gears, and compare the results. Therefore, we could investigate
the faulty characteristics of the time-frequency analysis of the experiment data.
Figure 6-1 shows the time-frequency analysis results of the planetary gears under
variable-speed conditions. In the data, we used STFT for the time-frequency analysis,
and the variable-speed profile was as described in Chapter 3.2. Although, the data is
based on time- and frequency-domains, we could consider the results as 2-D image
data. In the figure, we could first notice that there are sinusoidal fluctuation of the
components including harmonics due to the variable-speed conditions. Next, there
are natural frequency regions near 6kHz. One thing of particular note is that the
vertical lines in the faulty time-frequency image data. Figure 6-2 shows the principle
of the vertical lines in the time-frequency image data of the faulty vibration signals.
Figure 6-2(a) shows how an impulse signal in time domain would be transformed
into frequency domain by Fourier transform. As can be seen, the impulse signal is

transformed into a horizontal line in the frequency domain. It can be formulated as
X(f) = [ 8(t)e 2 tdt = e~27/0 = 1 (6.1)
where 6(t) is a Dirac delta function.

Figure 6-2(b) shows how an impulse signal in time domain would be transformed
into time-frequency domain by time-frequency analysis. As can be seen, the impulse
signals are transformed into vertical lines in the time- frequency domain. It can be

formulated as
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Figure 6-2 Principles of the vertical lines in time-frequency image data of faulty
vibration signals: (a) Impulse signals in frequency domain, and (b)

impulse signals in time-frequency domain

STFT(r, ) = [°. {x(t) + §()}g(t — v)e~ 2" tdt (6.2)

The horizontal lines in the frequency domain would be represented as vertical
lines in time-frequency domain because frequency axis is in the y-axis in the time-
frequency domain. From the results, we could find that the impulsive signals in the
time-domain would appear as a horizontal line in frequency domain, and vertical
lines in time domain, respectively. Therefore, we could know that we need to
quantify the vertical lines in the time-frequency image data to extract fault-related

features in the data.
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6.2. Review of 2-D Fourier Transform

In this chapter, we review the 2-D Fourier transform which we will use to quantify
the vertical lines in time-frequency image data. 2-D Fourier transform is basically
expansion of previous 1-D Fourier transform to two dimensions. The 2-D Fourier

transform could be formulated as
F(u,v) = [ f(x,y)e M@+ dxqdy (6.3)

where f(x,y) isimage datain x and y-domain, and u and v are spatial frequencies
in x and y-domain. Thus, 2-D FT could quantify spatial frequencies in image data.
Common application examples of 2-D FT are image filtering and detection [154,
155]. In Figure 6-3, we could see that the periodical patterns in background of
forensic image data are represented in peaks in spatial frequency domain. Therefore,

removal of these peaks could clarify the forensic original data.

Then, we will investigate how the vertical lines of image data could be
transformed using the 2-D Fourier transform technique. Figure 6-4 shows how the

vertical lines of image data are represented in spatial frequency domain after 2-D FT

2-DFT Remove peak Inverse 2-D FT

fxy) Flu,v) F'(u, v) Fx,

Figure 6-3 Background image filtering in forensic analysis by 2-d FT
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in various situations. In Figures 6-4(a) and (b), we could observe that vertical lines
could make horizontal lines in the center of spatial frequency domain while shorter
length of lines could make the vertical lines more blurred in vertical direction of
spatial frequency domain. Figures 6-4(c) and (d) shows how multiple vertical lines
in image data are represented in spatial frequency domain. In Figure 6-4(c), we could
observe that periodic multiple vertical lines make the discrete components in the
horizontal center of spatial frequency domain. In Figure 6-4(d), we could observe
that the discrete horizontal components get more continuous as the periodic multiple
vertical lines get non-periodic. Therefore, we could find that the vertical lines in
faulty gear image data could be transformed into horizontal center components in
the spatial frequency domain. And, in Figure 6-5, we could know that the
transformation would not be affected by other components like noises. Mathematical
derivation about transformation of the vertical line images into central horizontal

regions is given in Appendix.
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6.3. The Proposed Image-based Fault Feature

In this chapter, we will describe the proposed image-based fault feature, which
uses 2-D Fourier transform to extract faulty characteristics in time-frequency image
data. The method is composed of three steps, and designed to extract fault features
efficiently, while not being affected by other components. The proposed fault feature

is describe detailedly as follows.

6.3.1. Short-time Fourier Transform

Figure 6-6 shows the procedures of the proposed fault detection method for
planetary gears under variable-speed conditions. As can be seen in the figure, first,
the vibration signals are measured from normal and faulty planetary gears. We could
observe that the vibration signals are modulated due to variable speed conditions.
Next, time-frequency analysis is performed for the measured vibration signals to
observe the change of the spectral information along the time. In this research, we
used short-time Fourier transform to represent time-varying behaviors of the
vibration signals. The vertical lines would appear in the short-time Fourier transform

results of faulty vibration signals as fault features.

6.3.2. 2-D Fourier Transform of the Time-frequency Coefficients

Then, 2-D Fourier transform is performed for the time-frequency image data of
the vibration signals. The main objective of 2-D Fourier transform in this step is to
efficiently quantify vertical lines in the time-frequency image data. By using 2-D

Fourier transform, the vertical lines in the time-frequency image data are
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transformed into horizontal center components in the spatial frequency domain as
shown in Figure 6-6. And, the transformation would not be affected by other

components.

6.3.3. Mean Square in the Horizontal Center Regions

Finally, the horizontal center components in the spatial frequency domain are
calculated to quantify vertical lines in the time-frequency image data. For
guantification, we used mean square value. We calculate ratios of mean square
values between normal and each fault level, and compare the results with Haralick

and LBP features to see the performance of the proposed method.
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6.4. Case Studies
6.4.1. Case Study with the Simulation Model

In this section, we will validate the proposed fault feature using the simulation
model. We will used the complex speed profiles as shown in Figure 6-7. As can be
seen, the profiles show more complex behaviors than the speed profiles used in the
previous sections. The simulated vibration signals for the normal and four different
levels of faults from the speed profiles are shown in Figure 6-8. Then, we applied

the proposed fault feature for the simulated signals.

Speed profile
4000 p‘ P -
3000 | \ |
E 2000 | V\/
(a7 !
1000
O |
0 1 2 3 4 5
Time (s)

Figure 6-7 Complex speed profiles used in the simulation study
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Figure 6-9 shows how the proposed fault feature could be extracted based on the
proposed method. First, short-time Fourier transform could be performed for the
vibration signals under normal and four different levels of faults. Accordingly, time-
varying spectral behaviors could be represented as can be seen in the figure.
Additionally, as stated in Section 6.1, the faulty behaviors are represented as the
vertical lines in time-frequency domain. We could find that the vertical lines get
more clear as the fault levels go higher. Then, 2-D Fourier transform is performed
for the time-frequency image data. The objective of 2-D Fourier transform is to
extract the faulty information in the time-frequency image data. After 2-D Fourier
transform, the faulty vertical lines in time-frequency image data could be
transformed into central horizontal regions in the spatial frequency domain. We
could notice that the central horizontal lines get more distinct in the higher fault
levels. Then, mean square values are calculated in the central horizontal regions to

quantify the fault severity.
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Figure 6-10 shows the fault sensitivity results of the proposed image-based
feature along with the previous VER method results. We only used the VER results
for comparison because the VER method is also based on the short-time Fourier
transform results. As can be seen in the figure, we could find that the previous VER
method shows non-linear results as the fault levels get higher. The non-linearity

happened due to incorrect speed estimation in the VER method.

Figure 6-11 shows fault sensitivity of the proposed image-based fault feature
compared with the previous texture-based feature, Haralick and LBP features. As
can be seen in the figure, the proposed image-based feature shows better fault

sensitivity results than the previous feature.

——Image feature
" ——VER

(V)]

AN

Fault/Normal
(\O] W

F1 F2 F3 F4
Figure 6-10 Fault sensitivity results of the image-based feature and the previous
VER method for complex speed profiles used in the simulation study
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Figure 6-11 Fault sensitivity results of the image-based feature with the previous
texture-based features, LBP and Haralick features

Figure 6-12 shows ratios of image feature values between normal and each fault
level under different noise levels. We could see that the proposed image feature

shows similar results under noise levels 1, 2, and 3.

6.4.2. Case Study with the Experiment Data

In this chapter, we will validate the proposed image-based feature using the
experiment data described in Section 3.2. However, we used the different speed
profiles from the one in Section 3.2 to simulate the complex speed profile. Figure 6-
13 shows the speed profile we used for the experiment. As can be seen, we could
find that the profile shows more fluctuation than the previous sinusoidal speed
profile shown in Figure 3-7. The measured vibration signals are shown in Figure 6-

14.
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Figure 6-12 Ratios of image feature values between normal and each fault level
with simulation signals under different noise levels
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Figure 6-13 Complex speed profiles used in the experiment study
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As can be seen in the figure, we could find that the measured vibration signals
show complex behaviors. The difference between normal and fault level 1 vibration
signals is not significant, but the peaked behaviors get severe as the fault level gets

higher.

Then, Figure 6-15 shows the procedures of the proposed image-based fault
feature for the experiment vibration signals. As explained in Section 6.3, first, short-
time Fourier transform is performed for the each level of the vibration signals. In this
regard, we could analyze how the spectral behaviors change along the time. In
addition, the faulty behaviors in the vibration signals could be represented as vertical
lines in short-time Fourier transform results. Then, 2-D Fourier transform is
performed for the time-frequency image data. The 2-D Fourier transform could
extract faulty information in the time-frequency image data, which is represented as
vertical lines. Finally, mean square components in the central horizontal regions of

the spatial frequency domain are calculated to quantify the fault severity.
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Figure 6-16 shows the fault sensitivity result of the proposed image-based fault
feature. The values are averaged values of five 20 seconds data. As can be seen, the
previous VER method shows fault sensitivity results under one at fault levels 1 and
2, which means the method could not detect the fault. This is because the speed
estimation was not correct in the method. However, the proposed image-based

feature shows linear behavior along the fault level as can be seen in the figure.

Then, Figure 6-17 shows fault sensitivity results of the proposed image-based
feature along with previous texture-based features, LBP and Haralick features. As

can be seen, the proposed feature shows better fault sensitivity results at each level.

Fault Sensitivity
(Five 20-sec. data averaged)

3 : :
——Image feature
i
35 1.5
<
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0.5 ' | |
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Figure 6-16 Complex speed profiles used in the experiment study
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Figure 6-17 Fault sensitivity results of the image-based feature with the previous
texture-based features, LBP and Haralick features for experiment
signals

Figure 6-18 shows ratios of image feature values between normal and each fault
level under different noise levels. We could see that the proposed image feature

shows similar results under noise levels 1,2, and 3.

6.5. Summary and Discussion

In this section, we proposed the image-based fault feature for fault diagnosis of
the planetary gear under complex speed profiles. The previous VER and PER
methods could not be applied to the planetary gear under complex speed profiles
because speed estimation in the method could not be accurate. Therefore, in this

method, we developed the fault feature based on the time-frequency image data.

In the time-frequency image data, the faulty behaviors are represented as vertical
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Figure 6-18 Ratios of image feature values between normal and each fault level
with experiment signals under different noise levels

lines. Therefore, we used 2-D Fourier transform to efficiently extract the faulty
behaviors, where the vertical lines are transformed into central horizontal lines in the
spatial frequency domain. Then, mean square values are calculated to quantify the

faulty severity of the planetary gears.

However, as noted in Figure 6-2, this method would be only applicable to the
faults with impact signals. Therefore, future works of the method would include
development of the fault features, which could be applied to other types of faults like
crack and shaft error. In addition, we will apply the proposed method to other

applications like other rotating machinery and medical signals.
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Chapter 7

Conclusions

7.1. Contributions and Significance

In this dissertation, | proposed fault diagnosis methods for planetary gears under
variable-speed conditions using time-frequency analysis. This research is composed
of three parts: 1) Positive energy residual (PER) method for enhanced fault
sensitivity by minimizing effects of variable-speed conditions, 2) Variance of energy
residual (VER) method for computational efficiency using time-efficient time-
frequency analysis, 3) Image-based fault feature for complex speed profiles. The

contribution and significance of the proposed research can be highlighted as follows.

First, we could enhance fault sensitivity for diagnosis of the planetary gear by
minimizing the effects of variable-speed conditions. In the proposed method, the
Morlet wavelet transform (WT) could extract faulty information, while representing
time-varying spectral behaviors. Then, the Gaussian process (GP) could predict
averaged variable speed conditions using the averaged wavelet coefficients. Next,
energy residual (ER) could be calculated by subtracting predicted GP components
from the averaged wavelet coefficients. Then, the positive portions of the ER (PER)

are taken to enhance fault sensitivity. The previous methods developed for constant
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speed conditions show low fault sensitivity due to time-varying behaviors of the
variable-speed conditions. Although the angular resampling technique could reduce
the effects from variable-speed conditions, the technique require angular data from
an encoder, which needs additional devices and signal processing. However, the

proposed PER method does not need other devices but the accelerometer.

Second, we could develop time-efficient diagnostic methods, called a variance of
energy residual (VER) method. The WT could require huge computation time to
analyze vibration data with wider frequency range, which is a mandatory condition
for fault diagnosis. Therefore, in the VER method, short-time Fourier transform
(STFT) is used as time-frequency analysis instead of WT. the STFT could reduce
computation time by selecting appropriate window lengths for the analysis. However,
fault sensitivity could be reduced in using the STFT technique. Therefore, selective
regions are used for averaging the time-frequency components to compensate
reduced fault sensitivity. The selection could be performed based on spectral kurtosis
technique. Finally, variance values are used to quantify fault severity instead of
kurtosis because faulty behaviors are represented as spread in the frequency domain
in the STFT results. The VER method could reduce computation time from the
previous PER method while maintaining fault sensitivity if we have system

characteristic information.

Third, we develop an image-based fault feature for complex speed profiles. The
previous PER and VER method include a speed estimation step using the GP
technique. However, the estimated speed profile could not be accurate if the speed
condition have complex profiles. Therefore, we developed the fault feature

independent of speed profiles. The method could extract fault feature in time-
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frequency image data, and not be affected by speed conditions. First, time-frequency
analysis is performed for measured vibration signals. The faulty impulsive signals
are represented as vertical lines in time-frequency image data. Then, 2-D Fourier
transform is performed to quantify the vertical lines in time-frequency image data.
Finally, mean square values are used to quantify fault severity of the signals. The
image-based feature could show better fault sensitivity than the previous fault
features, and robust performance for the planetary gears under complex speed

profiles.

In this dissertation, we proposed three different fault diagnosis methods for
planetary gears under variable-speed conditions. The PER method could enhance
fault sensitivity by minimizing effects from variable-speed conditions. And, the VER
method could reduce computation time from the PER method while maintaining
fault sensitivity. However, we need to know system characteristics, and the system
characteristics is needed to be constant during the operation of the planetary gear.
Finally, the image-based fault feature could be applied to the planetary gears with
complex speed profiles. In conclusion, we developed the fault diagnosis methods for

planetary gears under variable-speed conditions, that best suit each case.

7.2. Suggestions for Future Research

This dissertation proposed three fault diagnostic methods for planetary gears
under variable speed conditions for each case. However, there are still some points

that can be improved further for the future research.
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Basically, the proposed methods are based on extracting fault features under
same speed conditions. In this regard, the proposed methods could not be
applied to random fluctuation of speed profiles, or the test signals should have
the same speed profiles with the reference normal signals. therefore, we need to
develop fault detection and diagnosis methods that can be applied to random

speed fluctuation, or different speed profiles of planetary gears.

In the experimental setup, the only variable in the test was a speed condition.
The other conditions like torque, temperature were maintained constant during
the tests. However, in real-world situations, the other conditions should also be
show highly non-linear behaviors. therefore, we need to develop fault diagnosis

methods that also can consider other non-stationary conditions.

The proposed methods were validated using vibration signals from simulation
and well-controlled test-bed data. Accordingly, the performance of the proposed
methods was proven to be effective, and linear for each fault level. However,
vibration signals measured from real-world conditions should be highly
contaminated by noises, and faulty signals could be covered by other
components. Therefore, the proposed method should be also validated by using

vibration signals of planetary gears measured from real-world applications.

The proposed methods were validated using the three different levels of planet
gear surface faults. However, in the planetary gear, the faults could occur in
different gears like sun gear, ring gear, and also carriers. Moreover, the fault
types could be different. The other fault types include tooth root crack,

misalignment, shaft run-out error, and so on. Therefore, the proposed methods
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should also be validated using the other types of fault cases.

The methods used the characteristics of vibration signals under faulty conditions.
Specifically, we used the time-frequency behaviors of the impulsive vibration
signals. These impulsive faulty vibration signals are usually common in faults
in other types of rotating machinery applications. Therefore, we expect the
proposed method in this dissertation could be applied to other applications like

motors, bearings, rotors, and so on.

All the methods proposed in this thesis are basically based on the time-frequency
analysis, and the data calcualted from the time-frequecy anaylysis are 2-d image
data. Recently, extensive research have been performed using image data for
classification problems. Especially, deep learning techniques like CNN are
known to show outstaning performances for image classification problems.
Therefore, fault sensitivity of the proposed methods could be further enhanced

by combining the methods with deep learning techgniues.
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Appendix

This section will describe mathematical derivation about how the vertical line
image data could be transformed into central horizontal regions in the spatial
frequency domain, which is given in Figure 6-4. Figure A-1 shows how the single
vertical line image could be transformed by 2-D Fourier transform. As can be seen
in the figure, the vertical line could be expressed as multiplication of Dirac delta
function in the x-domain and horizontal line in the y-domain. Then, Fourier
transform of each signal could be transformed into horizontal line and Dirac delta
function in frequency domain. Therefore, the single vertical line could be

transformed into single horizontal line in the spatial frequency domain.
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Figure A-2 shows how the single vertical line image with shorter length could be
transformed by 2-D Fourier transform. As can be seen in the figure, the vertical line
could be expressed as multiplication of Dirac delta function in the x-domain and step
rectangular function in the y-domain. Then, Fourier transform of each signal could
be transformed into horizontal line and sinc function in frequency domain. Therefore,
the single vertical line with shorter length could be transformed into central
horizontal components in the spatial frequency domain. However, the behaviors are
different from the previous single line with full length. Due to the shorter length, the
central horizontal regions appear as more blurred images in the spatial frequency
domain. Nevertheless, we could know that the vertical line image data with shorter
length is also transformed into central horizontal components in spatial frequency

domain.
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Figure A-3 shows the periodic vertical lines with shorter length could be
transformed by 2-D Fourier transform. The periodical vertical lines could be
expressed as multiplication of Dirac comb function in the x-domain and rectangular
step function in the y-domain. Then, Fourier transform of each signal could be
transformed into Dirac comb function and sinc function in frequency domain.
Therefore, the periodic vertical lines with shorter length could be transformed into
periodic central horizontal components in the spatial frequency domain. As same as
in the previous cases, we could know that the vertical line image data are also

transformed into central horizontal components in spatial frequency domain.
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Figure A-4 shows the non-periodic vertical lines with shorter length could be
transformed by 2-D Fourier transform. The non-periodic vertical lines could
expressed as the components between single Dirac delta function and Dirac comb
function. Therefore, the Fourier transform of the non-periodic vertical lines should
be the components between horizontal lines and Dirac comb function. Therefore, the
2-D Fourier transform results of the non-period line image data should be about

blurred image in the central horizontal components in the spatial frequency domain.

129 = L



urewop Aouanbaly Jeireds ojul

pawIojsuUR g PIN0d YiBus| J8110ys YIIM Saul| [2IILISA [e21poLad-Uou syl Moy INoge UOITeALISp [ealfewayle|A - a4nbi4

T

\ﬂﬁaﬁnmlm . Tﬁvuuwh \. .

0

T

Rﬁxz.ﬂtmlmm.: + m& - Rv% + Qu - Rv.@wN |.‘.

\mﬁkﬁ AA>+R:V~ENI®A\AV“UO.—.H.: + AQ - R.v,@ + AG - Ru,@w A‘,.‘, = A@Rﬁ?ﬂa+kzv.~=NlmQﬂ ~k.v.\ .\‘.\; = ADJ\GR

001 08 09
n

00l 08 09

[«

oy 0T
Kouanbauy
[enjedg
or 0T 140
abew|

saul| |ealpouad-uoN

130



Reference

. Chaari, T. Fakhfakh, and M. Haddar, namic analysis of a planeta
1 F. Chaari, T. Fakhfakh, and M. Haddar, "Dynami lysis of a pl ry
gear failure caused by tooth pitting and cracking," Journal of Failure

Analysis and Prevention, vol. 6, pp. 73-78, 2006.

[2] R. Errichello and J. Muller, Gearbox Reliability Collaborative Gearbox 1:

Failure Analysis Report: National Renewable Energy Laboratory, 2012.

[3] D. G. Astridge, "Helicopter transmissions—Design for safety and
reliability," Proceedings of the Institution of Mechanical Engineers, Part G:

Journal of Aerospace Engineering, vol. 203, pp. 123-138, 1989.

[4] J. Yoon, D. He, and B. Van Hecke, "On the use of a single piezoelectric strain
sensor for wind turbine planetary gearbox fault diagnosis," [EEE

Transactions on Industrial Electronics, vol. 62, pp. 6585-6593, 2015.

[5] J. Park, J. M. Ha, H. Oh, B. D. Youn, J. H. Choi, and N. H. Kim, "Model-
based fault diagnosis of a planetary gear: A novel approach using
transmission error," IEEE Transactions on Reliability, vol. 65, pp. 1830-

1841, 2016.

[6] K. R. Al-Balushi and B. Samanta, "Gear fault diagnosis using energy-based
features of acoustic emission signals," Proceedings of the Institution of

Mechanical Engineers, Part I: Journal of Systems and Control Engineering,

] O
131 N = U



[7]

[10]

[11]

[12]

vol. 216, pp. 249-263, 2002.

J. Park, J. M. Ha, H. Oh, B. D. Youn, S. Park, and J.-H. Choi, "Experimental
Approach for Estimating Mesh Stiffness in Faulty States of Rotating Gear,"

in Proc. Annual Conference of the Prognostics and Health Management

Society, Sand Diego, CA, 2015, pp. 618-624.

Y. Lei, D. Kong, J. Lin, and M. J. Zuo, "Fault detection of planetary
gearboxes using new diagnostic parameters," Measurement Science and

Technology, vol. 23, p. 055605, 2012.

D. Remond and J. Mahfoudh, "From transmission error measurements to
angular sampling in rotating machines with discrete geometry," Shock and

vibration, vol. 12, pp. 149-161, 2005.

K. Mao, "An approach for powertrain gear transmission error prediction
using the non-linear finite element method," Proceedings of the Institution
of Mechanical Engineers, Part D: Journal of Automobile Engineering, vol.

220, pp. 1455-1463, 2006.

F. Chaari, W. Baccar, M. S. Abbes, and M. Haddar, "Effect of spalling or
tooth breakage on gearmesh stiffness and dynamic response of a one-stage
spur gear transmission," European Journal of Mechanics - A/Solids, vol. 27,

pp. 691-705, 2008.

R. B. Randall, "A new method of modeling gear faults," Journal of
Mechanical Design-Transactions of the ASME, vol. 104, pp. 259-267, 1982.

132 A = U



[13]

[14]

[15]

[16]

[17]

[18]

[19]

W. Wang and A. K. Wong, "Autoregressive model-based gear fault

diagnosis," Journal of vibration and acoustics, vol. 124, pp. 172-179, 2002.

Z. Man, W. Wang, S. Khoo, and J. Yin, "Optimal sinusoidal modelling of
gear mesh vibration signals for gear diagnosis and prognosis," Mechanical

systems and signal processing, vol. 33, pp. 256-274, 2012.

H. Endo and R. Randall, "Enhancement of autoregressive model based gear
tooth fault detection technique by the use of minimum entropy
deconvolution filter," Mechanical Systems and Signal Processing, vol. 21,

pp. 906-919, 2007.

J. M. Ha, B. D. Youn, H. Oh, B. Han, Y. Jung, and J. Park, "Autocorrelation-
based time synchronous averaging for condition monitoring of planetary
gearboxes in wind turbines," Mechanical Systems and Signal Processing,

vol. 70-71, pp. 161-175, 2016.

J. M. Ha, J. Park, K. Na, Y. Kim, and B. D. Youn, "Toothwise Fault
Identification for a Planetary Gearbox Based on a Health Data Map," IEEE

Transactions on Industrial Electronics, vol. 65, pp. 5903-5912, 2018.

P. McFadden and J. Smith, "An explanation for the asymmetry of the
modulation sidebands about the tooth meshing frequency in epicyclic gear
vibration," Proceedings of the Institution of Mechanical Engineers, Part C:

Journal of Mechanical Engineering Science, vol. 199, pp. 65-70, 1985.

G. Bi, J. Chen, F. Zhou, and J. He, "Application of slice spectral correlation

1 O
133 N =L



[20]

[22]

(23]

[24]

[25]

density to gear defect detection," Proceedings of the Institution of
Mechanical Engineers, Part C: Journal of Mechanical Engineering Science,

vol. 220, pp. 1385-1392, 2006.

W. D. Mark, H. Lee, R. Patrick, and J. D. Coker, "A simple frequency-
domain algorithm for early detection of damaged gear teeth," Mechanical

Systems and Signal Processing, vol. 24, pp. 2807-2823, 2010.

W. D. Mark, "Stationary transducer response to planetary-gear vibration
excitation II: Effects of torque modulations," Mechanical Systems and

Signal Processing, vol. 23, pp. 2253-2259, 2009.

B. Zhang, T. Khawaja, R. Patrick, and G. Vachtsevanos, "Blind
deconvolution denoising for helicopter vibration signals," IEEE/ASME

Transactions on Mechatronics, vol. 13, pp. 558-565, 2008.

T. Barszcz and R. B. Randall, "Application of spectral kurtosis for detection
of a tooth crack in the planetary gear of a wind turbine," Mechanical Systems

and Signal Processing, vol. 23, pp. 1352-1365, 2009.

R. Zimroz and W. Bartelmus, "Gearbox condition estimation using cyclo-
stationary properties of vibration signal," in Key Engineering Materials,

2009, pp. 471-478.

Y. Lei, D. Han, J. Lin, and Z. He, "Planetary gearbox fault diagnosis using
an adaptive stochastic resonance method," Mechanical Systems and Signal

Processing, vol. 38, pp. 113-124, 2013.

134 ~ = L



[26]

[27]

[29]

[30]

[31]

[32]

R. Randall, "Detection and diagnosis of incipient bearing failure in
helicopter gearboxes," Engineering Failure Analysis, vol. 11, pp. 177-190,
2004.

D. M. Blunt and J. A. Keller, "Detection of a fatigue crack in a UH-60A
planet gear carrier using vibration analysis," Mechanical Systems and Signal

Processing, vol. 20, pp. 2095-2111, 2006.

M. E. Orchard and G. J. Vachtsevanos, "A particle filtering approach for on-
line failure prognosis in a planetary carrier plate," Infernational Journal of

Fuzzy Logic and Intelligent Systems, vol. 7, pp. 221-227, 2007.

J. Park, B. Jeon, J. Park, J. Cui, M. Kim, and B. D. Youn, "Failure prediction
of a motor-driven gearbox in a pulverizer under external noise and
disturbance," SMART STRUCTURES AND SYSTEMS, vol. 22, pp. 185-192,
2018.

S. Xue and 1. Howard, "Torsional vibration signal analysis as a diagnostic
tool for planetary gear fault detection," Mechanical Systems and Signal

Processing, vol. 100, pp. 706-728, 2/1/ 2018.

C. Liu, G. Cheng, X. Chen, and Y. Pang, "Planetary gears feature extraction
and fault diagnosis method based on VMD and CNN," Sensors, vol. 18, p.
1523, 2018.

G. D'Elia, E. Mucchi, and M. Cocconcelli, "On the identification of the

angular position of gears for the diagnostics of planetary gearboxes,"

] O
135 = 4



[33]

[35]

[36]

[37]

[38]

Mechanical Systems and Signal Processing, vol. 83, pp. 305-320,
2017/01/15/2017.

Z. Feng, X. Chen, and M. Liang, "Joint envelope and frequency order
spectrum analysis based on iterative generalized demodulation for planetary

n

gearbox fault diagnosis under nonstationary conditions," Mechanical

Systems and Signal Processing, vol. 76, pp. 242-264, 2016.

S.-J. Tsai, G.-L. Huang, and S.-Y. Ye, "Gear meshing analysis of planetary
gear sets with a floating sun gear," Mechanism and Machine Theory, vol. 84,

pp. 145-163, 2// 2015.

X. Liang, M. J. Zuo, and L. Liu, "A windowing and mapping strategy for
gear tooth fault detection of a planetary gearbox," Mechanical Systems and

Signal Processing, vol. 80, pp. 445-459, 2016.

J. Parra and C. M. Vicuia, "Two methods for modeling vibrations of
planetary gearboxes including faults: Comparison and validation,"

Mechanical Systems and Signal Processing, vol. 92, pp. 213-225, 8// 2017.

X. Liang, M. J. Zuo, and M. Pandey, "Analytically evaluating the influence
of crack on the mesh stiffness of a planetary gear set," Mechanism and

Machine Theory, vol. 76, pp. 20-38, 2014.

Z. Feng and M. J. Zuo, "Vibration signal models for fault diagnosis of
planetary gearboxes," Journal of Sound and Vibration, vol. 331, pp. 4919-
4939, 2012.

136 A = U



[39]

[40]

[41]

[43]

[44]

[45]

Z. Chen and Y. Shao, "Dynamic simulation of planetary gear with tooth root

crack in ring gear," Engineering Failure Analysis, vol. 31, pp. 8-18, 2013.

Z. Chen and Y. Shao, "Dynamic features of a planetary gear system with
tooth crack under different sizes and inclination angles," Journal of

Vibration and Acoustics, vol. 135, p. 031004, 2013.

A. Singh, "Load sharing behavior in epicyclic gears: physical explanation
and generalized formulation," Mechanism and Machine Theory, vol. 45, pp.

511-530, 2010.

Z. Feng, X. Chen, and M. J. Zuo, "Induction Motor Stator Current AM-FM
Model and Demodulation Analysis for Planetary Gearbox Fault Diagnosis,"

IEEE Transactions on Industrial Informatics, 2018.

Y. Zhang, W. Lu, and F. Chu, "Planet gear fault localization for wind turbine
gearbox using acoustic emission signals," Renewable Energy, vol. 109, pp.

449-460, 2017.

D. Peng, W. A. Smith, P. Borghesani, R. B. Randall, and Z. Peng,
"Comprehensive planet gear diagnostics: Use of transmission error and
mesh phasing to distinguish localised fault types and identify faulty gears,"

Mechanical Systems and Signal Processing, vol. 127, pp. 531-550, 2019.

L. Hong and J. S. Dhupia, "A time-domain fault detection method based on
an electrical machine stator current measurement for planetary gear-sets," in

2013 IEEE/ASME International Conference on Advanced Intelligent

] O
137 N = U



[46]

[49]

[50]

[51]

Mechatronics, 2013, pp. 1631-1636.

G. He, K. Ding, W. Li, and X. Jiao, "A novel order tracking method for wind
turbine planetary gearbox vibration analysis based on discrete spectrum

correction technique," Renewable Energy, vol. 87, pp. 364-375, 2016.

K. Feng, K. Wang, M. Zhang, Q. Ni, and M. Zuo, "A diagnostic signal
selection scheme for planetary gearbox vibration monitoring under non-
stationary operational conditions," Measurement Science and Technology,

2016.

Y. Li, K. Ding, G. He, and X. Jiao, "Non-stationary vibration feature
extraction method based on sparse decomposition and order tracking for

gearbox fault diagnosis," Measurement, vol. 124, pp. 453-469, 2018.

F. Bonnardot, R. Randall, J. Antoni, and F. Guillet, "Enhanced unsupervised
noise cancellation using angular resampling for planetary bearing fault
diagnosis," International journal of acoustics and vibration, vol. 9, pp. 51-

60, 2004.

L. F. Villa, A. Refiones, J. R. Peran, and L. J. de Miguel, "Statistical fault
diagnosis based on vibration analysis for gear test-bench under non-
stationary conditions of speed and load," Mechanical Systems and Signal

Processing, vol. 29, pp. 436-446, 2012.

Z. Feng and M. Liang, "Fault diagnosis of wind turbine planetary gearbox

under nonstationary conditions via adaptive optimal kernel time—frequency

1 O
138 N = L



[52]

[54]

[55]

[56]

[57]

analysis," Renewable Energy, vol. 66, pp. 468-477, 2014,

X. Chen and Z. Feng, "Time-frequency analysis of torsional vibration
signals in resonance region for planetary gearbox fault diagnosis under

variable speed conditions," IEEE Access, vol. 5, pp. 21918-21926, 2017.

Y. Jiang, B. Tang, Y. Qin, and W. Liu, "Feature extraction method of wind
turbine based on adaptive Morlet wavelet and SVD," Renewable energy, vol.

36, pp. 2146-2153, 2011.

W. Liu, W. Zhang, J. Han, and G. Wang, "A new wind turbine fault diagnosis
method based on the local mean decomposition," Renewable Energy, vol. 48,

pp. 411-415, 2012.

J. Park, M. Hamadache, J. M. Ha, Y. Kim, K. Na, and B. D. Youn, "A positive
energy residual (PER) based planetary gear fault detection method under
variable speed conditions," Mechanical Systems and Signal Processing, vol.

117, pp. 347-360, 2019.

Z. Feng, X. Lin, and M. J. Zuo, "Joint amplitude and frequency
demodulation analysis based on intrinsic time-scale decomposition for
planetary gearbox fault diagnosis," Mechanical Systems and Signal

Processing, vol. 72, pp. 223-240, 2016.

Z. Feng, H. Ma, and M. J. Zuo, "Amplitude and frequency demodulation
analysis for fault diagnosis of planet bearings," Journal of Sound and

Vibration, vol. 382, pp. 395-412, 2016.

139 A = U



[58]

[60]

[61]

[62]

[63]

Y. Li, K. Feng, X. Liang, and M. J. Zuo, "A fault diagnosis method for
planetary gearboxes under non-stationary working conditions using
improved Vold-Kalman filter and multi-scale sample entropy," Journal of

Sound and Vibration, vol. 439, pp. 271-286, 2019.

Z.Liu, Y. Jin, M. J. Zuo, and Z. Feng, "Time-frequency representation based
on robust local mean decomposition for multicomponent AM-FM signal
analysis," Mechanical Systems and Signal Processing, vol. 95, pp. 468-487,
2017.

T. Wang, Q. Han, F. Chu, and Z. Feng, "A new SKRgram based
demodulation technique for planet bearing fault detection," Journal of Sound

and Vibration, vol. 385, pp. 330-349, 2016/12/22/ 2016.

Z. Feng and M. Liang, "Complex signal analysis for planetary gearbox fault
diagnosis via shift invariant dictionary learning," Measurement, vol. 90, pp.

382-395, 2016/08/01/ 2016.

J. Park, Y. Kim, K. Na, and B. D. Youn, "Variance of energy residual (VER):
An efficient method for planetary gear fault detection under variable-speed

conditions," Journal of Sound and Vibration, 2019/04/11/ 2019.

J.-R. R. Ruiz, J. A. Rosero, A. G. Espinosa, and L. Romeral, "Detection of
demagnetization faults in permanent-magnet synchronous motors under

nonstationary conditions," /EEE Transactions on Magnetics, vol. 45, pp.

2961-2969, 2009.

] O
140 N = U



[64]

[66]

[67]

[68]

[69]

B. Boashash, L. Boubchir, and G. Azemi, "A methodology for time-
frequency image processing applied to the classification of non-stationary
multichannel signals using instantaneous frequency descriptors with
application to newborn EEG signals," EURASIP Journal on Advances in
Signal Processing, vol. 2012, p. 117, 2012.

B. Boashash and S. Ouelha, "Automatic signal abnormality detection using
time-frequency features and machine learning: A newborn EEG seizure case

study," Knowledge-Based Systems, vol. 106, pp. 38-50, 2016.

B. Boashash, H. Barki, and S. Ouelha, "Performance evaluation of time-
frequency image feature sets for improved classification and analysis of non-
stationary signals: Application to newborn EEG seizure detection,"

Knowledge-Based Systems, vol. 132, pp. 188-203, 2017.

S. Altunay, Z. Telatar, and O. Erogul, "Epileptic EEG detection using the
linear prediction error energy," Expert Systems with Applications, vol. 37,

pp. 5661-5665, 2010.

A. Subasi, E. Ercelebi, A. Alkan, and E. Koklukaya, "Comparison of
subspace-based methods with AR parametric methods in epileptic seizure

detection," Computers in Biology and Medicine, vol. 36, pp. 195-208, 2006.

B. Boashash, N. A. Khan, and T. Ben-Jabeur, "Time—frequency features for
pattern recognition using high-resolution TFDs: A tutorial review," Digital

Signal Processing, vol. 40, pp. 1-30, 2015.

1 O
141 .--\.\,"E -,;'- B :u



[70]

[71]

[75]

[76]

[77]

(78]

R. M. Haralick and K. Shanmugam, "Textural features for image
classification," IEEE Transactions on systems, man, and cybernetics, pp.

610-621, 1973.

T. Ahonen, A. Hadid, and M. Pietikainen, "Face description with local binary
patterns: Application to face recognition," IEEE Transactions on Pattern

Analysis & Machine Intelligence, pp. 2037-2041, 2006.

Y. LeCun, Y. Bengio, and G. Hinton, "Deep learning," nature, vol. 521, p.

436, 2015.
L. Goodfellow, Y. Bengio, and A. Courville, Deep learning: MIT press, 2016.

I. Goodfellow, J. Pouget-Abadie, M. Mirza, B. Xu, D. Warde-Farley, S.
Ozair, et al., "Generative adversarial nets," in Advances in neural

information processing systems, 2014, pp. 2672-2680.

J. Schmidhuber, "Deep learning in neural networks: An overview," Neural

networks, vol. 61, pp. 85-117, 2015.

L. Deng and D. Yu, "Deep learning: methods and applications," Foundations

and Trends® in Signal Processing, vol. 7, pp. 197-387, 2014.

C. Dong, C. C. Loy, K. He, and X. Tang, "Learning a deep convolutional
network for image super-resolution," in European conference on computer

vision, 2014, pp. 184-199.

P. Sermanet, D. Eigen, X. Zhang, M. Mathieu, R. Fergus, and Y. LeCun,

142 A~ = T



[79]

[80]

[82]

[83]

[84]

"Overfeat: Integrated recognition, localization and detection using

convolutional networks," arXiv preprint arXiv:1312.6229, 2013.

Y. LeCun and Y. Bengio, "Convolutional networks for images, speech, and
time series," The handbook of brain theory and neural networks, vol. 3361,

p. 1995, 1995.

M. M. Bronstein, J. Bruna, Y. LeCun, A. Szlam, and P. Vandergheynst,
"Geometric deep learning: going beyond euclidean data," [EEE Signal

Processing Magazine, vol. 34, pp. 18-42, 2017.

M. Zhao, M. Kang, B. Tang, and M. Pecht, "Deep residual networks with
dynamically weighted wavelet coefficients for fault diagnosis of planetary
gearboxes," IEEE Transactions on Industrial Electronics, vol. 65, pp. 4290-

4300, 2018.

H. Oh, J. H. Jung, B. C. Jeon, and B. D. Youn, "Scalable and unsupervised
feature engineering using vibration-imaging and deep learning for rotor
system diagnosis," IEEFE Transactions on Industrial Electronics, vol. 65, pp.

3539-3549, 2018.

C. Li, R.-V. Sanchez, G. Zurita, M. Cerrada, and D. Cabrera, "Fault
diagnosis for rotating machinery using vibration measurement deep

statistical feature learning," Sensors, vol. 16, p. 895, 2016.

L. Jing, M. Zhao, P. Li, and X. Xu, "A convolutional neural network based

feature learning and fault diagnosis method for the condition monitoring of

] O
143 N = U



[85]

[88]

[89]

[90]

gearbox," Measurement, vol. 111, pp. 1-10, 2017.

L. Jing, T. Wang, M. Zhao, and P. Wang, "An adaptive multi-sensor data
fusion method based on deep convolutional neural networks for fault

diagnosis of planetary gearbox," Sensors, vol. 17, p. 414, 2017.

W. Bartelmus, F. Chaari, R. Zimroz, and M. Haddar, "Modelling of gearbox
dynamics under time-varying nonstationary load for distributed fault
detection and diagnosis," European Journal of Mechanics - A/Solids, vol. 29,

pp. 637-646, 2010.

F. Chaari, M. S. Abbes, F. V. Rueda, A. F. del RINCON, and M. Haddar,
"Analysis of planetary gear transmission in non-stationary operations,"

Frontiers of Mechanical Engineering, vol. 8, pp. 88-94, 2013.

W. Kim, J. Y. Lee, and J. Chung, "Dynamic analysis for a planetary gear
with time-varying pressure angles and contact ratios," Journal of Sound and

Vibration, vol. 331, pp. 883-901, 2012.

A. Hammami, A. Fernandez, F. Chaari, F. Viadero, and M. Haddar,
"Dynamic behaviour of two stages planetary gearbox in non-stationary

operations," in Surveillance 7 conference (Oct 2013), 2013.

A. F. D. R. A. Hammami, F. Chaari, F. Viadero Rueda and M. Haddar,
"Dynamic Behaviour of Back to Back Planetary Gear in Run Up and Run
Down Transient Regimes," Journal of Mechanics, vol. 31, pp. 481-491,
2015.

1 O
144 .--\.\,"E -,;'- B :u



[91]

[93]

[94]

[95]

[96]

P. Srikanth and A. Sekhar, "Dynamic analysis of wind turbine drive train
subjected to nonstationary wind load excitation," Proceedings of the
Institution of Mechanical Engineers, Part C: Journal of Mechanical

Engineering Science, vol. 229, pp. 429-446, 2015.

Y. Fang, X. Liang, and M. J. Zuo, "Effect of sliding friction on transient
characteristics of a gear transmission under random loading," in 2017 I[EEE
International Conference on Systems, Man, and Cybernetics (SMC), 2017,
pp. 2551-2555.

J. T. Yoon, B. D. Youn, M. Yoo, and Y. Kim, "A newly formulated resilience
measure that considers false alarms," Reliability Engineering & System

Safety, vol. 167, pp. 417-427, 2017/11/01/ 2017.

J. H. Jung, B. C. Jeon, B. D. Youn, M. Kim, D. Kim, and Y. Kim,
"Omnidirectional regeneration (ODR) of proximity sensor signals for robust
diagnosis of journal bearing systems," Mechanical Systems and Signal

Processing, vol. 90, pp. 189-207, 2017/06/01/ 2017.

J. M. Ha, H. Oh, J. Park, and B. D. Youn, "Classification of operating
conditions of wind turbines for a class-wise condition monitoring strategy,"

Renewable Energy, vol. 103, pp. 594-605, 2017/04/01/ 2017.

D. W. Kim, H. Oh, B. D. Youn, and D. Kwon, "Bivariate Lifetime Model for
Organic Light-Emitting Diodes," I[EEE Transactions on Industrial
Electronics, vol. 64, pp. 2325-2334, 2017.

145 A~ = T



[97]

[99]

[100]

[101]

[102]

T. Kim, H. Oh, H. Kim, and B. D. Youn, "An Online-Applicable Model for
Predicting Health Degradation of PEM Fuel Cells With Root Cause
Analysis," IEEE Transactions on Industrial Electronics, vol. 63, pp. 7094-
7103, 2016.

H. Oh, S. Choi, K. Kim, B. D. Youn, and M. Pecht, "An empirical model to
describe performance degradation for warranty abuse detection in portable
electronics," Reliability Engineering & System Safety, vol. 142, pp. 92-99,
2015/10/01/ 2015.

C. Hu, B. D. Youn, T. Kim, and P. Wang, "A co-training-based approach for
prediction of remaining useful life utilizing both failure and suspension
data," Mechanical Systems and Signal Processing, vol. 62—63, pp. 75-90,
10// 2015.

H. Oh, B. Han, P. McCluskey, C. Han, and B. D. Youn, "Physics-of-Failure,
Condition Monitoring, and Prognostics of Insulated Gate Bipolar Transistor
Modules: A Review," IEEE Transactions on Power Electronics, vol. 30, pp.

2413-2426, 2015.

M. Lebold, K. McClintic, R. Campbell, C. Byington, and K. Maynard,
"Review of vibration analysis methods for gearbox diagnostics and
prognostics," in Proceedings of the 54th meeting of the society for machinery

failure prevention technology, 2000, p. 16.

P. Vetet, M. Kreidl, and R. Smid, "Condition indicators for gearbox

condition monitoring systems," Acta Polytechnica, vol. 45(6), pp. 35-43,

] O
146 N = U



[103]

[104]

[105]

[106]

[107]

[108]

[109]

2005.

J. J. Zakajsek, "A review of transmission diagnostics research at NASA

Lewis Research Center," 1994.

A. Aherwar and M. S. Khalid, "Vibration analysis techniques for gearbox
diagnostic: a review," International Journal of Advanced Engineering

Technology, vol. 3, pp. 04-12, 2012.

M. Mosbher, A. Pryor, and E. M. Huff, "Evaluation of standard gear metrics
in helicopter flight operation," 2002.

O. D. Mohammed, M. Rantatalo, and J.-O. Aidanpii, "Dynamic modelling
of a one-stage spur gear system and vibration-based tooth crack detection
analysis," Mechanical Systems and Signal Processing, vol. 54-55, pp. 293-
305, 2015.

X. Fan and M. J. Zuo, "Gearbox fault detection using Hilbert and wavelet
packet transform," Mechanical Systems and Signal Processing, vol. 20, pp.

966-982, 2006.

S. Choi and C. J. Li, "Estimation of gear tooth transverse crack size from
vibration by fusing selected gear condition indices," Measurement Science

and Technology, vol. 17, pp. 2395-2400, 2006.

S. Sheng, "Investigation of various condition monitoring techniques based
on a damaged wind turbine gearbox," National Renewable Energy

Lab.(NREL), Golden, CO (United States)2011.

1 O
147 .--\.\,"E -,;'- B :u



[110]

[111]

[112]

[113]

[114]

[115]

M. K. Kiymuik, I. Giiler, A. Dizibiiyiik, and M. Akin, "Comparison of STFT
and wavelet transform methods in determining epileptic seizure activity in
EEG signals for real-time application," Computers in biology and medicine,

vol. 35, pp. 603-616, 2005.

M. Inalpolat and A. Kahraman, "A theoretical and experimental
investigation of modulation sidebands of planetary gear sets," Journal of

Sound and Vibration, vol. 323, pp. 677-696, 2009.

J. Urbanek, T. Barszcz, M. Straczkiewicz, and A. Jablonski, "Normalization
of vibration signals generated under highly varying speed and load with
application to signal separation," Mechanical Systems and Signal Processing,

vol. 82, pp. 13-31, 2017.

Z. Feng and M. J. Zuo, "Fault diagnosis of planetary gearboxes via torsional
vibration signal analysis," Mechanical Systems and Signal Processing, vol.

36, pp. 401-421, 4// 2013.

L. Liu, X. Liang, and M. J. Zuo, "Vibration signal modeling of a planetary
gear set with transmission path effect analysis," Measurement, vol. 85, pp.

20-31, 2016.

R. Uma Maheswari and R. Umamaheswari, "Trends in non-stationary signal
processing techniques applied to vibration analysis of wind turbine drive
train — A contemporary survey," Mechanical Systems and Signal Processing,

vol. 85, pp. 296-311, 2017.

148 ~ = L



[116]

[117]

[118]

[119]

[120]

[121]

[122]

J. Shi, M. Liang, and Y. Guan, "Bearing fault diagnosis under variable
rotational speed via the joint application of windowed fractal dimension
transform and generalized demodulation: A method free from prefiltering
and resampling," Mechanical Systems and Signal Processing, vol. 68—69,

pp. 15-33, 2// 2016.

V. Sharma and A. Parey, "Frequency domain averaging based experimental
evaluation of gear fault without tachometer for fluctuating speed
conditions," Mechanical Systems and Signal Processing, vol. 85, pp. 278-
295, 2017/02/15/ 2017.

V. Sharma and A. Parey, "Gear crack detection using modified TSA and
proposed fault indicators for fluctuating speed conditions," Measurement,

vol. 90, pp. 560-575, 2016/08/01/ 2016.

V. Sharma and A. Parey, "Gearbox fault diagnosis using RMS based
probability density function and entropy measures for fluctuating speed
conditions," Structural Health Monitoring, vol. 16, pp. 682-695, 2017/11/01
2016.

S. Mallat, 4 wavelet tour of signal processing, 3rd ed.: Academic press, 2009.

C. Wang, R. X. Gao, and R. Yan, "Unified time—scale—frequency analysis
for machine defect signature extraction: Theoretical framework,"

Mechanical Systems and Signal Processing, vol. 23, pp. 226-235, 2009.

Z.K. Peng and F. L. Chu, "Application of the wavelet transform in machine

149 A~ = T



[123]

[124]

[125]

[126]

[127]

[128]

condition monitoring and fault diagnostics: a review with bibliography,"

Mechanical Systems and Signal Processing, vol. 18, pp. 199-221, 2004.

R. Q. Yan, R. X. Gao, and X. F. Chen, "Wavelets for fault diagnosis of rotary
machines: A review with applications," Signal Processing, vol. 96, pp. 1-15,

2014.

J. L. Chen, Z. P. Li, J. Pan, G. G. Chen, Y. Y. Zi, J. Yuan, et al., "Wavelet
transform based on inner product in fault diagnosis of rotating machinery: A
review," Mechanical Systems and Signal Processing, vol. 70-71, pp. 1-35,
2016.

J. Singh, A. K. Darpe, and S. P. Singh, "Rolling element bearing fault
diagnosis based on Over-Complete rational dilation wavelet transform and
auto-correlation of analytic energy operator," Mechanical Systems and

Signal Processing, vol. 100, pp. 662-693, 2/1/ 2018.

J. Yuan, Y. Wang, Y. Peng, and C. Wei, "Weak fault detection and health
degradation monitoring using customized standard multiwavelets,"

Mechanical Systems and Signal Processing, vol. 94, pp. 384-399, 9/15/2017.

C. Mishra, A. K. Samantaray, and G. Chakraborty, "Rolling element bearing
defect diagnosis under variable speed operation through angle synchronous

averaging of wavelet de-noised estimate," Mechanical Systems and Signal

Processing, vol. 72-73, pp. 206-222, 5// 2016.

L. Meng, J. Xiang, Y. Wang, Y. Jiang, and H. Gao, "A hybrid fault diagnosis

] O
150 = 4



[129]

[130]

[131]

[132]

[133]

method using morphological filter—translation invariant wavelet and
improved ensemble empirical mode decomposition," Mechanical Systems

and Signal Processing, vol. 50-51, pp. 101-115, 1// 2015.

W. Q. Wang, F. Ismail, and M. F. Golnaraghi, "Assessment of gear damage
monitoring techniques using vibration measurements," Mechanical Systems

and Signal Processing, vol. 15, pp. 905-922, 2001.

S. Abbasion, A. Rafsanjani, A. Farshidianfar, and N. Irani, "Rolling element
bearings multi-fault classification based on the wavelet denoising and
support vector machine," Mechanical Systems and Signal Processing, vol.

21, pp. 2933-2945, 2007.

Q. Hu, Z. J. He, Z. S. Zhang, and Y. Y. Zi, "Fault diagnosis of rotating
machinery based on improved wavelet package transform and SVMs
ensemble," Mechanical Systems and Signal Processing, vol. 21, pp. 688-705,
2007.

J. D. Wu and C. H. Liu, "An expert system for fault diagnosis in internal
combustion engines using wavelet packet transform and neural network,"

Expert Systems with Applications, vol. 36, pp. 4278-4286, 20009.

N. Saravanan and K. I. Ramachandran, "Incipient gear box fault diagnosis
using discrete wavelet transform (DWT) for feature extraction and
classification using artificial neural network (ANN)," Expert Systems with

Applications, vol. 37, pp. 4168-4181, 2010.

151 A = U



[134]

[135]

[136]

[137]

[138]

[139]

[140]

C. E. Rasmussen, Gaussian processes for machine learning vol. 1.

Cambridge, Massachusetts, London, England: The MIT Press, 2006.

P. Boskoski, M. Gasperin, D. Petelin, and D. Juri¢i¢, "Bearing fault
prognostics using Rényi entropy based features and Gaussian process
models," Mechanical Systems and Signal Processing, vol. 52-53, pp. 327-
337, 2// 2015.

D. An, N. H. Kim, and J.-H. Choi, "Practical options for selecting data-
driven or physics-based prognostics algorithms with reviews," Reliability

Engineering & System Safety, vol. 133, pp. 223-236, 1// 2015.

S. Choi, M. Jadaliha, J. Choi, and S. Oh, "Distributed gaussian process
regression under localization uncertainty," Journal of Dynamic Systems,

Measurement, and Control, vol. 137, p. 031007, 2015.

D. Kwon, M. H. Azarian, and M. Pecht, "Remaining-Life Prediction of
Solder Joints Using RF Impedance Analysis and Gaussian Process
Regression," [EEE Transactions on Components, Packaging and

Manufacturing Technology, vol. 5, pp. 1602-1609, 2015.

P. Boskoski, M. Gasperin, D. Petelin, and D. Juri¢i¢, "Bearing fault
prognostics using Rényi entropy based features and Gaussian process
models," Mechanical Systems and Signal Processing, vol. 52-53, pp. 327-
337, 2// 2015.

L. Bilionis and N. Zabaras, "Multi-output local Gaussian process regression:

] O
152 N = U



[141]

[142]

[143]

[144]

[145]

[146]

Applications to uncertainty quantification," Journal of Computational

Physics, vol. 231, pp. 5718-5746, 7/1/ 2012.

T. E. Fricker, J. E. Oakley, N. D. Sims, and K. Worden, "Probabilistic
uncertainty analysis of an FRF of a structure using a Gaussian process

emulator," Mechanical Systems and Signal Processing, vol. 25, pp. 2962-
2975, 11// 2011.

M. S. Kan, A. C. C. Tan, and J. Mathew, "A review on prognostic techniques
for non-stationary and non-linear rotating systems," Mechanical Systems

and Signal Processing, vol. 62-63, pp. 1-20, 2015.

W. J. Wang and P. D. Mcfadden, "Application of orthogonal wavelets to
early gear damage detection," Mechanical Systems and Signal Processing,

vol. 9, pp. 497-507, 1995.

D. latsenko, P. V. E. McClintock, and A. Stefanovska, "Extraction of
instantaneous frequencies from ridges in time—frequency representations of

signals," Signal Processing, vol. 125, pp. 290-303, 2016.

J. J. Wiodarz, "On marginalization of phase-space distribution functions,"

Physics Letters A, vol. 264, pp. 18-21, 1999.

A. Aissa-El-Bey, N. Linh-Trung, K. Abed-Meraim, A. Belouchrani, and Y.
Grenier, "Underdetermined blind separation of nondisjoint sources in the
time-frequency domain," /[EEE Transactions on Signal Processing, vol. 55,

pp. 897-907, 2007.

153 A = U



[147]

[148]

[149]

[150]

[151]

[152]

[153]

D. Wang, W. T. Peter, and K. L. Tsui, "An enhanced Kurtogram method for
fault diagnosis of rolling element bearings," Mechanical Systems and Signal

Processing, vol. 35, pp. 176-199, 2013.

J. Antoni and R. B. Randall, "The spectral kurtosis: application to the
vibratory surveillance and diagnostics of rotating machines," Mechanical

Systems and Signal Processing, vol. 20, pp. 308-331, 2006.

P. H. Westfall, "Kurtosis as peakedness, 1905-2014. RIP," The American
Statistician, vol. 68, pp. 191-195, 2014.

Y. Wang, J. Xiang, R. Markert, and M. Liang, "Spectral kurtosis for fault
detection, diagnosis and prognostics of rotating machines: A review with

applications," Mechanical Systems and Signal Processing, vol. 66—67, pp.
679-698, 1// 2016.

C. Jinglong, Z. Yanyang, H. Zhengjia, and Y. Jing, "Improved spectral
kurtosis with adaptive redundant multiwavelet packet and its applications
for rotating machinery fault detection," Measurement Science and

Technology, vol. 23, p. 045608, 2012.

J. Antoni, "Fast computation of the kurtogram for the detection of transient
faults," Mechanical Systems and Signal Processing, vol. 21, pp. 108-124, 1//
2007.

J. Antoni, "The spectral kurtosis: a useful tool for characterising non-

stationary signals," Mechanical Systems and Signal Processing, vol. 20, pp.

154 A =L



[154]

[155]

282-307, 2// 2006.

A. Zisserman. Lecture 2: 2D Fourier transforms and applications in Image
Analysis [Online]. Available:

http://www.robots.ox.ac.uk/~az/lectures/ia/lect2.pdf

Q. Kemao, "Two-dimensional windowed Fourier transform for fringe
pattern analysis: principles, applications and implementations," Optics and

Lasers in Engineering, vol. 45, pp. 304-317, 2007.

155 :'_u'—


http://www.robots.ox.ac.uk/~az/lectures/ia/lect2.pdf

p——

o o}
—~ 1H
Ae m_w o} dﬂ ~
& T T < Lo
o o ¥ T N ~ B« o
R R A 2 e d B T W
%O r —_ T < o) il .
LA~ el = ® < i I L
~ © oF ~ & K . e 4 l.* [
o = F oo o B ! :
T o L o JJ oy KO i — JHL
T oo T T AR ! o :
T % 0 m = ol Moy KR A} T oz 1
~ ~ u]L uﬂf ~ B T X 0 ¢ o 3 i
z:ov,_ﬂheap_ 5w
2R 0 o_H o A < ﬁo jaSs J| X ﬂ_OI - O#
o = .o wﬁ_ du o = Jm f:t G W X o
) Mﬂ ol M M__/u o N|r W = m %
. . O
- 77 SsoTERIEE P
ST o Hoa R S U
N o R Fox o T % qr <0 I
Mo X opy T 5 ] ~ w0 ;1&
kT M < N o T <
g oW 9 XX R o
e N e T O o N A iy E AR I KO
e D 5 63 (AN ™
NN ~ T ™ R Nl o X o NE ©
. p=! SO R ~ = o = N~ X ajo = 0
OI dAl, ,UI oge Z..# o 70 < R _@A ~I1_ o w_lt
ﬁu%%@%%ov.noL?% T~
J o AL Y o o T
X N~ F o o <0 ER X
M.H_ . ) Lt s o % for - o? < ‘_.Wo = ,Drw_ =
N my To X
M%ﬂr%%l%iﬁfrﬁr oz
or o} w T SUNY r e T A0 i
> £z &3 T W
T - Q b NP dowohox
~ — of o= < Tm o S N —— p
7o R %a 3T = B oF e i
oE 9 TN N ol ) o ) N It
PITERRE N N ~ oo ¥
T o T o S o
o oF o S w a o T Gl
S 2T Z %ﬂgﬂ%
~ i_. hin z_,_Al Wﬁ i =~
e N
NG



B3

i
dr

fuy

59} A

AINCN

Al

o] At}. 1A

stlth. LeiAM, ARk AlRte] i or A7 del=

[}

Zolazt

re

A

]

A

)

A FA A

Al foh, 1A

=)

Al

stk

Fs

i)

73711l

H& 279

o

!
NI

T

e
e

~O

™

ZA o

gu
N

4r
ol

i

<
il
Lo.ﬁ

<

e
K

_Zrl

—_—

.

B!

157

2012-23166

H:

3}
of



This research is supported by the International Research & Development
Program of the National Research Foundation of Korea funded by the
Ministry of Science, ICT & Future Planning (Grant number:
2017K1A3A1A12034682).

158



	Chapter 1. Introduction
	1.1 Motivation
	1.2 Research Scope and Overview
	1.3 Dissertation Layout

	Chapter 2. Literature Review
	2.1 Fault Diagnosis of a Planetary Gear under the Constant-speed Conditions
	2.2 Fault Diagnosis of a Planetary Gear under the Variable-speed Conditions
	2.2.1 Angular Resampling
	2.2.2 Time-frequency Analysis
	2.2.3 Image-based Approach

	2.3 Health Data
	2.4 Summary and Discussion

	Chapter 3. Data Description
	3.1 A Simulation Model for a Planetary Gear
	3.1.1 A Simulation Model for a Planetary Gear in a Normal State
	3.1.2 A Simulation Model for a Planetary Gear in a Faulty State

	3.2 Experimental Setup for a Planetary Gear

	Chapter 4. A Positive Energy Residual (PER) Method for Enhanced Fault Sensitivity
	4.1 Review of Wavelet Transform and a Gaussian Process
	4.1.1 Wavelet Transform
	4.1.2 Gaussian Process

	4.2 The Proposed PER Method
	4.2.1 Wavelet Transform
	4.2.2 Moving Average and Down-sampling
	4.2.3 Gaussian Process (GP) Regression
	4.2.4 Energy Residual (ER) Computation
	4.2.5 Positive Energy Residual (PER) Computation
	4.2.6 Kurtosis from the PER Values

	4.3 Case Studies
	4.3.1 Case Study with the Simulation Model
	4.3.2 Case Study with the Experiment Data

	4.4 Summary and Discussion

	Chapter 5. Variance of Energy Residual (VER) Method for Computational Efficiency
	5.1 Review of Short-time Fourier Transform
	5.2 The Proposed VER Method
	5.2.1 Short-time Fourier Transform
	5.2.2 Gaussian Process (GP) Regression
	5.2.3 Energy Residual (ER) Computation
	5.2.4 Variance from the ER Values

	5.3 Case Studies
	5.3.1 Case Study with the Simulation Model
	5.3.2 Case Study with the Experiment Data

	5.4 Summary and Discussion

	Chapter 6. Image-based Fault Feature for Complex Speed Profiles
	6.1 Time-frequency Image from Normal and Faulty Planetary Gears
	6.2 Review of 2-D Fourier Transform
	6.3 The Proposed Image-based Fault Feature
	6.3.1 Short-time Fourier Transform
	6.3.2 2-D Fourier Transform of the Time-frequency Coefficients
	6.3.3 Mean Square in the Horizontal Center Regions

	6.4 Case Studies
	6.4.1 Case Study with the Simulation Model
	6.4.2 Case Study with the Experiment Data

	6.5 Summary and Discussion

	Chapter 7. Conclusions
	7.1 Contributions and Significance
	7.2 Suggestions for Future Research

	Appendix   
	Reference  
	Abstract (Korean)


<startpage>20
Chapter 1. Introduction 1
 1.1 Motivation 1
 1.2 Research Scope and Overview 3
 1.3 Dissertation Layout 5
Chapter 2. Literature Review 6
 2.1 Fault Diagnosis of a Planetary Gear under the Constant-speed Conditions 6
 2.2 Fault Diagnosis of a Planetary Gear under the Variable-speed Conditions 10
  2.2.1 Angular Resampling 10
  2.2.2 Time-frequency Analysis 12
  2.2.3 Image-based Approach 14
 2.3 Health Data 17
 2.4 Summary and Discussion 21
Chapter 3. Data Description 24
 3.1 A Simulation Model for a Planetary Gear 24
  3.1.1 A Simulation Model for a Planetary Gear in a Normal State 25
  3.1.2 A Simulation Model for a Planetary Gear in a Faulty State 28
 3.2 Experimental Setup for a Planetary Gear 33
Chapter 4. A Positive Energy Residual (PER) Method for Enhanced Fault Sensitivity 40
 4.1 Review of Wavelet Transform and a Gaussian Process 40
  4.1.1 Wavelet Transform 41
  4.1.2 Gaussian Process 42
 4.2 The Proposed PER Method 44
  4.2.1 Wavelet Transform 45
  4.2.2 Moving Average and Down-sampling 48
  4.2.3 Gaussian Process (GP) Regression 48
  4.2.4 Energy Residual (ER) Computation 49
  4.2.5 Positive Energy Residual (PER) Computation 50
  4.2.6 Kurtosis from the PER Values 50
 4.3 Case Studies 53
  4.3.1 Case Study with the Simulation Model 53
  4.3.2 Case Study with the Experiment Data 63
 4.4 Summary and Discussion 68
Chapter 5. Variance of Energy Residual (VER) Method for Computational Efficiency 70
 5.1 Review of Short-time Fourier Transform 70
 5.2 The Proposed VER Method 72
  5.2.1 Short-time Fourier Transform 73
  5.2.2 Gaussian Process (GP) Regression 74
  5.2.3 Energy Residual (ER) Computation 75
  5.2.4 Variance from the ER Values 75
 5.3 Case Studies 79
  5.3.1 Case Study with the Simulation Model 79
  5.3.2 Case Study with the Experiment Data 85
 5.4 Summary and Discussion 91
Chapter 6. Image-based Fault Feature for Complex Speed Profiles 94
 6.1 Time-frequency Image from Normal and Faulty Planetary Gears 94
 6.2 Review of 2-D Fourier Transform 98
 6.3 The Proposed Image-based Fault Feature 102
  6.3.1 Short-time Fourier Transform 102
  6.3.2 2-D Fourier Transform of the Time-frequency Coefficients 102
  6.3.3 Mean Square in the Horizontal Center Regions 103
 6.4 Case Studies 105
  6.4.1 Case Study with the Simulation Model 105
  6.4.2 Case Study with the Experiment Data 110
 6.5 Summary and Discussion 116
Chapter 7. Conclusions 118
 7.1 Contributions and Significance 118
 7.2 Suggestions for Future Research 120
Appendix    123
Reference   126
Abstract (Korean) 156
</body>

