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Abstract 
 

A New Calibration Metric - Probability Residual (PR) and Its 

Validation Practice for Rotor Dynamics Model of a Journal 

Bearing Rotor System 

 
Hwanoh Choi 

Department of Mechanical and Aerospace Engineering 

The Graduate School 

Seoul National University 

 

In constructing the computational model of engineered systems such as a journal 

bearing rotor systems, statistical model calibration method is often used since the 

statistical model emulates the actual behavior of the engineered systems with 

uncertainties. A calibration metric, which quantifies the degree of agreement or 

disagreement between computational and experimental results, is one of the key 

components in the statistical model calibration. However, some existing calibration 

metrics such as log-likelihood and Kullback-Leibler divergence (KLD) have 

limitations in constructing an accurate computational model. To overcome this 

problems, this study proposes a new calibration metric, probability residual (PR). 

The PR metric is defined as the sum of the product of scale factor and square of 

residuals. The scale factor scales the PDF in specific range, which enables to 

improve the calibration efficiency. The square of residuals makes the PR a convex 

form, which guarantees existence of global optimum. So as to evaluate the 

performance of the PR metric, this study uses mathematical models and employs 

statistical models of the journal bearing rotor system appropriate to normal and 
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rubbing state. As a result, the PR metric performed better than other metrics 

including log-likelihood and KLD in terms of the calibration accuracy and 

efficiency, and the calibrated journal bearing rotor model with PR was proved in 

valid by the hypothesis testing. In summary, the proposed PR metric is promising to 

be applied in building an accurate computational model. 
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 Statistical Model Calibration 

 Calibration Metric 

 Validity Check 

 Journal Bearing Rotor System 

 Fault diagnosis 
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Chapter 1. Introduction 

 
 

1.1 Background and Motivation  

 

In order to diagnose an engineered system such as a journal bearing rotor system, 

the abnormal data of the system is essential since the fault diagnosis is conducted 

based on the abnormal data. If there is no abnormal data of an operating system, it 

can be obtained from the experiment by seeding anomaly on testbed. But 

proceeding experiments under harsh conditions sometimes causes expensive cost 

and it has difficulties in realization, so that only few abnormal data can be obtained. 

In this case, it can be an alternative to use an artificial data obtained from the 

computational model imitating the real engineered system, because the 

computational model is relatively free to previous constraints and it can reflect the 

law of physics in the engineered system. If the computational model is used to 

complement the scarcity of the experimental data, the ability to emulate the actual 

behavior of the engineered systems comes to be significant.  

Many of the existing computational models adopt the deterministic method. But 

the physical phenomenon in engineered fields such as the journal bearing rotor 

system appears not into deterministic values but into statistical values because of 

the uncertainties of nature. [1-3] For this reason, the existing deterministic model 

which receives deterministic inputs and returns deterministic responses have 

limitations in terms of emulating the actual behavior of the engineered systems. On 

the other hand, the statistical model [4] receives statistical random inputs and 

returns statistical responses as shown in Figure 1. Thus, the statistical model is 
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more appropriate to applying to the fault diagnosis of the engineered system with 

uncertainties than the deterministic model. 

 

 

Figure 1 The difference between deterministic model and statistical model 

 

For using the statistical model in engineered field, the statistical model should 

be validated. This process is called statistical model validation. [1-3] Statistical 

model validation means calibrating the computational model and testing validity of 

the calibrated model. In other words, statistical model validation includes statistical 

model calibration and validity check. [1-3] [5] The statistical model calibration is 

conducted by using calibration metric which adjusts the random input parameters of 

the computational model in order that the model response agrees with the 

experimental data. [5] Thus, the calibration metric has an important meaning in 

statistical model calibration. (The more details on statistical model validation is 

represented in Chapter 2.) However, some existing metrics for statistical model 

calibration including log-likelihood and Kullback-Leibler divergence (KLD) have 

several limitations in terms of calibration accuracy and efficiency. (The review on 
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existing calibration metrics is described in Chapter 3.) So as to supplement these 

limitations, this study proposes a new metric for statistical model calibration, 

namely probability residual (PR). For testing the availability of PR to the real 

engineered system, the PR metric is applied to statistical model validation for a 

journal bearing rotor system. 

 

1.2 Organization of Thesis 

 

The ultimate goal of this study is to prove the high-performance of the 

probability residual (PR) metric in terms of the calibration accuracy and efficiency, 

and apply the PR metric to the statistical model validation of the actual journal 

bearing rotor system in normal state and abnormal state of rubbing. This paper is 

organized as follow. Chapter 2 reviews statistical model validation including model 

uncertainties, statistical model calibration and validity check. The review on fault 

diagnosis of a journal bearing rotor system is also covered in this chapter. Chapter 3 

introduces a new calibration metric PR and its characteristics. For a comparative 

study, existing metrics for statistical model calibration such as log-likelihood, 

Kullback-Leibler divergence (KLD) are recommended. And then, the performance 

of the PR metric is evaluated with mathematical models including linear, nonlinear 

and elliptical examples. With each of the mathematical models, the statistical 

calibration is implemented to three kinds of the calibration metrics including log-

likelihood, KLD and the PR metric in this chapter. In Chapter 4, case study, which 

employs the rotor-dynamics model with journal bearings in normal state and 

abnormal state of rubbing, is implemented. After the statistical model calibration 
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with the PR metric, validity check with hypothesis testing based on area metric is 

conducted. Chapter 5 summarizes the contributions of this study, and the future 

works are discussed in this chapter. 
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Chapter 2. Literature Review 
 

Chapter 2 represents literature review and the theoretical background for better 

understanding of this research. This chapter consists of two sections: statistical 

model validation including model uncertainties, statistical model calibration and 

validity check; fault diagnosis of a journal bearing rotor system. Some part of this 

chapter is supposed to be submitted to the journal of structural and 

multidisciplinary optimization (SMO). 

 

2.1 Statistical Model Validation 

 

Statistical model validation is originated from the research area of verification 

and validation (V&V). [1, 2] The model verification is defined as “the process of 

determining that a computational model accurately represents the underlying 

mathematical model and its solution” in American Society of Mechanical 

Engineers (AMSE). [2] And the model validation is defined as “the process of 

determining the degree to which a model is an accurate representation of the real 

world from the perspective of the intended uses of the model”. [1, 2] [4] In brief, 

the model verification is focused on the relationship between computational model 

and mathematical model; the model validation is concentrated on the relationship 

between computational model and real world, e.g., experiment. The relationship 

among components of model V&V is shown in Figure 2. [6] [7] (The area of the 

verification is not a concern in this study. Because the computational model 

approximates solutions well as much as the mathematical model as the solver from 

various algorithms has been much developed recently.)  
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Figure 2 Simplified view of the model V&V process [4] 

 

Figure 3 shows the procedure of model validation proposed by the ASME 

Standard Committee, in view of product manufacturing in the engineered system. 

[4] As shown in Figure 3, statistical model validation is composed of two parts: 

statistical model calibration and validity check. [1, 2] [4] [8] Since both the 

computational model and physical model have uncertainties, the results of them are 

represented as statistical distributions. Also uncertainties cause the disagreement 

between computational result (predicted result) and physical result (observed result). 

If then, the computational model should be adjusted to the physical model, which is 

referred to statistical model calibration. If the calibrated model is not valid, the 
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model refinement is operated until satisfying validity check. More details on the 

model uncertainties, statistical model calibration and validity check are discussed in 

next sub-sections. 

 

 

Figure 3 Model validation procedure [4] 

 

2.1.1 Model Uncertainties 

 

Diverse uncertainties are included in engineered systems inherently. The sources 

of the model uncertainties are categorized into physical uncertainty, statistical 

uncertainty and modeling uncertainty as shown in Figure 4(a). [8] The physical 

uncertainty is inherent variation in physical quantity, and described by probability 

distribution. Material properties (tensile strength, Young’s modulus, friction 

coefficient, stiffness coefficient, etc.), manufacturing tolerance (accuracy of milling 
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machine, proficiency of craftsman, etc.), loading condition (force, torque, etc.), 

atmosphere condition (temperature, humidity, etc.) are contained in this kind of 

uncertainty. The statistical uncertainty is imprecise statistical estimation such as the 

type of the probability distribution, which depends on the sample size. Lack of data 

or improper sampling causes this kind of uncertainty. The modeling uncertainty 

originates from improper approximation such as inaccurate boundary conditions. 

Among these kinds of uncertainties including physical statistical and modeling 

uncertainty, due to the modeling uncertainty, the response of the computational 

model does not correspond to the experimental data, occasionally. Specifically, 

unknown random input parameters of the computational model can cause the 

modeling uncertainty, which results in discrepancy between computational result 

and experiment. In this case, the statistical model calibration, which adjusts the 

computational model to the experiment, is usually executed to the computational 

model. 

The type of the model uncertainties is classified into aleatory uncertainty and 

epistemic uncertainty as depicted in Figure 4(b). The aleatory uncertainty, also 

called objective uncertainty, means irreducible uncertainty in spite of more relevant 

data. Because this sort of uncertainty resulted from inherent randomness of nature, 

it is impossible to reduce this kind of uncertainty. On the other hand, the epistemic 

uncertainty, also called subjective uncertainty, can be reduced with more relevant 

data. Epistemic uncertainty is divided into acknowledged and unacknowledged 

uncertainty. [9] The acknowledged uncertainty comes from assumptions ignoring 

several conditions for practical reasons on purpose of simplification or for just 

mistake. This uncertainty is reducible by regrading more complex conditions of 

engineered system. On the contrary, unacknowledged uncertainty is caused by lack 
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of information or knowledge. This type of uncertainty cannot be easily identified. 

 

 

 

(a) 

            

(b) 

Figure 4 Category of uncertainties, (a) Sources of uncertainty, and (b) Type of 

uncertainty 

 

2.1.2 Statistical Model Calibration 

 

The statistical model calibration includes variable screening, uncertainty 

characterization, uncertainty propagation, and optimization. [8] The variable 

screening is to determine the random input variables which make great impact on 
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the computational response by sensitivity analysis. The uncertainty characterization 

is identifying the sort of the distribution of the random input variables considering 

physical characteristics of the engineered system. For example, in case of the 

journal bearing rotor system, the normal distribution is the most common 

distribution of bearing stiffness coefficient as the random input variable. The 

uncertainty propagation means transmission of the uncertainty from the random 

input variables to the response throughout the computational model. The sampling 

method such as Monte Carlo simulation (MCS); dimension reduction method 

including univariate dimension reduction (UDR) [10], bivariate DR (BDR) [11], 

and eigenvector DR (EDR) [12]; stochastic spectral method like polynomial chaos 

expansion (PCE) adaptive-sparse PCE [13] come under the category of the 

uncertainty propagation method. In process of the uncertainty propagation, the 

surrogate model can be adopted for efficiency on behalf of the computational 

model. The surrogate model, also called response surface, is simply composed of 

response grid calculated from the specific input points determined by design of 

experiment (DoE) method such as Latin hypercube sampling (LHS) [14]. The 

optimization [15, 16] is to optimize the statistical parameters of the unknown 

random input variables by minimizing the objective function. At this point, the 

calibration metric serves as the objective function in the optimization process. The 

calibration metric, the key factor for the optimization process in the statistical 

model calibration, quantifies the level of agreement or disagreement between 

probability density function (PDF) of the computational response and distribution 

of the experimental data.  

In brief, the statistical model calibration is to infer the statistical parameters of 

the unknown random input variables where the computational response agrees with 
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the experimental data by optimization process, and the calibration metric plays an 

important role in the optimization process as the objective function. When 

calibration metric has a minimum or maximum value, the iterative process of 

statistical model calibration is finished. At the same time the design variables, 

statistical parameters of random input variables, are determined as shown in Figure 

5. 

 

 

 

Figure 5 Process for statistical model calibration 
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2.1.3 Validity Check 

 

The validity check is to confirm whether the calibrated model returns valid 

response with respect to other condition of experimental data. Specifically, the 

validity check means measuring the level of agreement between computational 

response and other condition of experiment, and representing the degree of validity 

quantitatively based on the hypothesis testing. This hypothesis testing enables us to 

make a decision whether we accept the calibrated model or not. [5] [17] [18] [19] 

Among many kinds of the hypothesis testing methods such as the classical 

hypothesis testing [20] [21] and the Bayesian hypothesis testing [19] [22], this 

study focused on the classical hypothesis testing. The classical hypothesis testing 

includes statistical parameter-based methods (t-test statistic or F-test static [20]), 

full distribution-based methods (Anderson-Darling test, Cramer-von Mises test, 

Kolmogorov-Smirnov (K-S) test [21]), etc. The statistical parameter-based methods 

examine consistency of statistical parameters such as the mean and standard 

deviation of two distributions which is the observation (experimental data) and 

prediction (computational result). And, full distribution-based methods measure the 

differences between cumulative density functions (CDFs) of the observations and 

predictions. This classical hypothesis testing defines the null hypothesis (H0) that 

the physical observations (experimental data) agrees with the prediction 

(computational result), and the alternative hypothesis (Ha) that the physical 

observations do not agrees with the prediction. [20] If the value of the test static 

representing the degree of agreement between two distributions quantitatively is 

located outside of the criteria region, the null hypothesis is rejected as illustrated 

Figure 6. 
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Figure 6 Hypothesis testing based on the area metric with 5% significance level 

For the test static value of hypothesis testing, the area metric is commonly used. 

The area metric measures the area between CDF of the computational response and 

empirical CDF from the experiment. Figure 7 represents the concept of the area 

metric, where the smooth gray line means the computational response, black step 

line represents the empirical CDF of the experimental data, and the shaded area 

means the value of the area metric. [3] [23] [24] 

 

(a)                                (b) 

Figure 7 The concepts of the area metric, (a) data sets n=1, and (b) n=4 [25] 

As shown in Figure 7, the area metric value in case of (a) is larger than that of (b) 
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in consequence of epistemic uncertainty occurred by small size of data. Thus, for 

accurate validity check, the larger number of the experimental data is more 

advantageous than the smaller number of the experimental data. In case of few 

experimental data, u-pooling method [3] [23] [24] can be assistance to the area 

metric. With u-pooling method, all the experimental data at different validation 

sites can be pooled because any distribution can be changed to uniform distribution 

from zero to one when projected on its own CDF. Thus, u-pooling method leads the 

effect of increasing the number of data. In Figure 8(a), xi, y
e
 , 

i

m
xF , and ui mean 

experimental point at different validation site, empirical PDF, marginal CDF of xi 

and u values in universal probability scale, respectively. And how the area metric 

can be calculated by applying u-pooling method is illustrated in Figure 8(b). 

 

(a)                                    (b) 

Figure 8 U-pooling method, (a) u-values at multiple validation sites; (b) area 

metric of mismatch between the empirical distribution of u-values and the 

standard uniform distribution [23] 
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2.2 Fault Diagnosis of a Journal Bearing Rotor System 

 

Traditionally, the fault diagnosis of a journal bearing rotor system is executed 

based on vibration signals. [26] Most simply, when the amplitude of vibration 

signals obtained from sensor is increased than usual at the specific area, engineers 

notice the fault of the system and its position. However, only the amplitude of 

vibration cannot tell the details of the fault of a journal bearing rotor system such as 

rubbing, misalignment, oil whirl, etc. As the skills of the prognostics and health 

management (PHM) are developing, detail kinds of the fault can be classified based 

on health data. [27] The health data can be defined as numerical values representing 

the features of waveform on time domain or frequency domain such as the kurtosis, 

root mean square frequency (RMSF), etc. But, before determining the health data, 

characteristics of the system should be considered. For example, the crest factor 

which indicates how extreme the peaks are in a waveform on time domain can be 

the health data alarming the rubbing fault mode. Because the vibration signal at the 

rubbing fault mode comes to have many peaks than normal state. Actually, one 

fault mode is related to not one kind of health data but many kinds of health data, 

so that it is important to analyze the relation between many sorts of the heath data 

and fault mode of the system. So as to solve this issue, machine learning algorithms 

such as Fisher discriminant analysis (FDA), sparse vector machine (SVM), etc., can 

be assistance to classifying cluster of the health data. [28] As the artificial 

intelligence has been very interested recently, it is expected that the diverse deep 

learning algorithms will be able to contribute to the fault diagnosis. (Notify that this 

study will not focus on machine learning algorithms but health data as the response 

of computational model on behalf of experiment.) 
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Chapter 3. A New Calibration Metric – Probability 

Residual (PR) 
 

Chapter 3 introduces a new calibration metric, probability residual (PR) after 

reviewing existing metrics for statistical model calibration. In this chapter, 

disadvantages of existing metrics and the sources of limitation of existing metrics 

are discussed. And the performance of the PR metric is evaluated in terms of 

calibration accuracy and efficiency. This chapter is supposed to be submitted to the 

journal of structural and multidisciplinary optimization (SMO). 

 

3.1 Review of Existing Calibration Metrics 

 

The calibration metric, which quantifies the degree of similarity between PDF of 

the computational response and distribution of the experimental data, plays a key 

role in the statistical model calibration since the calibration metric serves as the 

objective function in the optimization process as denoted in Section 2.1.2. There are 

many existing metrics for calibration or validation such as relative error [29], root 

mean square error (RMS error) [30] [31], weight integrated factor (WIFac) [32] 

[33], etc. These metrics specialized in measuring the error of magnitude or phase. 

Geers and Thomas [34] suggested Geers metric in 1984, which combines individual 

metrics measuring each of response feature including magnitude and phase. For the 

statistical model calibration, however, statistical distributions rather than dynamic 

waves are treated as response. Also, the metric should be appropriate not to one 

determination but to recursive process and taken account of not only calibration 

accuracy but also calibration efficiency. For these reasons, there are few existing 
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metrics suitable for statistical model calibration. In this section, log-likelihood and 

KLD are considered as the existing calibration metrics. 

 

3.1.1 Log-likelihood 

 

The Log-likelihood, one of the generally used metric in statistical fields, is 

defined as Eq. (1). [35] [36] Ei,   and PC mean experimental data, statistical 

parameters vector, and PDF of the computational result respectively.   , 

represented by dashed line in Figure 9(a), is changed as the statistical parameters 

vector   varies. When the two distributions, PDF of the computational response 

and histogram of experimental data, are overlapped, the log-likelihood has a 

maximum value as shown in Figure 9(b). The reason of using the logarithmic 

operation to the likelihood can be summarized in two perspective. Firstly, as the 

mathematical operator, the logarithmic operation of the likelihood enables to 

convert the multiplication to an easy form of the summation, which improves the 

availability of the likelihood. Secondly, without the logarithmic operation, the 

multiplication result with the infinitesimal PDF value at the tail of the PDF makes 

likelihood always converge towards almost zero. It may cause convergence 

problems in optimization process. 

 

10 1
log ( | )

n

L C ii
Z P E q

=
= Õ   

  10
1

log ( ( | ))
n

C i
i

P E q
=

=å   
(1) 

  



１８ 
 

 

  

(a)                               (b) 

Figure 9 Concept of log-likelihood in condition of (a) initial and (b) optimized 

state 

 

3.1.2 Kullback-Leibler Divergence (KLD) 

 

The Kullback-Leibler divergence (KLD), also called relative entropy, is a widely 

used metric in information theory or probability theory as a means of class 

separability. [37] [38] Originally, KLD was used to quantify dissimilarity between 

two PDFs, but conversely, KLD also can measure the similarity between two PDFs. 

Eq. (2) represents the definition of KLD for two continuous PDFs. Ef  and Cf  in 

Figure 10(a) mean PDF of experiment and computational response respectively. 

Original KLD is basically an asymmetric measure as stated in Eq. (2). In other 

words, the value of ( || )KLD E CZ f f  is not same with ( || )KLD C EZ f f . This is a 

critical problem of KLD as a calibration metric since it recognizes the same degree 

of inaccuracy as a different value. Therefore, a symmetric form of KLD in Eq. (3) 

was devised, which enhances the availability of KLD by solving an above issue. 

[39] The KLD value is zero and the minimum when the two distributions are 
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perfectly overlapped as illustrated in Figure 10(b).  
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(a)                                 (b) 

Figure 10 Concept of KLD in condition of (a) initial and (b) optimized state 

 

3.1.3 Limitation of log-likelihood and Kullback-Leibler Divergence 

(KLD) 

 

Although the logarithmic operation of the likelihood enables to convert the 

multiplication to an easy form of summation, it can also cause the poor calibration 

efficiency of which mechanism is described in Figure11. There are red and blue 

points of PDF values in Figure 11(a). If they are operated by logarithmic operator, 

they are put on the horizontal axis illustrated in Figure 11(b). (The color of the 

curve is separated based on decimal value of sensitivity.) In order to compare the 
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sensitivity at the two points, the gradient method is selected. As a result, the 

gradient values at the red and blue points are almost no difference as shown in 

Figure 11(c). It implies that the values of the metric in the vicinity of the optimum 

point can be hard to be discriminated so that the optimization can be terminated at 

the inaccurate position in condition of the low tolerance. Since not only the log-

likelihood but also Kullback-Leibler divergence (KLD) is expressed with a 

logarithmic term, KLD has the similar problem. This low sensitivity resulted from 

logarithm increases the number of the function evaluation or iterations in 

optimization process, which can cause poor efficiency problem. The detail results 

of sensitivity comparison will be dealt in Section 3.3. 

 

   

(a)                  (b)                  (c) 

Figure 11 Low sensitivity problem of metrics with logarithm: (a) PDF, (b) log-

operation plot, and (c) gradient plot 
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3.2 Proposed Calibration Metric – Probability Residual (PR) 

 

In order to overcome previous limitation and to complement existing metrics, this 

study proposes a new calibration metric, namely probability residual (PR). The PR 

metric is defined as the sum of the product of the scale factor and the square of 

residuals as presented in Eq. (4). The scale factor, S as denoted in Eq. (4), is defined 

as Eq. (5) by Gauss’ notation and arbitrary constant C. The scale factor converts the 

height of PDF to specific range, which enables to maintain the consistent sensitivity 

of calibration regardless of the distribution shapes. The squares of residual is the 

difference between the PDF of the computational response PC and that of the 

experiment PE. When the PDF of the computational model perfectly overlapped with 

experimental results, the PR value becomes zero like KLD as illustrated in Figure 12. 

This zero boundary owing to residual term notify whether optimization is correctly 

finished or not, which is one of the merit of the PR metric.  

  

 2

1

( ( ) ( | ))
n

PR E i C i
i

Z S P E P E q
=

= ´ -å   

10[log (max( ))]

1
EP

S
C

=   

(4) 
 
 

(5) 

 



２２ 
 

      
(a)                                (b) 

Figure 12 Concept of PR in condition of (a) initial (b) optimized state 

3.2.1 Scale factor 

 

The sensitivity of the calibration metric depends on the distribution shape of the 

experiment. Empirically, the wider the distribution shape comes to be, the more the 

number of function evaluations becomes in optimization process of the statistical 

model calibration. On the other hand, the number of function evaluations is 

decreased in case of the narrow distribution but the calibration accuracy can be 

worse in comparison with the case of the wide distribution. The feature of showing 

the consistent performance regardless of the distribution shapes is one of the critical 

conditions of a fine metric. In order to be a fine metric, PR is equipped with the 

scale factor which can solve this shape dependency problem of calibration metrics. 

The scale factor renders the PR metric maintain consistent calibration sensitivity as 

adjusting the PDF scale of the experiment and that of the computational result. 

Specifically, the scale factor defined as Eq. (5) is composed of the constant C, 

maximum value of experimental PDF (max(PE)) and Gauss’ notation ([ ]). Since the 

Gauss’ notation in the scale factor includes logarithmic term, the value of the Gauss’ 

notation functions as the indicators which transfer the degree of scaling effect to 

user instinctively. And, since the value of ‘max(PE)’ is always fixed in statistical 
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model calibration, the scale factor is controlled only by the arbitrary constant C. For 

example, if the value of C is defined as 100, the height of PDFs is determined to the 

range from 1 to 100 in any case of distribution shapes so that the wide distributions 

can be changed to be narrower than before and vice versa. Meanwhile, if the value 

of the ‘max(PE)’ is come under between 1 and 10, the scale factor is always one 

regardless of the constant C. It means that there is no scaling effect. However, it 

means not the defunctionalization of scale factor but no necessity to applying the 

scale factor. Because the PDF range between 1 and 10 is a standard or desirable 

range in view of the optimization sensitivity.  

 

 

(a) 

 

(b) 
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Figure 13 Calibration result when the scale factor effect (a) off (C =1) and (b) 

on (C=100) in case of the narrow distribution 

 

Table 1 Calibration result when the scale factor effect off (C=1) in case of the 

narrow distribution 

Y: Response 

 
Mean 

Standard  
deviation 

# of iterations 
# of function 
 evaluations 

Initial  
state 

7.5007 1.875e-4 0 0 

Calibrated 
state 

7.5 5.999e-5 13 56 

MCS 
values 

7.5 7.846e-5 none none 

%Error 6.32e-4 30.7784 none none 

X: Random input variables 

 
Mean Standard deviation 

Initial  
state 

10.001 2.5e-4 

Calibrated 
state 

10  8e-5 

Solution 10  1.046e-4 

%Error 6.31e-4 30.7768 

Table 2 Calibration result when the scale factor effect on (C=100) in case of the 

narrow distribution 

Y: Response 

 
Mean 

Standard 
deviation 

# of iterations 
# of function 
 evaluations 

Initial 
state 

7.5007 1.875e-4 0 0 

Calibrated 
state 

7.5 7.8465e-5 22 98 

MCS 
values 

7.5 7.846e-5 none none 

%Error 7.45e-7 5.52e-4 none none 

X: Random input variables 
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Mean Standard deviation 

Initial 
state 

10.001 2.5e-4 

Calibrated 
state 

10 1.046e-4 

Solution 10 1.046e-4 

%Error 7.24e-7 5.76e-4 

Empirically, it is recommended that user determines an appropriate value of the 

constant C based on the range of transformed PDF from 1 to 10, or the objective 

function value from 0.1 to 1000. For testing the effect of the scale factor, the 

narrow and wide distributions are considered. In case of the narrow distribution, the 

statistical calibration is performed under 10-3 tolerance of x, as shown in Figure 13, 

Table 1, and Table 2. And, in case of the wide distribution, the statistical calibration 

is conducted under 10-6 tolerance of x, which is described in Figure 14, Table 3, and 

Table 4. 

 

(a) 
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Figure 14 Calibration result when the scale factor effect (a) off (C =1) and (b) 

on (C=10) in case of the wide distribution 

 

Table 3 Calibration result when the scale factor effect off (C=1) in case of the 

wide distribution 

Y: Response 

 
Mean 

Standard 
deviation 

# of iterations 
# of function 
 evaluations 

Initial 
state 

75 150 0 0 

Calibrated 
state 

7.522 78.468 17 54 

MCS 
values 

7.5 78.466 none none 

%Error 0.2926 2.24e-3 none none 

X: Random input variables 

 
Mean Standard deviation 

Initial 
state 

100 200 

Calibrated 
state 

10.029 104.6250 

Solution 10 104.6214 
%Error 0.2926 3.44e-3 
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Table 4 Calibration result when the scale factor effect on (C=10) in case of the 

wide distribution 

Y: Response 

 
Mean 

Standard 
deviation 

# of iterations 
# of function 
 evaluations 

Initial 
state 

75 150 0 0 

Calibrated 
state 

7.5 78.466 11 37 

MCS 
values 

7.5 78.466 none none 

%Error 8.15e-6 1.59e-6 none none 

X: Random input variables 

 
Mean Standard deviation 

Initial 
state 

100 200 

Calibrated 
state 

10 104.6227 

Solution 10 104.6214 
%Error 8.15e-6 1.21e-3 

In these examples, all the responses (Y) are derived from the random input 

variables (X) which is projected on the response function of ‘Y=0.75X’. Especially, 

the MCS values in Table 1, 2, 3 and 4 mean the responses obtained from the 

solutions in Table 1, 2, 3 and 4. So the ‘% error’ at the table of response (Y) means 

the percentage error between calibrated state and MCS values.  

In case of narrow distribution, when the scale factor effect on, the calibration 

accuracy is better than when the scale factor effect off as shown in Figure 13, Table 

1 and Table 2. Although the number of iterations is increased from 13 to 22, the 

percentage error of the standard deviation of x is decreased from about 30% to 0%. 

Thus, it can be considered that the advantage from accuracy improvement is bigger 

than disadvantage from efficiency degradation in this case. In case of the wide 

distribution as represented in Figure 14, Table 3 and Table 4, the number of 

iterations is decreased from 17 to 11 and the percentage error of the mean of x is 
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decreased from about 0.3% to 0. In this case, it is confirmed that both the 

calibration accuracy and the efficiency are improved by using the scale factor. 

These results indicate that the PR metric can exert an optimized performance as 

adjusting scale factor appropriately. 

 

 

 

 

 

3.2.2 Square of residuals 

 

As the quadratic form of the function, the term of square of residuals makes the 

PR metric a convex form at the vicinity of the operating point determined by 

statistical parameters vector,  . It has highly significant meaning whether the 

objective function (cost function) is convex or not in view of optimization. Because 

the convex function has many strong points such as availability to satisfying 

Karush-Kuhn-Tucher (KKT) conditions or guaranteeing existence of the global 

optimum, etc. [40] The optimization problems are commonly concluded in finding 

the extremal values. If the performance function is a convex function, the local 

solution comes to be equal to global solution. [40] These characteristics of convex 

function have positive effects on the robustness and accuracy of optimization. Also, 

the square of the residuals term makes PR have a zero bound at the optimum point, 

which enables to notify whether the calibration is done correctly or not. 
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3.3 Performance Evaluation of the Calibration Metrics 

 

The performance evaluation of the calibration metrics including log-likelihood, 

KLD and PR was conducted so as to compare the performance of PR with that of 

the existing calibration metrics. If the random input variables followed normal 

distribution, the normal, skewed, and bimodal response can be obtained by 

projecting the random inputs on the linear, nonlinear, and elliptical response 

functions, respectively as shown in Figure 15. These three response functions 

generate linear, skewed and bimodal response, which is common distribution of 

experiment. With each of the mathematical models, the three kinds of the 

calibration metrics including log-likelihood, KLD and PR were applied.  

 

Figure 15 Process of the performance evaluation of PR 
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3.3.1 Comparative study of calibration metrics in terms of accuracy 

 

 
 (a)                                  (b) 

 
 (c)                                  (d) 

 
(e)                                  (f) 

Figure 16 Calibration result of response by using PR in (a) linear, (c) nonlinear, 

and (e) elliptical case; percent error comparison in (b) linear, (d) nonlinear and (f) 

elliptical case 

-200 0 200 400 600
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As shown in Figure 16(a), (c) and (e), the calibration is performed correctly. (It 

is denoted that the sample size used in these analytical examples is 106). As 

presented in Figure 16(b), (d) and (f), the PR metric performed better than other 

metrics including log-likelihood and KLD in terms of the calibration accuracy. The 

nonlinearity of the response function is increasing as progressing to the linear, 

nonlinear and elliptical case. The result represents that the PR metric shows better 

performance despite the condition of the highly nonlinear response functions owing 

to the convex form of square of the residuals.  

 

3.3.2 Comparative study of calibration metrics in terms of accuracy 

 

As illustrated in Figure 17, the PR metric shows the smallest number of function 

evaluations among above calibration metrics as changing the tolerance of x from 10-4 

to 10-6. (It is known that there is a tendency for the optimization accuracy to 

converge at the range from 10-4 to 10-6 tolerance and 106 sample size. [41]) This 

result implies that the PR metric shows better calibration efficiency than other 

metrics including log-likelihood and KLD because of the scale factor. 

 

 

 

 

 

 

 

 



３２ 
 

 
(a)                                                                  (b) 

 
(c) 

Figure 17 Number of function evaluations in (a) linear, (b) nonlinear, and (c) 

elliptical case   
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Chapter 4. Case Study: Statistical Model Validation 

of a Journal Bearing Rotor System 

 

4.1 Hierarchical Framework for Statistical Model Validation 

 

The statistical models of the journal bearing rotor system in normal and rubbing 

state is constructed and statistical model validation is conducted in this Chapter so 

as to diagnose the rubbing of the journal bearing rotor system. The first reason why 

the hierarchical framework [4] is chosen is availability to extend from the normal 

state to other states. The second reason is the efficiency and the accuracy of 

computational calculation. There can be many unknown random input parameters 

in single system. In this case, it would be better to calibrate the unknown 

parameters step by step hierarchically rather than calibrate them all at once. In this 

study, bearing stiffness and damping coefficient is calibrated at the normal state tier, 

and the normal contact stiffness is calibrated at the rubbing state tier. The details are 

discussed in chapter 4.1.2 and 4.1.3. 

 

4.1.1 Description of a Computational Model 

 

In this research, an RK4 journal bearing testbed was used to statistical modeling. 

This testbed was simply composed of two shaft and one disk. A computational 

model of this testbed was intended to obtain vibration signal so as to complement 

the scarcity of the experimental data in fault diagnosis. The details are represented 
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in Figure18. 

 
 

 
(a) 

 

 
(b) 

Figure 18 RK4 model: (a) RK-4 testbed, (b) Computational model of RK-4 

 

4.1.2 Statistical Model Calibration in Normal State 

 

In this tier of normal state, 1st critical speed is chosen as the response; bearing 

stiffness and damping coefficient is defined as the unknown random input variables 

from gradient based sensitivity analysis as a variable screening method. The Monte 

Carlo simulation (MCS) is adopted for the uncertainty propagation method; the PR 

metric is applied as a calibration metric as shown in Figure 19. For the efficiency, 

the surrogate model is used based on polynomial regression. 
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Figure 19 Process of the model calibration in normal state 

 

4.1.3 Statistical Model Validation in Rubbing State 

 

As referred in Section 2.2, the detail kinds of the fault can be classified based on 

health data. The health data can be defined as numerical values representing the 

features of waveform on time domain or frequency domain such as the kurtosis, 

root mean square frequency (RMSF), etc. But, before determining the health data, 

characteristics of the system should be considered. Figure 20 represents the 

characteristics of the normal state and rubbing state. Because the vibration signal at 

the rubbing fault mode has many peaks than normal state, the crest factor as 

denoted as Eq. (6) which indicates how extreme the peaks are in a waveform on 
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time domain can be the health data alarming the rubbing fault mode. For this reason, 

in this tier of rubbing state, the crest factor is chosen as the response.  

 

(a) 

 

(b) 

Figure 20 Vibration signal in case of (a) normal state and (b) rubbing state 

peak

Crestfactor

rms

x
H

x
=  (6) 
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Considering the physical meaning with the rubbing in finite element analysis 

(FEA), the normal contact stiffness [42] [43] for penalty method [43] [44] was 

defined as the unknown random input variable since the computational model as 

shown in Figure 18(b) is for node to node contact. It is known that the penalty 

method is most proper to the condition of the node to node contact as represented in 

Table 5. (The information in Table 5 is cited from ANSYS APDL instruction 

manual.) 

 

Table 5 Contact analysis method 

 

Penalty  

Method 

Augmented  

Lagrange 

Pure 

 Lagrange 
MPC* 

Trait 

Good 

convergence 
behavior (few 

iterations) 

May require  

additional  
iterations if  

penetration is  
too large 

May require 

additional 
iterations if 

penetration is too 
large 

Good 

convergence 
behavior (few 

iterations) 

Contact 
condition 

Node - node 
Node -  
surface 

Surface - surface 
Surface - 
surface 

Geometry 

condition 

Symmetric 
or asymmetric 

contact 

Symmetric or 
 Asymmetric 

 contact 

Symmetric or 
asymmetric 

contact 

Asymmetric 

contact only 

Contact 
behavior 

Any type Any type Any type 
Only bonded & 
no separation 

Contact 
stiffness 

control 

Normal contact 

stiffness 

Normal contact 

stiffness 

Tangential 

contact stiffness 

Tangential 

contact stiffness 

* MPC: Multi-point constraint 
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For the validity check, the experimental data is obtained by increasing 

unbalance level which imitates increasing the rubbing effect. The unbalance mass 

used for validity check is 0.9g. Finally, hypothesis testing based on area metric is 

conducted. The whole process represented in Figure 21. 

 

 

Figure 21 Process of the statistical model validation in rubbing state 

 

4.2 Discussion 

 

In the tier of normal state, the model calibration is performed. The calibration 

result is as shown in Figure 22, and Table 6. After model calibration, the statistical 

calibration and validation is conducted in the tier of rubbing state. The statistical 

calibration result is represented in Figure 23 and Table. 7, and the validation result 
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is represented in Figure 24. With 5% significance level, the null hypothesis that the 

calibrated model for rubbing is valid could not be rejected. It indicates that the 

calibrated model by the PR metric is valid in view of engineering sense. 

 

 

 

Figure 22 Calibration result with respect to 1st critical speed in normal state 

Table 6 Calibrated statistical parameters of response in normal state 

 
1st critical speed 

 
Mean 

Standard 
deviation 

Calibrated 45.6847 0.1908 

Experimental 45.6935 0.1925 

%Error 0.0193 0.8831 
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Figure 23 Calibration result with respect to crest factor in rubbing state 

Table 7 Calibrated statistical parameters of response in rubbing state 

 
Crest factor 

 
Mean 

Standard 
deviation 

Calibrated 1.7313 0.1400 

Experimental 1.7313 0.1400 

%Error 1.40e-4 4.59e-3 

 

 

  
(a)                             (b) 

Figure 24 Validity check result in rubbing state: (a) calibration result in 

rubbing state with respect to increased unbalance level, and (b) hypothesis 

testing 
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Chapter 5. Conclusions 
 

5.1 Contributions 

 

The statistical model calibration is to infer the statistical parameters of the 

unknown random input variables where the computational response corresponds to 

the experimental data by optimization process. Because the calibration metric 

serves as the objective function in optimization process, the statistical model 

calibration is significantly influenced by performance of the calibration metric. For 

the optimization, the calibration metric should be suitable not to one determination 

but to iterative process and taken account of not only accuracy but also efficiency. 

This study demonstrates the limitations of the existing metrics for statistical model 

calibration, i.e., log-likelihood, KLD, with regard to calibration accuracy and 

efficiency. In aspects of the calibration efficiency, the common cause of negative 

effect of existing metrics resulted from the logarithmic term. The logarithmic 

operation instigates low optimization sensitivity in the vicinity of the optimum 

point, and the low sensitivity triggers poor calibration efficiency by increasing the 

number of function evaluations and iterations.  

To complement these problems, a new calibration metric, probability residual 

(PR), is proposed in this research. The merits of the proposed PR metric in 

comparison with other existing calibration metrics such as log-likelihood and KLD 

are summarized to three points. Firstly, the PR metric is a robust metric because it 

has a convex form of square of residuals term, which is the difference between 

PDFs of the computational response and experiment described in Chapter 3. It is 
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significant whether the objective function is a convex form or not in view of 

optimization. Because the convex function has many strong points such as 

availability to satisfying Karush-Kuhn-Tucher (KKT) conditions or guaranteeing 

existence of the global optimum, etc. These characteristics of convex function have 

positive effects on the robustness and accuracy of optimization. Also, the square of 

the residuals term makes PR have a zero bound at the global optimum, which 

enables to notify whether the calibration is correct or not. Secondly, the PR metric 

is an efficient metric. The scale factor of PR defined in Chapter 3, controls value of 

the probability density function (PDF). Empirically, calibration fitting to the narrow 

and high-shape distribution can have characteristics of fine efficiency but low 

accuracy whereas calibration fitting to the wide and low-shape distribution can 

have features of poor efficiency but high accuracy. By adjusting proper value of the 

scale factor, the performance of the calibration metric, which depends on the shape 

of distribution, can be more enhanced. Thirdly, the PR metric shows stable 

performance regardless of the distributions of response functions including linear, 

nonlinear and elliptical case. On the other hand, the performances of the other 

metrics were fall as nonlinearity of the response is increasing. In other words, the 

PR metric is proven to be a promising metric to apply to not only linear system but 

also highly nonlinear system. 

For testing the availability for PR to real engineered system, the hierarchical 

framework for statistical model validation of the journal bearing rotor system is 

performed by applying the PR metric in this study. After the bearing stiffness and 

damping coefficient are calibrated in the tier of the normal state, the normal contact 

stiffness is finally calibrated in the tier of the rubbing state. This hierarchical frame 

work for statistical validation of rotor dynamics model especially for the rubbing 
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state is a pioneer work to the best of my knowledge. Through this case study, it is 

implied that not only the physical parameters but also artificial parameters only 

passable in FE model such as normal contact stiffness can be regarded as unknown 

random input variables. In the conclusion, the calibrated journal bearing rotor 

model in rubbing state is proven to be valid by the hypothesis testing where the null 

hypothesis that the calibrated model is valid could not be rejected with 5% 

significance level. It suggests that the proposed PR metric seems promising to be 

applied in building an accurate computational model. 

 

5.2 Future Works 

 

There can be unknown advantages of the existing metrics such as log-likelihood 

and KLD. Especially, the function of the logarithmic operation in calibration metric 

should be more studied. In order to improve the availability of the PR metric, the 

scale factor of PR needs to be generalized, and unknown limitations of the PR 

metric should be examined by testing with other diverse metrics besides log-

likelihood and KLD. The further studies on existing metrics for statistical model 

calibration is required. The contour plot in the vicinity of the optimum point is 

recommended to prove the excellence of PR in terms of the accuracy in comparison 

with other calibration metrics. Also PR needs to be evaluated with various random 

inputs expressed to diverse statistical distributions as well as normal distribution. 

These issues are supposed to be covered and reflected in the next journal paper. 

Finally, it remains to be future works to apply PR to constructing the statistical 

models for other fault diagnosis including misalignment and oil whirl besides 
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rubbing, or to other engineered systems above journal bearing rotor system. 
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국문 초록  

 

저널 베어링 회전체 시스템과 같은 공학 시스템의 유한요소 모델을 

구축할 때에는, 통계적 모델이 불확실성을 내포하는 실제 공학 시스템의 

거동을 잘 모사하기 때문에 주로 이용된다. 통계적 모델을 사용하기 

위해서는 통계적 모델 검증을 거쳐야 하는데 통계적 모델 검증에는 

통계적 모델 보정 과정이 포함된다. 모델 보정 과정에 필수적 요소 중 

하나인 보정 척도는 해석 모델이 반환하는 결과와 실험데이터 간의 

유사도 또는 비 유사도를 정량적으로 측정하는 역할을 한다. 그러나 

Log-likelihood 와 KLD 같은 기존의 보정 척도는 로그항 때문에 

필연적으로 발생하는 몇 가지 한계점을 안고 있기 때문에 정확한 

유한요소 모델을 구축하는 데에 어려움이 있다. 이러한 한계점을 

보완하기 위해 이 논문에서는 새로운 보정척도인 확률 잔차를 

제안하였다. 확률 잔차는 척도보정상수와 잔차 제곱항의 곱의 합으로 

정의가 된다. 척도보정상수는 확률밀도함수의 척도를 특정한 범위로 

변환하여 보정의 효율성을 높이는 데 기여한다. 한편, 잔차 제곱항은 

확률 잔차를 볼록 형태로 만들어 줌으로써 광대역 최적점의 존재를 

보장해주는 데 기여한다. 확률 잔차의 성능을 검증하기 위해 이 

논문에서는 수학적 모델과 정상상태, 마찰접촉 상태의 저널 베어링 

회전체 모델을 이용하였다. 그 결과 확률 잔차의 성능이 기존의 Log-

likelihood 나 KLD 에 비해 정확도와 효율성 측면에서 우수하였다. 또한 

가설검정을 적용한 결과 확률 잔차로 보정한 저널베어링 로터 모델이 

유효함을 확인하였다. 이로써 이 논문에서 제안된 확률 잔차는 정확한 

유한요소 모델을 구축하는 데에 유도전망하게 확용될 수 있다. 
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주요어:  통계적 모델 검증 

 통계적 모델 보정 
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