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Abstract        
 

Vibration-based framework for fault diagnostics of wind 

turbine gearbox 

 
Jong Moon Ha 

School of Mechanical and Aerospace Engineering 

The Graduate School 

Seoul National University 

 

Reliability of wind turbines (WT) is a challenging issue in wind energy industry. 

In particular, a gearbox in a WT has the highest risk because of its high maintenance 

cost. Despite many prior attempts to develop diagnostics techniques for WTs, one has 

faced many grand challenges including 1) inaccuracy in fault diagnostics due to 

random and non-stationary signals and 2) inefficiency in fault diagnostics with big 

sensory data (e.g. vibration) from many sensors in a WT.  

This study thus aims at developing a generic guideline and framework for gearbox 

fault diagnostics. This framework enables accurate diagnostic analysis while working 

with a massive volume of sensory data from many sensors in an efficient manner. 

This paper proposes two key ideas in the following research areas as: 1) classification 

of operational data, and 2) vibration-based fault diagnostics method. First, this study 

has classified the operation conditions into four non-trivial (Class I. stationary; Class 

II. quasi-stationary; Class III. non-stationary with high correlation; Class IV. non-

stationary with no correlation) conditions and one trivial (Class V. idle) condition in 

terms of the operation data (rotor speed, and power) of the WTs. Data classification 

has been conducted with real operational data acquired from Young Heung wind 
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farms. Next, this study has also designed diagnostics methods for the first non-trivial 

class (Class I) based on the characteristics of the data classes. A core technique for the 

fault diagnostics is an order analysis method using Time Synchronous Averaging 

(TSA), where TSA is generally used for signal de-noising and the order analysis for 

the extraction of health data for a gearbox. It is, however, a daunting task to execute 

the fault diagnostics using the conventional TSA for a planetary gearbox because of 

multiple mesh contacts and rotation of the axes of planet gears. This paper proposes a 

new TSA idea, referred to as Autocorrelation-based TSA (ATSA) for the order 

analysis, particularly for a planetary gearbox. 

For the demonstration of the proposed diagnostics framework, two signals were 

employed: analytical signals and signals from a WT testbed. A 2kW WT testbed was 

designed with two DC motors, main bearing, flywheel and gearboxes with 13 sensors. 

A faulty gear was machined with different crack lengths at the root of the gear mesh 

and assembled into the gearbox. The order analysis based on ATSA processed the 

signals acquired from the healthy and faulty gearbox. It was concluded that the 

proposed diagnostics method can distinguish the faulty condition of the gearbox from 

the healthy one. 

 

Keywords:  Wind turbine gearbox 

Fault diagnostics 

Planetary gearbox 

Time synchronous averaging 

Classification of operations data 

 

Student Number: 2011-23346 
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Chapter 1. Introduction 

 
 

1.1 Motivation 

One of the most significant current issues in the world is converting to sources 

of renewable energy for the purpose of reduction in global CO2 emissions and 

overcoming exhaustion of energy. Among the various renewable energy sources, 

wind energy is considered one of the most promising because its efficiency. Thus, 

the market size of the wind industry has increased at an astonishing rate in recent 

years. Global cumulative installed wind capacity had reached 250 GW by 2012, 

and the Global Wind Energy Council (GWEC) estimates that global cumulative 

installed wind capacity will exceed 1600 GW by 2030 [1]. The International 

Energy Agency (IEA) estimated that energy from the rapidly growing wind farm 

industry will be able to cover 12 % of global electricity needs by 2050 [2]. 

Moreover, the COE (Cost of Energy) of a wind turbine (WT), which is one of the 

most significant values used to evaluate the efficiency of energy, is predicted to be 

reduced by 23 % by 2050 [2]. This means there is no doubt that wind energy is 

having considerable impact as a sustainable and renewable energy and the industry 

has potential to impact world-wide energy on an even larger scale in the coming 

years.  

COE of WTs can be effectively reduced by decreasing Operation & 

Maintenance (O&M) costs. In particular, reduction of O&M cost is a significant 

consideration in the case of offshore WTs because offshore WTs have higher O&M 

costs than onshore WTs. Y. Feng et al. compared several papers about reliability of 

wind farms and found that O&M costs account for 18% of total COE in offshore 
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WTs, and 12% in onshore WTs [3]. O&M costs can be substantially reduced by 

diagnosing and predicting potential faults in WTs. David McMillan et al. studied 

the benefits from condition-based maintenance by using diagnostics tools and 

concluded that proper use of diagnostics for offshore WT is estimated to save 

76,784£ per offshore WT per year [4]. Thus, fault diagnostics is an essential part of 

the WT and has been widely developed by many researchers.  

Despite extensive efforts in the diagnostics researches, we are still confronted 

with many grand challenges for developing diagnostics tools for WTs such as : 1) 

random non-stationary signals and 2) massive amount of data. Most WTs operate in 

heavily random and non-stationary. This necessitates the use of time-frequency 

analysis. Because of intense computation required by the analysis of a massive 

amount of sensory data under random non-stationary condition, however, it is 

prohibitively used for diagnostics of WTs in real-time. Spectral analysis based on 

time synchronous averaging (TSA) were generally used for diagnostics of the 

gearboxes of helicopter because of their efficiency in computation. Despite the 

efficiency, it is difficult to be applied to the WT because they require huge amount 

of stationary signals which is rarely acquired in the WTs. Moreover, there is no 

guideline where to use spectral analysis and where to use time-frequency analysis 

for computational efficiency and robust analysis. 

To solve these practical issues, a generic guideline and fault diagnostics 

framework which involves classification of wind data and diagnostics using order 

analysis based on Autocorrelation-based Time Synchronous Averaging (ATSA) is 

proposed in this thesis.  
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1.2 Scope of research 

This thesis proposes two key ideas in the following research area as: 1) 

classification of operational data and 2) vibration-based fault diagnostics of the WT 

gearbox. 

 using order analysis based on Autocorrelation-based Time Synchronous 

Averaging (ATSA). 

In the research thrust 1, classification of wind data, the huge amount of response 

(e.g. vibration) data is classified into four non-trivial (Class I. stationary; Class II. 

quasi-stationary; Class III. non-stationary with high correlation; Class IV. non-

stationary with no correlation) conditions and one trivial (Class V. idle) condition 

in terms of the operation data (rotor speed, and power) of the WTs. And then 

optimal diagnostics plans are designed for each class. As a result, trivial class is 

filtered out and only non-trivial classes are adaptively extracted for the purpose of 

diagnostics. This procedure makes it possible to manage big data efficiently and 

utilize only meaningful data for fault diagnostics. Among the classes, it is found 

that defined class I and II are appropriate for the diagnostics tool developed in 

research thrust 2.  

In research thrust 2, this study has also designed diagnostics methods for the 

first non-trivial class (Class I & II) based on the characteristics of the data classes. 

A core technique for the fault diagnostics is an order analysis method using 

Autocorrelation-based Time Synchronous Averaging (ATSA), where ATSA is used 

for signal de-noising and the order analysis for the extraction of health data for a 

gearbox. Then, current health state of the WTs can be estimated from various health 

data which are calculated from the order domain.   
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Figure 1-1 Framework for fault diagnostics of WT gearboxes 

 

 

1.3 Structure of the Thesis 

In Chapter 2, condition monitoring methods are briefly reviewed. Chapter 3 

presents classification of operational data. Chapter 4 summarizes the TSA method 

and develops ATSA. In Chapter 5, the various health data for WT gearbox that can 

be obtained from vibration signals are reviewed and summarized. Among them, a 

few types of health data will be used for validation of the diagnostics techniques 

proposed in this paper. Chapter 6 involves design of analytical signals the WT 

testbed for validation, and corresponding analysis results are presented. Chapter 7 

summarizes the research and presents the conclusions of the thesis. 
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Chapter 2. Review of Condition Monitoring 

 
 

Condition monitoring can be performed in two ways: 1) SCADA (supervisory 

control and data acquisition system) based condition monitoring and 2) vibration 

based condition monitoring. In this section, a brief overview of the two condition 

monitoring methods is presented. 

 

2.1 SCADA-based Condition Monitoring 

SCADA (supervisory control and data acquisition system) consists of three 

kinds of data, including environmental data, operational data, and response data, as 

summarized in Table 2-1. It was originally designed to supervise and control power 

plants based on the plant’s operational and environmental conditions. Operational 

data from individual WT systems are collected from sensors attached to the systems, 

then overall information of the power plant is supervised comprehensively in a 

central processing unit. Data are collected at a very low frequency, for example 

once every 10 minutes, to make it possible to manage a huge power plant in real-

time.  

D. Z. Chen and Bindi studied commercially available SCADA systems which 

are embedded in real wind farms and summarized the main features of those 

systems [5]. They found that most SCADA includes not only the plant management 

functions but also basic condition monitoring units such as alarm management 

systems. Condition monitoring using SCADA can be divided into two main 

subjects: monitoring of power [6], [7] and monitoring of temperature of the main 
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components such as gearbox, generator winding and bearing [8], [9], [10]. 

Furthermore, principal concepts of other studies are mainly estimation of the 

normal state and monitoring the current state of the system using several 

parameters such as ambient temperature, rotating speed and so on as well as the 

power and the temperature of the main components. PCA (Principal Component 

Analysis) [6], NN (Neural Network) [10], AARK (Auto-associative Kernel 

Regression) [9], and NSET (Nonlinear State Estimate Technique) [8] are widely 

used for this purpose. 

Table 2-1 SCADA data from wind turbines 

Data Type Description 

Environmental data 
Wind Speed & direction 

Outside temperature 

Operational data 

Power output 

Rotor speed 

Control logic (Yaw, Pitch, Idle, and etc.) 

Messages about interventions in the control of the turbine 

Response data 
(Vibration) 

Nacelle vibrational response 

Bearing vibration 

Gearbox vibration 

Generator vibration  

Response data 
(Temperature and etc.) 

Nacelle temperature 

Temperature of bearings of gearbox and generator 

Temperature of the generator windings 

Oil temperatures and pressure 
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Unfortunately, the accuracy is not reliable because of the low sampling rate of 

SCADA. However, condition monitoring using SCADA is very important because 

it provides a basic guideline for thorough investigation of the system. 

 

 

2.2 Vibration-based Condition Monitoring System(CMS) 

 A condition monitoring system (CMS) is an essential part of the wind turbine 

(WT). GL, one of the most significant organizations involved in the certification of 

WT systems, enacted a regulation that every system should be equipped with a 

condition monitoring system which uses high-frequency response data (e.g., 

vibration) rather than SCADA[11]. In this section, vibration-based CMS techniques 

are briefly reviewed. 

 

2.2.1 Spectral Analysis 

As stated in Chapter 1, we are confronted with an inevitable challenge: the large 

amount of data. To overcome this challenge and realize real-time diagnostics of 

WT, most commercially available CMS are equipped with cost-efficient methods 

such as time domain analysis and spectral analysis with FFT (Fast Fourier 

Transform) [12]. Time domain analysis is the most basic condition monitoring tool 

which utilizes the level of amplitude, statistical moments and some features like 

instant peak of vibration signal in time axis. C. J. Crabtree et al. (2010) traced the 

level of vibration signal along with applied load to detect incipient failure of a WT 

gearbox [13]. However, time domain analysis is rarely used alone for CMS and 
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several studies have shown that spectral analysis can be used with time domain 

analysis. Spectral analysis is composed of three stages: the de-noising stage, the 

transformation to frequency domain stage, and the analysis of spectral component 

stage.  

The de-noising stage is required especially in real-world field settings where 

signals typically include considerable random noise. This is also known as the pre-

processing stage.  High-pass filtering and time synchronous averaging (TSA) [14] 

are widely used in this stage. TSA is adopted and revised in this paper for de-

noising; details will be given in Chapter 4.  

Next, pre-processed signals need to be transformed to the frequency domain 

through a transformation stage. FFT (Fast Fourier Transform) is widely used for 

this procedure [15]; however, FFT requires signals under both cyclic and stationary 

state. Windows functions such as Hamming window can be used to decrease the 

negative effects of non-cyclic signals but there are limitations when signals are 

non-stationary [16]. A resampling technique can be applied to overcome the small 

non-stationary condition. This technique will be presented as a part of the 

diagnostics framework in Chapter 4.  

Health data can be extracted by calculating statistical indices of specific 

components from the frequency domain, and this overall procedure is performed in 

analysis of the spectral component stage. Several health data related to WT 

gearboxes will be reviewed and summarized in Chapter 5. 

 

2.2.2 Time-frequency analysis 

Time domain analysis and spectral analysis have advantages in that these 
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techniques are computationally efficient. However another challenge arises here 

because most WTs operate in non-stationary conditions which make it difficult to 

use these techniques for condition monitoring of WT. So, there have been many 

attempts to develop more accurate condition monitoring techniques under non-

stationary conditions, such as time-frequency analysis.  

FFT loses time information as the signal is transformed into the frequency 

domain. STFT (Short Time Fourier Transform) is the most basic time-frequency 

analysis method which uses the basic principle of FFT while considering time 

information [17]. The local window function is defined to cover only a short time 

of the whole signal; this window moves along with time. FFT is applied to every 

windowed signal and time information is stored as the window function is shifting. 

As a result, STFT becomes a function of both time and frequency. However, 

resolution of frequency and time of the STFT cannot be simultaneously fine 

because the window function of STFT is not time for frequency varying but 

deterministic function.  

To overcome this challenge, wavelet transform was developed to have an 

adaptive window (i.e. Mother function) function which is dilated and shifted 

corresponding to characteristics of signal [17]. Wavelet transform have been widely 

studied for diagnostics of WT under non-stationary condition [18]. However, 

accuracy of the analysis cannot be guaranteed when the signals have mostly non-

linear behavior.  

Empirical mode decomposition (EMD) was developed by N. Huang to deal with 

non-linear signals as well as non-stationary signals by decomposing the signal into 

several Intrinsic Mode Functions (IMFs) [19]. EMD is widely used in diagnostics 

of WT because most WT operates in non-stationary condition because of non-linear 
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behavior of the wind [20]. Various further research on EMD for the purpose of 

diagnostics of the WT, such as Bivariate empirical mode decomposition (BEMD) 

and ensemble empirical mode decomposition (EEMD), have been actively studied 

[21], [22].  
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Chapter 3. Classification of Operation Data  

 

Equation Section 3 

3.1  Introduction 

SCADA consists of three kinds of data, including environmental data, 

operational data, and response data, as summarized in Table 2-1. Response data, 

especially vibration signals, occupy most size of the data. Because of the 

difficulties in dealing with such big data, simple diagnostics methods such as order 

analysis are widely used in diagnostics of real WT. However, WTs mostly operate 

in non-stationary conditions. This makes it extremely difficult to accurately analyze 

the signals under non-stationary condition and it leads to the need for better 

techniques such as time-frequency analysis; however, this technique is too 

computationally intensive to be practical. Thus, efficient data management method 

and the guideline which helps to determine where to use the order analysis and 

where to use the time-frequency analysis are needed to overcome such practical 

issues. This paper thus attempts to develop diagnostics framework which includes 

the method for classification of operation data of WT, and design of the 

corresponding diagnostics methods for each class. A distinction between trivial and 

non-trivial classes is made in an effort to reduce the size of data and optimal 

diagnostics methods are designed based on characteristics of signal under the 

defined classes. Operational data collected from a SCADA of a WT for 7 months 

was used for this study. Among various information available from SCADA, power 

output and rotor speed is adopted for classification. At the end, corresponding 

diagnostics methods are suggested for each class.  
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3.2 Classification Method 

Classification employs two operational data – rotor speed and generated power. 

A rule of thumb for the classification is to understand the natures of turbine 

operation states because different states require different health monitoring 

strategies.  

Figure 3-1 helps to understand the behavior of WTs by graphically describing 

rotor speed and generated power, along with time. Wind speed is also presented for 

further understanding of the data. The main role of a WT is to generate high power 

under given conditions. Thus, a WT is basically designed to have a high correlation 

between rotor speed and power output. As you can see in Figure 3-1, class I 

corresponds to a stationary state because the rotor speed and power remain nearly 

unchanged at maximum. However, the expected correlation between rotor speed 

and power output is not guaranteed at all times. Generated power can fluctuate, 

even with unchanged rotor speed. This region is  

 
Figure 3-1 Classification of wind data using graphical method 
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Figure 3-2 Classification method 

defined as class II, the quasi-stationary state. Classes III and IV fall into a non-

stationary state because both RPM and power change over time. Data in class III 

can be characterized with a high statistical correlation between rotor speed and 

power whereas the data in class IV cannot because this is the transient region. 

During class V, the WT is idling. Figure 3-2 shows the classification method. 

The following sections will explain the method developed to classify the data in 

a quantified manner, and how to efficiently manage and analyze the data for the 

purpose of fault diagnostics. 

 

 

3.3  Criterion for Quantitative Classification 

In the previous section, a classification method was proposed but there was no 

specific criterion for classification. Thus, quantified criterion of classification for an 

optimal diagnostics plan is proposed in this section.  

Figure 3-3 shows the distribution of operational data from SCADA of WT. It is 

seen in Figure 3-3 (a) that power has a dense distribution near the minimum (zero) 

and the maximum (one). It is also can be seen in Figure 3-3 (b) that rotor speed has 

a dense distribution near the minimum and maximum (the same as power), and 
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there is an additional dense group near the cut-in speed, 0.4 in this case. The 

purpose of the classification is to manage the big data efficiently and design 

optimal diagnostics plans for each data class. class I and II have relatively small 

variation of rotor speed which means that computationally efficient diagnostics 

tools such as order analysis can be used for fault diagnostics. Moreover, it is 

simpler to utilize the data in class I because we don’t need to consider the effect of 

the torque. Thus, it is reasonable to assign class I as much as possible. Based on this 

motive, this study attempts to define the criterion for classification to separate the 

dense group near the maximum of the operational data shown in Figure 3-3. By 

adopting this concept, we can effectively maximize the opportunity to use cost-

effective diagnostics tools using the data in that defined class.  

 
Figure 3-3 Histogram of operational data  

(a): Histogram of power, (b): Histogram of rotor speed 

 

In this paper, the inverse cumulative frequency function (Eq.(3.1), Eq.(3.2)) and 

its primary differential value are employed to separate the dense group. The inverse 
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cumulative frequency function is the number of samples whose magnitude is larger 

than a defined value. Thus, the method to separate the dense group can be 

effectively presented by defining the point that the primary differential value of the 

inverse cumulative frequency function rapidly decreases. 

 
1

( ) ( )
binsN

c k k r
k

F x I x X


    (3.1) 

 
( ) 1
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 


  (3.2) 

Figure 3-4 to Figure 3-7 illustrate the inverse cumulative frequency function and 

the primary differential value of power and rotor speed. First, it is clear that the 

dense distribution near the minimum has an apparent distinction line at exactly zero 

for both power and rotor speed. Therefore, no guideline is suggested to define the 

minimum criterion in this study. However, a quantified criterion for the maximum 

is needed because there is no distinct line near the maximum, as can be seen in 

Figure 3-4 and Figure 3-6. Thus, the criterion is defined as Eq.(3.3) to capture the 

point when the rate of change in the inverse cumulative frequency function rapidly 

decreases.  

 
2

1

( ( ))c
c

x csamples

d F xW
Criterion

N dx

    (3.3) 

Threshold means the weight value (W) times the average of the primary 

differential of the inverse cumulative frequency function from c1 to c2 percentile, 

which is a range where the primary differential value remains almost constant near 
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the maximum. W, c1, and c2 are empirical parameters which may be dependent 

upon the type of WT.  Parameters 5, 0.9, and 0.95 are empirically chosen, 

respectively, in this research.  

Results are summarized in Table 3-1. These results can be combined with the 

classification method presented at Figure 3-2 to define classes.  

 

Table 3-1 Classification criterion 

 Min Criterion Max Criterion 

Rotor Speed 0% 98.7% 

Power 0% 98% 
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Figure 3-4 Inverse cumulative frequency function (Fc) of power 

(a): Over the entire range, (b): Around the maximum 

 
Figure 3-5 Primary differential value of Fc of power 

(a): Over the entire range, (b): Around the maximum 
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Figure 3-6 Inverse cumulative frequency function (Fc) of rotor speed 

(a): Over the entire range, (b): Around the maximum 

 
Figure 3-7 Primary differential value of Fc of rotor speed 

(a): Over the entire range, (b): Around the maximum 
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3.4 Diagnostics Plans for the Classes 

This study is focused on vibration signals for condition monitoring; however, 

vibration signals produce the most data and are therefore computationally intensive. 

Thus, proper condition monitoring strategies should be developed to manage the 

big data efficiently and enable diagnostics of the WT in real-time. For this purpose,  

characteristics of each of the defined classes is analyzed and proper diagnostics 

plans are made in this section.  

As can be found in Figure 3-8 (b), most operating data have very clear behavior, 

generated power has high correlation with rotor speed. Thus it can be identified 

through the figures that each of the defined classes have their own characteristics. 

The variation of the data in Figure 3-8 (a) may be caused by uncertainties like 

sudden strong wind or idle control.  

 

 
Figure 3-8 Power along with rotor speed with classification 

(a) Data for 7 months, (b): Data for one day 
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Characteristics of each of the defined classes can be analyzed in a statistical 

manner, as seen in Figure 3-9 and Figure 3-10. Mean, standard deviation (Std.) and 

CV (Coefficient of Variance) are used for the analysis. Among them, CV which 

represents the magnitude of fluctuation of the signal is defined as:  

 
.Std

CV
Mean

   (3.4) 

As you can see, Class I which corresponds to a stationary condition has very 

low CV of both generated power and rotor speed, as we have estimated. In Class II, 

CV of rotor speed remains almost zero but CVs of power somehow increases. From 

this observation, it can be said that diagnostics methods for class I and II can be 

simplified by using computationally efficient tools which are appropriate for 

stationary signals, rather than expensive high-tech tools. Order analysis based on 

ATSA is suggested in this research for diagnostics of WT under class I and II. But 

power or torque should be considered in class II because vibration is sensitive to 

applied torque in the rotor system [23].  

In class III, power and rotor speed have a relatively high CV value which makes 

it difficult to use efficient diagnostics methods. Thus, computationally intensive 

diagnostics techniques such as time-frequency analysis are necessary for this class. 

In class IV, rotor speed has considerable CV and time-frequency analysis, although 

difficult, is needed for diagnostics of WT. class V is not significant for the purpose 

of diagnostics because during class V, the WT is idling and the rotational speed is 

too low. Phenomenon and diagnostics plans for each class are briefly summarized 

in Table 3-2. 
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Figure 3-9 Statistics of power 

 

 

Figure 3-10 Statistics of rotor speed 
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Table 3-2 Diagnostics plan for each class 

Class Phenomenon Diagnostics plan 

I 
• Stationary operation state 

• Power and rotor speed remain nearly unchanged 
• Time analysis 
• Frequency analysis 

II 

• Quasi-stationary state

• Power fluctuates with wind speed under the 

unchanged rotor speed 

• Same as Class I  

• Power should be 

considered 

III 
• Non-stationary state  
• Power is strongly correlated to rotor speed 

• Time-Frequency 

analysis 

V 
• Non-stationary state  
• Transient state before and after idle control 

• Difficult (Time-

Frequency analysis, if 

necessary) 

IV 
• Trivial class 
• Idling state 

• Difficult to analyze the 

signal 

 

 

3.5 Results and Discussion 

Operation data from WT were classified into four non-trivial condition and one 

trivial condition. Among non-trivial condition, it was found that two classes 

corresponding to the stationary and quasi-stationary conditions can be used for 

diagnostics of WT with computationally efficient diagnostics technique. In this 

section, distribution of data for defined classes is presented. Figure 3-11 shows 

percentage of classes using a pie chart. As you can see, class V, which is defined as 

a trivial class in this study, accounts for 33% of all data. Moreover, if we neglect 
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the transient region (class IV) which is difficult to analyze, 43% of data can be 

filtered out. Through these steps, the amount of data to be analyzed can be reduced 

to 57% of its original size. Class I and II, which correspond to stationary and 

quasi-stationary conditions, account for only 6% of data. Non-stationary data (Class 

III) accounts for 51% of the data. Therefore, it is possible to efficiently monitor 

health of the WT using 6% of data; however, 51% of the data still needs be dealt 

with in a more complex way. 

 

Figure 3-11 Percentage of data in each class 
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Chapter 4. Autocorrelation-Based Time Synchronous 
Averaging 

 

Equation Section 4 

In this Chapter, the basic concept of time synchronous averaging (TSA) for a 

rotating system is introduced and then a comparison between some conventional 

TSA methods for planetary gearboxes is provided. To refine conventional TSA 

methods, intensive study on kinematics of planetary gearboxes is given and a more 

efficient method, called autocorrelation-based time synchronous averaging (ATSA), 

is developed. 

 

4.1 Basic Concept of TSA 

Every measured signal has multiple coherent and non-coherent components 

from various sources. D. Hochmann et al. (2004) attempts to describe the 

synthesized sensory signal using three main components [24] : synchronous 

coherent signals (S(t)), non-synchronous coherent signals (N(t)), and non-coherent 

random signals (R(t)).  

 ( ) ( ) (t) (t)v t S t N R     (4.1) 

For condition monitoring of a specific sub-system, synchronous coherent signal 

which is from the sub-system of interest should be separated from the synthesized 

signal (v(t)). TSA has been developed to suppress the non-synchronous coherent 

signal and the non-coherent random signal and to extract only the synchronous 

coherent signal.  
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Figure 4-1 Time synchronous averaging of a basic rotating system 

The TSA method requires following three main steps. 

1)  Synchronous resampling of the vibration signal 

2)  Segmentation of resampled the vibration signal 

3)  Averaging segmented sets 

The basic concept of TSA is to divide the signal into several cyclic segments 

and then to take their ensemble average. Then, signals out of interest attenuate as 

the number of segments averaged increases. Before this step, synchronous 

resampling of the vibration signal is needed because every segmented set should 

have the same number of sampling points. Moreover, the resampling method 

enables the signal to be transformed to the angle domain [25]. 

Let’s assume we have rotating system whose rotating speed is increasing as seen 

in Figure 4-2 (a).  

 1 ,n nt t constant where nis integer     (4.2) 

 1 ,n n constant where nis integer      (4.3) 
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Figure 4-2 Synchronous resampling of the vibration signal  

(a): Cumulative degree, (b): Vibration signal,  

(c): Resampled cumulative degree, (c): Resampled vibration signal 

Notice that the sampling frequency is constant; whereas, the difference between 

sequentially sampled angles is not constant. The vibration signal caused by a 

rotating system with increasing speed can be described as Figure 4-2 (b) and it is 

found that the number of samples in one cycle of the system decreases as the 

rotating speed increases. This means there is no way to divide the signal into 

several cyclic sets which have same number of samples and phase. Therefore, the 

signal requires synchronous resampling. Synchronous resampling is undertaken to 

interpolate the data to make intervals between the sequentially sampled angles 
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constant. To make this possible, the system should be equipped with an encoder to 

exactly catch the points for proper interpolation. An encoder with 60 pulse/rev 

resolution is used for the research described in this paper.  

 * *
1 ,n nt t constant where nis integer     (4.4) 

 * *
1 ,n n constant where nis integer      (4.5) 

After the resampling, we can see that the resampled vibration shows a constant 

cyclic wave (Figure 4-2 (d)) along with sample numbers, which means that the 

number of samples in one cycle of the system remains constant. Then resampled 

vibration can be divided into several segments which have exactly same number of 

sample points with same phase. 

Harry J. Decker and James J. Zakrajsek (1999) performed a comparative study 

on different interpolation methods for resampling and found that the “cubic spline 

method does not have considerable increase in accuracy compared to linear 

interpolation despite it requires significant computation time” [26]. Therefore, the 

linear interpolation method is employed for resampling in this research. 

The number of resampling points for each rotation of the system can be defined 

as fre and the signal can be divided into several cyclic segments which have fre 

number of samples. Then, we can separate the synchronous coherent component by 

ensemble averaging of segmented sets as [27]: 

 
1

0

1
( ) ( )

ensembleN

re
nensemble

S v nf
N

 




    (4.6) 
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4.2 Overview of Planetary Gearbox 

The basic concept of TSA was presented in the previous section. However, it is 

difficult to apply the TSA to a planetary gearbox. For the expansion of TSA to a 

planetary gearbox, the basic structure and principle of mechanical motion of the 

gearbox should be understood. Figure 4-3 shows the planetary gearbox which was 

used in this research. The dynamics model for the planetary gearbox was provided 

by Prof. Choi from Korean Aerospace University (Figure 4-3 (d)). As shown in the 

figure, the planetary gearbox has 4 main components, including the ring gear, 

planet gear, sun gear, and carrier. A low-speed shaft (left side in Figure 4-3 (a)) is 

connected to the carrier and the sun gear operates as the output (right side in Figure 

4-3 (a))). The axis of the planet gear is fixed on the carrier and the planet bearing 

between the planet gear and the carrier enables the planet gear to rotate as you can 

see in Figure 4-3 (c)).  

Figure 4-3 (d) illustrates how the planetary gearbox operates. In the planetary 

gearbox, the ring gear is fixed at the gearbox housing and inner components rotate 

as shown in the illustration. The planet gear meshes with the sun gear and the 

planet gear simultaneously, and there are 6 contacts between inner gears of the 

gearbox (Figure 4-3 (b), (d)).  
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Figure 4-3 Planetary gearbox 

(a): Planetary gearbox (side view), (b): Planetary gearbox (front view),  

(c): Sun gear, planet gear and carrier, (d): Model of planetary gearbox 

All possible rotating frequencies and meshing frequencies of the planetary 

gearbox that were used in this paper are summarized in Table 4-1. The gear ratio of 

this planetary gearbox can be calculated as: 

 4.06r s

s

N N
Gear ratio

N


    (4.7) 
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Table 4-1 Rotating frequency and GMF of the planetary gearbox 

Type 
Teeth 

#  
 

Freq. Equation 

Low-
speed 
shaft 

- 
 

fLSS LSS cf f  (4.8

High-
speed 
shaft 

- 
 

fHSS HSS sf f   (4.9

Sun gear Ns=31 
 

fs s HSSf f   (4.10)

Planet 
gear 

Np=31 
 

fp p pr cf f f    (4.11

Ring gear Nr=95 
 

0 0 

Carrier - 
 

fc 
1 s

c s s
r s

N
f f f

Gear ratio N N
   


  (4.12

Planet-
ring 

- 
 

fpr 
r

pr c
p

N
f f

N
    (4.13

Planet-sun - 
 

fps ps s cf f f    (4.14

Gear 
meshing 

- 
 

fGMF GMF r c p pr s rsf N f N f N f     (4.15

An unusual point of the planetary gearbox is that there exists relative motion 

between the planet gear & the ring gear and the planet gear & the sun gear, 

expressed as fpr and fps in Table 4-1. As you can see from the Table 4-1, the gear 

meshing frequency (GMF) can be described in many ways. If the planet gear is 

adopted for calculating the GMF, it becomes a function of Np and fpr which is 

relative rotational frequency of the planet gear to the ring gear. In this paper, most 
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description of dynamics of planetary gearbox is based on the relative motion (fpr). If 

the relative frequency of planet gear to ring gear is not an integer multiple of the 

carrier frequency, teeth sequence should be considered. Teeth sequence is the 

number of teeth of the planet gear that are meshing with the ring gear as the planet 

gear of interest passes the sensor, defined as [28]: 

 , mod( , ) 1
cn p c r pP n N N    (4.16) 

For example, let’s assume that tooth number 1 of the planet gear of interest did 

contact the ring gear at the initial state as shown in Figure 4-4 (a). After 1 rotation 

of the carrier, tooth number 3, instead of 1, will be meshing with the ring gear, as 

seen in Figure 4-4 (b). The sequence of teeth in the planetary gearbox which is 

assembled to the testbed in this research can be arranged as shown in Table 4-2. 

 
Figure 4-4 Teeth of the planet gear which is meshing with the ring gear 

(a): Initial state, (b): After 1 rotation of carrier 
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Table 4-2 Sequence of the planetary gearbox teeth (1:4.06) in the testbed 

nc 0  1  2  3  4  5 6 7 8 9 10 11 12 13  14  15 

P
n,p 1 3 5 7 9 11 13 15 17 19 21 23 25 27 29 31 
nc 16  17 18  19  20  21 22 23 24 25 26 27 28 29  30  31 

P
n,p 2 4 6 8 10 12 14 16 18 20 22 24 26 28 30 1 

Because of this phenomenon, the initial state is made after 31 rotations of the 

carrier, as can be seen in Table 4-2 at nc=31. The minimum rotation of carrier 

needed for it to reset to the initial condition is called the hunting tooth ration (HTR). 

The HTR can be calculated as [28]:  

 ,p

( , ) 31 95
31

95
p r

Rest
r

LCM N N
n

N


     (4.17) 

On the other hand, ‘hunting tooth cycle (HTC)’ represents the number of 

rotation of the carrier until nth reset to the initial position, 31n carrier rotation in this 

case. Because of the presented characteristics of the planetary gearbox, we are 

confronted with three main challenges when using TSA for diagnostics of the 

planetary gearbox [29]. Challenges include: 

1) The axis of the planet gears vary with rotation of the carrier 

2) Signals are from multiple contacts, including the sun gear & planet gear, and 

the planet gear & ring gear 

3) The meshing condition is not always the same 

As the challenges, the rotation of the planet gear makes modulation to vibration. 

Moreover, vibration by the interesting planet gear can be suppressed by other 

sources of vibration. Because transducer is fixed on the housing of the gearbox and 
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the signal is mainly dominated by meshing between the teeth of the planet gear and 

the teeth of the ring gear just under the transducer [30]. Furthermore, each 

separated segments cannot be averaged directly because the segmented sets would 

be under other meshing conditions. 

 

 

4.3 Conventional TSA for Planetary Gearbox Diagnostics 

There have been several attempts to develop a TSA method for use with a 

planetary gearbox. Prior efforts can be divided into two methods: TSA by 

McFadden (1991) [29] and the method by Forrester (2001) [31]. Two methods 

mainly consist of three steps: 1) Extraction of vibration of the planet gear of interest, 

2) Mapping the extracted vibration signal into tooth domain and 3) Averaging the 

mapped signals to separate signals of interest. Other research efforts are not 

considerably different from these two methods; most have optimized some 

parameters from one of the two original methods. 

McFadden (1986) studied the time domain average of meshing vibration and 

found that it can help to extract fundamental signals and separate the effect of 

modulation from the synthesized signal [32]. And modulation of vibration 

commonly occurs in a planetary gearbox because the axis of the planet gears rotates 

while the transducer is fixed on the gearbox housing. So, McFadden (1991) 

expanded his research to examine TSA for a planetary gearbox [31]. A windowing 

technique was proposed to extract the vibration signal only when the planet gear of 

interest passes the transducer. Thus, the window function was designed to have a 

narrow width to cover a few meshing periods as the planet gear is adjacent to the 
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transducer. Using this technique, the vibration of a specific planet gear in a 

planetary gearbox can be separated from the synthesized raw signal. Mapping of 

the windowed signal into tooth domain was also proposed because teeth sequence 

is not a series of natural numbers, but instead is a set of discrete numbers, defined 

as Eq.(4.16). Then vibration caused by planet gear of interest can be estimated by 

ensemble averaging the mapped signals. McFadden (1991) thus used convolution 

for mapping the windowed signal to the corresponding position of the teeth and 

averaging them. You can see the graphical illustration of the windowing and 

mapping procedure in Figure 4-5. The teeth sequence in Table 4-2 is used for the 

illustration.  

Forrester (2001) suggested that the signal should  be extracted every time the 

planet gear meshes with the ring gear [31]. Thus the window function proposed by 

Forrester (2001) is centered at the point where the planet gear is adjacent to the 

transducer like the window proposed by McFadden (1991) but covers the entire 

range of signal, as seen in Figure 4-6. Because every full cycle of the planet gear 

relative to the ring gear is extracted from the raw signal, the mapping procedure is 

not required in this method. Thus, vibration of the planet gear of interest can be 

estimated by averaging the extracted signals as shown in Figure 4-6. Please be 

careful that every extracted planet cycle should include the effect of the window 

(even though this is not illustrated in Figure 4-6). 
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Figure 4-5 Graphical explanation of TSA proposed by McFadden (1991) 
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Figure 4-6 Graphical explanation of TSA proposed by Forrester (2001) 
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Most TSA methods for planetary gearbox developed by other researchers are 

revised version of TSA by McFadden (1991) and Forrester (2001). 

P. D. Samuel et al. (2004) generalized the TSA method by McFadden (1991) 

and proposed to use an adaptive lifting diagnostics scheme with TSA [28]. 

Comparative study of the different types and sizes of the windows was given and it 

was found that a Turkey window which covers 5 teeth with 0.8 of taper steepness 

performed best among various candidates. Moreover, a feasibility study about 

usage of multiple sensors for TSA was suggested and presented as an area of future 

research. 

M. R. de Smidt (2009) optimized the size and shape of the Turkey window for 

TSA by McFadden (1991) [33]. Moreover, an internal vibration monitoring setup 

for planet gears was developed and TSA by McFadden (1991) was well 

demonstrated. 

Jing Yu (2011) proposed to use the TSA method by Forrester (2001) with 

wavelet transform for early detection of gear faults [34]. In this thesis, TSA is used 

for pre-processing of data for diagnostics of WT gearbox. 

D. G. Lewicki et al. (2011) modified some parameters in TSA by McFadden 

(1991), such as the normalization factor, and constructed planet vibration vectors 

using multiple sensors[35]. The planet vibration vectors constructed are not 

combined, but rather are used for calculating condition indicators individually. 

A. Hood et al. (2011) developed general procedures for practical realization of 

TSA by McFadden (1991) and described all steps in a graphical manner[36].  
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4.4 Autocorrelation-based TSA (ATSA) 

Two kinds of TSA methods have been developed and revised by several 

researchers, as presented in previous section. However, it is difficult to apply TSA 

for condition monitoring of gearboxes in WT because of the following challenges. 

First, TSA by McFadden (1991) requires a lot of samples to have enough 

averaging. However, a stationary signal, which is necessary for robust results of 

TSA, is rarely acquired in WT—this makes it impossible to attain enough 

averaging for a robust result. Second, in the case of TSA by Forrester (2001), there 

is no statistical ground to take the average of signals whenever the planet gear of 

interest meshes with the ring gear. Therefore, the research outlined in this paper 

attempts proposes an efficient method for TSA. We call this method 

autocorrelation-based time synchronous averaging (ATSA). It is designed to use a 

few stationary signal efficiently by providing statistical ground to take the average 

of meshing signals based on the autocorrelation function.  

For further study on kinematics of planetary gearboxes, the autocorrelation 

function of the vibration signal is used. The definition of the sample autocorrelation 

function is the mean value of the signal ( ( )f t ) multiplied by itself with time lag τ 

( ( )f t  ) defined as [37]: 

 ( ) [ ( ) ( )]R E v t v t
vv

     (4.18) 

An autocorrelation function is widely used for understanding characteristics of a 

system in the time domain instead of the frequency domain. For example, an 

autocorrelation function of a sine wave with frequency f0 is a function of the cosine 

wave with the same frequency f0. It has zero at 90°of time lag when the shifted sine 

wave becomes symmetric to the origin with respect to the x-axis. Due to such 
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characteristics, it is possible to find the pulse repetition interval or period of the 

original signal using the autocorrelation function. In the example case, it can be 

found that the sine wave has a frequency of f0 by the fact that the autocorrelation 

function (cosine wave) has a local maximum at every multiple of 1/ f0.  

Vibration from the transducer on the planetary gearbox also has a pattern like a 

sine wave. When we calculate TSA of the vibration signal, similarity of segmented 

groups should be guaranteed for reasonable averaging. Autocorrelation function of 

vibration provides statistical way to understand the characteristics of the signal and, 

furthermore, the similarity of the pattern. This function has high value where 

similar pattern happens. Then we can adaptively define the points of segmentation 

of the signal to make the segmented sets have the similar pattern. 

Figure 4-7 shows a sample autocorrelation function of vibration from a 

transducer which is attached to the top of the housing of a planetary gearbox. As 

the planetary gearbox operates, the meshing condition changes because the axis of 

planet gears rotates relative to the center of the sun gear. Thus, characteristics of the 

signal pattern from the fixed transducer would be continuously changing. After 95 

rotations of the planet, which is the same as 1 hunting tooth cycle (31 rotations of 

the carrier) defined in Eq.(4.17), every inner gear resets to the initial position. Then 

it is estimated that the signal would have very similar pattern to the signal at initial 

position. As estimated, it is found that a high peak in autocorrelation function exists 

in Figure 4-7 at npr=95. This phenomenon can be generalized. If a pattern similar to 

the initial state happens after x0 rotations of the planet, the autocorrelation function 

would have a high value at x0. As you notice from the figure, the autocorrelation 

function has peaks at some integer rotations of the planet and has a rule where the 

peaks have intervals at 3 or 4 rotations of the planet.  
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Figure 4-7 Autocorrelation function of vibration from a transducer 

 

Figure 4-8 Position of inner gears as the planetary gearbox operates 
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This phenomenon is clearly explained if we look into the inner side of the 

gearbox (Figure 4-8). Let the blue triangle be a meshing point between the ring gear 

and the planet gear of interest; let the red circle be the location of the transducer, 

and let the green diamond be a meshing point between the ring gear and another 

planet gear. The planet gear of interest is painted red. At the initial state (npr=0), the 

planet gear of interest is located under the transducer. Let’s assume the tooth 

number of the planet gear which contacted the ring gear at the initial state was 1, 

like what is shown in Table 4-2. As the planetary gearbox operates, the axis of the 

planet gears also rotates. Therefore, the planet gear of interest recedes from the 

transducer, whereas another planet gear approaches the transducer. After one 

rotation of the planet gear (npr=1), another planet gear is almost under the location 

of the transducer. Therefore vibration is mainly caused by another planet gear and 

there is no peak in autocorrelation function as shown in Figure 4-7 because the 

signals have no similar pattern to the signals at initial position. However, as the 

gearbox continues to operate, the planet gear of interest becomes close to the 

transducer again. After 3 rotations of the planet gear (npr=3), the planet gear is near 

the transducer—as close as two teeth from it. You can also notice that the meshing 

tooth # of the planet gear after one rotation of the carrier (nc=1) is 3 according to 

the sequence of teeth, which is arranged in Table 4-2. You can see from Figure 4-7 

that the autocorrelation function is also changing the value corresponding to the 

rotation of the planet gear. The autocorrelation function has a local maximum at 

three rotations of the planet gear (npr=3) because the planet gear becomes close to 

the transducer again. For more example, the autocorrelation at 24 rotations of the 

planet gear (npr=24) has no peak because the planet gear of interest is farther from 

the transducer than another planet gear, as can be seen in Figure 4-8. Thus, it can be 
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said that the vibration pattern at 24 rotations of the planet (npr=24) has no similarity 

to the signals at the initial state. The peak reappears at npr=25 because the planet 

again becomes the closest gear at 25 rotations of the planet gear. It is clearly stated 

from these observations that the vibration signal would have a similar pattern as 

long as the planet gear of interest is meshing with the ring gear at close to the 

transducer.  

Notice that TSA by McFadden (1991) extracts the signal only when the planet 

gear passes the sensor and maps them into the tooth domain for averaging. The 

averaged signals are from every HTR rotation, which means that we have to wait 

until high peaks happen at HTC (e.g. npr=95, 190, … in Figure 4-7) for averaging.  

TSA by Forrester (2001) uses all generated signals for averaging with a wide 

window function. It can be thought that even signals with no peak (e.g. npr=1, 2, 4, 

5, … in Figure 4-7) are used for TSA, although the window function would to some 

degree take into effect the position of the planet gear of interest. 

 
Figure 4-9 Data recording schema for ATSA 

(a): Start recording, (b): Finish recording 
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Thus, autocorrelation-based TSA (ATSA) is proposed in this paper to adaptively 

take the signals into averaging based on similarity of the vibration pattern. Figure 

4-9 is an illustration of the first step of ATSA which is to record the signal when 

the planet gear of interest is close to the transducer. For robust analysis, a distance 

within 10 teeth from the transducer is defined as the recording range in this thesis. 

The next step is to map the signals into the tooth domain for averaging. Figure 

4-10 is an example of the mapping procedure for ATSA. Let’s assume the 

transducer is located on tooth # 1 of the ring gear. Signals are recorded if the planet 

gear is within the defined recording range (10 teeth from the transducer in this case).  

Teeth numbers of the planet gear which contacted the ring gear in the range are also 

recorded. Then the vibration signal is mapped into the tooth domain, according to 

recorded information about teeth numbers on the planet gear, like shown in Figure 

4-10.  

 

Figure 4-10 Mapping schema for ATSA 
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This procedure continues during operation of the gearbox, and mapped vibration 

signals are averaged to make the ATSA signal. Then, ATSA signal can use the 

scarce stationary signals efficiently than conventional TSA based on statistical 

grounds which include similarity of the vibration pattern. 

 

 

4.5 Advantages of ATSA 

Forrester (1996) optimized the number of averages of TSA and concluded that 

33 averages can effectively remove the signal leakage [38]. D. Lewicki et al. (2011) 

successfully separated vibration of the planet gear by TSA using data for 20 

hunting tooth cycles [35]. However, 20 hunting tooth cycles which correspond to 

620 carrier rotations under a stationary condition is not a frequent occurrence in 

WTs. Approximately 100 seconds of stationary or quasi-stationary data would need 

to be acquired under 1500rpm of the sun gear in a 4.06:1 gearbox (Figure 4-3) to 

collect this amount of data. To evaluate the feasibility of TSA for gearboxes in WT 

and advantages of proposed ATSA, further study on how many useful stationary or 

quasi-stationary signals can be acquired from WT is performed. Figure 4-11 

represents the histograms for duration of data in Class I or Class I & II from a real 

WT for 7-months. Table 4-3 summarizes the number of cases which remain in the 

defined class longer than a specific duration. As a result, it can be concluded that it 

is possible to estimate health of the WT gearbox with enough averaging using TSA 

by McFadden (1991) 1.5 times a day with only stationary (Class I) data and 11 

times a day with stationary plus quasi-stationary (Class I & II) data, provided 

applied torque is considered for the quasi-stationary data. 



45 
 

ATSA utilizes more data for averaging than conventional TSA. Therefore, 

ATSA is expected to increase the opportunity to evaluate the system. If results of 

ATSA using data for 20 seconds have similar accuracy to the results of TSA using 

data for 60 seconds, ATSA will thus increase the chance to process data more than 

10 times compared to TSA. Accuracy of proposed ATSA will be evaluated by 

comparing health data from TSA in validation chapter. 

 

Figure 4-11 Duration of class 

(a): Class I, (b): Class I and II 

Table 4-3 The number of cases which remain in the defined class longer than a 

specific duration 

Duration [s] 20 40 60 100 

ClassⅠ 
(cases/turbine/1day) 

18.7 6.8 3.6 1.5 

Class Ⅰ&Ⅱ 
(cases/turbine/1day) 

68.2 35.8 22 11 
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Chapter 5. Health Data for WT Gearbox Diagnostics 

 

 

5.1 Review of Health Data for Gearbox Diagnostics 

After TSA is obtained from a raw signal, various health data can be calculated. 

Health data encompasses various values which include information related to the 

current health state of the system. 

Recently, M. Lebold et al. (2000) [39], P. Vecer et al. (2005) [40] and A. 

Aherwal et al. (2012) [41] reviewed various health data and their characteristics for 

gearbox diagnostics. J. Zakrajsek et al. (1994) [42], M. Mosher et al. (2002) [43] P. 

Samuel (2005) [44] studied several useful health data for diagnostics of helicopter 

transmission which includes a planetary gearbox as a key component. Also, M. 

Mosher et al. (2002) [43] summarized several health data and suggested their 

nominal value and threshold value for the purpose of condition monitoring.  

M. Lebold et al. (2000) grouped types of vibration into five processing groups 

as RAW (Raw signal), TSA (Time Synchronous Averaging signal), RES (Residual 

signal), DIF (Difference signal), BPM (Band pass mesh signal) and then introduced 

characteristics of each group and corresponding health data [39]. These five groups 

are involved in this research for summary of the health data and various health data 

corresponding to the defined groups are arranged based on several papers.  

Table 5-1 summarizes the groups and corresponding health data that were 

employed in this study. Among them, GEN (General group) just means that health 

data such as RMS, Kurt, CF can be generally obtained from any type of groups 

such as RAW, TSA, RES, DIF and BPM that are presented by M. Lebold et al. 
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(2000). For example, FRMS which is obtained by calculating RMS of RES [45], 

proposed by Y. Lei et al. (2012) will be defined as RMS(RES) in this section instead 

of by a new name. Most health data are related to the ith statistical moment of the 

target signal(·) which can be defined as: 

 ( ), ( ) ( )
1

1
( )

samples
iN

i
nsamples

x n x
N

   


       (4.19) 

In this section, health data which are summarized in Table 5-1 are reviewed and 

rearranged in a consistent method. Then, overall procedures for calculation of 

various health data will be presented. 

Table 5-1 List of health data 

Group Health data 

GEN 
RMS (Root Mean Square), Kurt (Kurtosis), 

CF (Crest Factor) 

RAW (Raw signal) - 

TSA FM0, SER (Sideband Energy Ratio) 

RES (Residual signal) NA4, NA4*, NA4 reset 

DIF a(Difference signal) FM4, M6A, M8A, ER (Energy Ratio) 

BPM (Band pass mesh signal) NB4 

 

5.1.1 GEN 

1) RMS(•)  

RMS(•) represents the energy of a raw target signal from a system. It doesn’t 

represent the state of each component individually. 
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Sometimes, the trend of RMS would be useful information. Thus, delta RMS – 

which can be obtained by calculating the difference between current RMS and 

previous RMS – is commonly used for diagnostics of a rotor system. 

 ( ) ( )( ) ( )Delta RMS RMS current RMS previous     (4.21) 

2)  Kurt(•) (Kurtosis) 

Kurtosis(•) is the standardized fourth moment of the target signal. Kurtosis 

represents how the distribution is peaked and the size of its tail. Kurtosis of 

normal distribution is 3 and this value can be the standard value when it is 

applied to diagnostics of a gear system. 

 
( ), 4

( ) 4
( )

Kurt








   (4.22) 

3)  CF(•)  (Crest Factor) 

If some defects occur in the gear components, the impact pulse can be observed 

from the signal. CF measures the maximum size of the impact pulse normalized 

by its RMS. Lebold et al. (2000) indicate the normal range of CF would reach 

from 2 to 6 [39]. 
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5.1.2 RAW 

RAW is obtained by filtering the noise out from the transducer data. The 

conditioned signal includes the synchronous coherent signal (S(t)), the non-

synchronous coherent signal (N(t)), and the non-coherent random data signal (R(t)) 

as in Eq.(4.1). B. Wu et al. (2004) suggested to use RAW instead of TSA for 

diagnostics of a gear system because it seems possible that TSA removes the 

signals related to defects of the gears [46]. General health data such as RMS, 

Kurtosis, and Crest Factor can be obtained from RAW. 

 

5.1.3 TSA 

TSA ideally contains only the asynchronous coherent signal (S(t)) by the effect 

of TSA. In a planetary gearbox system, the fundamental frequency of the 

synchronous coherent signal would be near the GMF (Gear Mesh Frequency). Thus, 

values related to energy of the GMF are calculated in various ways and these values 

servea to establish the health data. 

1)  FM0 

FM0 is a very simple indicator of the health of a system proposed by Stewart 

(1977) [47]. It is the magnitude of peak-to-peak of the waveform normalized by 

the sum of amplitude of the fundamental frequency and their harmonics [39]. M. 

Alattas et al. (2007) verified it can detect heavy wear and scoring of gears [48]. 
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2)  SER  

If the defects of a gear become severe, sidebands, amplitude of the fundamental 

frequency, and their harmonics will increase. Based on this assumption, J. 

Hanna et al. developed SER [49] which is the magnitude of sidebands 

normalized by the amplitude of the fundamental frequency. According to the 

report presented at NREL by S. Sheng (2012), SER can be effectively used for 

diagnostics of planetary gearboxes of WT [50]. 
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  (4.25) 

 

5.1.4 RES 

RES is calculated by removing fundamental GMF (Gear Mesh Frequency) and 

their harmonics from TSA. Thus, RES contains information about pure sidebands 

of the GMF and sidebands of their harmonics. Various health data from RES is 

very meaningful because a lot of research about diagnostics of gearboxes has 

focused on monitoring of the amplitude of sidebands. 

1)  NA4 

J. Zakrajsek el al. (1993) developed NA4 to detect progress of severity of the 

defect. For this purpose, NA4 employs information from previous data records 

as well as currently acquired data [51]. Information from previous data records 

is represented by ensemble average of the second moment of previous Nensemble 

groups. 
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2)  NA4* 

H. Decker and J. Zakrajsek (1994) revised the NA4 to reflect the trend of 

parameters in a statistical manner [52]. The denominator of NA4 is modified to 

the second moment of RES of a normal gearbox instead of the ensemble average 

of previous information. The state of the normal gearbox is defined in a 

quantitative way where “normal” is assigned to the gearbox until the 

denominator value exceeds the limit defined in [52]. H. Decker and J. Zakrajsek 

(1994) suggested that the number of samples (Nsamples) for defining the normal 

state be larger than 30. 
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3) NA4 reset 

NA4 is more sensitive to applied torque, as well as change of defect, than other 

health data [53]. Thus, P. Dempsey et al. (2001) proposed NA4 reset to 

minimize the effect of varying torque [53]. The difference from NA4 is that it 

resets its denominator when the applied load gets out of the bound which is 

defined as 10 percent of the current average load. 
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5.1.5 DIF 

As the faults within a gearbox worsen, the magnitude of unexpected frequency 

becomes large.  DIF is obtained from RES by excluding sidebands of fundamental 

GMF and their harmonics. If we note that RES is obtained by excluding 

fundamental GMF and their harmonics, it is clear that DIF ideally should not 

contain any normal vibration components and should have normal Gaussian 

distribution. Therefore, diagnostics of a gearbox can be performed by tracking the 

shape and energy of DIF as follows. 

1) FM4 

Kurtosis originally represents how the distribution is peaked and the size of its 

tail, as presented earlier and has 3 at normal Gaussian distribution. FM4 can be 

obtained by calculating the kurtosis of difference signal which should be normal 

Gaussian noise in the ideal case [47]. Thus, the health state of the gearbox can 

be estimated by looking into the trend of FM4.  

 
(DIF),4

2
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


   (4.28) 

2)  M6A 

H. Martin (1989) developed M6A and M8A to detect surface damage of gears 

[54]. The parameters are a revised version of FM4 where higher moments of the 

difference signal than ones of FM4 are employed. 
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3)  M8A [54] 
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4
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4)  ER 

N. Swansson (1980) proposed ER to use the ratio between the energy of 

difference signal and a regular signal, such as fundamental frequency, 

harmonics and their sidebands. P. Samuel et al. (2005) introduced ER and its 

characteristics. It is said that the energy of difference signal will increase and the 

amplitude of the regular signal will decrease simultaneously as the “heavy 

uniform wear” of gears worsen. 
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5.1.6 BPM 

Energy of fundamental frequency and their harmonics, including sidebands, is a 

good indicator of the health state of a gearbox. To consider these values, TSA can 

be band-passed around fundamental frequency, including sidebands. 

1) M6A 

J. Zakrajsek (1994) proposed to use amplitudes of fundamental frequency 

(including their sidebands) as an indicator of the health state of a gearbox [42]. 

For this purpose, NA4 is modified to have envelope of BPM as the source of the 
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numerator and denominator as in [39]: 
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where E is energy of the Hilbert transform of BPM as in [39], [55]: 
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     22( )E t BPM t BPM t    (4.34) 

 

 

5.2 Procedures for Calculating Health Data of WT Gearbox 

In this section, overall procedures for calculating health data, which are 

reviewed in the previous section, are presented in a graphical manner, as shown in 

Figure 5-1. 

Step1: Calculate TSA(or ATSA) and transform it to the order domain using FFT 

(Fast Fourier Transform). 

(Health data: FM0 and SER) 

Step2: Calculate BPM by applying a band pass filter around the fundamental 

GMF and their harmonics, including sidebands. 

(Health data: NB4) 

Step3: Distract GMF and their harmonics from TSA. 
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Step4: Calculate RES by applying inverse FFT to the signal from Step 3. 

(Health data: NA4, NA4 reset and NA4*) 

Step5: Distract sidebands of fundamental GMF and their harmonics from RES. 

Step6: Calculate DIF by using inverse FFT of the signal from Step 5. 

(Health data: FM4, M6A, M8A, ER) 

 
Figure 5-1 Procedures for calculation of health data 
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Chapter 6. Validation Study for ATSA 

 

 

6.1 Design of Signal 

6.1.1 Design of the Analytical Signal 

An analytical signal is employed for validation of the proposed fault diagnostics 

technique as:  

 

1

P
v v a noisep pi i

i
 


  (4.35) 

Ideally all planet gears generate the same vibration signals but have a different 

transfer path according to the position of the planet gears (Figure 6-1 (a)). api is 

accounting for the transfer path of ith planet gear which is a function of the position 

of that planet gear, as shown in Figure 6-1 (b). The transfer factor api will converge 

to 1 as the planet is adjacent to the sensor, whereas it will attenuate as the planet 

recedes from the sensor. 
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pi c

      (4.36) 

 Noise factor (noisei) can also be employed to express the uncertainty of the 

gearbox and the trend is vice-versa from the transfer factor (Figure 6-1 (c)), defined 

as: 
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Level of minimum and average of the noise is an empirical value and 0.15 and 

0.3 are designed in this research respectively.  

It is also assumed that an abnormal signal can be described as having a higher 

amplitude than a normal one when the faulty gear meshes with other gears. In this 

study, abnormality is added to the vibration of planet 1 (v1). After all factors are 

combined as shown in Eq.(4.35), an abnormal condition is invisible in the tooth 

domain because of the noise, as shown in Figure 6-1 (d). 

 
Figure 6-1 Analytical signal  

(a): Vibration of individual planet gears, (b): Noise factor of planet gear 1,  

(c): Transfer factor of planet gear 1, (d): Combined vibration 
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6.1.2 Design of Testbed 

Absence of normal and abnormal response data from the WT makes it difficult 

to achieve the objective of this research. Thus, a small scale WT testbed which has 

similarity to a 2.5MW WT was designed for the research outlined in this paper 

(Figure 6-2).  

 
Figure 6-2 Wind turbine testbed 

The detailed specifications of the testbed are summarized in Table 6-1.  

Gearbox 1, which has 3 stages of planetary gear set can be substituted with 

gearboxes 2 and 3 which have simpler dynamics characteristics than gearbox 1. 

Gearbox 3 which has one stage of planetary gear set is to be analyzed in this paper 

and details are summarized in Table 4-1. 

The main considerations for designing the testbed are as follows: The 

composition is almost identical to that of a WT gearbox so the testbed will have 
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similarity to a WT. The testbed operates with a closed-loop controller which 

enables implementation of rotor speed and scaled torque measured from a WT to 

the testbed. Moreover, this testbed is designed to add artificial defects into the 

gearbox and bearing. For example, Figure 6-3 shows three levels of artificial cracks 

in gears which are provided by Prof. Y.H. Jung from Pusan national university [56].  

Table 6-1 Specifications of the testbed 

Components  Qty. Specifications 

Motor1 1 2kW servo motor 
Motor2 1 2kW servo motor 

Gearbox 1 1 1:80.47, 3 stage planetary 
Gearbox 2 1 1:20.79, 2 stage planetary 
Gearbox 3 1 1:4.06, 1 stage planetary 
Gearbox 4 1 80:1 reduction gearbox 

Main Bearing 1 6218-2z (ball bearing) 

Vibe. sensor 8 500mV/g (Range:±10g) 
Temp. sensor 4 RTD type 
RPM sensor 1 60pulse/rev 

 
Figure 6-3 Three levels of artificial crack of planet gears 

(a): Crack size: 0.1mm, (b): Crack size: 0.44mm, (c): Crack size: 1.1mm 
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Before the test, the housing of the planetary gearbox was disassembled and 

every location of contact points of inner gears at the initial state was marked on the 

components. Every time a test was performed, the inner gears were reset to the 

initial state. Using these procedures, tests under normal conditions and abnormal 

conditions or repetitive tests could be performed with the same initial state. During 

the tests, position of the planet gears could be tracked consistently by using encoder 

for implementation of TSA or ATSA. 

 

6.1.3 Design of Experiment (DOE) 

Experiments are designed to demonstrate the real condition of the WT. DOE is 

based on testbed and same conditions are made in analytical signals in statistical 

manner. Rotational speed of the sun gear in the planetary gearbox (1:4.06) was 

determined as 20 round per seconds (RPS) which is the rated speed of the generator 

of typical WTs. Applied torque is scaled down to have rated torque which is 4Nm 

in the testbed. Tests were performed in two ways: 1) for 20 seconds and 2) for 100 

seconds. Validation of ATSA using analytical signal is performed by only the case 

1 and two of the cases are employed in the testbed. 

Each tests is performed for 120 minutes and divided into several data sets with 

same periods. Design of experiment and corresponding hunting tooth cycle (HTC) 

are summarized in Table 6-2.  

Experiments are performed under both normal and abnormal conditions for each 

cases. As stated, abnormal condition is defined as a higher peak at the faulted 

points in the analytical signal. In the testbed, a gear with 1.1mm of artificial crack 

(Figure 6-3 (c)) is used for demonstrating faulted condition.  
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Table 6-2 Design of experiments 

Case 
Data 
set 

[sets] 

Speed of 
Sun gear

[RPS] 

Speed of 
Sun gear

[RPS] 

Periods 
[sec] 

Carrier 
Cycle 

[cycles] 

HTC 
[cycles] 

1 360 20 4.93 20 98 3 

2 72 20 4.93 100 492 15 

 

6.2 Results and Discussion 

6.2.1 Analytical Signal 

For validation of the advantages of ATSA, results from TSA are compared. Test 

case 1 is used for validation of the proposed diagnostics. First, one example of a 

residual signal is given in Figure 6-4 to graphically illustrate abnormality in the 

tooth domain. Residual signal is calculated by excluding fundamental frequency 

and their harmonics from TSA of ATSA. As shown in Figure 6-4 , An abnormal 

signal is clearly recognizable in Figure 6-4 (b) whereas cannot be seen in Figure 

6-4 (a) because of the noises. Thus it can be concluded that ATSA has an ability to 

deal with the small amount of data which would not be enough for TSA. Then, 

among various health data, FM4 and NA4* were used to separate abnormal sets 

and normal sets, as shown in Figure 6-5. All health data are normalized for easy 

comparison. As you can see through the figure, abnormal sets are effectively 

separated from the normal condition using ATSA. 
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Figure 6-4 Residual signal from an analytical signal for test case 1 

(a): Residual by using TSA, (b): Residual by using ATSA 

 
Figure 6-5 Two types of health data for test case 1 

(a): Health data using TSA, (b): Health data using ATSA 

 

6.2.2 Testbed Signal 

Figure 6-6 shows test results using the proposed diagnostics methods. 

Frequency analysis of the raw vibration signal is shown in Figure 6-6 (a) and order 

analysis of the resampled vibration signal is shown in Figure 6-6 (b). Although 

amplitude of the fundamental gear mesh frequency became large in the order 

domain than in the frequency domain, there are still other non-synchronous 

components which may interfere in diagnostics of the planetary gearbox. The noise 
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components were effectively removed using ATSA. By transforming the ATSA 

(Figure 6-6 (c)) to the order domain, it is observed that widely distributed noise 

components were removed from the signal. Moreover, amplitude of fundamental 

frequency and their harmonics were magnified, as shown in the Figure 6-6 (d). 

Then, various health data were calculated from the processed signal. 

 

 
Figure 6-6 Test Results  

(a): Frequency analysis, (b): Order analysis of resampled vibration,  

(c): ATSA signal and (d): Order analysis of ATSA 
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In the testbed, it was difficult to see abnormality in the tooth domain using the 

residual signal. Thus, the trend of health data is used to present the advantage of 

ATSA in a graphical manner instead of in a residual signal (Figure 6-7 and Figure 

6-8). In this paper, 8 health data (HD) are used for representing the trend. Ideally, 

the trend of health data in a small box should be a smooth line because the data 

were from a continuous test. As you can see from Figure 6-8, the trend of health 

data using ATSA does have a smoother pattern with less noise, compared to Figure 

6-7 because enough averaging of bigger size of the data was performed. Advantage 

of ATSA also can be explained by the presented figures. It is can be seen that 

Figure 6-7 (b) and Figure 6-8 (b) show more reasonable results compared to the 

results by using TSA (Figure 6-7 (a) and Figure 6-8 (a)). The merits of ATSA 

which is to extract more data in a limited time than TSA would make the results 

more robust and reliable.  

NA4* and ER were employed among the health data to separate abnormal sets 

and normal sets, as shown in Figure 6-9 and Figure 6-10. As estimated, abnormal 

condition were more effectively separated from normal condition when enough 

averaging were taken. As the two results in Figure 6-9 are compared, advantage of 

ATSA also can be explained. It is found from the Figure 6-9 (b) that health data 

calculated from ATSA signal reasonably separate the abnormal and normal 

condition even using the short period of the data. However, health data calculated 

from TSA signal with not enough data cannot separated the two conditions 

definitely. 

From the results, it can be concluded that ATSA has an ability to extract more 

useful data from limited period of the stationary signals. 
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Figure 6-7 Trend of health data (HD) for test case 1  

(a): Trend by using TSA, (b): Trend by using ATSA 

 

Figure 6-8 Trend of health data (HD) for test case 2  

(a): Trend by using TSA, (b): Trend by using ATSA 
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Figure 6-9 Two types of health data for test case 1 

(a): Health data using TSA, (b): Health data using ATSA 

 

Figure 6-10 Two types of health data for test case 2 

(a): Health data using TSA, (b): Health data using ATSA 
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Chapter 7. Conclusion  

 

 

7.1 Conclusion 

Classification of wind data and diagnostics using stationary data are proposed in 

this thesis.  

In research thrust 1, a huge amount of response data from a wind farm is 

classified into four non-trivial classes and one trivial class. Characteristics of 

defined classes are analyzed and optimal diagnostics plans are designed for each 

class. By classification, 43% of data can be filtered out and only 57% of data needs 

to be extracted for diagnostics purposes. Among them, Class Ⅰ and Ⅱ, which 

account for 6% of data, turn out to be adequate for order analysis. The result is   a 

diagnostics method that is computationally efficient.  

TSA can be used for pre-processing of order analysis to reduce the noise and 

make robust and reliable results. However, it is found that Class Ⅰ and Ⅱ which 

correspond to stationary and quasi-stationary data from a wind farm are not enough 

for TSA. To overcome this challenge, in research thrust 2, ATSA is proposed to 

utilize the data more efficiently. ATSA performs an ensemble average of data based 

on similarity of vibration pattern. Characteristics of similarity of vibration pattern 

are effectively analyzed using an autocorrelation function. 

This thesis also includes the design of an analytical signal and a WT testbed to 

enable assembly of the main components such as a gearbox or bearing with an 

artificial fault. In the testbed, a gearbox with one stage of planetary gear set is 

employed and an artificial crack 1.1mm in size is made on one planet gear. 
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The validation study was made by using an analytical signal and testbed signals. 

Among various health data which are presented in this paper, NA4*, FM4 and ER 

were used for the validation study. The results show that ATSA had better 

performance when the size of data was not sufficient for conventional TSA.  

 

 

7.2 Future Research 

 

1)  Data Classification 

· Optimization of the parameters 

Parameters for criterion of classification were empirically chosen. Such 

parameters include W, c1, and c2 which are used in Eq.(3.3). General values of 

the parameters which can be used for the classification of data regardless of 

types of the WTs should be defined. 

2) Autocorrelation-based Time Synchronous Averaging (ATSA) 

· Optimization of the parameters 

Some empirical parameters are employed for demonstration of the ATSA in this 

thesis. These parameters should be optimized to make the ATSA more powerful 

diagnostics tool. 

( resampling rate, recording range and the number of averaging) 

· Multi-axis sensors for ATSA 

The merit of ATSA is to effectively utilize scarce stationary data from WT. 

Another suggestion to collect more data in a limited amount of time is to use 

multi-axis sensors in one stage of the gearbox. For this purpose, the locations of 
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planet gears relative to the multiple sensors should be efficiently traced. In 

addition, a different shape or phase of the vibration pattern from multiple 

sensors are needed to be adequately adjusted for robust averaging. 

· Validation of ATSA using defined Class I and II 

It is assumed that Class I and II would be appropriate for ATSA because the CV 

of rotor speed is very low in those classes. Validation using deterministic 

stationary data was performed in this thesis but the stationary condition or quasi-

stationary condition with randomness should be considered for further 

validation of ATSA in future research. Real WT data can be employed. 

· Machine learning using various health data 

Various types of health data are summarized in this paper, but only a few among 

them are presented as validation results. Statistical machine learning technique 

can help us to use all the health data in an efficient way as well as provide us a 

statistical health index which represents the current state of the system. 

3) Time-frequency analysis 

Classification of wind data provides a guideline for managing the huge amount 

of data available from a wind farm and in monitoring the health state of WT. 

However, 51% of data is still non-stationary data which should be dealt with 

using computationally intensive diagnostics tools such as time-frequency 

analysis. Thus, development of computationally efficient time-frequency 

analysis remain as future research subjects. 
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국문 초록  
 

최근 풍력발전기의 신뢰성 문제가 풍력에너지 산업에서 큰 이슈가 

되고 있다. 특히 풍력발전기의 기어박스는 유지보수 비용이 크기 때문에, 

풍력발전기의 부품 중에서 경제적 위험도가 가장 크다고 평가되고 있다. 

지금까지 풍력발전기의 신뢰성을 보장하기 위한 수많은 연구가 

진행되었음에도 불구하고, 아직까지 해당 연구 분야는 여러 가지 어려운 

문제점에 직면해 있다. 대표적으로 크게 1) 비정상 (non-stationary) 

운행 상태로 인해 발생하는 고장진단 기술의 어려움, 2) 특정 풍력발전 

단지 내에 수많은 센서로부터 계측되는 방대한 양의 데이터와 등으로 

나눌 수 있다.  

따라서 본 연구에서는 일반적인 고장진단 과정을 포괄하는 기어박스의 

고장진단 프레임워크를 제안한다. 제안된 프레임워크는 방대한 양의 

데이터를 효율적으로 관리하는 동시에 정확한 고장진단 기술의 적용을 

가능케 한다. 이를 위해 본 학위논문은 1) 풍력발전 운행 데이터의 분류 

시스템 개발, 2) 진동기반 고장진단 기술 개발로 구성되어 있다.  

첫 번째 연구에서는, 방대한 양의 풍력발전 데이터를 해당 

풍력발전기의 거동 특성 (로터 회전 속도, 발전량)에 의거하여 유의미한 

네 가지 (Class I. stationary; Class II. quasi-stationary; Class III. non-stationary 

with high correlation; Class IV. non-stationary with no correlation) 클래스와 

무의미한 한 가지 (Class V. idle) 클래스로 분류한다. 이후 각 클래스에 

해당하는 데이터의 특성에 기반하여 최적의 고장진단 계획을 설계한다. 

데이터 분류기법 개발을 위해 영흥 풍력단지로부터 취득한 풍력발전기의 

거동 정보를 이용하였다. 
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두 번째 연구에서는 정의된 클래스 중 두 가지 클래스 (Class I & 

II)를 토대로 진동기반 고장진단 기술을 개발한다. 고장진단 기술은 보통 

신호의 노이즈를 제거하기 위한 시간 동기 평균화 (Time synchronous 

averaging)과 유의미한 건전성 데이터를 추출하기 위한 오더분석으로 

구성될 수 있다. 하지만 풍력발전기의 유성기어박스의 경우 내부에 

포함되어 있는 여러 기어들의 복합적인 작용과 더불어 유성 기어의 축이 

계속적으로 변하는 문제가 발생하기 때문에 기존의 고장진단 방법을 

적용할 수 없다. 따라서 이 논문에서는 풍력발전기의 유성 기어박스에 

대한 고장진단을 위해 새로운 시간 동기 평균화 방법인 자기상관함수 

기반 시간동기 평균화 (Autocorrelation-based time synchronous 

averaging) 기법을 개발하였다.  

제안된 진동기반 고장진단 기법을 검증하기 위해서 두 가지 

신호(수학적 신호, 테스트베드로부터 취득한 신호)가 사용되었다. 이를 

위해 우선 두 개의 모터와 메인 베어링, 플라이휠, 기어박스 그리고 

13개의 센서 시스템이 구축되어 있는 2kW 풍력발전기 테스트베드가 

설계되었다. 특히 인위적 고장이 인가된 기어가 기어박스에 조립될 수 

있도록 설계되어 고장진단 연구에 활용할 수 있도록 하였다. 그리고 

해당 테스트베드의 거동을 수학적 신호(analytical signal)로 표현하여 

고장진단 기법을 사전 검증하였다.  

정상 (healthy) 기어박스와 고장(faulty) 기어박스로부터 취득한 

신호를 분석하기 위해 자기상관함수 기반 시간동기 평균기법과 오더 

분석법을 사용한 결과 제안된 고장진단 기법은 정상 (healthy) 신호와 

고장(faulty) 신호를 잘 구별할 수 있었다. 
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주요어:  풍력 발전기 기어박스 

 상태 감시 

 고장 진단 

 유성 기어 

 건전성 데이터 

 시간 동기 평균 
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주시는 여러분이 있어 행복한 시간을 보낼 수 있었습니다. 또한 연구를 

수행하는 데 있어 진심 어린 충고를 아끼지 않고 해주신 모든 식구 

여러분께 정말 감사 드립니다. 이 논문은 여러분들이 없었다면 결코 

완성되기가 쉽지 않았을 것입니다. 

마지막으로 몸소 사랑을 실천해 주시고 올바르게 살아가는 방법을 

보여 주시는 우리 부모님과 누나, 감사합니다. 저에게 주시는 크나큰 
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사랑으로 인해 저는 삶을 살아갈 힘을 얻습니다. 집을 떠나 타지생활을 

하는 중에도 저에게는 단 한번도 가족의 사랑이 느껴지지 않았던 순간이 

없었습니다. 삶의 표본을 보여주시는 어머니, 아버지, 그리고 부모님의 

사랑에 보답하여 효도하고 있는 누나, 사랑합니다. 

제 삶의 목표는 제가 받아온 엄청난 사랑을 모두에게 나누는 

것입니다. 세상을 힘들게 살아가고 있는 불우한 우리의 이웃들과 조금의 

사랑과 관심이 필요한 우리 아이들에게 제가 받은 사랑을 베풀 수 있는 

사람이 될 수 있도록 노력하겠습니다. 
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