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Abstract

Vibration-based framework for fault diagnostics of wind
turbine gearbox

Jong Moon Ha
School of Mechanical and Aerospace Engineering
The Graduate School

Seoul National University

Reliability of wind turbines (WT) is a challenging issue in wind energy industry.
In particular, a gearbox in a WT has the highest risk because of its high maintenance
cost. Despite many prior attempts to develop diagnostics techniques for WTs, one has
faced many grand challenges including 1) inaccuracy in fault diagnostics due to
random and non-stationary signals and 2) inefficiency in fault diagnostics with big
sensory data (e.g. vibration) from many sensors in a WT.

This study thus aims at developing a generic guideline and framework for gearbox
fault diagnostics. This framework enables accurate diagnostic analysis while working
with a massive volume of sensory data from many sensors in an efficient manner.
This paper proposes two key ideas in the following research areas as: 1) classification
of operational data, and 2) vibration-based fault diagnostics method. First, this study
has classified the operation conditions into four non-trivial (Class I. stationary; Class
II. quasi-stationary; Class III. non-stationary with high correlation; Class IV. non-
stationary with no correlation) conditions and one trivial (Class V. idle) condition in
terms of the operation data (rotor speed, and power) of the WTs. Data classification

has been conducted with real operational data acquired from Young Heung wind



farms. Next, this study has also designed diagnostics methods for the first non-trivial
class (Class I) based on the characteristics of the data classes. A core technique for the
fault diagnostics is an order analysis method using Time Synchronous Averaging
(TSA), where TSA is generally used for signal de-noising and the order analysis for
the extraction of health data for a gearbox. It is, however, a daunting task to execute
the fault diagnostics using the conventional TSA for a planetary gearbox because of
multiple mesh contacts and rotation of the axes of planet gears. This paper proposes a
new TSA idea, referred to as Autocorrelation-based TSA (ATSA) for the order
analysis, particularly for a planetary gearbox.

For the demonstration of the proposed diagnostics framework, two signals were
employed: analytical signals and signals from a WT testbed. A 2kW WT testbed was
designed with two DC motors, main bearing, flywheel and gearboxes with 13 sensors.
A faulty gear was machined with different crack lengths at the root of the gear mesh
and assembled into the gearbox. The order analysis based on ATSA processed the
signals acquired from the healthy and faulty gearbox. It was concluded that the
proposed diagnostics method can distinguish the faulty condition of the gearbox from

the healthy one.

Keywords: Wind turbine gearbox
Fault diagnostics
Planetary gearbox
Time synchronous averaging

Classification of operations data

Student Number: 2011-23346
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Chapter 1. Introduction

1.1 Motivation

One of the most significant current issues in the world is converting to sources
of renewable energy for the purpose of reduction in global CO, emissions and
overcoming exhaustion of energy. Among the various renewable energy sources,
wind energy is considered one of the most promising because its efficiency. Thus,
the market size of the wind industry has increased at an astonishing rate in recent
years. Global cumulative installed wind capacity had reached 250 GW by 2012,
and the Global Wind Energy Council (GWEC) estimates that global cumulative
installed wind capacity will exceed 1600 GW by 2030 [1]. The International
Energy Agency (IEA) estimated that energy from the rapidly growing wind farm
industry will be able to cover 12 % of global electricity needs by 2050 [2].
Moreover, the COE (Cost of Energy) of a wind turbine (WT), which is one of the
most significant values used to evaluate the efficiency of energy, is predicted to be
reduced by 23 % by 2050 [2]. This means there is no doubt that wind energy is
having considerable impact as a sustainable and renewable energy and the industry
has potential to impact world-wide energy on an even larger scale in the coming
years.

COE of WTs can be effectively reduced by decreasing Operation &
Maintenance (O&M) costs. In particular, reduction of O&M cost is a significant
consideration in the case of offshore WTs because offshore WTs have higher O&M
costs than onshore WTs. Y. Feng et al. compared several papers about reliability of

wind farms and found that O&M costs account for 18% of total COE in offshore



WTs, and 12% in onshore WTs [3]. O&M costs can be substantially reduced by
diagnosing and predicting potential faults in WTs. David McMillan et al. studied
the benefits from condition-based maintenance by using diagnostics tools and
concluded that proper use of diagnostics for offshore WT is estimated to save
76,784£ per offshore WT per year [4]. Thus, fault diagnostics is an essential part of
the WT and has been widely developed by many researchers.

Despite extensive efforts in the diagnostics researches, we are still confronted
with many grand challenges for developing diagnostics tools for WTs such as : 1)
random non-stationary signals and 2) massive amount of data. Most WTs operate in
heavily random and non-stationary. This necessitates the use of time-frequency
analysis. Because of intense computation required by the analysis of a massive
amount of sensory data under random non-stationary condition, however, it is
prohibitively used for diagnostics of WTs in real-time. Spectral analysis based on
time synchronous averaging (TSA) were generally used for diagnostics of the
gearboxes of helicopter because of their efficiency in computation. Despite the
efficiency, it is difficult to be applied to the WT because they require huge amount
of stationary signals which is rarely acquired in the WTs. Moreover, there is no
guideline where to use spectral analysis and where to use time-frequency analysis
for computational efficiency and robust analysis.

To solve these practical issues, a generic guideline and fault diagnostics
framework which involves classification of wind data and diagnostics using order
analysis based on Autocorrelation-based Time Synchronous Averaging (ATSA) is

proposed in this thesis.



1.2 Scope of research

This thesis proposes two key ideas in the following research area as: 1)
classification of operational data and 2) vibration-based fault diagnostics of the WT
gearbox.

using order analysis based on Autocorrelation-based Time Synchronous
Averaging (ATSA).

In the research thrust 1, classification of wind data, the huge amount of response
(e.g. vibration) data is classified into four non-trivial (Class I. stationary; Class II.
quasi-stationary; Class III. non-stationary with high correlation; Class IV. non-
stationary with no correlation) conditions and one trivial (Class V. idle) condition
in terms of the operation data (rotor speed, and power) of the WTs. And then
optimal diagnostics plans are designed for each class. As a result, trivial class is
filtered out and only non-trivial classes are adaptively extracted for the purpose of
diagnostics. This procedure makes it possible to manage big data efficiently and
utilize only meaningful data for fault diagnostics. Among the classes, it is found
that defined class I and II are appropriate for the diagnostics tool developed in
research thrust 2.

In research thrust 2, this study has also designed diagnostics methods for the
first non-trivial class (Class I & II) based on the characteristics of the data classes.
A core technique for the fault diagnostics is an order analysis method using
Autocorrelation-based Time Synchronous Averaging (ATSA), where ATSA is used
for signal de-noising and the order analysis for the extraction of health data for a
gearbox. Then, current health state of the WTs can be estimated from various health

data which are calculated from the order domain.



Data Acquisition Classification of data
Class I, II
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Autocorrelation-based Time Synchr . 3
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Fault Diagnostics

Figure 1-1 Framework for fault diagnostics of WT gearboxes

1.3 Structure of the Thesis

In Chapter 2, condition monitoring methods are briefly reviewed. Chapter 3
presents classification of operational data. Chapter 4 summarizes the TSA method
and develops ATSA. In Chapter 5, the various health data for WT gearbox that can
be obtained from vibration signals are reviewed and summarized. Among them, a
few types of health data will be used for validation of the diagnostics techniques
proposed in this paper. Chapter 6 involves design of analytical signals the WT
testbed for validation, and corresponding analysis results are presented. Chapter 7

summarizes the research and presents the conclusions of the thesis.
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Chapter 2. Review of Condition Monitoring

Condition monitoring can be performed in two ways: 1) SCADA (supervisory
control and data acquisition system) based condition monitoring and 2) vibration
based condition monitoring. In this section, a brief overview of the two condition

monitoring methods is presented.

2.1 SCADA-based Condition Monitoring

SCADA (supervisory control and data acquisition system) consists of three
kinds of data, including environmental data, operational data, and response data, as
summarized in Table 2-1. It was originally designed to supervise and control power
plants based on the plant’s operational and environmental conditions. Operational
data from individual WT systems are collected from sensors attached to the systems,
then overall information of the power plant is supervised comprehensively in a
central processing unit. Data are collected at a very low frequency, for example
once every 10 minutes, to make it possible to manage a huge power plant in real-
time.

D. Z. Chen and Bindi studied commercially available SCADA systems which
are embedded in real wind farms and summarized the main features of those
systems [5]. They found that most SCADA includes not only the plant management
functions but also basic condition monitoring units such as alarm management
systems. Condition monitoring using SCADA can be divided into two main

subjects: monitoring of power [6], [7] and monitoring of temperature of the main



components such as gearbox, generator winding and bearing [8], [9], [10].
Furthermore, principal concepts of other studies are mainly estimation of the
normal state and monitoring the current state of the system using several
parameters such as ambient temperature, rotating speed and so on as well as the
power and the temperature of the main components. PCA (Principal Component
Analysis) [6], NN (Neural Network) [10], AARK (Auto-associative Kernel
Regression) [9], and NSET (Nonlinear State Estimate Technique) [8] are widely

used for this purpose.

Table 2-1 SCADA data from wind turbines

Data Type Description

Wind Speed & direction

Environmental data
Outside temperature

Power output

Rotor speed
Operational data

Control logic (Yaw, Pitch, Idle, and etc.)

Messages about interventions in the control of the turbine

Nacelle vibrational response

Response data Bearing vibration

(Vibration)

Gearbox vibration

Generator vibration

Nacelle temperature

Response data Temperature of bearings of gearbox and generator

(Temperature and etc.)

Temperature of the generator windings

Oil temperatures and pressure




Unfortunately, the accuracy is not reliable because of the low sampling rate of
SCADA. However, condition monitoring using SCADA is very important because

it provides a basic guideline for thorough investigation of the system.

2.2 Vibration-based Condition Monitoring System(CMS)

A condition monitoring system (CMS) is an essential part of the wind turbine
(WT). GL, one of the most significant organizations involved in the certification of
WT systems, enacted a regulation that every system should be equipped with a
condition monitoring system which uses high-frequency response data (e.g.,
vibration) rather than SCADA[11]. In this section, vibration-based CMS techniques

are briefly reviewed.

2.2.1 Spectral Analysis

As stated in Chapter 1, we are confronted with an inevitable challenge: the large
amount of data. To overcome this challenge and realize real-time diagnostics of
WT, most commercially available CMS are equipped with cost-efficient methods
such as time domain analysis and spectral analysis with FFT (Fast Fourier
Transform) [12]. Time domain analysis is the most basic condition monitoring tool
which utilizes the level of amplitude, statistical moments and some features like
instant peak of vibration signal in time axis. C. J. Crabtree et al. (2010) traced the
level of vibration signal along with applied load to detect incipient failure of a WT

gearbox [13]. However, time domain analysis is rarely used alone for CMS and



several studies have shown that spectral analysis can be used with time domain
analysis. Spectral analysis is composed of three stages: the de-noising stage, the
transformation to frequency domain stage, and the analysis of spectral component
stage.

The de-noising stage is required especially in real-world field settings where
signals typically include considerable random noise. This is also known as the pre-
processing stage. High-pass filtering and time synchronous averaging (TSA) [14]
are widely used in this stage. TSA is adopted and revised in this paper for de-
noising; details will be given in Chapter 4.

Next, pre-processed signals need to be transformed to the frequency domain
through a transformation stage. FFT (Fast Fourier Transform) is widely used for
this procedure [15]; however, FFT requires signals under both cyclic and stationary
state. Windows functions such as Hamming window can be used to decrease the
negative effects of non-cyclic signals but there are limitations when signals are
non-stationary [16]. A resampling technique can be applied to overcome the small
non-stationary condition. This technique will be presented as a part of the
diagnostics framework in Chapter 4.

Health data can be extracted by calculating statistical indices of specific
components from the frequency domain, and this overall procedure is performed in
analysis of the spectral component stage. Several health data related to WT

gearboxes will be reviewed and summarized in Chapter 5.

2.2.2 Time-frequency analysis

Time domain analysis and spectral analysis have advantages in that these



techniques are computationally efficient. However another challenge arises here
because most WTs operate in non-stationary conditions which make it difficult to
use these techniques for condition monitoring of WT. So, there have been many
attempts to develop more accurate condition monitoring techniques under non-
stationary conditions, such as time-frequency analysis.

FFT loses time information as the signal is transformed into the frequency
domain. STFT (Short Time Fourier Transform) is the most basic time-frequency
analysis method which uses the basic principle of FFT while considering time
information [17]. The local window function is defined to cover only a short time
of the whole signal; this window moves along with time. FFT is applied to every
windowed signal and time information is stored as the window function is shifting.
As a result, STFT becomes a function of both time and frequency. However,
resolution of frequency and time of the STFT cannot be simultaneously fine
because the window function of STFT is not time for frequency varying but
deterministic function.

To overcome this challenge, wavelet transform was developed to have an
adaptive window (i.e. Mother function) function which is dilated and shifted
corresponding to characteristics of signal [17]. Wavelet transform have been widely
studied for diagnostics of WT under non-stationary condition [18]. However,
accuracy of the analysis cannot be guaranteed when the signals have mostly non-
linear behavior.

Empirical mode decomposition (EMD) was developed by N. Huang to deal with
non-linear signals as well as non-stationary signals by decomposing the signal into
several Intrinsic Mode Functions (IMFs) [19]. EMD is widely used in diagnostics

of WT because most WT operates in non-stationary condition because of non-linear



behavior of the wind [20]. Various further research on EMD for the purpose of
diagnostics of the WT, such as Bivariate empirical mode decomposition (BEMD)

and ensemble empirical mode decomposition (EEMD), have been actively studied

[211, [22].
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Chapter 3. Classification of Operation Data

Equation Section 3

3.1 Introduction

SCADA consists of three kinds of data, including environmental data,
operational data, and response data, as summarized in Table 2-1. Response data,
especially vibration signals, occupy most size of the data. Because of the
difficulties in dealing with such big data, simple diagnostics methods such as order
analysis are widely used in diagnostics of real WT. However, WTs mostly operate
in non-stationary conditions. This makes it extremely difficult to accurately analyze
the signals under non-stationary condition and it leads to the need for better
techniques such as time-frequency analysis; however, this technique is too
computationally intensive to be practical. Thus, efficient data management method
and the guideline which helps to determine where to use the order analysis and
where to use the time-frequency analysis are needed to overcome such practical
issues. This paper thus attempts to develop diagnostics framework which includes
the method for classification of operation data of WT, and design of the
corresponding diagnostics methods for each class. A distinction between trivial and
non-trivial classes is made in an effort to reduce the size of data and optimal
diagnostics methods are designed based on characteristics of signal under the
defined classes. Operational data collected from a SCADA of a WT for 7 months
was used for this study. Among various information available from SCADA, power
output and rotor speed is adopted for classification. At the end, corresponding

diagnostics methods are suggested for each class.

11



3.2 Classification Method

Classification employs two operational data — rotor speed and generated power.
A rule of thumb for the classification is to understand the natures of turbine
operation states because different states require different health monitoring
strategies.

Figure 3-1 helps to understand the behavior of WTs by graphically describing
rotor speed and generated power, along with time. Wind speed is also presented for
further understanding of the data. The main role of a WT is to generate high power
under given conditions. Thus, a WT is basically designed to have a high correlation
between rotor speed and power output. As you can see in Figure 3-1, class I
corresponds to a stationary state because the rotor speed and power remain nearly
unchanged at maximum. However, the expected correlation between rotor speed
and power output is not guaranteed at all times. Generated power can fluctuate,

even with unchanged rotor speed. This region is

Class I Class IT Class I Class V
12 Stationary Semi-stationary Non-stationar ldle
Class IV
1} el s ST e Transient B
n v it
© ; A 3
2 aaff |/ R o6
o
g 0.6 _: !é\ ) ;,ﬁ‘
E £y
E 04 Rotor Speed r{ Yl
- :
Z || e Power B :
0.2 - :
===Wind Speed 1
[+]
2 4 6 8 10 12

Time (min)

Figure 3-1 Classification of wind data using graphical method
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Figure 3-2 Classification method

defined as class II, the quasi-stationary state. Classes IIl and IV fall into a non-
stationary state because both RPM and power change over time. Data in class III
can be characterized with a high statistical correlation between rotor speed and
power whereas the data in class IV cannot because this is the transient region.
During class V, the WT is idling. Figure 3-2 shows the classification method.

The following sections will explain the method developed to classify the data in
a quantified manner, and how to efficiently manage and analyze the data for the

purpose of fault diagnostics.

3.3 Criterion for Quantitative Classification

In the previous section, a classification method was proposed but there was no
specific criterion for classification. Thus, quantified criterion of classification for an
optimal diagnostics plan is proposed in this section.

Figure 3-3 shows the distribution of operational data from SCADA of WT. It is
seen in Figure 3-3 (a) that power has a dense distribution near the minimum (zero)
and the maximum (one). It is also can be seen in Figure 3-3 (b) that rotor speed has

a dense distribution near the minimum and maximum (the same as power), and
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there is an additional dense group near the cut-in speed, 0.4 in this case. The
purpose of the classification is to manage the big data efficiently and design
optimal diagnostics plans for each data class. class I and II have relatively small
variation of rotor speed which means that computationally efficient diagnostics
tools such as order analysis can be used for fault diagnostics. Moreover, it is
simpler to utilize the data in class I because we don’t need to consider the effect of
the torque. Thus, it is reasonable to assign class I as much as possible. Based on this
motive, this study attempts to define the criterion for classification to separate the
dense group near the maximum of the operational data shown in Figure 3-3. By
adopting this concept, we can effectively maximize the opportunity to use cost-

effective diagnostics tools using the data in that defined class.

x10° x 10°

Classification Classification
8 Criterion Criterion

°—o 0.5 1 °—% 0.5 1
Normalized Power Nomalized Rotor Speed

Figure 3-3 Histogram of operational data

(a): Histogram of power, (b): Histogram of rotor speed

In this paper, the inverse cumulative frequency function (Eq.(3.1), Eq.(3.2)) and

its primary differential value are employed to separate the dense group. The inverse
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cumulative frequency function is the number of samples whose magnitude is larger
than a defined value. Thus, the method to separate the dense group can be
effectively presented by defining the point that the primary differential value of the

inverse cumulative frequency function rapidly decreases.

Nblns
Fc(xk):z I(x, <X,) (3.1)
k=1
I(x)=1if xe A
3.2
0if xg A 3.2

Figure 3-4 to Figure 3-7 illustrate the inverse cumulative frequency function and
the primary differential value of power and rotor speed. First, it is clear that the
dense distribution near the minimum has an apparent distinction line at exactly zero
for both power and rotor speed. Therefore, no guideline is suggested to define the
minimum criterion in this study. However, a quantified criterion for the maximum
i1s needed because there is no distinct line near the maximum, as can be seen in
Figure 3-4 and Figure 3-6. Thus, the criterion is defined as Eq.(3.3) to capture the
point when the rate of change in the inverse cumulative frequency function rapidly

decreases.

W & d(F.(x))
Z dx

Criterion =

(3.3)

samples X=C,

Threshold means the weight value (W) times the average of the primary
differential of the inverse cumulative frequency function from ¢; to C; percentile,

which is a range where the primary differential value remains almost constant near
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the maximum. W, 1, and C, are empirical parameters which may be dependent
upon the type of WT. Parameters 5, 0.9, and 0.95 are empirically chosen,
respectively, in this research.

Results are summarized in Table 3-1. These results can be combined with the

classification method presented at Figure 3-2 to define classes.

Table 3-1 Classification criterion

Min Criterion Max Criterion
Rotor Speed 0% 98.7%
Power 0% 98%
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Figure 3-5 Primary differential value of F¢ of power

(a): Over the entire range, (b): Around the maximum
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Figure 3-6 Inverse cumulative frequency function (F¢) of rotor speed

(a): Over the entire range, (b): Around the maximum
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Figure 3-7 Primary differential value of F¢ of rotor speed

(a): Over the entire range, (b): Around the maximum
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3.4 Diagnostics Plans for the Classes

This study is focused on vibration signals for condition monitoring; however,
vibration signals produce the most data and are therefore computationally intensive.
Thus, proper condition monitoring strategies should be developed to manage the
big data efficiently and enable diagnostics of the WT in real-time. For this purpose,
characteristics of each of the defined classes is analyzed and proper diagnostics
plans are made in this section.

As can be found in Figure 3-8 (b), most operating data have very clear behavior,
generated power has high correlation with rotor speed. Thus it can be identified
through the figures that each of the defined classes have their own characteristics.
The variation of the data in Figure 3-8 (a) may be caused by uncertainties like

sudden strong wind or idle control.

* Class | Class Il -
5 Tl = Class 1l 5 1 - Classll
S 08| - Classlll| .7 2 08 ClassIV.
- Class V| » & =  © ClassV
4 08 o Classv | - & 06
E 0.4 § 04
202 z 02 |
A A A A AL RA -3 m_ o s i it
05 1 0 0.5 1
Normalized Rotor Speed Normalized Rotor Speed
(a) (b)

Figure 3-8 Power along with rotor speed with classification

(a) Data for 7 months, (b): Data for one day
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Characteristics of each of the defined classes can be analyzed in a statistical
manner, as seen in Figure 3-9 and Figure 3-10. Mean, standard deviation (Std.) and
CV (Coefficient of Variance) are used for the analysis. Among them, CV which

represents the magnitude of fluctuation of the signal is defined as:

Std.
Mean

CV = (3.4)

As you can see, Class I which corresponds to a stationary condition has very
low CV of both generated power and rotor speed, as we have estimated. In Class II,
CV of rotor speed remains almost zero but CVs of power somehow increases. From
this observation, it can be said that diagnostics methods for class I and II can be
simplified by using computationally efficient tools which are appropriate for
stationary signals, rather than expensive high-tech tools. Order analysis based on
ATSA is suggested in this research for diagnostics of WT under class [ and II. But
power or torque should be considered in class II because vibration is sensitive to
applied torque in the rotor system [23].

In class 111, power and rotor speed have a relatively high CV value which makes
it difficult to use efficient diagnostics methods. Thus, computationally intensive
diagnostics techniques such as time-frequency analysis are necessary for this class.
In class IV, rotor speed has considerable CV and time-frequency analysis, although
difficult, is needed for diagnostics of WT. class V is not significant for the purpose
of diagnostics because during class V, the WT is idling and the rotational speed is
too low. Phenomenon and diagnostics plans for each class are briefly summarized

in Table 3-2.
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Figure 3-10 Statistics of rotor speed
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Table 3-2 Diagnostics plan for each class

Class Phenomenon Diagnostics plan
» Stationary operation state * Time analysis
I * Power and rotor speed remain nearly unchanged | e Frequency analysis
* Quasi-stationary state » Same as Class I
1 * Power fluctuates with wind speed under the * Power should be
unchanged rotor speed considered
* Non-stationary state * Time-Frequency
1 * Power is strongly correlated to rotor speed analysis
» Difficult (Time-
* Non-stationary state
vV Frequency analysis, if
* Transient state before and after idle control
necessary)
* Trivial class » Difficult to analyze the
V. Idling state signal

3.5 Results and Discussion

Operation data from WT were classified into four non-trivial condition and one

trivial condition. Among non-trivial condition, it was found that two classes

corresponding to the stationary and quasi-stationary conditions can be used for

diagnostics of WT with computationally efficient diagnostics technique. In this

section, distribution of data for defined classes is presented. Figure 3-11 shows

percentage of classes using a pie chart. As you can see, class V, which is defined as

a trivial class in this study, accounts for 33% of all data. Moreover, if we neglect



the transient region (class IV) which is difficult to analyze, 43% of data can be
filtered out. Through these steps, the amount of data to be analyzed can be reduced
to 57% of its original size. Class I and II, which correspond to stationary and
quasi-stationary conditions, account for only 6% of data. Non-stationary data (Class
IIT) accounts for 51% of the data. Therefore, it is possible to efficiently monitor
health of the WT using 6% of data; however, 51% of the data still needs be dealt

with in a more complex way.

Class |

1% \\ ,_"_,Chm T

5%

Class V
33%

Class I
1%

Class [V ./

10%

Figure 3-11 Percentage of data in each class
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Chapter 4. Autocorrelation-Based Time Synchronous
Averaging

Equation Section 4

In this Chapter, the basic concept of time synchronous averaging (TSA) for a
rotating system is introduced and then a comparison between some conventional
TSA methods for planetary gearboxes is provided. To refine conventional TSA
methods, intensive study on kinematics of planetary gearboxes is given and a more
efficient method, called autocorrelation-based time synchronous averaging (ATSA),

is developed.

4.1 Basic Concept of TSA

Every measured signal has multiple coherent and non-coherent components
from various sources. D. Hochmann et al. (2004) attempts to describe the
synthesized sensory signal using three main components [24] : synchronous
coherent signals (S(t)), non-synchronous coherent signals (N(t)), and non-coherent

random signals (R(t)).
v(t)=S(t)+ N()+R(t) 4.1)

For condition monitoring of a specific sub-system, synchronous coherent signal
which is from the sub-system of interest should be separated from the synthesized
signal (V(t)). TSA has been developed to suppress the non-synchronous coherent
signal and the non-coherent random signal and to extract only the synchronous

coherent signal.
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The TSA method requires following three main steps.

1) Synchronous resampling of the vibration signal
2) Segmentation of resampled the vibration signal

3) Averaging segmented sets

The basic concept of TSA is to divide the signal into several cyclic segments
and then to take their ensemble average. Then, signals out of interest attenuate as
the number of segments averaged increases. Before this step, synchronous
resampling of the vibration signal is needed because every segmented set should
have the same number of sampling points. Moreover, the resampling method
enables the signal to be transformed to the angle domain [25].

Let’s assume we have rotating system whose rotating speed is increasing as seen

in Figure 4-2 (a).

t.., —t, =constant, wherenisinteger (4.2)
6,., — 6, = constant, wherenisinteger (4.3)
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Figure 4-2 Synchronous resampling of the vibration signal
(a): Cumulative degree, (b): Vibration signal,

(c): Resampled cumulative degree, (c): Resampled vibration signal

Notice that the sampling frequency is constant; whereas, the difference between
sequentially sampled angles is not constant. The vibration signal caused by a
rotating system with increasing speed can be described as Figure 4-2 (b) and it is
found that the number of samples in one cycle of the system decreases as the
rotating speed increases. This means there is no way to divide the signal into
several cyclic sets which have same number of samples and phase. Therefore, the
signal requires synchronous resampling. Synchronous resampling is undertaken to

interpolate the data to make intervals between the sequentially sampled angles
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constant. To make this possible, the system should be equipped with an encoder to
exactly catch the points for proper interpolation. An encoder with 60 pulse/rev

resolution is used for the research described in this paper.
t’ ., —t’, #constant, wherenisinteger (4.4)

0’ ., —0  =constant,wherenisinteger (4.5)

After the resampling, we can see that the resampled vibration shows a constant
cyclic wave (Figure 4-2 (d)) along with sample numbers, which means that the
number of samples in one cycle of the system remains constant. Then resampled
vibration can be divided into several segments which have exactly same number of
sample points with same phase.

Harry J. Decker and James J. Zakrajsek (1999) performed a comparative study
on different interpolation methods for resampling and found that the “cubic spline
method does not have considerable increase in accuracy compared to linear
interpolation despite it requires significant computation time” [26]. Therefore, the
linear interpolation method is employed for resampling in this research.

The number of resampling points for each rotation of the system can be defined
as fre and the signal can be divided into several cyclic segments which have fre
number of samples. Then, we can separate the synchronous coherent component by

ensemble averaging of segmented sets as [27]:

—_— NensembI971
S(0) = _ > v(@+nf,) (4.6)

ensemble n=0
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4.2 Overview of Planetary Gearbox

The basic concept of TSA was presented in the previous section. However, it is
difficult to apply the TSA to a planetary gearbox. For the expansion of TSA to a
planetary gearbox, the basic structure and principle of mechanical motion of the
gearbox should be understood. Figure 4-3 shows the planetary gearbox which was
used in this research. The dynamics model for the planetary gearbox was provided
by Prof. Choi from Korean Aerospace University (Figure 4-3 (d)). As shown in the
figure, the planetary gearbox has 4 main components, including the ring gear,
planet gear, sun gear, and carrier. A low-speed shaft (left side in Figure 4-3 (a)) is
connected to the carrier and the sun gear operates as the output (right side in Figure
4-3 (a))). The axis of the planet gear is fixed on the carrier and the planet bearing
between the planet gear and the carrier enables the planet gear to rotate as you can
see in Figure 4-3 (¢)).

Figure 4-3 (d) illustrates how the planetary gearbox operates. In the planetary
gearbox, the ring gear is fixed at the gearbox housing and inner components rotate
as shown in the illustration. The planet gear meshes with the sun gear and the
planet gear simultaneously, and there are 6 contacts between inner gears of the

gearbox (Figure 4-3 (b), (d)).
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Planet gear

Figure 4-3 Planetary gearbox
(a): Planetary gearbox (side view), (b): Planetary gearbox (front view),

(c): Sun gear, planet gear and carrier, (d): Model of planetary gearbox

All possible rotating frequencies and meshing frequencies of the planetary
gearbox that were used in this paper are summarized in Table 4-1. The gear ratio of

this planetary gearbox can be calculated as:

Gear ratio = % ~4.06 4.7)
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Table 4-1 Rotating frequency and GMF of the planetary gearbox

Type Te;th Freqg. Equation
Low-
speed - fiss | flss =T (4.8
shaft
High-
speed - fuss | fuss = T, 4.9
shaft
Sun gear | Ns=31 fs f, = fiss (4.10)
Planet _
gear N,=31 f, fo="1f, -1 4.11
Ring gear [ N,=95 0 0
1 N
Carri - f f.=f x — = f x - 4.12
et ¢ © ° Gearratio ° N, +N, (
Planet- ) f =f x N, 4.13
ring for e e N, (
Planet-sun - fos foo=f—f (4.14
Gear ] foe | foue =N f. =N f =N_f (4.15
meshing GMF r'c p 'pr s'rs

An unusual point of the planetary gearbox is that there exists relative motion
between the planet gear & the ring gear and the planet gear & the sun gear,
expressed as fyr and fys in Table 4-1. As you can see from the Table 4-1, the gear
meshing frequency (GMF) can be described in many ways. If the planet gear is
adopted for calculating the GMF, it becomes a function of Np and fyr which is

relative rotational frequency of the planet gear to the ring gear. In this paper, most
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description of dynamics of planetary gearbox is based on the relative motion (fyr). If
the relative frequency of planet gear to ring gear is not an integer multiple of the
carrier frequency, teeth sequence should be considered. Teeth sequence is the
number of teeth of the planet gear that are meshing with the ring gear as the planet

gear of interest passes the sensor, defined as [28]:

P, , =mod(n,N,,N,)+1 (4.16)

n

For example, let’s assume that tooth number 1 of the planet gear of interest did
contact the ring gear at the initial state as shown in Figure 4-4 (a). After 1 rotation
of the carrier, tooth number 3, instead of 1, will be meshing with the ring gear, as
seen in Figure 4-4 (b). The sequence of teeth in the planetary gearbox which is

assembled to the testbed in this research can be arranged as shown in Table 4-2.

Figure 4-4 Teeth of the planet gear which is meshing with the ring gear

(a): Initial state, (b): After 1 rotation of carrier
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Table 4-2 Sequence of the planetary gearbox teeth (1:4.06) in the testbed

nc | 0|1(2|3|4|5|6 |7 8|9 1011|1213 |14 |15
P 13|57 |9(1113|15|17|19|21|23|25|27|29 |31

np

nc |16 |17 |18 |19|20|21|22|23|24|25|26|27|28|29|30 |31
P,l2 |4 |6 |8 |10|12|14|16|18|20|22|24|26|28 |30 1

np

Because of this phenomenon, the initial state is made after 31 rotations of the
carrier, as can be seen in Table 4-2 at n=31. The minimum rotation of carrier
needed for it to reset to the initial condition is called the hunting tooth ration (HTR).

The HTR can be calculated as [28]:

_LCM(N,,N;) 31x95
Rest,p — N - 95 -

31 (4.17)
.

On the other hand, ‘hunting tooth cycle (HTC)’ represents the number of
rotation of the carrier until n™ reset to the initial position, 31n carrier rotation in this
case. Because of the presented characteristics of the planetary gearbox, we are
confronted with three main challenges when using TSA for diagnostics of the

planetary gearbox [29]. Challenges include:

1) The axis of the planet gears vary with rotation of the carrier
2) Signals are from multiple contacts, including the sun gear & planet gear, and
the planet gear & ring gear

3) The meshing condition is not always the same

As the challenges, the rotation of the planet gear makes modulation to vibration.
Moreover, vibration by the interesting planet gear can be suppressed by other

sources of vibration. Because transducer is fixed on the housing of the gearbox and
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the signal is mainly dominated by meshing between the teeth of the planet gear and
the teeth of the ring gear just under the transducer [30]. Furthermore, each
separated segments cannot be averaged directly because the segmented sets would

be under other meshing conditions.

4.3 Conventional TSA for Planetary Gearbox Diagnostics

There have been several attempts to develop a TSA method for use with a
planetary gearbox. Prior efforts can be divided into two methods: TSA by
McFadden (1991) [29] and the method by Forrester (2001) [31]. Two methods
mainly consist of three steps: 1) Extraction of vibration of the planet gear of interest,
2) Mapping the extracted vibration signal into tooth domain and 3) Averaging the
mapped signals to separate signals of interest. Other research efforts are not
considerably different from these two methods; most have optimized some
parameters from one of the two original methods.

McFadden (1986) studied the time domain average of meshing vibration and
found that it can help to extract fundamental signals and separate the effect of
modulation from the synthesized signal [32]. And modulation of vibration
commonly occurs in a planetary gearbox because the axis of the planet gears rotates
while the transducer is fixed on the gearbox housing. So, McFadden (1991)
expanded his research to examine TSA for a planetary gearbox [31]. A windowing
technique was proposed to extract the vibration signal only when the planet gear of
interest passes the transducer. Thus, the window function was designed to have a

narrow width to cover a few meshing periods as the planet gear is adjacent to the
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transducer. Using this technique, the vibration of a specific planet gear in a
planetary gearbox can be separated from the synthesized raw signal. Mapping of
the windowed signal into tooth domain was also proposed because teeth sequence
is not a series of natural numbers, but instead is a set of discrete numbers, defined
as Eq.(4.16). Then vibration caused by planet gear of interest can be estimated by
ensemble averaging the mapped signals. McFadden (1991) thus used convolution
for mapping the windowed signal to the corresponding position of the teeth and
averaging them. You can see the graphical illustration of the windowing and
mapping procedure in Figure 4-5. The teeth sequence in Table 4-2 is used for the
illustration.

Forrester (2001) suggested that the signal should be extracted every time the
planet gear meshes with the ring gear [31]. Thus the window function proposed by
Forrester (2001) is centered at the point where the planet gear is adjacent to the
transducer like the window proposed by McFadden (1991) but covers the entire
range of signal, as seen in Figure 4-6. Because every full cycle of the planet gear
relative to the ring gear is extracted from the raw signal, the mapping procedure is
not required in this method. Thus, vibration of the planet gear of interest can be
estimated by averaging the extracted signals as shown in Figure 4-6. Please be
careful that every extracted planet cycle should include the effect of the window

(even though this is not illustrated in Figure 4-6).
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Figure 4-6 Graphical explanation of TSA proposed by Forrester (2001)
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Most TSA methods for planetary gearbox developed by other researchers are
revised version of TSA by McFadden (1991) and Forrester (2001).

P. D. Samuel et al. (2004) generalized the TSA method by McFadden (1991)
and proposed to use an adaptive lifting diagnostics scheme with TSA [28].
Comparative study of the different types and sizes of the windows was given and it
was found that a Turkey window which covers 5 teeth with 0.8 of taper steepness
performed best among various candidates. Moreover, a feasibility study about
usage of multiple sensors for TSA was suggested and presented as an area of future
research.

M. R. de Smidt (2009) optimized the size and shape of the Turkey window for
TSA by McFadden (1991) [33]. Moreover, an internal vibration monitoring setup
for planet gears was developed and TSA by McFadden (1991) was well
demonstrated.

Jing Yu (2011) proposed to use the TSA method by Forrester (2001) with
wavelet transform for early detection of gear faults [34]. In this thesis, TSA is used
for pre-processing of data for diagnostics of WT gearbox.

D. G. Lewicki et al. (2011) modified some parameters in TSA by McFadden
(1991), such as the normalization factor, and constructed planet vibration vectors
using multiple sensors[35]. The planet vibration vectors constructed are not
combined, but rather are used for calculating condition indicators individually.

A. Hood et al. (2011) developed general procedures for practical realization of

TSA by McFadden (1991) and described all steps in a graphical manner[36].
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4.4 Autocorrelation-based TSA (ATSA)

Two kinds of TSA methods have been developed and revised by several
researchers, as presented in previous section. However, it is difficult to apply TSA
for condition monitoring of gearboxes in WT because of the following challenges.

First, TSA by McFadden (1991) requires a lot of samples to have enough
averaging. However, a stationary signal, which is necessary for robust results of
TSA, is rarely acquired in WT—this makes it impossible to attain enough
averaging for a robust result. Second, in the case of TSA by Forrester (2001), there
is no statistical ground to take the average of signals whenever the planet gear of
interest meshes with the ring gear. Therefore, the research outlined in this paper
attempts proposes an efficient method for TSA. We call this method
autocorrelation-based time synchronous averaging (ATSA). It is designed to use a
few stationary signal efficiently by providing statistical ground to take the average
of meshing signals based on the autocorrelation function.

For further study on kinematics of planetary gearboxes, the autocorrelation
function of the vibration signal is used. The definition of the sample autocorrelation
function is the mean value of the signal ( f (t)) multiplied by itself with time lag t

( f(t+7)) defined as [37]:

Ry (7) = EV(OV(t+7)] (4.18)

An autocorrelation function is widely used for understanding characteristics of a
system in the time domain instead of the frequency domain. For example, an
autocorrelation function of a sine wave with frequency f; is a function of the cosine
wave with the same frequency fo. It has zero at 90°of time lag when the shifted sine

wave becomes symmetric to the origin with respect to the x-axis. Due to such
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characteristics, it is possible to find the pulse repetition interval or period of the
original signal using the autocorrelation function. In the example case, it can be
found that the sine wave has a frequency of fo by the fact that the autocorrelation
function (cosine wave) has a local maximum at every multiple of 1/ fo.

Vibration from the transducer on the planetary gearbox also has a pattern like a
sine wave. When we calculate TSA of the vibration signal, similarity of segmented
groups should be guaranteed for reasonable averaging. Autocorrelation function of
vibration provides statistical way to understand the characteristics of the signal and,
furthermore, the similarity of the pattern. This function has high value where
similar pattern happens. Then we can adaptively define the points of segmentation
of the signal to make the segmented sets have the similar pattern.

Figure 4-7 shows a sample autocorrelation function of vibration from a
transducer which is attached to the top of the housing of a planetary gearbox. As
the planetary gearbox operates, the meshing condition changes because the axis of
planet gears rotates relative to the center of the sun gear. Thus, characteristics of the
signal pattern from the fixed transducer would be continuously changing. After 95
rotations of the planet, which is the same as 1 hunting tooth cycle (31 rotations of
the carrier) defined in Eq.(4.17), every inner gear resets to the initial position. Then
it is estimated that the signal would have very similar pattern to the signal at initial
position. As estimated, it is found that a high peak in autocorrelation function exists
in Figure 4-7 at np,=95. This phenomenon can be generalized. If a pattern similar to
the initial state happens after Xo rotations of the planet, the autocorrelation function
would have a high value at Xo. As you notice from the figure, the autocorrelation
function has peaks at some integer rotations of the planet and has a rule where the

peaks have intervals at 3 or 4 rotations of the planet.
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Figure 4-7 Autocorrelation function of vibration from a transducer

Figure 4-8 Position of inner gears as the planetary gearbox operates
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This phenomenon is clearly explained if we look into the inner side of the
gearbox (Figure 4-8). Let the blue triangle be a meshing point between the ring gear
and the planet gear of interest; let the red circle be the location of the transducer,
and let the green diamond be a meshing point between the ring gear and another
planet gear. The planet gear of interest is painted red. At the initial state (np=0), the
planet gear of interest is located under the transducer. Let’s assume the tooth
number of the planet gear which contacted the ring gear at the initial state was 1,
like what is shown in Table 4-2. As the planetary gearbox operates, the axis of the
planet gears also rotates. Therefore, the planet gear of interest recedes from the
transducer, whereas another planet gear approaches the transducer. After one
rotation of the planet gear (np=1), another planet gear is almost under the location
of the transducer. Therefore vibration is mainly caused by another planet gear and
there is no peak in autocorrelation function as shown in Figure 4-7 because the
signals have no similar pattern to the signals at initial position. However, as the
gearbox continues to operate, the planet gear of interest becomes close to the
transducer again. After 3 rotations of the planet gear (n,=3), the planet gear is near
the transducer—as close as two teeth from it. You can also notice that the meshing
tooth # of the planet gear after one rotation of the carrier (nc=1) is 3 according to
the sequence of teeth, which is arranged in Table 4-2. You can see from Figure 4-7
that the autocorrelation function is also changing the value corresponding to the
rotation of the planet gear. The autocorrelation function has a local maximum at
three rotations of the planet gear (np=3) because the planet gear becomes close to
the transducer again. For more example, the autocorrelation at 24 rotations of the
planet gear (n,=24) has no peak because the planet gear of interest is farther from

the transducer than another planet gear, as can be seen in Figure 4-8. Thus, it can be
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said that the vibration pattern at 24 rotations of the planet (N,=24) has no similarity
to the signals at the initial state. The peak reappears at ny=25 because the planet
again becomes the closest gear at 25 rotations of the planet gear. It is clearly stated
from these observations that the vibration signal would have a similar pattern as
long as the planet gear of interest is meshing with the ring gear at close to the
transducer.

Notice that TSA by McFadden (1991) extracts the signal only when the planet
gear passes the sensor and maps them into the tooth domain for averaging. The
averaged signals are from every HTR rotation, which means that we have to wait
until high peaks happen at HTC (e.g. npr=95, 190, ... in Figure 4-7) for averaging.

TSA by Forrester (2001) uses all generated signals for averaging with a wide
window function. It can be thought that even signals with no peak (e.g. np=1, 2, 4,
5, ... in Figure 4-7) are used for TSA, although the window function would to some

degree take into effect the position of the planet gear of interest.

Recorg;
10 reeth m%

Range

Figure 4-9 Data recording schema for ATSA

(a): Start recording, (b): Finish recording
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Thus, autocorrelation-based TSA (ATSA) is proposed in this paper to adaptively
take the signals into averaging based on similarity of the vibration pattern. Figure
4-9 is an illustration of the first step of ATSA which is to record the signal when
the planet gear of interest is close to the transducer. For robust analysis, a distance
within 10 teeth from the transducer is defined as the recording range in this thesis.

The next step is to map the signals into the tooth domain for averaging. Figure
4-10 is an example of the mapping procedure for ATSA. Let’s assume the

transducer is located on tooth # 1 of the ring gear. Signals are recorded if the planet

gear is within the defined recording range (10 teeth from the transducer in this case).

Teeth numbers of the planet gear which contacted the ring gear in the range are also
recorded. Then the vibration signal is mapped into the tooth domain, according to
recorded information about teeth numbers on the planet gear, like shown in Figure

4-10.

1. Recording of signal

wibieg 1 el bl o , . i ol
Vibration ||/ da i gl AT
Signal L 1‘. H Ui " IR DT O T V[T

Ring tooth # 84 85 86 &7 88 89 90 91 92 93 94 osfM 2 3 4 5 6 7 & 9 10 11 12 13
Plancttooth# 25 26 27 28 29 20 31 1 2 3 4 5[0 7 8 9 10 11 12 13 14 15 16 17 18

2. Mapping & Averagi

[
Plancttooth# 1 2 3 4 5 § 7 8 9 10111213141516171819 20 2122 23 24 25 26 27 26 2930 31

STSA
Signal

Figure 4-10 Mapping schema for ATSA
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This procedure continues during operation of the gearbox, and mapped vibration
signals are averaged to make the ATSA signal. Then, ATSA signal can use the
scarce stationary signals efficiently than conventional TSA based on statistical

grounds which include similarity of the vibration pattern.

4.5 Advantages of ATSA

Forrester (1996) optimized the number of averages of TSA and concluded that
33 averages can effectively remove the signal leakage [38]. D. Lewicki et al. (2011)
successfully separated vibration of the planet gear by TSA using data for 20
hunting tooth cycles [35]. However, 20 hunting tooth cycles which correspond to
620 carrier rotations under a stationary condition is not a frequent occurrence in
WTs. Approximately 100 seconds of stationary or quasi-stationary data would need
to be acquired under 1500rpm of the sun gear in a 4.06:1 gearbox (Figure 4-3) to
collect this amount of data. To evaluate the feasibility of TSA for gearboxes in WT
and advantages of proposed ATSA, further study on how many useful stationary or
quasi-stationary signals can be acquired from WT is performed. Figure 4-11
represents the histograms for duration of data in Class I or Class I & II from a real
WT for 7-months. Table 4-3 summarizes the number of cases which remain in the
defined class longer than a specific duration. As a result, it can be concluded that it
is possible to estimate health of the WT gearbox with enough averaging using TSA
by McFadden (1991) 1.5 times a day with only stationary (Class I) data and 11
times a day with stationary plus quasi-stationary (Class I & II) data, provided

applied torque is considered for the quasi-stationary data.
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ATSA utilizes more data for averaging than conventional TSA. Therefore,
ATSA is expected to increase the opportunity to evaluate the system. If results of
ATSA using data for 20 seconds have similar accuracy to the results of TSA using
data for 60 seconds, ATSA will thus increase the chance to process data more than
10 times compared to TSA. Accuracy of proposed ATSA will be evaluated by

comparing health data from TSA in validation chapter.
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Figure 4-11 Duration of class

(a): Class I, (b): Class I and 11

Table 4-3 The number of cases which remain in the defined class longer than a

specific duration

Duration [s] 20 40 60 100
Class [
18.7 6.8 3.6 1.5
(cases/turbine/1day)
Class 1 &1l 68.2 35.8 22 11
(cases/turbine/1day)
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Chapter 5. Health Data for WT Gearbox Diagnostics

5.1 Review of Health Data for Gearbox Diagnostics

After TSA is obtained from a raw signal, various health data can be calculated.
Health data encompasses various values which include information related to the
current health state of the system.

Recently, M. Lebold et al. (2000) [39], P. Vecer et al. (2005) [40] and A.
Aherwal et al. (2012) [41] reviewed various health data and their characteristics for
gearbox diagnostics. J. Zakrajsek et al. (1994) [42], M. Mosher et al. (2002) [43] P.
Samuel (2005) [44] studied several useful health data for diagnostics of helicopter
transmission which includes a planetary gearbox as a key component. Also, M.
Mosher et al. (2002) [43] summarized several health data and suggested their
nominal value and threshold value for the purpose of condition monitoring.

M. Lebold et al. (2000) grouped types of vibration into five processing groups
as RAW (Raw signal), TSA (Time Synchronous Averaging signal), RES (Residual
signal), DIF (Difference signal), BPM (Band pass mesh signal) and then introduced
characteristics of each group and corresponding health data [39]. These five groups
are involved in this research for summary of the health data and various health data
corresponding to the defined groups are arranged based on several papers.

Table 5-1 summarizes the groups and corresponding health data that were
employed in this study. Among them, GEN (General group) just means that health
data such as RMS, Kurt, CF can be generally obtained from any type of groups
such as RAW, TSA, RES, DIF and BPM that are presented by M. Lebold et al.
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(2000). For example, FRMS which is obtained by calculating RMS of RES [45],
proposed by Y. Lei et al. (2012) will be defined as RMSrgs) in this section instead
of by a new name. Most health data are related to the i statistical moment of the

target signal(-) which can be defined as:

i
1 Nsamples

My i =% [X(.)(n) —K] (4.19)

N samples n=1

In this section, health data which are summarized in Table 5-1 are reviewed and
rearranged in a consistent method. Then, overall procedures for calculation of

various health data will be presented.

Table 5-1 List of health data

Group Health data
GEN RMS (Root Mean Square), Kurt (Kurtosis),
CF (Crest Factor)
RAW (Raw signal) -
TSA FMO, SER (Sideband Energy Ratio)
RES (Residual signal) NA4, NA4*, NA4 reset
DIF a(Difference signal) FM4, M6A, M8A, ER (Energy Ratio)
BPM (Band pass mesh signal) NB4
5.11 GEN
1) RMS,

RMS.) represents the energy of a raw target signal from a system. It doesn’t

represent the state of each component individually.
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1 Nsamples )

RMS@,:JN X D Xy (N) (4.20)
samples n=1

Sometimes, the trend of RMS would be useful information. Thus, delta RMS —

which can be obtained by calculating the difference between current RMS and

previous RMS — is commonly used for diagnostics of a rotor system.

DeltaRMS = RMS,, (current) - RMS , (previous) 4.21)

2) Kurt., (Kurtosis)

Kurtosis( is the standardized fourth moment of the target signal. Kurtosis
represents how the distribution is peaked and the size of its tail. Kurtosis of
normal distribution is 3 and this value can be the standard value when it is
applied to diagnostics of a gear system.

He
Kurt,, =200
O

(*

(4.22)

3) CF«) (Crest Factor)

If some defects occur in the gear components, the impact pulse can be observed
from the signal. CF measures the maximum size of the impact pulse normalized
by its RMS. Lebold et al. (2000) indicate the normal range of CF would reach

from 2 to 6 [39].

max(|X
CF, = M (4.23)
RMS,.,
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512 RAW

RAW is obtained by filtering the noise out from the transducer data. The
conditioned signal includes the synchronous coherent signal (S(t)), the non-
synchronous coherent signal (N(t)), and the non-coherent random data signal (R(t))
as in Eq.(4.1). B. Wu et al. (2004) suggested to use RAW instead of TSA for
diagnostics of a gear system because it seems possible that TSA removes the
signals related to defects of the gears [46]. General health data such as RMS,

Kurtosis, and Crest Factor can be obtained from RAW.

513 TSA

TSA ideally contains only the asynchronous coherent signal (S(t)) by the effect
of TSA. In a planetary gearbox system, the fundamental frequency of the
synchronous coherent signal would be near the GMF (Gear Mesh Frequency). Thus,
values related to energy of the GMF are calculated in various ways and these values
servea to establish the health data.

1) FMO

FMO is a very simple indicator of the health of a system proposed by Stewart

(1977) [47]. 1t is the magnitude of peak-to-peak of the waveform normalized by

the sum of amplitude of the fundamental frequency and their harmonics [39]. M.

Alattas et al. (2007) verified it can detect heavy wear and scoring of gears [48].

FMO=

max(X;g, ) — min( X, )
(424

A(H)

i=1
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2) SER

If the defects of a gear become severe, sidebands, amplitude of the fundamental
frequency, and their harmonics will increase. Based on this assumption, J.
Hanna et al. developed SER [49] which is the magnitude of sidebands
normalized by the amplitude of the fundamental frequency. According to the
report presented at NREL by S. Sheng (2012), SER can be effectively used for

diagnostics of planetary gearboxes of WT [50].

N

sidebands ¢
A(s; ")

R= ':‘AT (4.25)
1

514 RES

RES is calculated by removing fundamental GMF (Gear Mesh Frequency) and
their harmonics from TSA. Thus, RES contains information about pure sidebands
of the GMF and sidebands of their harmonics. Various health data from RES is
very meaningful because a lot of research about diagnostics of gearboxes has

focused on monitoring of the amplitude of sidebands.

1) NA4

J. Zakrajsek el al. (1993) developed NA4 to detect progress of severity of the
defect. For this purpose, NA4 employs information from previous data records
as well as currently acquired data [51]. Information from previous data records
is represented by ensemble average of the second moment of previous Nensemble

groups.
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NA4 = Hres).4 (4.26)

1 Negpe ’
{ N z |:IU(RESJ-),2:|}

ensemble =1

2) NA4*

H. Decker and J. Zakrajsek (1994) revised the NA4 to reflect the trend of
parameters in a statistical manner [52]. The denominator of NA4 is modified to
the second moment of RES of a normal gearbox instead of the ensemble average
of previous information. The state of the normal gearbox is defined in a
quantitative way where ‘“normal” is assigned to the gearbox wuntil the
denominator value exceeds the limit defined in [52]. H. Decker and J. Zakrajsek
(1994) suggested that the number of samples (Nsamples) for defining the normal

state be larger than 30.

H(Rres),2

4.27
N (4.27)

Limit = g pes), +2

samples

3)NA4 reset

NA4 is more sensitive to applied torque, as well as change of defect, than other
health data [53]. Thus, P. Dempsey et al. (2001) proposed NA4 reset to
minimize the effect of varying torque [53]. The difference from NA4 is that it
resets its denominator when the applied load gets out of the bound which is

defined as 10 percent of the current average load.
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5.1.5 DIF

As the faults within a gearbox worsen, the magnitude of unexpected frequency
becomes large. DIF is obtained from RES by excluding sidebands of fundamental
GMF and their harmonics. If we note that RES is obtained by excluding
fundamental GMF and their harmonics, it is clear that DIF ideally should not
contain any normal vibration components and should have normal Gaussian
distribution. Therefore, diagnostics of a gearbox can be performed by tracking the

shape and energy of DIF as follows.

1)FM4

Kurtosis originally represents how the distribution is peaked and the size of its
tail, as presented earlier and has 3 at normal Gaussian distribution. FM4 can be
obtained by calculating the kurtosis of difference signal which should be normal
Gaussian noise in the ideal case [47]. Thus, the health state of the gearbox can

be estimated by looking into the trend of FM4.

EM4 = /u(DIF),42 (4.28)
Hoip),2

2) M6A
H. Martin (1989) developed M6A and M8A to detect surface damage of gears
[54]. The parameters are a revised version of FM4 where higher moments of the

difference signal than ones of FM4 are employed.

M6A= #(LF)Z (4.29)
Hpir),2
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3) MS8A [54]

M8A = MLF”; (4.30)
Hoir),2

4) ER

N. Swansson (1980) proposed ER to use the ratio between the energy of
difference signal and a regular signal, such as fundamental frequency,
harmonics and their sidebands. P. Samuel et al. (2005) introduced ER and its
characteristics. It is said that the energy of difference signal will increase and the
amplitude of the regular signal will decrease simultaneously as the ‘“heavy
uniform wear” of gears worsen.

RI\/ls(DIF)

ER= (4.31)

Nharmonics Nsidebands

|:A(fi)+ A(S,-f‘)}

i=1 j=1

5.1.6 BPM

Energy of fundamental frequency and their harmonics, including sidebands, is a
good indicator of the health state of a gearbox. To consider these values, TSA can

be band-passed around fundamental frequency, including sidebands.

1)M6A
J. Zakrajsek (1994) proposed to use amplitudes of fundamental frequency
(including their sidebands) as an indicator of the health state of a gearbox [42].

For this purpose, NA4 is modified to have envelope of BPM as the source of the
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numerator and denominator as in [39]:

NB4 = Heers (4.32)

1 Ny ’
i S e

ensemble  j=I1

where E is energy of the Hilbert transform of BPM as in [39], [55]:

H[BPM(t)] = BPM (1) =lj°° BPM (r)tLdr 433)
T -7
E(t)=/BPM? () +BPM " (t) (4.34)

5.2 Procedures for Calculating Health Data of WT Gearbox
In this section, overall procedures for calculating health data, which are
reviewed in the previous section, are presented in a graphical manner, as shown in

Figure 5-1.

Stepl: Calculate TSA(or ATSA) and transform it to the order domain using FFT
(Fast Fourier Transform).
(Health data: FMO and SER)

Step2: Calculate BPM by applying a band pass filter around the fundamental
GMF and their harmonics, including sidebands.
(Health data: NB4)

Step3: Distract GMF and their harmonics from TSA.
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Step4: Calculate RES by applying inverse FFT to the signal from Step 3.
(Health data: NA4, NA4 reset and NA4*)
Step5: Distract sidebands of fundamental GMF and their harmonics from RES.
Step6: Calculate DIF by using inverse FFT of the signal from Step 5.
(Health data: FM4, M6A, M8A, ER)

Step 1 Step 3 Step 5
Order Analysis of TSA Distract GMF + harmonics Distract Sidebands
L] u (5]
Fundamental GMF
L2 ) s Ll
= [ 1] = (1) E.-
= - Z > S
m o w2
. il "'- TT? Tealeas . Nl I:HT?? P . z . Toafons
: Order Order Order
i { Step 2 Band-pass { Step 4 FFT"! { Step 6 FFT"
| BPM RES DIF
w1 | LE [ £
- = =
=l 3 R TRt
P £ =
e = E
L] I -!..‘ AF
' Order Teeth Teeth
: : : :
H v v v
v NB4 NA4, NA4 reset, NA4*  FM4,MG6A, M8A, ER
FM(, SER
Health Data

Figure 5-1 Procedures for calculation of health data
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Chapter 6. Validation Study for ATSA

6.1 Design of Signal
6.1.1 Design of the Analytical Signal

An analytical signal is employed for validation of the proposed fault diagnostics
technique as:

P
V=Y V_.a.:+Noise; (4.35)

i1 PPl |
Ideally all planet gears generate the same vibration signals but have a different
transfer path according to the position of the planet gears (Figure 6-1 (a)). api is
accounting for the transfer path of i planet gear which is a function of the position
of that planet gear, as shown in Figure 6-1 (b). The transfer factor ap will converge
to 1 as the planet is adjacent to the sensor, whereas it will attenuate as the planet

recedes from the sensor.

api =(1+cos(27( fCt —(i-1)/3)))/2 (4.36)

Noise factor (noisej) can also be employed to express the uncertainty of the
gearbox and the trend is vice-versa from the transfer factor (Figure 6-1 (c)), defined
as:

(1+ 2 A ggise.min +SInQ2r(ft—(i-1)/3-7/2)

noise, =V, .4 Avice (4.37)
2 + 2A\msise min
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Level of minimum and average of the noise is an empirical value and 0.15 and
0.3 are designed in this research respectively.

It is also assumed that an abnormal signal can be described as having a higher
amplitude than a normal one when the faulty gear meshes with other gears. In this
study, abnormality is added to the vibration of planet 1 (vi). After all factors are
combined as shown in Eq.(4.35), an abnormal condition is invisible in the tooth

domain because of the noise, as shown in Figure 6-1 (d).
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Figure 6-1 Analytical signal
(a): Vibration of individual planet gears, (b): Noise factor of planet gear 1,

(c): Transfer factor of planet gear 1, (d): Combined vibration
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6.1.2 Design of Testbed

Absence of normal and abnormal response data from the WT makes it difficult
to achieve the objective of this research. Thus, a small scale WT testbed which has
similarity to a 2.5MW WT was designed for the research outlined in this paper

(Figure 6-2).

Gearbox 2 | Gearbox 3 I

Figure 6-2 Wind turbine testbed

The detailed specifications of the testbed are summarized in Table 6-1.

Gearbox 1, which has 3 stages of planetary gear set can be substituted with
gearboxes 2 and 3 which have simpler dynamics characteristics than gearbox 1.
Gearbox 3 which has one stage of planetary gear set is to be analyzed in this paper
and details are summarized in Table 4-1.

The main considerations for designing the testbed are as follows: The

composition is almost identical to that of a WT gearbox so the testbed will have
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similarity to a WT. The testbed operates with a closed-loop controller which
enables implementation of rotor speed and scaled torque measured from a WT to
the testbed. Moreover, this testbed is designed to add artificial defects into the
gearbox and bearing. For example, Figure 6-3 shows three levels of artificial cracks

in gears which are provided by Prof. Y.H. Jung from Pusan national university [56].

Table 6-1 Specifications of the testbed

Components Qty. Specifications
Motorl 1 2kW servo motor
Motor2 1 2kW servo motor
Gearbox 1 1 1:80.47, 3 stage planetary
Gearbox 2 1 1:20.79, 2 stage planetary
Gearbox 3 1 1:4.06, 1 stage planetary
Gearbox 4 1 80:1 reduction gearbox
Main Bearing 1 6218-2z (ball bearing)
Vibe. sensor 8 500mV/g (Range:+10g)
Temp. sensor 4 RTD type
RPM sensor 1 60pulse/rev

(a) (b) (c)

Figure 6-3 Three levels of artificial crack of planet gears

(a): Crack size: 0.1mm, (b): Crack size: 0.44mm, (¢): Crack size: 1.1mm
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Before the test, the housing of the planetary gearbox was disassembled and
every location of contact points of inner gears at the initial state was marked on the
components. Every time a test was performed, the inner gears were reset to the
initial state. Using these procedures, tests under normal conditions and abnormal
conditions or repetitive tests could be performed with the same initial state. During
the tests, position of the planet gears could be tracked consistently by using encoder

for implementation of TSA or ATSA.

6.1.3 Design of Experiment (DOE)

Experiments are designed to demonstrate the real condition of the WT. DOE is
based on testbed and same conditions are made in analytical signals in statistical
manner. Rotational speed of the sun gear in the planetary gearbox (1:4.06) was
determined as 20 round per seconds (RPS) which is the rated speed of the generator
of typical WTs. Applied torque is scaled down to have rated torque which is 4Nm
in the testbed. Tests were performed in two ways: 1) for 20 seconds and 2) for 100
seconds. Validation of ATSA using analytical signal is performed by only the case
1 and two of the cases are employed in the testbed.

Each tests is performed for 120 minutes and divided into several data sets with
same periods. Design of experiment and corresponding hunting tooth cycle (HTC)
are summarized in Table 6-2.

Experiments are performed under both normal and abnormal conditions for each
cases. As stated, abnormal condition is defined as a higher peak at the faulted
points in the analytical signal. In the testbed, a gear with 1.1mm of artificial crack

(Figure 6-3 (c)) is used for demonstrating faulted condition.

60



Table 6-2 Design of experiments

Data Speed of | Speed of . Carrier
Case set Sun gear | Sun gear P([a;’:gij S Cycle [cH-crISs]
[sets] | [RPS] [RPS] [cycles] Y
1 360 20 4.93 20 98 3
2 72 20 4.93 100 492 15

6.2 Results and Discussion
6.2.1 Analytical Signal

For validation of the advantages of ATSA, results from TSA are compared. Test
case 1 is used for validation of the proposed diagnostics. First, one example of a
residual signal is given in Figure 6-4 to graphically illustrate abnormality in the
tooth domain. Residual signal is calculated by excluding fundamental frequency
and their harmonics from TSA of ATSA. As shown in Figure 6-4 , An abnormal
signal is clearly recognizable in Figure 6-4 (b) whereas cannot be seen in Figure
6-4 (a) because of the noises. Thus it can be concluded that ATSA has an ability to
deal with the small amount of data which would not be enough for TSA. Then,
among various health data, FM4 and NA4* were used to separate abnormal sets
and normal sets, as shown in Figure 6-5. All health data are normalized for easy
comparison. As you can see through the figure, abnormal sets are effectively

separated from the normal condition using ATSA.
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Figure 6-4 Residual signal from an analytical signal for test case 1

(a): Residual by using TSA, (b): Residual by using ATSA
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Figure 6-5 Two types of health data for test case 1
(a): Health data using TSA, (b): Health data using ATSA

6.2.2 Testbed Signal

Figure 6-6 shows test results using the proposed diagnostics methods.
Frequency analysis of the raw vibration signal is shown in Figure 6-6 (a) and order
analysis of the resampled vibration signal is shown in Figure 6-6 (b). Although
amplitude of the fundamental gear mesh frequency became large in the order
domain than in the frequency domain, there are still other non-synchronous

components which may interfere in diagnostics of the planetary gearbox. The noise
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components were effectively removed using ATSA. By transforming the ATSA
(Figure 6-6 (c)) to the order domain, it is observed that widely distributed noise
components were removed from the signal. Moreover, amplitude of fundamental
frequency and their harmonics were magnified, as shown in the Figure 6-6 (d).

Then, various health data were calculated from the processed signal.
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Figure 6-6 Test Results
(a): Frequency analysis, (b): Order analysis of resampled vibration,

(c): ATSA signal and (d): Order analysis of ATSA
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In the testbed, it was difficult to see abnormality in the tooth domain using the
residual signal. Thus, the trend of health data is used to present the advantage of
ATSA in a graphical manner instead of in a residual signal (Figure 6-7 and Figure
6-8). In this paper, 8 health data (HD) are used for representing the trend. Ideally,
the trend of health data in a small box should be a smooth line because the data
were from a continuous test. As you can see from Figure 6-8, the trend of health
data using ATSA does have a smoother pattern with less noise, compared to Figure
6-7 because enough averaging of bigger size of the data was performed. Advantage
of ATSA also can be explained by the presented figures. It is can be seen that
Figure 6-7 (b) and Figure 6-8 (b) show more reasonable results compared to the
results by using TSA (Figure 6-7 (a) and Figure 6-8 (a)). The merits of ATSA
which is to extract more data in a limited time than TSA would make the results
more robust and reliable.

NA4* and ER were employed among the health data to separate abnormal sets
and normal sets, as shown in Figure 6-9 and Figure 6-10. As estimated, abnormal
condition were more effectively separated from normal condition when enough
averaging were taken. As the two results in Figure 6-9 are compared, advantage of
ATSA also can be explained. It is found from the Figure 6-9 (b) that health data
calculated from ATSA signal reasonably separate the abnormal and normal
condition even using the short period of the data. However, health data calculated
from TSA signal with not enough data cannot separated the two conditions
definitely.

From the results, it can be concluded that ATSA has an ability to extract more

useful data from limited period of the stationary signals.
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Figure 6-8 Trend of health data (HD) for test case 2

(a): Trend by using TSA, (b): Trend by using ATSA
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Figure 6-9 Two types of health data for test case 1

(a): Health data using TSA, (b): Health data using ATSA
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Figure 6-10 Two types of health data for test case 2
(a): Health data using TSA, (b): Health data using ATSA
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Chapter 7. Conclusion

7.1 Conclusion

Classification of wind data and diagnostics using stationary data are proposed in
this thesis.

In research thrust 1, a huge amount of response data from a wind farm is
classified into four non-trivial classes and one trivial class. Characteristics of
defined classes are analyzed and optimal diagnostics plans are designed for each
class. By classification, 43% of data can be filtered out and only 57% of data needs
to be extracted for diagnostics purposes. Among them, Class | and Il, which
account for 6% of data, turn out to be adequate for order analysis. The resultis a
diagnostics method that is computationally efficient.

TSA can be used for pre-processing of order analysis to reduce the noise and
make robust and reliable results. However, it is found that Class | and Il which
correspond to stationary and quasi-stationary data from a wind farm are not enough
for TSA. To overcome this challenge, in research thrust 2, ATSA is proposed to
utilize the data more efficiently. ATSA performs an ensemble average of data based
on similarity of vibration pattern. Characteristics of similarity of vibration pattern
are effectively analyzed using an autocorrelation function.

This thesis also includes the design of an analytical signal and a WT testbed to
enable assembly of the main components such as a gearbox or bearing with an
artificial fault. In the testbed, a gearbox with one stage of planetary gear set is

employed and an artificial crack 1.1mm in size is made on one planet gear.
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The validation study was made by using an analytical signal and testbed signals.
Among various health data which are presented in this paper, NA4*, FM4 and ER
were used for the validation study. The results show that ATSA had better

performance when the size of data was not sufficient for conventional TSA.

7.2 Future Research

1) Data Classification

- Optimization of the parameters

Parameters for criterion of classification were empirically chosen. Such
parameters include W, c1, and c2 which are used in Eq.(3.3). General values of
the parameters which can be used for the classification of data regardless of

types of the WTs should be defined.

2) Autocorrelation-based Time Synchronous Averaging (ATSA)

- Optimization of the parameters

Some empirical parameters are employed for demonstration of the ATSA in this
thesis. These parameters should be optimized to make the ATSA more powerful
diagnostics tool.

( resampling rate, recording range and the number of averaging)

» Multi-axis sensors for ATSA
The merit of ATSA is to effectively utilize scarce stationary data from WT.
Another suggestion to collect more data in a limited amount of time is to use

multi-axis sensors in one stage of the gearbox. For this purpose, the locations of
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planet gears relative to the multiple sensors should be efficiently traced. In
addition, a different shape or phase of the vibration pattern from multiple

sensors are needed to be adequately adjusted for robust averaging.

- Validation of ATSA using defined Class | and |1

It is assumed that Class I and II would be appropriate for ATSA because the CV
of rotor speed is very low in those classes. Validation using deterministic
stationary data was performed in this thesis but the stationary condition or quasi-
stationary condition with randomness should be considered for further

validation of ATSA in future research. Real WT data can be employed.

- Machine learning using various health data

Various types of health data are summarized in this paper, but only a few among
them are presented as validation results. Statistical machine learning technique
can help us to use all the health data in an efficient way as well as provide us a

statistical health index which represents the current state of the system.

3) Time-frequency analysis

Classification of wind data provides a guideline for managing the huge amount
of data available from a wind farm and in monitoring the health state of WT.
However, 51% of data is still non-stationary data which should be dealt with
using computationally intensive diagnostics tools such as time-frequency
analysis. Thus, development of computationally efficient time-frequency

analysis remain as future research subjects.
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