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Large-scale rotating machinery requires a reliable diagnosis method that accurately 

predicts health state, since these systems are frequently operated in safety-related and 

mission-critical systems (e.g., turbines in power plants). Among various methods for 

rotor-system diagnosis, the data-driven approach has received considerable interest 

from industry and academia. Specifically, the number of research papers on deep 

learning based rotor system diagnosis has risen steeply in the past few years. Interest is 
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driven, in part, by the fact that deep learning algorithms are applicable to complex 

systems without the need for a complete comprehension of the physics of the system. 

However, powerful performance of these diagnosis methods can only be achieved with 

the use of optimal preprocessing techniques for each target system. Thus, this 

dissertation focuses on developing preprocessing and transformation steps for a deep 

learning based diagnosis system for rotating machinery. This work specifically focuses 

on fluid-film bearing rotor systems.  

The dissertation investigates three thrusts of preprocessing and transformation of 

vibration signals: 1) study of the optimal vibration image size, considering filter size, 

2) research into a label-based, mini-batch gradient descent method with filter sensitivity 

analysis, and 3) investigation of a retraining scheme for minor classes in imbalanced 

data problems.  

The first research thrust investigates the size of input images for convolutional 

neural network (CNN) based diagnosis. As a fluid-film bearing rotor system presents 

directional dependent health states, vibration images that consider both the temporal 

and the spatial correlations of omnidirectional regeneration (ODR) signals are 

suggested. Using the generated images, the results show that the ratio of image size to 

filter size affects the overall performance. Thus, the optimal range of size ratio for the 

vibration image is derived in this work by analyzing the performance of various ratios.  

The second research thrust suggests a label-based, mini-batch gradient descent 

method. As the conventional random mini-batch method generates biased mini-batches 

in several cases, which leads to decreased overall performance, the proposed method 

can reduce the bias between mini-batches. In addition, various label-based, mini-batch 
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combinations were studied in this work and their performance deviation was analyzed 

by filter sensitivity analysis. The result shows that the quantity of properly sensitive 

filters clearly improves the overall performance of the network.  

Finally, the last research thrust proposes a retraining scheme for minority class data 

in imbalanced data set problems. The proposed two-phase approach uses equally 

labeled mini-batches, proposed in the second thrust, with oversampling of the minor 

class samples. Furthermore, in the second phase of training, filters with high sensitivity 

are frozen and filters with low sensitivity are retrained to represent the minor class 

samples. The resulting method shows increased performance by improving the 

recognition of the minority class samples in several imbalanced data set problems.  
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Chapter 1   

 

Introduction 

 

1.1 Motivation 

The maintenance cost of engineered systems is increasing as these systems become 

more complex [1]. Failure of such systems may lead to catastrophic results, including 

financial loss. Sudden unexpected failure can even cause casualties. Thus, to prevent 

the failure of engineered systems a reliable fault diagnosis system is necessary. 

Specifically, larger systems, such as steam turbines in power plants, are carefully 

monitored since a single stop causes significant economic loss and social expenses. 

Also, unscheduled maintenance may take a considerably long time since the repair 

parts may not be prepared in advance. Therefore, a reliable fault diagnosis system 

for monitoring safety-related and mission-critical engineered systems must be 

developed and implemented [2].  

Fault diagnosis systems can be categorized into three approaches; model-based, 

data-based, and hybrid [1, 3, 4]. The model-based approach requires a profound 

understanding of the physics of the target engineered system. The physics-based 

model used in this approach can identify the type of faults and can give a clear 

description of the faults. However, the cost of building a physical model is getting 
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larger and larger because of the increased complexity of engineered systems. The 

hybrid approach combines the data-driven and model-based approaches; thus, this 

approach also requires considerable knowledge of the systems. In contrast, the data-

driven technique does not required a comprehensive understanding of the physics of 

the system. Instead, this approach focuses on the data to discover hidden and 

meaningful features related to the target system. This approach has gained popularity 

in both industry and academia in recent years [5, 6].  

The popularity of the data-driven approach has increased due to the abundance 

of data now available. As sensors and data storage devices have becomeme more 

commonly available, the data acquisition process has become easier. With the rapid 

growth of modern industry, a large volume of data has been generated in various 

industry fields. However, data processing to mine useful information from such  

massive data has created its own challenges. This approach is called “feature 

engineering” [1, 7-9]. With increased computing power and advanced deep learning 

research, deep learning based approaches have emerged to solve the issue [6].  

Although deep learning approaches are not new, the approaches have gained in 

popularity since Hinton introduced the fast learning algorithm in 2006 [8, 10]. 

Hinton proposed a fast learning algorithm for deep belief networks, which 

encouraged many researchers to advance the deep learning algorithms. While it is 

gaining in popularity, deep learning is not a universal solution to all problems [11]. 

Specifically, it does not always learn patterns in a way that the researchers prefer. 

The training is often done in an adversarial way, which requires different approaches. 

Thus, data scientists have worked to accentuate both the quality and the quantity of 

data for such deep learning algorithms to help them act in the desired way. In addition, 
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data preprocessing must be used, as the performance of the method varies greatly 

according to the type of data preprocessing. Still, it takes significant effort and time 

for the algorithms to be trained. Thus, data sets need to be properly preprocessed so 

that they can be applied to other research areas (e.g., fault diagnosis research) with 

strong performance. 

Correct preprocessing techniques are required in the field of prognostics and 

health management (PHM). Thus, in this research, preprocessing of vibration signals 

from fluid-film bearing rotor systems are studied to obtain robust and accurate 

diagnosis results. Although there is an argument about the range of preprocessing 

that should be used for fault diagnosis, preprocessing in this study is defined as the 

range until the algorithm actually starts to train. Training starts when the learning 

algorithms start to calculate the gradient information from the training data set to 

update the weights of the network. In this study, preprocessing is viewed as all steps 

before calculating the gradient of a data set.  

 

1.2 Research Scope and Overview 

The goal of this dissertation is to develop favorable preprocessing techniques for 

deep learning based fault diagnosis. Three thrusts are proposed. First, the optimal 

size of a vibration image with the ratio of the filter size of a convolutional neural 

network (CNN) is studied. Next, a label-based, mini-batch by filter sensitivity 

analysis method is developed. Finally, a retraining scheme for imbalanced data sets 

is proposed using the results of the first and the second research thrusts. The three 

thrusts are briefly described below. 
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Research Thrust 1: Optimal Ratio of Vibration Image Size and Filter Size 

Research thrust 1 considers size of the vibration image with respect to that of the 

filter size, also known as the kernel size in a convolutional neural network (CNN). 

As the ability of powerful deep learning algorithms can be achieved by optimized 

hyper-parameters, the ratio between the input image size and the filter size must be 

determined to obtain high performance. First, the vibration image is generated based 

on the omnidirectional regeneration (ODR) signals of the gap sensor signals [12, 13]. 

The process of obtaining the vibration image is simplified compared to that presented 

in [2]. The generated images showed clear patterns for different health states; 

however, the prediction accuracy varied with respect to the image size. The smallest 

size of an image had ambiguous patterns; the results showed that this resulted in low 

prediction accuracy. As the size increased, the edges of the patterns in the vibration 

images were distinct in filter sizes, which led to higher prediction accuracy. However, 

as the size increased greatly, the filters failed to present sharp edges of patterns; as 

would be expected, this resulted in lower prediction accuracies. In short, the results 

showed an optimal range of ratio between the size of the image and the size of the 

filter. 

 

Research Thrust 2: Label-based, Mini-batch Combination Study using Filter 

Sensitivity Analysis 

Research thrust 2 proposes a label-based, mini-batch gradient descent approach 
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for a balanced data set. Various types of label-based mini-batches are studied for 

convolutional neural networks (CNN) to analyze the effect of label information when 

generating mini-batches. The equally labeled mini-batch case showed the most 

robust results, as compared to other mini-batches. As the performance is determined 

by the filters of the network, which are the weights of the CNN, sensitivity analysis 

of each filter is suggested. The sensitivity of a CNN filter can be computed by 

determining the difference between the output of the standard network and the 

altered network for which the value of filter has been converted to zero. Then, the 

total sensitivity of the CNN is determined by the three proposed criteria. The 

validation case study that examines the vibration signals of a fluid-film bearing rotor 

testbed indicates that the equally labeled mini-batch has the most sensitive filters. 

Also, the results show that the total sensitivity of the CNN is strongly correlated to 

the performance of the network.  

 

Research Thrust 3: Retraining Minor Class Schemes for Imbalanced Data Sets 

Research thrust 3 develops an efficient and robust retraining scheme for 

imbalanced data sets. As many engineered systems in the field run in normal 

conditions, the size of the available fault data set is usually much smaller than that 

of the data for normal conditions. To increase the performance of the imbalanced 

data set, a two-phase retraining scheme is proposed. In phase I, oversampling of 

minority classes is used to generate equally labeled mini-batches. In phase II, the 

least minority class is retrained by using only the insensitive filters identified in 

phase I. The classes are temporally turned into two classes; the least minority class 
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and other classes. By turning this into a two-class problem, the filters can focus on 

learning the general representation of the least minority class. The proposed scheme 

is validated on the imbalanced data set generated from the data set from the testbed. 

The least minority class of the imbalanced data set is fixed to an imbalanced ratio of 

0.001. The results show that the phase I training can enhance the overall performance 

of the network. Also, the phase II training also increases the performance by 

elevating the accuracy of the least minority class.  

 

1.3 Dissertation Layout 

The layout of this dissertation is as follows. Chapter 2 provides a literature review 

of fluid-film bearing rotor system diagnosis and the deep learning based fault 

diagnosis. Chapter 3 describes the acquisition of data used in the following chapters. 

In Chapter 4, optimal vibration image generation using the gap sensor signal is 

suggested. Chapter 5 suggests a label-based, mini-batch gradient descent method and 

analyzes the results using the developed filter sensitivity analysis. Then, Chapter 6 

introduces a two-phase retraining scheme for imbalanced data sets by enhancing the 

prediction accuracy of the minority class. Finally, Chapter 7 concludes the 

dissertation by summarizing the research and suggesting future research.  
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Chapter 2  Literature Review 

 

Literature Review 

This chapter reviews the literature related to convolutional neural network based 

diagnosis for fluid-film bearing rotor systems, specifically the review provides: (1) 

an overview of fluid-film bearing rotor systems, (2) an overview of convolutional 

neural network (CNN) based rotor system diagnosis, (3) analysis of the ratio between 

the input image size and the input filter size, (4) an examination of segmentation of 

input data for deep learning based diagnosis, and (5) a review of the strategy of deep 

learning based diagnosis for imbalanced data sets.  

 

2.1 Overview of Fluid-film Bearing Rotor Systems  

Fluid-film bearing rotor systems are frequently used in industrial machines that 

require safe and reliable operation. For example, turbines and pumps in power plants 

use fluid-film bearings to maintain system safety even in heavy-load and high-speed 

conditions. Because the fluid in the bearings supports the rotors, stable operation is 

possible without direct contact between the rotor and the stator. Conventionally, the 

diagnosis of fluid-film bearing rotor system uses the vibration signals from proximity 

sensors located close to the bearing. This section briefly describes the overall fluid-

film bearing rotor system, and the data acquisition from the sensors in Sections 2.1.1 
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and 2.1.2, respectively. In Section 2.1.3, the physical characteristics of the vibration 

signals of major health states are described.  

 

2.1.1 Structure of Fluid-film Bearing Rotors 

The major feature of fluid-film bearings is that the lubrication oil fills the space 

between the rotor (shaft) and the stator (housing). The structure of a plain fluid-film 

bearing as presented in Figure 2-1 is simple compared to rolling element bearings 

(REBs). The oil between the shaft and the housing reduces the friction and increases 

the damping, which plays a crucial role in this system [14-16]. Thus, an extra pump 

that provides the oil into the bearing as well as cooling devices is required to maintain 

such a bearing in a healthy condition. Despite the requirement for extra devices, 

fluid-film bearings are widely used in large-scale machinery, such as turbines and 

pumps in power plants, where highly reliable operation is required. When operated 

properly, fluid-film bearings can keep vibration of a 500MW turbine system under a 

hundred micrometers.  

Numerous types of fluid-film bearings are used, according to the rotor 

characteristics. The simplest type is the plain-sleeve fluid-film bearing, which is 

presented in Figure 2-1. Another type, called multi-lobe fluid-film bearings, has 

multiple lobes in the bearing, which preload the oil. Further, the tilting pad bearing 

is the most stable type, as the bearings are separated into a few tilting pads. As the 

outer race is divided into a few pads, the negative hydrodynamic effects can be 

reduced by allowing free tilting. The name ‘tilting pad’ comes from the pads that tilt 

via a hinged support. The number of pads varies according to the usage of the bearing.  
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As the structure and the dynamics are different from REB systems, the 

characteristics of the rotors show different behavior. Considering the fluid-film 

bearing features, proximity sensors are used to measure vibration of such rotor 

systems; this process is described in the next section. 

 

Figure 2-1 Structure of a plain-sleeve, fluid-film bearing and proximity sensors.   

 

2.1.2 Data Acquisition of Vibration Signals from Fluid-film Bearing 

Rotors 

Proximity sensors, also known as gap sensors, are used to measure vibration signals 

from fluid-film bearing rotor systems. Unlike an accelerometer, which is widely used 

in measuring vibration of rolling element bearing (REB) rotor systems and gear 

systems, the gap sensors directly measure the distance between the sensor and the 

rotor [17-19], as shown in Figure 2-2. In the figure, the proximity sensors measure 

without any contact with the rotor or housing. By measuring the change of eddy 

current, the voltage values are obtained through the amplifier and the data acquisition 

(DAQ) device. The recorded voltages, which are proportional to the gap, include AC 

and DC components. AC and DC components indicate the vibration of the rotors and 



10 

 

the average of the shaft centerline, respectively [20]. The AC components are mainly 

used for the diagnosis of rotor systems.  

Most fluid-film bearing rotors use proximity sensors in pairs. The paired sensors 

are installed in a right angle to acquire two independent signals, as shown in Figure 

2-3 . The vibration signal acquired from one sensor can be denoted as the x-signal, 

while the signal from the other sensor can be denoted as the y-signal. Since x- and y-

sensors are placed in a right angle, the orbit of the shaft centerline position can be 

determined using the two signals. 
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Figure 2-2 The general principle of the proximity sensor. 
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Figure 2-3 Diagram of data acquisition and proximity sensor placement.
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2.1.3 Analysis of Vibration Signals for Fluid-film Bearing Rotor 

Systems 

Vibration signals are acquired through proximity sensors located at several axial 

positions along the rotor. At each axial position, two sensors are placed orthogonally 

to measure the behavior of the rotor in all directions. The monitoring of the orbits, 

the trace of the centerline of the rotor, is widely used in the field as orbits present the 

state of the rotor system directly. By tracking centerline of the rotor, direction 

oriented health states (directional states) can be diagnosed accurately. In contrast, if 

a sensor is placed at each axial position, the vibration signals may vary according to 

the direction of anomaly states. The path of the rotor centerline can be expressed 

using the orbit plot, which can be generated from the two vibration signals, namely 

the x- and y-signals, from the two orthogonally placed sensors. The orbits can be 

obtained by illustrating the two vibration signals on each 2-dimensional Cartesian 

coordinate. Note that the x- and y-signals must be perfectly synced to acquire the 

accurate orbit plot.   

Besides orbit plots, frequency response is another widely used technique for 

vibration signal analysis. The rotating systems generate recurring signals that can be 

clearly shown by the frequency response. Thus, the frequency response of each 

health state shows different results. However, the variation of vibration signals due 

to directionality affects the frequency response results, which may lead to unreliable 

diagnosis results. Thus, other techniques, such as full-spectrum techniques, are 

required for robust diagnosis [21, 22].  

For the transient state of the rotors, the short-time Fourier transform may be used 

instead of frequency response. As the rotational frequency varies in the transient 
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state, the frequency response must be viewed in the time-domain. In addition, 

waterfall and cascade plots can be also used for analysis of vibration signals in the 

transient state. Also, variation of vibration amplitude and phase can be monitored 

using bode plots.  

 

2.1.4 Summary and Discussion 

Fluid-film bearing rotor systems show relatively clear signals, as compared to 

REB systems or gear systems. For example, 1x of the rotating speed frequency 

component is dominant in a normal state. This is because the lubrication oil supports 

the rotor without any mechanical components, such as rolling elements. Through the 

proximity sensors located in pairs at an axial position, the gap voltage signals are 

converted to the displacement vibration signals of the rotors. The vibration signals 

of four different health states indicate that directional health states exist. For the 

directional health states, the signals may vary with respect to the direction of the 

anomaly.  

Some prior research efforts have tried to consider direction in rotor diagnosis by 

using the orbit shape and the full-spectrum of vibration signals. Yan, et al. [23] 

modified the orbit into seven different features to identify the state of a steam turbine 

generator. Wang, et al. [24] quantified the orbit information with isometric feature 

mapping to identify faults in rotors. Other researchers also tried to quantify the orbit 

shape to make more accurate diagnosis of rotors [22, 25-27]. However, in the process 

of quantifying the orbit shape, detailed physical interpretation of vibration signals 

may be diminished. In other work, the full-spectrum of vibration signals was used to 
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see forward and backward whirling frequency components by using x- and y- signals 

[18, 28-30]; however, the method could not consider vibration signals in all 

directions. Thus, to diagnose the directional health states robustly, a vibration image 

generated by the omnidirectional regeneration (ODR) technique is used in this study.  

 

2.2 Overview of Convolutional Neural Network (CNN) based 

Rotor System Diagnosis 

This section provides an overview of the current state-of-the-art of convolutional 

neural network (CNN) based rotor system diagnosis. As CNNs have shown reliable 

performance in vision recognition, more and more researchers are using CNN in the 

PHM area as well [1]. Thus, this section provides basic principles of CNN in Section 

2.2.1. A summary of diagnosis research using CNN is provided in Section 2.2.2.  

 

2.2.1 Image Recognition by Convolutional Neural Network (CNN) 

Convolutional neural networks (CNNs) are widely used in various applications, 

including image recognition, because CNN has showed promising performance in 

many studies [31-34]. The CNN model was inspired by the mechanism of the visual 

cortex in the brain [31], which can identify patterns in images. The standard structure 

of a CNN contains convolutional layers, pooling layers, and fully connected layers. 

Combinations of the convolutional layer and the pooling layer make the deep 

structure of the network; the few fully connected layers come at the end.  
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In the convolutional layer, the input images are convoluted with weights called 

filters. As images contain high correlation information in a local region, the filters 

extract such local connectivity features by convoluting with the image. The kth 

feature map of the convolutional layer, 𝑦𝑖𝑗
𝑘 , with a grayscale (2-dimensional) image 

can be expressed as: 

𝑦𝑖𝑗
𝑘 = 𝜎 ( ∑ ∑ 𝜔𝑚𝑛

𝑘 𝑣(𝑚+𝑖×𝑠)(𝑛+𝑗×𝑠)

𝑓

𝑛=1

+ 𝑏𝑘

𝑓

𝑚=1

)  (2.1) 

(0 ≤ 𝑖 ≤
𝑝ℎ − 𝑓𝑠

𝑠
, 0 ≤ 𝑗 ≤

𝑝𝑤 − 𝑓𝑠

𝑠
)  

where i and j denote the coordinates of the feature map, s denotes the size of stride, 

ph and pw denote the height and width of the input image, respectively, 𝑓𝑠 denotes 

the size of the filter, σ denotes the activation function, 𝜔𝑚𝑛 denotes the filter values 

at the (m, n) coordinate, 𝑣(𝑚+𝑖×𝑠)(𝑛+𝑗×𝑠) denotes the pixel values of the image at 

the (m+i× s, n+j× s) coordinate, and bk denotes the bias for the kth  filter. After the 

convolution, activation functions, such as rectified linear unit (ReLU), are used; this 

allows the network to learn nonlinear features [35].  

The convoluted results are then passed to the pooling layer, where one value is 

pooled out from a small sub-region. By applying the pooling function, similar 

features in sub-regions can be reduced, while maintaining the significant features. In 

addition, the pooling also reduces the effect of slightly modified and shifted patterns 

[9]. Among various pooling functions, max-pooling is the most widely used function; 

it returns only the maximum value. As pooling extracts one value from a few feature 

values, the size of the output is reduced compared to that of the input.  
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The fully connected (FC) layers come at the last stage of CNN. The role of the 

FC layers is to provide a classification using the features extracted in the 

convolutional and pooling layer in the previous layers. Thus, the number of nodes in 

the very last layer equals the number of classes. By comparing the output values of 

the nodes at the last layer, the data can be classified into the class that has the 

maximum value.  

To extract high-level features from complex images, deep structures of CNN, 

such as ALEXNET [31], VGG [36], ResNet [37], GoogLeNet [38] have been 

developed. However, the work described in this paper uses shallow CNN structures 

for two reasons. First, images from fluid-film bearing rotor systems used in the case 

study are relatively simple, as compared to images used to train deep CNNs. Second, 

shallow structures can be used to analyze the filters that decide the performance of 

the network. As the structure gets deeper, the network gives higher-level features, 

and these features may not be interpretable. Considering these two aspects, the 

network used in the work outlined this paper is described in Section 5.1. 

 

2.2.2 CNN-based Rotor System Diagnosis Based on Vibration Signals 

CNN has been adopted and modified to enhance the performance of diagnosis for 

various rotating machinery. The application that used the most CNNs is the rolling 

element bearing (REB) system. As conventional bearing fault diagnosis uses the 

vibration from an accelerometer, the input data are transformed into 2-dimensional 

matrices. In [39], the vibration signals are transformed into matrices and used as the 

inputs to the hierarchical adaptive CNN (ADCNN). The modified CNN uses 
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hierarchical networks, one for fault diagnosis and the other for the identification of 

fault size. Each network, which includes three convolutional and pooling layers, is 

tested by various learning rates to obtain the best performance. In contrast, 

preprocessed acceleration data are used as an input to a conventional CNN [40]. The 

frequency response of one second long vibration signals is set as the sample. Since 

two accelerometers are used, the frequency responses of the two vibration signals 

are stacked to form a 2-dimensional input image. Both research efforts showed 

improved performance compared to that of the traditional approaches.  

Also, CNN has been used to diagnose faults of gearboxes [41]. Vibration signals 

from accelerometers have been used as well. Here, the signals from multiple sensors 

are preprocessed and significant features are extracted. Then, two-dimensional 

matrices are formed and used as the inputs to the CNN-based classifier. Although 1-

layer CNN was used in this study, CNN outperformed the conventional support 

vector machine (SVM) classifier approach.   

In addition, research on motor fault detection using CNN has been conducted 

recently [42]. The motor fault detection is achieved by using stator current signal, 

which is a widely used data type to identify motor faults. Since the number of current 

signals is single, 1-dimensional CNN is used. The results showed improved 

performance without developing hand-crafted features.  

 

2.2.3 Summary and Discussion 

Convolutional neural networks (CNN) recognize patterns of images by convolution 

with filters, also known as kernels. The training process mainly updates the filters to 
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recognize the input image patterns through repeated epochs. Occasionally, the non-

linearity features can be learned through the non-linear activation function, as well 

as the deep structured layers. Due to the high performance of CNN in vision 

recognition, CNNs have been widely used in fault detection and diagnosis research, 

as stated in the previous section. The research on fault diagnosis of rolling element 

bearings, motors, and gearboxes has shown increases in performance when CNN 

was used. In addition, pumps and general rotor systems have also been successfully 

diagnosed by CNN [43, 44].  

However, most of the studies have not customized input data of CNN. For 

example, the transformation of inputs were processed without any explanation or 

consideration of the physical implications. As convolutions between an input image 

and a filter grant features of highly correlated adjacent pixels, the transformation of 

inputs must consider the physical interpretation. In order to properly use CNN in 

fault diagnosis research, insights about preprocessing of data should be considered. 

This need provides the motivation for the research described in this dissertation.   

 

2.3 Strategy for Deep Learning Based Diagnosis of Class-

Imbalanced Data Sets 

As most engineered systems operate in normal conditions, the size of the available 

fault data set is often smaller than that of the normal data set. In particular, large-

scale systems require an extremely high cost to acquire data for anomaly states. Thus, 

the class imbalanced (CI) case is common for developing the deep learning based 

diagnosis systems. Therefore, numerous research efforts have been conducted 
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regarding the imbalanced data issue. Proposed solutions can be categorized into three 

approaches: data-level, algorithm-level, and hybrid approaches [45, 46]. Each 

approach is reviewed in turn in the following sections. As the amount of available 

research that deals with deep learning based rotor system diagnosis is not enough, 

the range of literature is extended to also examine general CI problems.  

 

2.3.1 A Data-Level Strategy for Class Imbalanced Data Set Training  

The data-level approach proposed to resolve the class imbalanced (CI) training data 

problem has been studied since 1990s [47]. Data-level approaches developed can be 

used in deep learning algorithms as well. The typical data-level approach increases 

the data size by oversampling the minority class data or reducing the data size by 

undersampling the majority class data [48]. The oversampling and undersampling 

techniques can reduce the bias of the training data, which prevents the training 

process from being biased to the majority class [48]. Specifically, the sampling can 

be done by picking random samples or choosing directed samples [47, 49]. Thus, the 

combination of over-/under-sampling and choosing random/directed samples results 

in a few different approaches. There is no universal approach that fits in all cases; 

instead, the optimal approach depends on the distribution of the data set. In addition, 

some approaches use both oversampling and undersampling at the same time [50].  

Numerous literature examples show that synthesizing the minority class samples 

can improve performance more effectively than oversampling the few samples [50]. 

The widely used synthesizing method, synthetic minority over-sampling technique 

(SMOTE), showed enhanced results compared to other approaches [50]. As SMOTE 
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randomly creates samples on a line between minority samples, the CI problem can 

be overcome in certain cases. However, for cases of densely distributed classes, the 

SMOTE may create overlapped samples, which does not help increase the overall 

performance. Thus, a few other modified approaches have been developed. The 

borderline-SMOTE and safe-level-SMOTE approaches were suggested to reduce the 

overlapped samples derived by SMOTE [51, 52]. Other techniques have also been 

developed to synthesize samples by reducing the random effects [53-56].  

 

2.3.2 An Algorithm-Level Strategy for Class Imbalanced Data Set 

Training  

The issue of class imbalanced (CI) data sets at the algorithm-level has been studied 

by numerous researchers who have used machine learning (ML) as a classifier [57]. 

As the algorithms are trained based on the training data set, conventional training 

would give a biased classifier to the majority class samples. Thus, various 

researchers have suggested modifying the classifier to focus more on the minority 

class. Specifically, kernels in support vector machine (SVM) are modified 

considering the distribution of the minority class [58-60]. In addition, the neurofuzzy 

algorithm and extreme learning machines were modified to present more general 

features of the minority class [61, 62].  

For deep-learning algorithms, modification of the cost function for the 

optimization was used frequently [45, 48, 63-71]. To learn the generalized features 

of the training data set, the loss values of the minority class should be modified [72-

76]. One study considered the cost of minority class samples by adding a customized 
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layer before the last layer of CNN [45]. Another study suggested mean false error 

(MFE) and the mean squared false error (MSFE) as the loss function when training 

a deep neural network [67]. In [48], two different stacked autoencoders (SAE) are 

used for learning different features; these showed better prediction results. Also, the 

loss function term that reflects the inter-cluster and inter-class margins can reduce 

the effect of the CI data sets [71].  

 

2.3.3 Summary and Discussion 

To tackle the class imbalanced (CI) problem in machine learning, three categories of 

approaches can be used: data-level, algorithm-level, and hybrid approaches. In fact, 

as the hybrid approaches combine data-level and algorithm-level approaches, they 

can be either classified into data-level or algorithm-level approaches. Through the 

literature review, it is clear that data-level approaches were studied primarily as 

machine learning techniques became popular. However, as the number of deep 

learning algorithms has increased since the year 2010, hybrid as well as algorithm-

level approaches have been frequently used to deal CI problems. Generally, deep-

learning approaches are applied to large data sets, which makes some of the complex 

data-level algorithms inefficient for tackling the CI problem. This issue encourages 

study of the hybrid or algorithm-level deep learning techniques for CI problem.  

Furthermore, most of the studies that examine CI problems consider the ratio 

between the size majority and minority class samples of 0.01. However, the systems 

in the field may have a lower imbalanced ratio, such as 0.001 or less. These extreme 

imbalanced cases may have significant negative effects when conventional deep-
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learning algorithms are used. Since training of deep learning uses gradient 

information of mini-batches, the composition of mini-batches may vary along with 

the imbalanced ratio, which directly leads to performance degradation. In addition, 

the various imbalanced ratio cases in a multi-class setting have not been considered 

in the literature. Occasionally, the size of each class in the training data set may differ 

in order, which may have undesirable results. Thus, a severe imbalanced ratio with 

various multiple cases for deep learning based rotor system diagnosis should be 

considered to assure the reliability of the diagnosis systems.  
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Chapter 3   

   

Description of Testbed Data 

This section describes the data from the testbed that is used in the research 

throughout the dissertation. The data was acquired from a Bently Nevada Rotor Kit 

(RK4), which is a testbed for a fluid-film bearing rotor system. Four different health 

states were considered based on the experimental setup, which is presented in Figure 

3-1. Section 3.1 describes the configuration of the testbed and Section 3.2 presents 

an analysis of the acquired vibration signals for each health state.  

 

3.1 Configuration of the Testbed 

The vibration signals from proximity sensors of the four different health states were 

acquired from the testbed. The two-shaft rotor was driven by the motor at 3,600 rpm, 

steadily. The shorter shaft was directly driven by the motor, and the longer shaft was 

connected to the other end of the shorter shaft by a flexible coupling. The flexible 

coupling was used to reduce the signals of the motors. At the longer shaft, an 800-

gram disc was fixed in the middle of the two fluid-film plain bearings supporting the 

shaft. For every test, a balancing process was performed to make the normal 

vibration amplitude consistent. Also, two channels of vibration signals from two 

proximity sensors at the longer shaft were acquired, along with a tacho signal. Based 
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on the tacho signal, the raw signals were resampled to have an equal number of 

samples in a vibration rotation to reduce the measurement uncertainty. For each 

health state, five repeated tests were conducted to avoid simplicity in the data set. 

Overall, five data sets, which contain four different health states for each set, were 

obtained and used throughout the research described in this dissertation.  

 

3.2 Analysis of Vibration Signals for Four Health States 

Four different health states were tested. First, the normal health state was defined 

as a system with only a small amount of unbalance. Through the balancing procedure, 

the root-mean-square (RMS) of the signal was set as 10 μm at 3,600 rpm. The 

measured signals follow a simple sinusoidal wave shape, as shown in Figure 3-2. 

Also, the vibration signals from actual gap sensors are similar to each other in terms 

of shape and amplitude. This indicates that the normal state is a non-directional 

health state.  

The oil whirl state is another non-directional health state, since the oil in the 

bearings affects the rotor system around the entire circumference of the rotor. 

Instability of the oil was introduced in the testbed by using the oil whirl kit of the 

RK4, which controls the pressure of the oil supply. At the transient states, the 

pressure was raised to a certain level to prevent oil whip. Only at the 3,600 rpm 

steady-state, was the pressure dropped and the oil whirl anomaly state created. The 

signals in Figure 3-3 were acquired from the gap sensors in the oil whirl kit. 

The rubbing state, precisely impact-rubbing, is a directional health state. The 
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testbed setting was exactly same as that of the normal state, but rubbing was 

implemented by forcing a rubbing screw to contact the shaft near the 2nd bearing. 

The screw partially contacts during each cycle of rotation, which can be viewed as 

an impact. The two measured signals show differences in shape and amplitude, and 

the rubbing effect is reflected as the cut at the peak, as presented in Figure 3-4. The 

rubbing test was also done after the balancing procedure. The rubbing was then 

implemented at the steady state of 3,600 rpm.  

The misalignment state was tested by shifting the shorter shaft downwards using 

a customized jig. Since the shaft was shifted in one direction, this state can be 

grouped as another directional health state. The measured signals shown in Figure 

3-5 also indicate that shaft rotation is affected by the direction of the shift. The two 

signals are very different in terms of the shape and amplitude. Each test was 

performed after a balancing procedure, and was run at a 3,600 rpm steady-state. 

Overall, the test configurations define the normal and the oil whirl states as non-

directional health states, while rubbing and misalignment states were defined as 

directional health states. This can be confirmed using a simple analytical example, 

which is provided in Chapter 4. 
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Figure 3-1 Experimental setup of rotor kit RK4. 

 

(c) Rubbing (d) Misalignment (b) Oil whirl 

(a) GE Bently Nevada Rotor Kit 



28 

 

 

Figure 3-2 Normal state time signals from (a) x and (b) y gap sensors; and frequency 

responses from (c) x and (ds) y gap sensors. 
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Figure 3-3 Oil whirl state time signals from (a) x and (b) y gap sensors; and frequency 

responses from (c) x and (d) y gap sensors. 
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Figure 3-4 Rubbing state time signals from (a) x and (b) y gap sensors; and frequency 

responses from (c) x and (d) y gap sensors. 
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Figure 3-5 Misalignment state time signals from (a) x and (b) y gap sensors; and 

frequency responses from (c) x and (d) y gap sensors. 
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Chapter 4   

 

 

Determining an Optimal Size of 

Vibration Images Considering 

Filter Size 

The size of input images for convolutional neural network (CNN) based diagnosis 

need to be determined with respect to the filter size. The size ratio between the input 

images and the filters in CNN can be viewed as one hyper-parameter that is decided 

heuristically. Specifically, the image pattern that separates one class from another 

class does vary according to the type of images. For example, recognition of a 

handwritten digit is different from recognition of traffic lights in a vehicle [77]. The 

digits can be distinguished by a few particular edges of each digit; thus, a filter size 

that includes the edges is adequate. In contrast, traffic lights may be detected as a 

whole traffic light, among other objects in an image; this requires the filter size to be 

equivalent or bigger than the traffic light. Thus, the size ratio between the input and 

the filters must be defined for each type of image.  

To use CNN-based diagnosis for fluid-film bearing rotor systems, the first 

preprocessing step is to generate the input images from the vibration signals. As few 

anomalies of fluid-film bearing rotor systems are directionally dependent of anomaly 

position, the vibration signals from all round directions should be acquired for robust 
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diagnosis [12, 78, 79]. Using these vibration signals, a vibration image can be 

generated, which represents the directionality of the anomaly or anomolies. Then, 

different sizes of vibration images with a fixed-filter size CNN can be studied to find 

the most suitable vibration image size.  

This chapter is divided into two parts. In Section 4.1, the vibration image 

generation process is described. Section 4.2 shows the results of the different image 

sizes with respect to fixed-size filters.  

 

4.1 Vibration Image Generation by Omnidrectional 

Regeneration (ODR)  

This section describes the vibration image generation steps that were used through 

the research described in this dissertation. The motivation for generating images 

from the gap sensor signals of a fluid-film bearing rotor system is to robustly 

diagnose the anomaly health states. As some anomaly states present different 

vibration signals through fixed gap sensors, vibration signals around the 

circumference of the rotor are required to obtain robust prediction results. However, 

fluid-film bearing rotor systems only use two gap sensors, located orthogonally in 

an axial location of the rotor. Since the location of gap sensors is limited, a novel 

method is required to acquire vibration signals. Thus, the omnidirectional 

regeneration (ODR) technique is used to generate any vibration signals from the two 

acquired signals. Based on the ODR signals, a vibration image is generated that 

shows distinct patterns for each health state.  
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This section includes the directionality of some health states in Section 4.1.1. 

Then, the process of ODR is described briefly in Section 4.1.2. Lastly, the process 

for modified image generation from vibration signals is explained in Section 4.1.3. 

 

4.1.1 Directional Health States in Fluid-film Bearing Rotor Systems 

Health states, such as rubbing and misalignment, present inconsistent vibration 

signal patterns due to the directional nature of rubbing and misalignment. For these 

direction-oriented health states, the two fixed sensors in perpendicular position (as 

presented in Figure 4-1) may not accurately represent the state of the rotor system 

because an anomaly can happen in a direction that is not in line with the sensors. 

Thus, this section shows the variance of the directional health states with respect to 

the direction of the anomalies by using a simple mathematical model and the 

experimental data.  

A simple lumped rotor model is used to verify the directionality of rubbing and 

misalignment states. The model consists of a shaft with a disc supported by two fluid-

film bearings, as shown in Figure 4-2. To make the model simple, it is assumed that 

the damping and stiffness only exist at the bearing. This is presented with a black 

triangle. In addition, the mass of the shaft, as well as the gyroscopic effect of the disc, 

are ignored. The model of a normal state that has a bit of unbalance can be presented 

as follows: 

𝑀�̈� + 𝐶�̇� + 𝐾𝑥 = 𝑚𝑟𝜔2cos(𝜔𝑡 + 𝛿) (4.1) 

𝑀�̈� + 𝐶�̇� + 𝐾𝑦 = 𝑚𝑟𝜔2 sin(𝜔𝑡 + 𝛿) (4.2) 
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where M, C, K are mass, damping, and stiffness, respectively, and m, r, and δ are 

unbalance mass, radius, and angular orientation, respectively, ω is rotational speed, 

x and y are lateral displacements of the disk in orthogonal directions as a function of 

time t [20].  

Based on the model of a normal state, contact with the rubbing screw is enforced, 

which creates friction between the rotor and the screw. The friction can be modeled 

by modifying the normal state model and can be expressed as: 

𝑀�̈� + 𝐶�̇� + 𝐾𝑥 = 𝑚𝑟𝜔2cos(𝜔𝑡 + 𝛿) − 𝐹𝑁(cos𝜃 − 𝜇sin𝜃) (4.3) 

𝑀�̈� + 𝐶�̇� + 𝐾𝑦 = 𝑚𝑟𝜔2sin(𝜔𝑡 + 𝛿) − 𝐹𝑁(𝜇cos𝜃 + sin𝜃) (4.4) 

where M, C, K, m, r, δ, ω, x, y have identical meaning as in equations (4.1) and (4.2), 

FN indicates the normal force, μ is the friction coefficient, and θ is the direction angle 

of the rubbing part [20]. 

Similar physical characteristic can be observed in the basic misalignment model. 

An extra external force is applied in the direction of the misalignment, independent 

of the rotor speed. This non-harmonic force creates nonlinear equations and can be 

described as:  

𝑀�̈� + 𝐶�̇� + 𝐾𝑥 + 𝐾𝑥𝑥2 = 𝑚𝑟𝜔2cos(𝜔𝑡 + 𝛿) + 𝑃cos𝛾 (4.5) 

𝑀�̈� + 𝐶�̇� + 𝐾𝑦 + 𝐾𝑦𝑦2 = 𝑚𝑟𝜔2sin(𝜔𝑡 + 𝛿) + 𝑃sin𝛾 (4.6) 

where M, C, K, m, r, δ, ω, x, y have identical meaning as in equations (4.1) and (4.2), 

Kx and Ky are nonlinear stiffness coefficients, P is a radial force due to a misaligned 

rotor, and γ is a misaligned direction angle [20]. Using the example system data from 

[80], the responses of normal, rubbing, and misalignment states are obtained as 
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shown in Figure 4-3, Figure 4-4, and Figure 4-5.  

The responses of the normal rotor model, x and y in Figure 4-3, display the same 

vibration signals with a π/2 phase difference, which indicates that the vibration 

signals are not direction-oriented. The responses of the rubbing model in Figure 4-4 

are affected by the direction of rubbing (θ). The misalignment case in Figure 4-5 

shows different behavior upon the direction of misalignment (γ) as well. 

The above-stated mathematical models indicate that the external forces of 

rubbing and misalignment have directional nature, θ and γ. Thus, the responses of 

the two health states depend upon the direction of external forces. Overall, the 

directional nature in some health states hinders one from correct diagnosis using two 

gap signals; this leads to the significance of the ODR signals for robust diagnosis of 

fluid-film bearing rotor systems.  

 

Figure 4-1 Configuration of gap sensor signals for a fluid-film bearing rotor system. 
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Figure 4-2 A simple analytical model for validation of directionality for some 

anomaly health states. 
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Figure 4-3 Time plots of signal (a) x and (b) y, and frequency response plots of signal (c) x and (d) y from response of a normal-

state model.  

 

Figure 4-4 Time plots of signal (a) x and (b) y at θ=0°, and (c) x and (d) y at θ=45° from response of rubbing-state model.  
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Figure 4-5 Time plots of signal (a) x and (b) y at γ =0°, and (c) x and (d) y at γ =45° from response of misalignment-state model. 
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The directionality of rubbing and misalignment states can also be validated by 

experimental data. The two health states were tested on the RK4 rotor kit testbed, as 

presented in Figure 3-1. Two shafts of 10 mm diameter are supported by three plain 

sleeve fluid-film bearings. The longer shaft is supported by two bearings with an 

800-gram disc attached in the middle of the shaft. For the normal state, the amplitude 

of the vibration signals was set at a 10 μm root-mean squares (rms) level, which was 

determined from ISO 7919-2 [81]. The impact rubbing state was obtained by placing 

a rubbing screw into the normal state of the rotor generating harmonic external force. 

To test the misalignment state on the testbed, a customized jig was attached to shift 

the long shaft horizontally or vertically. A detailed description of the testbed 

configuration is provided in [12, 79].  

The time plots and frequency response plots of vibration signals are shown in 

Figure 4-7 to Figure 4-12. The vibration signals are acquired through sensors placed 

in four different directions, as presented in Figure 4-6. Signals from x0, xN/4, xN/2 and 

x3N/4 sensors are presented in sub-figures (a), (b), (c), and (d), respectively. The 

normal state in Figure 4-7 shows a slight difference between the signals with a phase 

shift. The FFT plots in Figure 4-8 also show that the frequency responses are similar 

to each other, with 1x of rotating frequency (60Hz) being dominant. In contrast, the 

time plots of the rubbing state in Figure 4-9 indicate that the magnitude and the shape 

of the signals change greatly. This is also reflected in the frequency response in 

Figure 4-10, where 1x magnitude varies significantly with respect to the sensors. 

Other harmonic components change as well, which clearly indicates the directional 

dependency. Likewise, the misalignment signals also show a large variance over the 

directions, as presented in Figure 4-11 and Figure 4-12. 
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Figure 4-6 Sensor directions for vibration data acquisition.
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Figure 4-7 Time plots of testbed signal (a) x0, (b) xN/4, (c) xN/2, and (d) x3N/4 of a normal state.  

 

 

Figure 4-8 Frequency response plots of testbed signal (a) x0, (b) xN/4, (c) xN/2, and (d) x3N/4 of a normal state. 
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Figure 4-9 Time plots of testbed signal (a) x0, (b) xN/4, (c) xN/2, and (d) x3N/4 of a rubbing state. 

 

 

Figure 4-10 Frequency response plots of testbed signal (a) x0, (b) xN/4, (c) xN/2, and (d) x3N/4 of a rubbing state. 
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Figure 4-11 Time plots of testbed signal (a) x0, (b) xN/4, (c) xN/2, and (d) x3N/4 of a misalignment state. 

 

 

Figure 4-12 Frequency response plots of testbed signal (a) x0, (b) xN/4, (c) xN/2, and (d) x3N/4 of a misalignment state. 
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4.1.2 Omnidirectional Regeneration of Vibration Signals 

In fluid-film bearing rotor systems, two perpendicular fixed sensors are implemented, 

as presented in Figure 4-1. However, the two acquired signals from the two fixed 

sensors may not accurately represent the state of the rotor system because an 

anomaly can happen in a direction that is not line with the sensors. The directional 

dependency of a few health states has been confirmed in Section 4.1.1. To obtain 

reliable and accurate diagnosis results, vibration signals from other directions should 

also be acquired. However, adding extra sensors requires the structure of the system 

to be modified, and may not always be possible. Thus, the omnidirectional 

regeneration (ODR) technique has been developed [12, 79].   

The ODR technique can be referred to as placing virtual sensors in any direction 

and acquiring signals from those virtual sensors. The ODR signals from the ith virtual 

sensors, xi and yi, are defined (i=1, 2, …, N) as: 

𝑥𝑖 = [cos(𝑖 × Δ𝜃)]𝑥0 − [sin(𝑖 × Δ𝜃)]𝑦0 (4.7) 

𝑦𝑖 = [sin(𝑖 × Δ𝜃)]𝑥0 + [cos(𝑖 × Δ𝜃)]𝑦0 (4.8) 

where x0 and y0 are the vectors that consist of vibration signals from actual x- and y-

axis proximity sensors, respectively; N is the maximum number of the ODR signals 

to be generated; and Δθ is the increment of the rotation angle. 

The ODR technique can produce vibration signals from any arbitrary direction in 

addition to the acquired vibration signals (x0 and y0). It is worth noting that (1) Δθ 

should be determined by considering the tradeoff between computing power and 

diagnostic robustness, (2) ODR signals are within the range of a π circumference 

angle due to the characteristic of symmetry, and (3) xi covers all yi if the ODR covers 
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more than half of a circumference. 

The virtual sensors can be placed at any orientation without any physical change 

to the structure of the system. These virtual sensors can then be used to obtain 

omnidirectional regeneration (ODR) signals. Based on the ODR signals, a vibration 

image can be generated; this is described in next section.  

 

4.1.3 Vibration Image Generation 

As stated in Section 4.1.1, ODR signals around the circumference of the rotor are 

required to diagnose directional health states, such as rubbing and misalignment. 

Based on these ODR signals, vibration images can be generated that contain spatial 

information as well as temporal information [2, 79]. A few cycles of single channel 

vibration signal represent temporal information of the rotor, while ODR signals 

represent directional information that is the spatial information of the rotor. Thus, 

stacking multiple ODR signals of few cycles can generate a vibration image 

containing both temporal and spatial information, as shown in Figure 4-14. The 

vibration images used in this dissertation modified the process used in [2, 79], as 

shown in Figure 4-13.  

The process of generating a vibration image involves three steps, as presented in 

Figure 4-16. First, the ODR signals are generated around the circumference of the 

rotor using the signals from the two proximity sensors. The ODR signals can be 

regarded as vibration signals from virtual sensors. Then, the ODR signals of two 

revolutions are stacked vertically. The two rotor revolutions are defined due to the 

characteristics of the sub-harmonic dominant health state, i.e. oil whirl state. Finally, 
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each pixel value of the image is normalized using the biggest pixel value, which is 

equivalent to the biggest peak value among the ODR signals. The final step of 

normalization generates the grayscale image, which shows white if the pixel value 

is 1 and black if pixel value is 0. In addition, the size of the images were changed to 

28-by-28 pixels. Although it is preferable to use images without size conversion, the 

patterns are maintained even after the size is reduced. Therefore, the reduced images 

were used for the work described in this dissertation to accelerate the computation, 

while maintaining the classification performance.. Examples of standard and 

modified vibration images are shown in Figure 4-15 (a) and (b), respectively.  

A few features have been modified from the original vibration image generation 

steps because a convolutional neural network was used in this dissertation research. 

The basic convolution of filters in CNN reduces the second and third steps that find 

the reference ODR signals and the synchronization of the phase. The pattern of white 

and black gradients can be captured independent of the location in the image. Thus, 

the two steps are not required when using CNN. In addition, to make the patterns 

appear as a whole, the rotation angle for the ODR signal generation has been 

increased from π to 2π. The white and black gradient patterns in the standard 

vibration images can be disconnected if the π angle of the ODR signals is used.  

The generated vibration images of four health states – normal, rubbing, 

misalignment, and oil whirl – are shown in Figure 4-17. The normal images present 

a diagonal stripe pattern, which indicates the ODR signals have 1x of rotor speed 

frequency as a main component. However, other images present complex patterns. 

Specifically, the rubbing and misalignment images have different shapes among each 

ODR vibration signal due to the directionality. In addition, the vibration image of 
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the oil whirl state indicates a weak 1x frequency pattern with an overlapped region 

between the white stripes.  

The resized vibration images in Figure 4-17 can be distinguishable by human 

vision recognition. The CNN algorithm can also classify the images by the correct 

labels, if the features (or patterns) of images can be recognized properly. Thus, a 

proper filter size, which convolutes with images with respect to the size of images, 

must be defined to obtain great performance.  

 

Figure 4-13 Vibration image generation steps: (a) standard vibration images and (b) 
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modified vibration images. 

 

Figure 4-14 Temporal and spatial information direction of a vibration image. 

 

 

 

Figure 4-15 Example of (a) a standard vibration image and (b) a modified vibration 

image. 

(a) 

(b) 
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Figure 4-16 Process of vibration image generation. 

 

 

Figure 4-17 Examples of vibration image: (a) normal, (b) rubbing, (c) misalignment, and (d) oil whirl.

(a) (b) (c) (d) 
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4.2 Determining the Optimal Ratio Between Vibration Image 

Size and Filter Size 

The size of a standard vibration image is defined by the resampling rate and the 

number of ODR signals. The width of a standard vibration image is the double of the 

resampling rate as the two revolutions form an image. The height of a standard 

vibration image is the number of ODR signals around the full circumference of the 

rotor. Thus, the resampling rate of 128 samples per revolution and the 32 ODR 

signals make a 32-by-256 pixel sized image, which adds up to 8,192 pixels. Although 

the standard image prevents losing information when the image is resized, the 

original size is too large to be processed using a typical graphics processing unit 

(GPU)1 that is used for deep learning on a desktop.  

The effect of the modified vibration signals allows the data being trained and 

tested by a GPU, which is considerably faster than using the central processing unit 

(CPU) only. Also, the step of phase sync is neglected, which gives much more 

available data for deep learning based diagnosis. Obviously, the performance was 

maintained even with the modified images. Thus, the modified vibration images are 

used throughout the research described in this dissertation. The modified images will 

be simply called ‘vibration images’ in the rest of the sections.  

In fact, the optimal size of the vibration image with respect to the filter size should 

                                                      

 

 

 

 

1 NVIDIA GeForce GTX TITAN X, NVIDIA TITAN Xp, NVIDIA GeForce GTX 1080 Ti 
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be determined. The ratio of the two sizes can be regarded as one of the hyper-

parameters for the convolutional neural network (CNN) that needs to be tuned based 

on the vibration images. As too large an image size with respect to the filter size may 

not capture any meaningful features, the size of the vibration image may have an 

upper bound that maintains a certain performance level. There may be a lower limit 

as well. Thus, this section studies the optimal size of images with a fixed filter size.  

The prediction accuracies are obtained by using k-fold validation of five different 

sets [82, 83]. Each set includes four different health states: normal, rubbing, 

misalignment, and oil whirl.  

 

4.2.1 Vibration Image Size with Respect to Filter Size  

The ratio of vibration image size and the CNN filter size should be determined. As 

this dissertation focuses on preprocessing, the CNN filter size was fixed as 5-by-5 

pixels and the vibration image size was altered. The ratio can be defined as the 

number of the width or height of pixels, which considers only square-sized images 

and filters. The ratio can be presented as: 

Image to filter ratio= 
width or height of an input image

width or height of a CNN filter 
 

For example, if the vibration image is set as 25-by-25, the ratio is 25/5 = 5.  

The minimum ratio is 1, which indicates an image of the same size as the filter. 

The maximum ratio is not limited, as the size of the image can be increased infinitely 

when the filter size is fixed. The vibration images are resized from the original size 
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of 128-by-256 using a bi-cubic interpolation method [84]. An example of an original 

size image is shown in Figure 4-18. The resized images are shown in Figure 4-19 (a) 

to (d). If the filter size is 5-by-5, each sub-figure has a ratio of 1, 5, 10, 20, 

respectively. The gradient patterns are preserved as resized, but the image of ratio 1 

is hardly recognizable by the human eye. In addition, an image size of ratio 20 may 

not be recognizable because the gradient patterns may not appear clearly in the size 

of the filters. Thus, the optimal size of images with respect to the size of filters needs 

to be studied.  

 

 

Figure 4-18 A vibration image of original size 128-by-256.  
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Figure 4-19 Resized vibration images of size (a) 5-by-5, (b) 25-by-25, (c) 50-by-50, and (d) 100-by-100.
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4.2.2 Gradient of Vibration Image  

In a convolutional neural network (CNN), filters that have a less size than the images 

convolute through the images [85]. Through sequences of convolutions between the 

filters and the images, representations of features are obtained as the layers go 

through. The best feature representations can be achieved by finding optimal hyper-

parameters, which include the sizes of filters and images. However, there is no rule 

of thumb that decides the optimal ratio, since it varies according to the type of images 

and the structure of the CNN. Thus, this section suggests a quantified criteria for the 

vibration image for fluid-film bearing rotor systems.  

As stated above, the overall performance of a CNN is closely related to the filters’ 

capability to capture the feature patterns. Figure 4-20 presents the segmented 

vibration images using a filter size of 5-by-5 with different image sizes. Each sub-

figure is scaled to the same size. In Figure 4-21, the first segmented images in Figure 

4-20 are displayed. The segmented figures indicate that the larger gradient can be 

seen for the image size of 25-by-25 in Figure 4-21 (b). Likewise, if the gradient 

patterns of each health state image can be clearly presented in the size of the filter, 

it may have a higher chance of showing better performance. In contrast, if the ratio 

is too big to represent gradient patterns in a filter, such as in Figure 4-20 (d), the 

training may not succeed in learning the representative features, which may result in 

lower performance. Thus, as the size ratio grows bigger, the number of segmented 

images with weaker gradients increases, which may decrease the performance for 

diagnosis of fluid-film bearing rotor systems. 

To quantify the degree of gradient in segmented images, the image gradient is 

used. The gradient of segmented images can be used as a criteria for determining the 
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optimal ratio of the image size and the filter size. The image gradient of the 

segmented images can be calculated by the following steps, as presented in Figure 

4-22. First, the images are segmented by the size of the filters, as presented in Figure 

4-21. Then, the gradient within each segment can be derived using a gradient 

operator for image processing [86-89]. Between the magnitude and the direction of 

the image gradient, the magnitude component is averaged within the segment. The 

final step is to count the number of segments that has an averaged magnitude larger 

than a certain threshold. As the number of segments that have a strong gradient 

pattern increases, the overall performance may also increase because the segments 

present strong patterns.  

The threshold value for separating a strong or weak gradient of segmented images 

should be defined by the user, considering the patterns of the images. For the 

gradient-based images, examples of various image gradient are shown in Figure 4-23. 

The figures presents average magnitude of 0.1, 0.2, 0.3, and 0.4 of 5-by-5 pixel 

segmented images, respectively. The gradients (c) and (d) are clearly visible, while 

(a) and (b) show weak gradients.   

It should be noted that the suggested gradient criteria can be applied to the images 

of any gradient type. If the image size is too large compared to the size of the filter, 

the number of weakly gradient segmented images will increase, which eventually 

will decrease the performance. The number of strong gradient segmented images 

will be compared to the performance in the next section.   



57 

 

 

Figure 4-20 Vibration images segmented by the 5-by-5 size of (a) 5-by-5, (b) 25-by-25, (c) 50-by-50, and (d) 100-by-100 sized 

images.  

 

Figure 4-21 Segmented images of (a) 5-by-5, (b) 25-by-25, (c) 50-by-50, and (d) 100-by-100 sized images in Figure 4-20.

(b) (a) (c) (d) 

(b) (a) (c) (d) 
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Figure 4-22 Steps to determine the criteria for a strong gradient pattern. 
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Figure 4-23 Example of segmented images of gradient magnitude (a) 0.1, (b) 0.2, (c) 0.3, and (d) 0.4. 

 

(a) (b) (d) (c) 
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4.2.3 Study of the Optimal Ratio of Vibration Image Size to Filter Size 

The ratio of the image size to the filter size (the size ratio), which is a hyper-

parameter of convolutional neural network (CNN), clearly affects the overall 

performance. As the size ratio increases, the gradients of the vibration images are 

unlikely to be stored in the size of the filters. Thus, the image gradient of each 

segment is suggested to provide a reference for finding the optimal size ratio. The 

threshold for a strong gradient of the segmented images has been set as the averaged 

gradient magnitude (AGM) greater than a threshold (α). Note that the magnitude of 

the image gradient is used in this study, while the histogram of oriented gradients 

(HOG) uses the direction component of the image gradients [90].  

To see how many segments with AGM of larger than a certain threshold (α) take 

up from all segments, the following ratio is defined as follows: 

RSG= 
Number of segmented images (AGM larger than α)

Total number of segmented images
 

(α = 
1

filter size
) 

where RSG stands for the ratio of strong gradient segments and α is the user-defined 

threshold. For the vibration images, α is defined as 1 over the filter size, which gives 

0.2 for 5-by-5 sized filters. If the filter size is increased to 10-by-10, then α would 

be reduced to 0.1. This inversely proportional relationship is due to the decrease in 

gradient magnitude as the images are stretched. Based on this relation, RSG is 

defined by ratio of the number of segmented images that have gradients larger than 

α to the total number of segmented images.  

The RSG values of each size ratio are shown in Figure 4-24 and Figure 4-25. 
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Figure 4-24 presents the RSG of 5-by-5 segmented images, and Figure 4-25 presents 

the RSG of 10-by-10 segmented images. Each sub-figure corresponds to the normal, 

rubbing, misalignment, and oil whirl vibration images from the fluid-film bearing 

rotor system. A figure presents the RSG values with respect to the ratio of image size 

to filter size (size ratio) for the vibration images of a health state. Note that the RSG 

starts to decrease at the size ratio of 5 for the oil whirl state vibration image in Figure 

4-24(d), whereas, in the normal case it starts to drop at 7. The difference is due to 

the distinct patterns of each health state. As shown in Figure 4-17 (a) and (d), the oil 

whirl image has less gradient pattern than the normal image. This difference can be 

enlarged as the size ratio increases.  

The averages of the RSG for all vibration image data sets are shown in Figure 

4-26. As expected, the RSG value decreases as the size ratio increases. In other words, 

if the image size gets considerably bigger than the filter size, the segmented images 

show weaker gradients. In addition, the 10-by-10 segmented image cases show a 

similar trend to that of the 5-by-5 cases.  
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Figure 4-24 Average of the RSG values for 5-by-5 segmented image gradients of set 1: (a) normal, (b) rubbing, (c) 

misalignment, and (d) rubbing. 

 

Figure 4-25 Average of the RSG values for 10-by-10 segmented image gradients of set 1: (a) normal, (b) rubbing, (c) 

misalignment, and (d) rubbing. 
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Figure 4-26 Average of the RSG values for all health states: (a) 5-by-5 and (b) 10-

by-10 segmented images. 

 

Prediction accuracies of various size ratios by k-fold validation are presented in 

Figure 4-27 and Figure 4-28 using 5-by-5 and 10-by-10 sized filters, respectively. 

All combinations of three sets out of five sets were trained and evaluated by the other 

two sets, which gives 10 combinations. The last 10 epochs of all 10 combinations 

were averaged to see the overall performance. In addition, four other CNN structures 

were used to get the generalized results, which are shown as four sub-figures in  

Figure 4-27 and Figure 4-28. Specifically, cases (a) and (b) show the result of 1-layer 

CNN with a mini-batch size of 12 and 100, respectively. Similarly, cases (c) and (d) 

represent the results of 2-layer CNN with a mini-batch size of 12 and 100, 

respectively.  

First, when the filter size was fixed at 5-by-5, four different CNN structure cases 

maintained a prediction accuracy higher than 0.95 until the size ratio reached 10, 

which denotes an image size of 50-by-50. In detail, size ratios from 6 to 10 showed 

the best results: greater than 0.97. In contrast, the prediction accuracy at the size 

(a) (b) 

R
S

G
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G
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ratios of 15 and 20 presented lower accuracies. The two cases had the lowest and the 

second-lowest RSG values, as shown in Figure 4-26, which implies difficulty in 

learning the features of vibration image patterns. Furthermore, the filter size 10-by-

10 showed similar results as well, which is given in Figure 4-28. The optimal range 

of the size ratio lies between 5 to 8, which is a little less than the 5-by-5 size filter 

case.  

The results of the two filter size cases denote that size ratios of 10 or lower give 

prediction accuracy greater than 0.9. A size ratio greater than 10 presents lower 

accuracy, as the filters are not big enough to recognize the pattern of the vibration 

images. The decrease of the RSG values infers a decrease of the overall performance. 

Hence, optimal performance for diagnosing the health state of a fluid-film bearing 

rotor system can be achieved by using a size ratio that has an RSG value greater than 

0.8. Note that this value will vary according to various parameters, such as the 

number of classes and the type of images.   

In the rest of this dissertation, an image size of 28-by-28 pixels and a filter size 

of 10-by-10 pixels are used; this gives a size ratio of 2.8. The size ratio of 2.8 resides 

in the optimal range that was derived in this thrust. The image size of 28-by-28 pixels 

was chosen from the referenced MNIST data set sizes [77]. The larger filter size, as 

compared to the widely used CNN method, was selected to analyze the effect of the 

filter analysis in the next research thrust. Such sizes were fixed to reduce the number 

of hyper-parameter combinations.  
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Figure 4-27 Prediction accuracy of a 5-by-5 filter size with respect to the size ratio 

of four different CNN structures: (a) 1-layer, batch size 12, (b) 1-layer, 

batch size 100, (c) 2-layer, batch size 12, and (d) 2-layer, batch size 100. 

 

(a) (b) 

(d) (c) 
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Figure 4-28 Prediction accuracy of a 10-by-10 filter size with respect to the size ratio 

of four different CNN structures: (a) 1-layer, batch size 12, (b) 1-layer, 

batch size 100, (c) 2-layer, batch size 12, and (d) 2-layer, batch size 100. 

 

 

 

  

Sections of this chapter have been published as the following journal articles:  

1) Joon Ha Jung, Byung Chul Jeon, Byeng D. Youn, Myungyon Kim, Donghwan 

Kim, and Yeonwhan Kim, “Omnidirectional Regeneration (ODR) of Proximity 

Sensor Signals for Robust Diagnosis of Journal Bearing Systems,” Mechanical 

Systems and Signal Processing, Vol. 90, pp. 189-207, 2017. 

(a) (b) 

(d) (c) 



67 

 

Chapter 5   

 

Label-based, Mini-batch 

Combinations Study by Filter 

Sensitivity Analysis 

The convolutional neural network (CNN), one widely used deep learning algorithm, 

was proposed more than a decade ago [91]; however, CNNs have been used in only 

limited applications due to a lack of computational power and the immaturity of big 

data management strategies. Recently, the use of graphic processing units (GPU) in 

computation, and advances in big data analytics, have facilitated the use of CNNs 

[9]. CNNs are currently used in various types of applications. Correspondingly, the 

number of CNN-based fault diagnosis studies has increased significantly in the past 

few years [39-41, 92-94]. Most of the studies focus primarily on feature extraction 

[40-42, 95-97], which affects the overall performance of the data-driven approach. 

Since the deep structures of the network can learn representations from a large and 

complex dataset without human intervention, these deep networks are used to extract 

health features of engineered systems, a process that usually requires a considerable 

amount of effort and time. The health features extracted via CNNs have achieved 

robust diagnosis results, as compared to conventional data-driven approaches [40-
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42, 96]. To extract reliable health features from such big data, several techniques that 

accelerate the learning process are required. 

Most CNN-based fault diagnosis studies have adopted the random mini-batch 

gradient descent optimization method to accelerate the training process and to obtain 

a more stable solution [98-100]. Since each mini-batch is sampled randomly for 

every iteration, the variance of mini-batches is generated, which leads to the variance 

of the gradient information. The large variance between mini-batches normally slows 

down the learning process of the network; thus, computer science researchers have 

developed several techniques to reduce the variance. In [101, 102], sample sizes were 

dynamically changed during the training to improve the convergence of optimization. 

Other researches proposed a sampling technique for formulating mini-batches to 

reduce the variance [103, 104]. However, previous studies have not considered label 

information when generating mini-batches. Since fault diagnosis of mechanical 

engineering systems considers label information of data as a critical factor, label 

information in mini-batches may have a significant effect on overall performance. 

For example, sequential ordering of a biased-label mini-batch may force the network 

to learn a certain health state of a label. 

Thus, to validate the effect of labels in generating mini-batches for CNN-based 

fault diagnosis, we propose here a label-based, mini-batch gradient descent method. 

The proposed method uses label information when sampling mini-batches from the 

training data set; this is different from the process used for conventional random 

sampling. In our method, mini-batch compositions are formulated based on the label 

information, which indicates the health states of the mechanical system. Since the 

label portions of each mini-batch can be different from each other, the order in which 
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the mini-batches are used to update the gradient information also affects the 

performance. As a result, some label-based compositions and orders may present 

excellent performance, while others may show poor performance. The results are 

analyzed through the proposed filter sensitivity process, as well as through 

conventional performance measures. The label-based, mini-batch gradient descent 

method is validated using experimental data from a fluid-film bearing rotor testbed 

using a CNN.  

This chapter is organized as follows. In Section 5.1, the concepts of CNNs and 

mini-batch gradient descent are explained briefly. Section 5.2 describes the proposed 

label-based, mini-batch gradient descent method. Section 5.3 presents the 

description of the case study data used in this paper. The performance of the 

proposed method is analyzed in Section 0, including the filter sensitivity analysis.  

 

5.1 Mini-batch Gradient Descent in Convolutional Neural 

Network 

This section briefly describes the conventional convolutional neural network (CNN). 

Generally, CNNs are updated by the gradient descent method from mini-batches.  

 

5.1.1 Overview of Convolutional Neural Networks (CNN) 

In this study, two layers of CNNs are used; 1-layer and 2-layer CNN. The basic 

structure of the two CNNs are shown in Figure 5-1 and Figure 5-2, respectively. In 

the figures, each convolutional layer has 16 kernels (filters), which are called weights 
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in a neural network, generally [105]. As stated in Section 2.2, the filters are 

convoluted through the input image, which can be viewed as weight sharing. This 

significantly reduces the number of parameters to train, while emphasizing the local 

connectivity within the images [9]. The hyper-parameters of the two example CNNs 

are presented in Table 5-1. Two fully connected (FC) layers were attached at the end 

of the network. The size of the filter was set as 10-by-10 because the images showed 

large sized patterns. The dimension of a filter for the first and the second 

convolutional layers are two and three, respectively, as the first convolutional layer 

adds a dimension to the input feature map.  

In addition, the rectified linear unit (ReLU) method was used for the activation 

function at each layer and a max-pooling function was applied to the output of the 

convolutional layers. The size of the image was preserved by using zero-padding at 

the convolutional layers; however, the image size was reduced by half at the pooling 

layers. Thus, the number of weights that connect the convolutional layer and the first 

FC layer is different for the two CNN structures. For example, if the 16 filters are 

used in each convolutional layer, the number of the parameters are 3,136 and 784, 

respectively. An adaptive moment estimation (Adam) algorithm was used for 

training the filters with a learning rate of 0.001 [106] and with the size of the mini-

batch fixed to 12. To avoid the network being overfitted to the training data set, a 

dropout ratio of 0.3 was used for each layer.  
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Table 5-1 Example of hyper-parameters of the convolutional neural network.  

Number of 
conv. layers 1 2 

Number of filte

rs Layer 1: 16 Layer 1: 16 

Layer 2: 16 

Batch size 12 12 
100 

Fully connected

  

(FC) layer 
FC layer 1: 16 nodes 
FC layer 2: 4 nodes 

Learning rate 0.001 

Activation 
function ReLU 

Pooling 
function Max pooling 

Dropout ratio 0.3 

Optimizer Adam 
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Figure 5-1 Structure of 1-layer convolutional neural network (CNN). 
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Figure 5-2 Structure of 2-layer convolutional neural network (CNN).
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5.1.2 Mini-batch Gradient Descent  

The mini-batch gradient descent (MGD) method is a technique that is widely used 

to accelerate the training process, while improving the generalization ability of the 

network. As is denoted by the name, the mini-batch method splits training data into 

subsets, of which cardinality is larger than one and smaller than the size of the 

training data. For every mini-batch, the average gradient is used to update the weight 

parameters of the network, which can be stated as: 

𝜽𝑘+1 ← 𝜽𝑘 −
𝜂

|𝑩𝑘|
∑ ∇𝜽𝐽(𝜽𝑘; 𝒙𝑖)

𝑖∈𝑩𝑘

 (5.1) 

where θk is the weight of the network at the kth iteration, η is the learning rate, Bk is 

the kth subset of the training data, 𝐽 is the cost function for the optimization problem, 

and xi is the ith training data.  

As stated in the previous paragraph, most deep learning algorithms adopt MGD 

learning instead of stochastic gradient descent (SGD) or batch gradient descent 

(BGD). SGD updates the weight parameters for all training data, as shown in 

equation (5.2), and the training process is slower than MGD [107]. Also, the variance 

between each iteration is smaller in MGD than in SGD; thus, MGD leads to more 

stable convergence. In addition, BGD updates the weight parameters using the entire 

training data set, as stated in equation (5.3); this requires a large computational 

memory [108]. For large training data sets, the BGD updates may be very slow and 

may even converge into local minimums, because the gradients are computed from 

the same training data set for every epoch.  
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𝜽𝑘+1 ← 𝜽𝑘 − 𝜂∇𝜽𝐽(𝜽) (5.2) 

 

𝜽𝑘+1 ← 𝜽𝑘 − 𝜂∇𝜽𝐽(𝜽; 𝒙𝑖; 𝒚𝑖) (5.3) 

 

Thus, the advantages of MGD over other learning methods are apparent. 

However, there are a few issues regarding the generation of mini-batches that must 

be addressed. First, the size of the mini-batch must be defined empirically, 

considering the computational cost and the convergence speed. As stated in the 

existing research literature, large-sized mini-batches invoke a generalization gap 

problem, whereas, small sized mini-batches may cause long training times [108]. To 

resolve such issues, a criterion was suggested based on the variances [101, 102].  

Another issue is the variance among the mini batches that arises with their generation. 

This variance often leads to a fluctuating gradient, which makes it difficult to 

converge to an optimal point [109]. To reduce such variance, several approaches 

have been developed in prior works [110, 111]. MGD is also widely used in deep 

learning based fault diagnosis studies [2, 112-115]. The prior works have mainly 

focused on diagnosis performance; thus, the issues outlined above have not been 

explored thoroughly. Thus, our research studies mini-batches for deep learning based 

fault diagnosis, focusing on mini-batch generation. 

 

5.2 Label-based, Mini-batch Gradient Descent Study 

This section proposes a label-based, mini-batch gradient descent method to update 
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filters in the learning process. Normally, mini-batches are sampled randomly from 

the training data set, which produces the biased mini-batches. For some problems, 

the biased mini-batches cause inaccurate and inconsistent results. In contrast, the 

proposed method samples mini-batches based on label information, which makes the 

bias of mini-batches controllable. To analyze the effect of the proposed method, a 

novel filter sensitivity analysis method is suggested. Since the performance relies on 

the ability of filters to capture patterns, the sensitivity of filters is considered in the 

analysis. To see the correlation between the performance and the sensitivity, the 

quantity of properly sensitive filters is defined by the proposed criteria. Section 5.2.1 

describes the label-based mini-batches, and Section 5.2.2 illustrates the proposed 

filter sensitivity analysis method. Lastly, Section 5.2.3 states the three criteria to 

identify properly sensitive filters.  

 

5.2.1 Label-based, Mini-batch Generation 

Unlike conventional random mini-batch gradient descent, the proposed label-based 

mini-batch process samples training data based on label information. Using the 

labels, various types of label-based mini-batches can be defined by the two norms: 

the composition of the mini-batch and the order of the iteration sequence. At first, 

the composition is decided by a single label or multiple labels. A single-label 

composition indicates that only one label is in a mini-batch, while a multiple-label 

composition specifies data with more than one label in a mini-batch. Then, the order 

of the iteration sequence is decided. Since the compositions of the mini-batches are 

different from each other, the order of mini-batches used to update the gradient 

information can be varied. In this research, we proposed two orders: sequential and 
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mixed orders. A sequential order means that mini-batches of the same composition 

are used continuously in terms of the filter update sequence. In contrast, a mixed 

order means that mini-batches of different compositions are used successively in 

terms of the filter update sequence. The combination of the two compositions and 

the two orders results in four combinations, as shown in Table 5-2. Although there 

are many more combinations, for simplicity, we focused on the double-labeled case 

in this paper for the multiple labeled case. In addition to the four combinations, the 

equal mini-batches correspond to the equal number of each class of data in a mini-

batch. Since the composition of all equal mini-batches is the same, there is no 

sequence order difference. In short, five combinations of mini-batches are proposed 

in this paper; each is analyzed using the criteria explained in the next section.  

 For example, assume that the training data consists of 20 data points for each of 

the four classes and that the batch size is fixed to 10; this generates 8 mini-batches. 

The mini-batches can be in various combinations, according to the label-based mini-

batches stated above; this is shown in Table 5-3. In the figure, 𝒚𝑠
𝑡  represents a label 

vector of a mini-batch (𝑿𝑠
𝑡) of iteration sequence s at epoch t, and the numbers in the 

set indicate labels of each class. As shown in Table 5-3, single-labeled mini-batches 

have only one label per mini-batch, e.g. 𝒚𝑠
𝑡 ∈ {1} , while double-labeled mini-

batches have two labels per mini-batch, e.g. 𝒚𝑠
𝑡 ∈ {1, 2}. Also, the sequential order 

option arranges the same composition mini-batches continuously, while the mixed 

order choice arranges different composition mini-batches successively. For every 

epoch, the mini-batches are sampled again, independently from the previous ones. 
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Table 5-2 Combinations of label-based mini-batches. 

 Orders Sequential Mixed 

Compositions    

Single label Single- 
sequential 

Single- 
mixed 

Multi labels 
Double Double- 

sequential 
Double- 
mixed 

Equal Equal 
 

 

Table 5-3 Example of label group of each label-based mini-batch. 

Health 
states 𝒚

𝟏
𝒕  𝒚

𝟐
𝒕  𝒚

𝟑
𝒕  𝒚

𝟒
𝒕  𝒚

𝟓
𝒕  𝒚

𝟔
𝒕  𝒚

𝟕
𝒕  𝒚

𝟖
𝒕  

Single- 
sequen

tial 
1 1 2 2 3 3 4 4 

Doubl

e- 
sequen

tial 
1,2 1,2 1,2 1,2 3,4 3,4 3,4 3,4 

Single- 
mixed 1 2 3 4 1 2 3 4 

Doubl

e- 
mixed 

1,2 1,2 3,4 3,4 1,2 1,2 3,4 3,4 

Equal 1,2,3,4 1,2,3,4 1,2,3,4 1,2,3,4 1,2,3,4 1,2,3,4 1,2,3,4 1,2,3,4 
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5.2.2 Filter Sensitivity Analysis 

The label-based, mini-batch gradient descent method shows different performance 

results, as compared to the conventional random, mini-batch gradient descent 

method. The discrepancy between the two methods comes from the difference in 

trained weights; the trained weights catch patterns of the training data set. 

Specifically, in a convolutional neural network (CNN), where filters are 2-

dimensional filters, filters that capture the core pattern of the images will present 

better performance than filters that catch no patterns. For example, a part of an image 

is shown (with filters A and B) in Figure 5-3. If the image is convoluted with filters 

A and B using the pixel values in the figure, the convolution result of filter A gives 

a much higher value than that of filter B. Just by comparing filters A and B with the 

image, the result is predictable. Nevertheless, it is impractical to visually inspect all 

of the filters, because deep networks have a large number of filters. Thus, filter 

sensitivity analysis is suggested to quantitatively evaluate the effect of the filters.  

 The sensitivity of a filter is defined as the change of output when one of the filters 

is inactivated in the testing process; this is analogous to “leave-one-out” cross 

validation. The definition can be stated as:  

𝒔𝑖 = 𝑓(𝒙; 𝜽) − 𝑓(𝒙; 𝜽𝑖) (5.4) 

where 𝒔𝑖 is a sensitivity vector of the ith filter being perturbed; 𝑓 is the function 

that maps input data to output values of the network; x is one instance of testing data; 

𝜽 is a parameter of the network, including filters; and 𝜽𝑖  is a parameter of the 

network of which pixels of the ith filter have zero values. If the pixels of a filter that 

extracts significant representation are manually modified to have zero values, the 

sensitivity value will have a large value. In contrast, if the pixels of a poor filter (one 
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that does not catch any meaningful patterns) are set to have zero values, the 

sensitivity values will be small.  

 For the output values of networks, 𝑓(𝒙; 𝜽) and 𝑓(𝒙; 𝜽𝑖) in Figure 5-4, the 

softmax function has been applied to each testing data set to make the values 

comparable. The size of the sensitivity vector equals the number of nodes in the last 

layer, of which each output represents the possibility of each class. Thus, each scalar 

value in the sensitivity vector indicates how sensitive the filter is to each class 

prediction. For example, if a testing data set presents the largest sensitivity value in 

the jth node when the pixels of the ith filter have been set to zero, it can be concluded 

that the ith filter is most sensitive to the jth class for the testing data. By using the 

sensitivity criterion, we can evaluate how the label-based, mini-batch gradient 

descent method affects the performance not by visually inspecting the filters, but 

instead by using a quantitative metric. 
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Figure 5-3 Examples of convolution of filters with an image. 
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Figure 5-4 Networks with (a) normal filters and (b) a perturbed filter.
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5.2.3 Criteria of Properly Sensitive Filters 

The sensitivity of filters defined in Section 5.2.2 can represent the effect of filters on 

the performance of the network. However, some filters may be properly sensitive, 

while other filters may be incorrectly sensitive. To see the effect of the properly 

sensitive filters on the performance, the criteria for properly sensitive filters (PSF) 

are defined as the following criteria.  

1) At a node, the health state of the largest sensitivity value among different 

health states should match the health state that the node it is representing.  

2) For a health state of the testing data, the sensitivity value should be the largest 

at the corresponding node.  

3) The sensitivity value should be larger than zero.  

These criteria are used in each node of a filter to assess the suitability of filter 

sensitivity, which adds up to a maximum of m (number of nodes in the last layer) per 

filter. Since c number of filters are used in the CNN, the measured quantity of PSF 

in a network can have a maximum value of m×c. This quantity is normalized by the 

maximum value to consider different structures of a network.  

 

5.3 Description of Data Set 

The amount of vibration image data generated from the testbed in Section 3.1 is 

shown in Table 5-4. The total amount of data for each health state is balanced, since 

the unbalanced data sets will influence the effect of the label-based mini-batch 
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gradient descent. Nevertheless, the numbers vary slightly in each test, since the test 

duration time was controlled manually. Also, a few points at the start and end of the 

vibration signals were cut off to make the pattern locate randomly. 

To validate the performance of the proposed method, as outlined in Section 5.2, 

each test data set was split into training and testing data sets with the ratio of 0.8 to 

0.2, respectively. Thus, the sizes of training and testing data images were 23,077 and 

5,769, respectively. 

 

Table 5-4 Data size of each data set for each health state.  

Health states Set 1 Set 2 Set 3 Set 4 Set 5 Total 

Normal 1441 1448 1450 1439 1441 7219 

Rubbing 1443 1432 1444 1446 1438 7203 

Misalignment 1443 1440 1452 1442 1442 7219 

Oil whirl 1445 1437 1444 1438 1441 7205 
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5.4 Results of Label-based, Mini-batch Gradient D

escent Methods 

5.4.1 Performance of Label-based, Mini-batch Methods  

The performance results of five label-based combinations were evaluated using the 

data set described in Section 5.3. The data sets of the four health states were used to 

train the convolutional neural network (CNN) described in Section 5.1.1. Relatively 

shallow CNNs were adopted in this research to allow us to clearly see the effect of 

the label-based mini-batches. To see the difference between the conventional random 

mini-batch and the proposed label-based mini-batch, both the training accuracies and 

the testing accuracies are presented. Figure 5-5 shows the results of the random mini-

batch approach, using 1-layer and 2-layer CNN structures. Figure 5-7 shows the 

results of the label-based mini-batch approach, using 1-layer and 2-layer CNN 

structures. 

 Random mini-batches reached the maximum of both training and testing 

accuracies in a few epochs, as shown in Figure 5-5. The 1-layer and 2-layer CNN 

structure cases of random mini-batches converged to 100% accuracies at earlier 

epochs. The two cases generated several mini-batches that had missed at least one 

label, which had minor effect on the performance. However, as the ratio of such 

missing label mini-batches is increased by the imbalanced data size between training 

labels, the performance decreases and fluctuates as shown in Figure 5-6. This result 

shows that the random mini-batches may not be robust for certain cases. 

 Compared to the conventional random mini-batch case, the label-based mini-

batch cases presented diverse results, except the equal mini-batch case shown in 
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Figure 5-7(e). The equal mini-batches represented a trend similar to random mini-

batches for the balanced data set. The training and testing accuracies reached 

maximum accuracy within a few epochs; the cost values decreased steadily as well. 

Through the random and the equal mini-batch cases, we can see that even a shallow 

structure can learn to represent the four health states of the rotor system.  

 However, the other proposed label-based mini-batches failed to learn generalized 

patterns of the four health states. Single-sequential and double-sequential cases 

represent relatively lower testing accuracies throughout the entire epochs, as 

presented in Figure 5-7(a) and (b) respectively, for both CNN structures. Although 

the 2-layer CNN structure in Figure 5-7(b) presents 0.8 accuracy at around epoch 10, 

it decreases steadily and falls to a quite low accuracy in the end. In contrast, training 

of sequential order cases present high accuracy values, which indicates that the 

network has been overfitted to the training data set. In addition, single-mixed and 

double-mixed mini-batches show similar patterns to the sequential order cases. 

Although the training accuracy tends to follow the random case, testing accuracy 

starts to fall after 10 epochs, independent of CNN structure. Eventually, the network 

fails to predict more than half of the testing data. The mixed order cases present a 

typical overfitting tendency as well.  

 Through the case study, the effect of a label-based, mini-batch method for fault 

diagnosis performance is shown. Equal composition mini-batches showed a 

performance similar to the conventional random mini-batch method, while other 

combinations showed a deteriorated generalization ability. Since the performance 

relies heavily on the capability of the filter to capture patterns of images, the cause 

of the performance variation can be explained by assessing the capability of the 
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filters.  

The capability of the filters can be evaluated qualitatively by visual inspection of 

filter images, as shown in Figure 5-8, which represents images of a few filters of the 

double-sequential case at epochs 1, 25, 30, and 45 using a 1-layer CNN. Each filter 

image is normalized to stress out the pattern of the filter images. At epoch 1, which 

is early in the training process, the filters present lots of noise as they are initialized 

randomly before training. As filters are updated through each epoch, some filters 

represent a pattern, such as that seen in Figure 5-8(a) and (c). In contrast, some other 

filters present a weak pattern, as presented in Figure 5-8(b) and (d). The weak pattern 

is not effective for representing the vibration images. Other types of filters also 

appear to be not effective, as a small part of a filter shows no variation, such as the 

gray part in filter number 15 in Figure 5-8(e). The major drawback of the ineffective 

filters shown in Figure 5-8(b), (d), and (e) is that the filters fail to be updated to 

represent a pattern if some part of the images becomes blank, which indicates less 

variation.  

 The images in Figure 5-9 and Figure 5-10 are filter images of each mini-batch 

case at the last training epoch for 1- and 2-layer CNN structures, respectively. 

Although the random mini-batch case seems to have few ineffective filters, the 

testing accuracy indicates that there are enough effective filters to recognize the 

vibration image patterns. Other combination cases, except the equal case, show that 

useless filters comprise most of the filters, which leads to the low performance 

results. However, visual inspection of filters is not accurate enough to decide 

whether the filter is effective or not. To quantitatively evaluate the performance of 

the filters, a quantified criterion of filter performance is proposed in the next section. 
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By using a quantified criterion of filter sensitivity, the number of effective and 

ineffective filters can be measured accurately.  

 

 

Figure 5-5 Training and testing accuracy of the random, mini-batch method. 

 

 

Figure 5-6 Testing accuracy of the random, mini-batch method for imbalanced data 

set using (a) 1-layer and (b) 2-layer CNN structures. 
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Figure 5-7 Training and testing accuracy of the label-based, mini-batch methods:  

(a) single-sequential, (b) double-sequential, (c) single-mixed, (d) double-

mixed, and (e) equal. 
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Figure 5-8 Filter images of double-sequential mini-batch of 1-layer CNN: 

(a) filter #3, (b) filter #5, (c) filter #6, (d) filter #7, and (e) filter #15. 
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Figure 5-9 Trained filter images of 1-layer CNN: (a) random, (b) single-sequential, (c) double-sequential, (d) single-mixed, (e) 

double-mixed, and (f) equal. 
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Figure 5-10 Trained filter images of 2-layer CNN: (a) random, (b) single-sequential, (c) double-sequential, (d) single-mixed, 

(e) double-mixed, and (f) equal.
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5.4.2 Sensitivity of Filters for Label-based, Mini-batch Methods 

The sensitivity of the filters is analyzed in this section, as described in Section 5.2.2. 

The dimension of a sensitivity vector equals the number of nodes at the last fully 

connected layer, where the output values of each node represent the probability of 

each health state. Since the four health states are trained, the dimension of the 

sensitivity vector is fixed to four. In this manner, every testing data set requires four 

sensitivity values. Nevertheless, it is complex to express the vectors of each testing 

data set, so the vectors are averaged throughout the same health state data. As a result, 

sensitivity vectors of the same health state of the testing data are averaged, which are 

reduced to four sensitivity vectors, presented as four lines in each sub-figure in 

Figure 5-11.  

 First, the high prediction accuracy of the 1-layer CNN structure random mini-

batch approach can be supported by the sensitivity of filter numbers 3, 5, and 8, as 

presented in Figure 5-11. The three filters had the largest sensitivity values among 

the sixteen filters. Filter number 3 responded sensitively to normal data at node 1, 

which represents the probability of the normal health state. Similarly, filter number 

8 responded sensitively to oil whirl states in node 4, and filter number 5 responded 

sensitively to rubbing and misalignment states in nodes 2 and 3, respectively; this 

can be interpreted as a case where the two health states share a similar pattern. Other 

filters showed relatively low sensitivity values; the images of those filters had 

ineffective filter images, such as those shown in Figure 5-8(b) and (e). Although 

sensitivity values of filter numbers 3, 5, and 8 are high, the filter images in Figure 

5-12 presented vague patterns.  

 In contrast to the random mini-batch approach, the label-based, mini-batch 



94 

 

approaches showed different results. As shown in Figure 5-7, single-sequential and 

double-sequential approaches for the 1-layer CNN structure had low testing 

accuracies. Consistently, most of the filter images in Figure 5-9(b) and (c) presented 

low-variance filters. Sensitivity values of those filters from each approach are shown 

in Figure 5-13(a) and (b), respectively. Figure 5-13(a) presents one of the insensitive 

filters and Figure 5-13(b) presents an example of an incorrectly sensitive filter that 

is sensitive of all the nodes.  

 The single-mixed and double-mixed mini-batch methods for 1-layer CNN 

showed similar trends. As the testing accuracies of the testing data set decrease after 

several epochs, the sensitivity of some filters also shows high values in earlier epochs 

and low values in later epochs. Filter number 2 of the single-mixed, mini-batch case 

in Figure 5-13(c) responded sensitively to the oil whirl state at the corresponding 

node 4, but the filter became insensitive after 20 epochs. Likewise, filter number 5 

of the double-mixed mini-batch in Figure 5-13(d) also showed relatively high 

sensitivity values for normal health state data; however, it did not give clear 

sensitivity results after 20 epochs. In addition, the equal mini-batch cases had similar 

sensitivity results as the random mini-batch case presented in Figure 5-13(e). 

 The results of filter sensitivity analysis for the 1-layer CNN structure indicate a 

correlation between the filter sensitivity and the testing accuracy. Few filters 

responded clearly to the health state data at proper nodes following the trend of 

testing accuracy, while other filters did not show any difference independent of 

testing accuracy. Although the correlation can be observed by analyzing sensitivity 

from all the filters, it gets more and more incomprehensible as the number of filters 

is increased. In addition, highly fluctuating results and small sensitivity values, such 
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as the 2-layer CNN cases presented in Figure 5-14, discourage finding the correlation 

between sensitivity and accuracy. Thus, a quantified measure of sensitivity analysis 

results is used in the following section. 
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Figure 5-11 Filter sensitivity analysis of random, mini-batch case for 1-layer CNN: (a) filter #3, (b) filter #5, and (c) filter #8.
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Figure 5-12 Filter images of random, mini-batch case for 1-layer CNN; (a) filter #3, 

(b) filter #5, and (c) filter #8. 
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Figure 5-13 Filter sensitivity analysis of 1-layer CNN: (a) filter #3 for the single-sequential case, (b) filter #4 for the double-

sequential case, (c) filter #2 for the single-mixed case, (d) filter #5 for the double-mixed case, and (e) filter #7 for 

the equal case. 



99 

 

 

Figure 5-14 Filter sensitivity analysis of 2-layer CNN: (a) filter #2 for the single-sequential case, (b) filter #10 for the single-

mixed case, and (c) filter #2 for the equal case. 
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5.4.3 Correlation between Performance and Sensitive Filters 

The sensitivity of filters varies widely among mini-batch methods. Random and 

equal mini-batch methods hold several filters that are properly sensitive to health 

states, while other methods have filters that are mistakenly sensitive or insensitive. 

The result indicates that the quantity of the properly sensitive filters (PSF) is closely 

related to the performance of the CNNs. Although the correlation can be observed, 

a quantified measure of filter sensitivity will make the correlation more evident. Thus, 

this section evaluates the quantifies measure of PSF defined in Section 5.2.3 to show 

the correlation of the sensitivity and the accuracy.  

 An example of evaluation process of PSF is shown by Figure 5-11(a). The 

sensitivity values of filter #3 at node 1 show that the normal health state has the 

largest sensitivity values among those of the other health states in most of the epochs, 

which satisfies criteria 1. Also, the sensitivity values of the normal health state in 

other nodes are less than the value at node 1, which satisfies criteria 2 as well. Finally, 

the sensitivity values of the health state at node 1 are larger than 0, which is the 

condition of criteria 3. The processes are repeated at nodes 2, 3, and 4 of filter #3, 

which is followed by the same processes at all other filters.  

 Prediction accuracies of mini-batch methods shown in Section 5.4.1 are 

presented with the normalized quantity of PSF in Figure 5-15 and Figure 5-16. In 

the figures, the solid and dotted lines denote the prediction accuracy of the testing 

data set and the normalized quantity of properly sensitive filters, respectively. 

Prediction accuracy showed a very similar trend to the quantity of properly sensitive 

filters for both 1- and 2-layer CNN structures. For single-mixed and double-mixed 

batches, the large number of the normalized quantity led to a high prediction 
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accuracy in early epochs; however, in later epochs the quantity dropped, as well as 

the prediction accuracy. The single-sequential and double-sequential methods had 

consistently low amounts of properly sensitive filters along epochs, which generated 

similarly low prediction accuracies. In contrast, the prediction accuracies of random 

and equal mini-batch cases remain high, since the amount of properly sensitive filters 

is relatively larger than other mini-batch methods.  

 The results indicate a strong correlation between the quantity of properly 

sensitive filters and the performance of the network. As sensitivity denotes the ability 

of filters to capture good representations of the training data set, a large number of 

properly sensitive filters leads to better performance of the network. In contrast, the 

mini-batch methods with low performances had relatively fewer properly sensitive 

filters. By using PSF, the performance of the network was evaluated indirectly.  
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Figure 5-15 Testing accuracy and normalized quantity of Properly Sensitive Filters (PSF) for 1-layer CNN: 

(a) random, (b) single-sequential, (c) double-sequential, (d) single-mixed, (e) double-mixed, and (f) equal. 
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Figure 5-16 Testing accuracy and normalized quantity of Properly Sensitive Filters (PSF) for 2-layer CNN: 

(a) random, (b) single-sequential, (c) double-sequential, (d) single-mixed, (e) double-mixed, and (f) equal.  
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Chapter 6  

 

Retraining the Minor Class Scheme 

for Imbalanced Data Sets 

The amount of data in each class can have a considerable effect on the performance 

of deep learning based diagnosis of a system. In industry sites, where acquisition of 

data is hindered by various complicated issues, the size of the data set can vary from 

class to class; this is called am ‘imbalanced data set problem.’ The imbalanced 

problem frequently arises in large-scale machinery. Generally, large-scale 

machinery is maintained carefully via strict regulations and has maintenance 

sessions periodically, even if the machine is in a healthy state. This periodic-based 

maintenance strategy is retained, along with condition-based maintenance, because 

an accident or a sudden breakdown can cause substantial loss and may even cause 

casualties. In addition, inducing a fault on a real system may produce unwanted 

results, which can also damage the system permanently. Thus, conservative 

operation of large-scale machinery makes data acquisition for anomaly states 

problematic.  

 Fluid-film bearing rotor systems are mostly large-scale, since the fluid can 

support high loads and speeds. Hence, data-imbalanced problems are in common for 

fluid-film bearing rotor systems, as well as other large-scale machinery. For example, 
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the steam turbine in a power plant operates 24 hours per day, 7 days per week in 

normal conditions, as the cost of cool-down and restarting is extremely high. Thus, 

vibration data of the normal state can be acquired easily; whereas, the chance of 

acquiring vibration data of an anomaly state is low.  

As the imbalanced ratio between classes becomes greater, the conventional deep 

learning based diagnosis process for balanced data sets should be revised to achieve 

moderate performance. The widely used random mini-batch gradient descent method 

randomly samples data from the imbalanced data set, which makes the classifier 

biased towards major classes. Specifically, the training of the convolutional neural 

network will update the filters to be sensitive to the major classes. For example, if 

the two class data set has 99 and 1 samples for the major and minor classes, 

respectively, conventional training will mostly focus on estimating the samples of 

the major class, as shown in Figure 6-1(a). Although the overall accuracy is 0.99, the 

accuracy of the minor class is 0, which may allow a desirable result in the fault 

diagnosis. In contrast, in some cases, the prediction accuracy of the minor class can 

be weighted further, as shown in Figure 6-1(b), which has lower overall accuracy 

but higher accuracy of the minor class prediction. As failure of a large-scale, fluid-

film bearing rotor system can result catastrophic damage, the issues arising from the 

imbalanced data set must be considered during the training process in which the 

classes of anomalies are usually minor.  



107 

 

 

Figure 6-1 Confusion matrix of (a) the conventional training method and (b) the 

modified method, considering an imbalanced data set.  

Training schemes for an imbalanced data set can be grouped into three types:  

data-level, algorithm-level, and cost-sensitive approaches, as described in the 

literature [e.g., 45, 46]. In this study, a hybrid level approach that combines data-

level and algorithm-level approaches is proposed to efficiently learn features of the 

minor class. As stated in Section 4.2.3, the size of images and filters for this study 

were set at 28-by-28 pixels and 10-by-10 pixels, respectively. In addition, the 

sensitivity of the filters, as proposed in Section 5.2.2, was used in this research thrust.  

The rest of this chapter is organized as follows. Section 6.1 defines the 

imbalanced data sets used in this study and the preliminary result of the imbalanced 

data set is shown. Section 6.2 describes the proposed retraining approach that uses 

equally labeled mini-batches, as described in the previous section. In Section 6.3, the 

results of different imbalanced ratios are analyzed.  
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6.1 Preliminary Study of the Imbalanced Data Set Problem 

This section describes the overall issue of the imbalanced data set problem in 

convolutional neural network (CNN) based diagnosis. Section 6.1.1 defines an 

imbalanced data set and describes the performance of the conventional approach. 

Through a case study of fluid-film bearing rotor system data, the imbalanced data 

set is shown to affect the performance of learning the representation from samples 

of the minor class. However, the equally labeled mini-batch method proposed in 

Section 5.2 can address some case studies that have up to a certain level of 

imbalanced ratio. The performance of the equally labeled mini-batch method on 

several imbalanced ratio cases is shown in Section 6.1.2.  

 

6.1.1 Imbalanced Data Sets 

The imbalanced data sets used in this research include four different health states; 

normal, rubbing, misalignment, and oil whirl. The imbalanced data set was randomly 

sampled from the balanced data set used in Chapter 5. As a normal condition is the 

prevailing state of a fluid-film bearing rotor system, the normal state is fixed as the 

majority class. The size of the other three anomaly states is reduced by the 

imbalanced ratio (ρ), which can be defined as the ratio between the size of the 

minority class (Nmin) and the majority class (Nmax).  

The imbalanced ratio of the three anomaly states was fixed at the same ratio for 

the preliminary study. The three imbalanced ratios–0.1 , 0.01, and 0.001–were tested 

with the balanced testing data set using the conventional random mini-batch gradient 

descent method. A convolutional neural network (CNN) was used to learn the 
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representation of four health states of the fluid-film bearing rotor system. The 

prediction accuracy of the testing data set is shown in Figure 6-2. As the number of 

epochs are increased, the cases of an imbalanced ratio of 0.1 and 0.01 present better 

prediction accuracy, while the case of a 0.001 ratio presents a low prediction 

accuracy of 0.25. In addition, the prediction accuracies at the last epoch for each case 

show a clear decrease as the imbalanced ratio decreases.  

The substantial prediction gap between the cases of 0.01 and 0.001 is due to the 

number of minority class samples. Since the number of normal state (majority class) 

samples is about 5,000, the size of anomaly states (the minority class) is set as 50 

and 5 for each case, respectively. Clearly, for the 0.001 ratio case, the probability of 

learning features of the anomaly states is low. In other words, without considering 

the imbalanced training data set, most mini-batches in each epoch miss samples from 

the minority classes, which leads to a decrease in performance. As the imbalanced 

ratio decreases, the prediction accuracy also decreases as the chance of missing the 

minority class sample in a mini-batch increases. This trend is clearly shown in Figure 

6-3 and Figure 6-4. The confusion matrices shown in Figure 6-5 and Figure 6-6 

indicates that only the normal state has been diagnosed correctly in both the 1-layer 

and 2-layer CNN structures.  
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Figure 6-2 Prediction accuracy of using a training data set of various imbalanced 

ratios.  

 

Figure 6-3 Prediction accuracy of using a training data set with an imbalanced ratio 

between 0.002 and 0.008 using 1-layer CNN. 
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Figure 6-4 Prediction accuracy of using a training data set with an imbalanced ratio 

between 0.002 and 0.008 using 2-layer CNN. 

 



112 

 

 

Figure 6-5 Confusion matrix of the last epoch of imbalanced ratio cases using  

1-layer CNN; (a) 0.002, (b) 0.004, (c) 0.006, and (d) 0.008.  

 

(a) (b) 

(c ) (d) 
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Figure 6-6 Confusion matrix of the last epoch of imbalanced ratio cases using  

2-layer CNN; (a) 0.002, (b) 0.004, (c) 0.006, and (d) 0.008 

 

6.1.2 Equally Labeled Mini-batch by Oversampling 

The proposed equally labeled mini-batch method showed consistent performance for 

the balanced data set presented in Section 0. However, this mini-batch may not be 

useful for the imbalanced data set, as the size of the minority classes is not large 

(a) (b) 

(c ) (d) 
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enough to make all of the mini-batches in an epoch. For example, if the size of mini-

batch has been set as 100 for the four class problem, the size of each minority class 

needed to form an equally labeled mini-batch should be at least 25 (=100/4). In 

addition, some portion of the mini-batches in an epoch could miss the minority class 

due to the imbalanced data set. Thus, oversampling of the minority class is required 

to make the mini-batches.  

The combination of imbalanced ratios of 0.1, 0.1, 0.01 for the three anomaly 

states–rubbing, misalignment, oil whirl–was selected to see the effect of 

oversampling in the equally labeled mini-batch method. For each anomaly state, the 

imbalanced ratio of 0.01 covered the following three cases. For example, the first 

case stands for a relative imbalanced ratio of 1, 0.01, 0.1, and 0.1, which represents 

the relative size of samples for normal, rubbing, misalignment, and oil whirl, 

respectively. The prediction accuracy of a balanced testing data set is presented in 

Figure 6-7. Compared to the random mini-batch method, the equally labeled mini-

batch method retains greater performance throughout epochs. Although the random 

mini-batch method starts to learn presentations of the minority class after 20 epochs, 

the prediction accuracy does not converge to that of the equally labeled mini-batch 

method. The other two cases are presented in Figure 6-8 and Figure 6-9. A similar 

trend is shown with the other two cases as well.  
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Figure 6-7 Prediction accuracy of the random mini-batch method and the equally 

labeled mini-batch method using oversampling for the imbalanced data 

set (1, 0.01, 0.1, 0.1). 

 

 

Figure 6-8 Prediction accuracy of the random mini-batch method and the equally 

labeled mini-batch method using oversampling for the imbalanced data 

set (1, 0.1, 0.01, 0.1). 
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Figure 6-9 Prediction accuracy of the random mini-batch method and the equally 

labeled mini-batch method using oversampling for the imbalanced data 

set (1, 0.1, 0.1, 0.01). 

 

 

6.2 Retraining Scheme for the Minor Class  

The cases of an imbalanced ratio, including 0.01, were effectively trained using 

equally labeled mini-batches with the oversampling technique. However, if the least 

imbalanced ratio is decreased to 0.001, the effect of the method is decreased, as 

shown in Figure 6-10. The confusion matrix in Figure 6-11 indicates that the overall 

prediction accuracy is decreased due to the least minor class, which is the rubbing 

state. Other states in which the imbalanced ratio is equal or larger than 0.01 achieved 

high accuracy. Thus, to increase the overall performance of such cases, a retraining 

scheme for the least minor class is suggested in this research.  
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Figure 6-10 Prediction accuracy of the random mini-batch method and the equally 

labeled mini-batch method using oversampling for the imbalanced data 

set (1, 0.001, 0.01, 0.1). 

 

Figure 6-11 Confusion matrix of the equally labeled mini-batch method for an 

imbalanced data set (1, 0.001, 0.01, 0.1) at epoch 50. 
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6.2.1 Equally Labeled Mini-batch Method using Oversampling 

In this study, the training is split into two phases; training and re-training, as shown 

in Figure 6-12. This proposed method can be considered a hybrid of the data-level 

and algorithm-level approaches, as both approaches are used. In the first phase, the 

weight of the CNN is trained by using equally labeled mini-batches. As the number 

of the minority classes are less than the majority class, the minority samples are 

oversampled to generate mini-batches. The result of the training phase I example is 

shown in Figure 6-11. As stated above, the result shows that the health states of a 

0.001 imbalanced ratio had the lowest prediction accuracy. In other words, the 

network has not completed learning the features of the least minor class. Since the 

size of the normal state was around 5,000, the rubbing state had only 5 samples, 

which deterred the network from complete learning. Also, just increasing number of 

epochs does not help to avoid the method from learning the biased classifier due to 

the limited number of samples.  

 

6.2.2 Retraining Low-sensitive Filters for Minor Class Recognition 

If the performance of phase I does not satisfy the criteria, retraining part of the filters 

is performed in phase II. Rather than developing a complex algorithm or modifying 

the cost function, a simple method of retraining the CNN is performed in phase II. 

The first step is to analyze the sensitivity of the trained filters, as suggested in Section 

5.2.2. As the overall performance is determined by the ability of the filter to learn 

the representation of each health state, the ability of filters is evaluated through filter 

sensitivity analysis. Then, filters that respond sensitively to one of the health states 
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are frozen, while filters that are not sensitive to any of the health states – or are 

improperly sensitive – are trained again. The criteria of properly sensitive filters are 

defined in Section 5.2.3. Note that if the number of frozen filters is too large or too 

small, the retraining process may not be effective. Thus, in this research, the number 

of frozen filters is set as 1/4 of total number of filters in a layer.  

The next step is the retraining process, which also uses the equally labeled mini-

batch approach to avoid the weights being updated by biased data. However, before 

the actual re-training, the labels of the data are temporary turned into two-classes, as 

shown in Figure 6-13. The least minor class is used as one class, and other classes 

are combined as the other class. By turning the training process into a binary 

classification problem, the unfrozen filters in the network can be updated to better 

represent the least minor class samples.  

The final step is to fine-tune all of the filters with a smaller learning rate than the 

one used in the retraining process. The classes of training samples are turned back 

into the original ones since the final goal is to predict all classes. By fine-tuning the 

filters in the CNN layers and the weights in the fully-connected layers, the filters are 

updated to represent all of the classes again, as in phase I.   

As the training that occurs in phase I and II can be regarded as source and target 

tasks, respectively, the proposed retraining scheme can be referred to as ‘weak’ 

transfer learning [116]. The term ‘weak’ transfer learning intends to signify that the 

training tasks in phase I and II are different, but closely related. Typical transfer 

learning uses information gained from the source task to train efficiently and 

helpfully for the target task. The suggested method can be viewed as instance transfer 
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learning in the same domain (inductive). Specifically, the information that is passed 

from phase I training to phase II training, is the index of frozen filters. In this case, 

the domains are the same, as the same training data set is used. Yet, the distributions 

are different, as the label information has been changed in phase II. Thus, the 

suggested method can be viewed as an instance and inductive transfer.  

Note that the unfrozen filters and weights of the fully connected layers are 

initialized before the retraining. As noted in [117], in transfer learning, the 

generalization ability can be increased by initializing the network before training. 

Therefore, the initialization step precedes the actual training in phase II.   

 

Figure 6-12 Two-phase training scheme for the minor class in an imbalanced data 

set.  
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6.3 Results of the Proposed Minor Class Retraining Scheme 

The results of proposed retraining scheme are shown in this section. Among many 

cases of various imbalanced ratios, six different cases are examined in this study. 

Considering the fluid-film bearing rotor kit data set described in Section 5.3, the 

imbalanced ratio of the least minor state was set as 0.001 the size of normal state, 

and the number of the least minor state was fixed to one. To make the problem more 

diverse, the imbalanced ratios of the other two anomaly states were set as 0.1 and 

0.01, respectively. Thus, all states had a different number of samples. The six cases 

of the imbalanced data set are presented in Table 6-1.  

The CNN structures used in this section had four different combinations of hyper-

parameters, as presented in Table 6-2. The 1-layer and 2-layer networks with 16 

filters were used in this study, as in Chapter 5. A layer includes three functional sub-

layers: a convolutional layer, a pooling layer, and an activation function. Max 

pooling and the rectified linear unit (RELU) method were used for the pooling layer 

and the activation function. The two fully connected layers are attached at the end, 

which has 16 and 4 nodes, respectively. The Adam optimizer with a learning rate of 

0.001 was used [118]. Note that a batch size of 100 was added for 1-layer and 2-

layer cases, which makes four combinations in total.  
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Figure 6-13 Training of the CNN in (a) phase I and (b) phase II
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Table 6-1 Case description of various imbalanced ratios of health states. 

 Relative ratio of data size per each health state 
(normal, rubbing, misalignment, oil whirl) 

Case 1 (1, 0.1, 0.01, 0.001) 

Case 2 (1, 0.01, 0.1, 0.001) 

Case 3 (1, 0.1, 0.001, 0.01) 

Case 4 (1, 0.01, 0.001, 0.1) 

Case 5 (1, 0.001, 0.1, 0.01) 

Case 6 (1, 0.001, 0.01, 0.1) 
 

 

Table 6-2 Hyper-parameters of the convolutional neural network. 

Number of 
convolutional layers 1 2 

Number of filters Layer 1: 16 Layer 1: 16 

Layer 2: 16 
Batch size 12 100 12 100 

Fully connected  

(FC) layer 
FC layer 1: 16 nodes 

FC layer 2: 4 nodes 

Learning rate 0.001 

Activation function ReLU 

Pooling function Max pooling 

Dropout ratio 0.3 

Optimizer Adam 
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6.3.1 Overall Performance of the Proposed Method for Retraining the 

Minor Class Scheme 

The results of the proposed retraining scheme for the four different CNN structures 

is shown in Figure 6-14 to Figure 6-17. Specifically, each sub-figure represents the 

overall prediction accuracy of the six imbalanced ratio combinations described in 

Table 6-1, respectively. The x-axis indicates the training epochs; the green line 

represents the conventional random mini-batch method. The red and yellow lines 

represent the results of phase I and phase II, respectively.  

All cases illustrate that the equally labeled mini-batch method, which is the result 

of phase I training, improves the overall performance. For mini-batch size 12 with a 

1-layer CNN (shown in Figure 6-14), the performance increase varied from 0.03 to 

0.2. The oversampled, equally-labeled mini-batch methods showed about 0.8 

accuracy, and the random mini-batch method varied from 0.6 to 0.78, which caused 

the variations. Thus, the equally-labeled mini-batch method assures consistent 

results regardless of the data set, and performance improvements can be achieved, 

as compared to the conventional method. In addition, the result of phase II denotes 

a slight increase compared to that of phase I. The improvement varied from 0.01 to 

0.04, which is a relatively smaller improvement than that observed for the equal 

mini-batch method. Although the increase of accuracy is not substantial, the trend 

was verified in all of the cases. The limited increase is due to the lack of the minority 

class data samples, as learning of the generalized features of such minority classes 

depends heavily on the distribution of the data samples. If the distribution of such 

minority samples is bounded in a small region of that class, the training process may 

end up with over-fitted or incorrect results.  
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The batch size 100 case shown in Figure 6-15 shows similar performance results 

to that of batch size 12. The equally labeled mini-batch method in phase I of the 

retraining scheme showed a 0.05 to 0.3 increase in accuracy, as compared to the 

conventional random mini-batch methods. Some random cases failed to learn the 

features of all class, as the overall accuracy stopped at 0.5. This is because the 

number of iterations is less than that of the batch size 12 cases. The cases shown in 

Figure 6-14 (a) and (d) indicate that if training continues for more epochs for batch 

size 100 cases, the overall prediction accuracy may start to increase. Generally, this 

is another proof that large mini-batches are not favorable for learning representation 

features [119]. In addition, the results in the sub-figures indicate that the performance 

of phase II retraining increase the performance by 0.02 to 0.07.  

Next, the 2-layer CNNs with batch sizes of 12 and 100 are shown in Figure 6-16 

and Figure 6-17. All the random mini-batch cases reached a prediction accuracy of 

0.75, which can be interpreted as indicating that the least minority health state was 

incorrectly diagnosed. Compared to the 1-layer CNN cases, the conventional random 

mini-batch method appears to have learned the features of other health states than 

the least minority one. This shows that as the structure gets deeper, the performance 

can also be enhanced. Yet, even as the number of layers continually increases until 

4-layers, the performance shows almost the same results as observed in the 2-layer 

CNN. In other words, for the four-class, fluid-film bearing rotor system data sets, the 

2-layer CNN is enough to learn generalized features. In addition, the retraining 

results also showed a larger increase of prediction accuracy, as compared to the 1-

layer CNN cases. For a batch size of 12, the average increase of the 2-layer CNN in 

the six cases was 0.0358, while the average of the 1-layer CNN in the six cases was 
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0.019. For the batch size of 100, the average increase of the 2-layer CNN was 0.0476, 

while the average of the 1-layer CNN was 0.0345. For most of the 2-layer cases, the 

enhanced performance of retraining can be seen in the figures as well, which was not 

clearly shown for the 1-layer CNN cases.  

In short, the retraining scheme has increased the overall prediction accuracy for 

the testing data set, as shown in Figure 6-18. The oversampled, equally labeled mini-

batch method used in phase I clearly increased the performance. In addition, the 

retraining of the least minority class via the temporal binary problem also showed a 

slight increase, which may have not been possible through the use of the 

conventional training scheme or the equally labeled mini-batch method. To validate 

which class contributed to the increase of overall performance, the prediction 

accuracy of the least minority class will be analyzed for every epoch in the next 

section.    
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Figure 6-14 Overall prediction accuracy for the testing data set using 1-layer CNN 

with a batch size of 12: (a) case 1, (b) case 2, (c) case 3, (d) case 4, (e) 

case 5, and (f) case 6.  
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Figure 6-15 Overall prediction accuracy for the testing data set using 1-layer CNN 

with a batch size of 100: (a) case 1, (b) case 2, (c) case 3, (d) case 4, (e) 

case 5, and (f) case 6. 
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Figure 6-16 Overall prediction accuracy for the testing data set using 2-layer CNN 

with a batch size of 12: (a) case 1, (b) case 2, (c) case 3, (d) case 4, (e) 

case 5, and (f) case 6. 
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Figure 6-17 Overall prediction accuracy for the testing data set using 2-layer CNN 

with a batch size of 100: (a) case 1, (b) case 2, (c) case 3, (d) case 4, (e) 

case 5, and (f) case 6. 
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Figure 6-18 Average of the last 10 epochs’ prediction accuracy for the testing data 

set using (a) 1-layer CNN with a batch size of 12, (2) 1-layer CNN with 

a batch size of 100, (c) 2-layer CNN with a batch size of 12, and (d) 2-

layer CNN with a batch size of 100. 
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6.3.2 Performance of Minor Class Prediction Accuracy 

The difference of overall prediction accuracy between the random mini-batch and 

the equally labeled mini-batch methods is the result of the least minor class 

prediction accuracy. As the retraining scheme increases the accuracy of the least 

minor class prediction accuracy, the difference in the overall performance can be 

explained by the difference of the minority class performance, as shown in Figure 

6-19, Figure 6-20, Figure 6-21, and Figure 6-22. The results denote the prediction 

accuracy on the least minor class within the balanced testing data set. For example, 

the least minority class of cases 1 and 2 is the oil whirl state, and cases 3 and 4 have 

misalignment for the least minority class. Lastly, the training data set for cases 5 and 

6 had the rubbing state as the least minority class.  

As stated in previous section, oversampling the equally labeled mini-batch 

increased the overall prediction accuracy considerably, as compared to the random 

mini-batch method. Most of random mini-batch cases failed to learn representation 

for the least minor state, which resulted in 0 accuracy, regardless of the various CNN 

structures. Only a few cases showed 0.1 accuracy, as seen in Figure 6-19 (b), and 0.4 

accuracy, as seen in Figure 6-21 (a). These results indicate that the random mini-

batches, which are biased due to scarcity of the least minority class, cannot learn 

representations from such a small number of samples. However, by making the 

unbiasedly labeled mini-batch to be the equally-labeled mini-batch, the network can 

be trained to a certain level. In addition, results of the retraining in phase I proved 

that the 2-layer CNN can learn representation better than the 1-layer CNN. The 2-

layer CNN structure of batch sizes 12 and 100 had better prediction accuracy than 

the 1-layer CNN structures of batch size 12 and 100, respectively.  
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The results of phase II of the least minority class prediction accuracy approach 

also match those of the overall class prediction accuracy. The increase of accuracy 

in phase II retraining varied by case for the 1-layer CNN structure, as presented in 

Figure 6-19 and Figure 6-20. For the batch size of 12, the first imbalanced case – 1, 

0.1, 0.01, 0.001 – showed the largest increase of 0.3, whereas other cases showed 

less than a 0.03 increase. For the batch size of 100, all cases except one case showed 

more than a 0.1 increase when the retraining scheme was used. The mean of 

increased accuracy for the batch sizes of 12 and 100 are 0.056 and 0.105, respectively. 

The batch size 100 cases have relatively higher increased accuracy than the batch 

size 12 cases, because all of the least minority class samples are included in a mini-

batch. As the number of the least minority classes are fixed to five (by the imbalanced 

ratio of 0.001 that is tied to the size of the normal state), all five samples can be 

included in a mini-batch, which has 25 samples per class. In other words, all of the 

least minority class samples can be used for every iteration. 

Additionally, the 2-layer cases present the same trend as the 1-layer cases. Batch 

size 12 and batch size 100 CNNs are shown in Figure 6-21 and Figure 6-22, 

respectively. For most of the cases, the retraining scheme results, given by the yellow 

line, exceed the performance of the phase I training results, except in the imbalanced 

case of (1, 0.1, 0.01, 0.001) for batch size 12, which has already reached an accuracy 

of 1.0 in phase I training. Excluding this case, the mean of increased accuracy for 

batch sizes 12 and 100 are 0.144 and 0.190, respectively. The difference of 0.045 

accuracy arises for the same reason as in the 1-layer CNN cases. Likewise, both of 

the averaged accuracies show a greater value than that observed in the 1-layer cases.  

The averaged accuracy of the last 10 epochs concisely summarizes the results. As 
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deep layers are used, the network is more capable of learning representations. If the 

network has learned the representation of the minority class, the sensitivity of the 

filters on that class will also increase. Thus, in the next section, the sensitivity of the 

filters for the least minority class is examined.  
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Figure 6-19 The least minority class prediction accuracy for the testing data set using 

1-layer CNN with a batch size of 12: (a) case 1, (b) case 2, (c) case 3, (d) 

case 4, (e) case 5, and (f) case 6. 



136 

 

 

Figure 6-20 The least minority class prediction accuracy for the testing data set using 

1-layer CNN with a batch size of 100: (a) case 1, (b) case 2, (c) case 3, 

(d) case 4, (e) case 5, and (f) case 6.  
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Figure 6-21 The least minority class prediction accuracy for the testing data set using 

2-layer CNN with a batch size of 12: (a) case 1, (b) case 2, (c) case 3, (d) 

case 4, (e) case 5, and (f) case 6.  



138 

 

 

Figure 6-22 The least minority class prediction accuracy for the testing data set using 

2-layer CNN with a batch size of 100: (a) case 1, (b) case 2, (c) case 3, 

(d) case 4, (e) case 5, and (f) case 6. 
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Figure 6-23 Average of the last 10 epochs’ prediction accuracy of the least 

minority class for the testing data set using (a) 1-layer CNN with a 

batch size of 12, (2) 1-layer CNN with a batch size of 100, (c) 2-layer 

CNN with a batch size of 12, and (d) 2-layer CNN with a batch size of 

100.  
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6.3.3 Filter Sensitivity Analysis for the Minor Class 

The sensitivity for the least minority class samples can present the recognition ability 

of the overall network, as stated in Section 0. Generally, large portions of filters are 

insensitive or slightly sensitive; however, a few filters respond sensitively to one of 

the classes. Thus, the sum of the sensitivity values for the least minority class is 

analyzed in this section, as shown in Figure 6-24, Figure 6-25, Figure 6-26, and 

Figure 6-27.  

In most of the cases, oversampling the equally labeled mini-batch resulted in a 

larger sum of sensitivity than observed for the random mini-batch; this is expected 

by the prediction accuracy of the least minority class. In addition, the retraining 

results of phase II had a larger sum of sensitivity than observed for the equally 

labeled mini-batch and the random mini-batch cases. For example, the 1-layer CNN 

structure of the batch size 12 case 1 – (1, 0.1, 0.01, 0.001) – showed a similar trend 

between the sum of sensitivity and the prediction accuracy for the minority class. In 

other words, the increased sensitivity for the least minority class resulted in the 

increase in overall performance. However, a few cases do not show a trend similar 

to the stated example. For example, the random mini-batch method results in a larger 

sum of sensitivity than the retraining phase I, even though the retraining phase I 

prediction accuracy is larger.  
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Figure 6-24 Sum of filter sensitivity for the least minority class for the testing data 

set using 1-layer CNN with a batch size of 12: (a) case 1, (b) case 2, (c) 

case 3, (d) case 4, (e) case 5, and (f) case 6. 
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Figure 6-25 Sum of filter sensitivity for the least minority class for the testing data 

set using 1-layer CNN with a batch size of 100: (a) case 1, (b) case 2, (c) 

case 3, (d) case 4, (e) case 5, and (f) case 6. 
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Figure 6-26 Sum of filter sensitivity for the least minority class for the testing data 

set using 2-layer CNN with a batch size of 12: (a) case 1, (b) case 2, (c) 

case 3, (d) case 4, (e) case 5, and (f) case 6. 
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Figure 6-27 Sum of filter sensitivity for the least minority class for the testing data 

set using 2-layer CNN with a batch size of 100: (a) case 1, (b) case 2, (c) 

case 3, (d) case 4, (e) case 5, and (f) case 6. 
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Figure 6-28 Average of the last 10 epochs’ filter sensitivity of the least minority class 

for the testing data set using (a) 1-layer CNN with a batch size of 12, (2) 

1-layer CNN with a batch size of 100, (c) 2-layer CNN with a batch size 

of 12, and (d) 2-layer CNN with a batch size of 100.  
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6.3.4 Summary and Discussion 

An imbalanced data set may deteriorate the diagnosis performance considerably 

as the mini-batches are randomly generated. Due to the imbalanced ratio, the mini-

batches are highly biased. Thus, a retraining scheme based on equally labeled mini-

batches has been proposed in this section. The proposed two-phase retraining scheme 

boosted the overall performance. The increase in the performance of the least 

minority class gets greater in the deeper CNN structure. Also, if the batch size is 

large enough to include all of the least minority class samples, the increase of 

prediction accuracy is larger. This proposed approach improves the overall 

performance by using the given samples without the need for complex data 

augmentation techniques, which require careful consideration of the physics. In 

further research, a method for validating the augmented data can be developed to 

increase the minority class samples, which will eventually lead to an increase of 

generalization ability.  
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Chapter 7   

 

Conclusions 

 

7.1 Contributions and Significance 

The research investigates the preprocessing of convolutional neural network (CNN) 

based diagnosis for fluid-film bearing rotor systems. The dissertation describes three 

research thrusts: (1) the optimal size of the vibration images, considering filter size; 

(2) a study of label-based, mini-batch combinations using filter sensitivity analysis; 

and (3) investigation of a technique for retraining minor classes in imbalanced data 

sets. The three thrusts of the research are expected to offer the following 

contributions. 

  

Contribution 1: Suggestion of Criteria for an Optimal Vibration Image Size , 

Considering Size of the Filter in a CNN 

This study suggests criteria for deciding the optimal size of input images with respect 

to the filter size of a CNN. To the best of author’s knowledge, the filter size and the 

input image size were determined empirically in the previous studies. Thus, 
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considering the gray-scaled gradient vibration images, the magnitude of the image 

gradient was used to propose a metric for the optimal ratio of image size to filter size. 

This criteria can be used to determine the filter size or the image size for recognizing 

similar patterns of an image. 

 

Contribution 2: Suggestion of a Label-based, Mini-batch Gradient Descent 

Method for Training CNNs 

This dissertation proposes a label-based, mini-batch gradient descent method for 

training CNNs. As the large variance between the mini-batches prevents learning of 

a general representation of the training images, methods that reduce the variance of 

the mini-batches have been proposed in prior work. However, the variance can also 

be controlled using the suggested method. Further, the suggested label-based mini-

batches can be used to tackle imbalanced problems by making the mini-batch biased 

towards the minor health state. Since labels provide valuable information for the 

diagnosis of rotor systems, the suggested mini-batch concept can be used for various 

purposes.  

 

Contribution 3: Definition of the Quantified Capability of Filters in a CNN: 

Sensitivity Analysis of Filters  

The performance of a CNN depends on the ability of filters to capture the patterns in 

the training data set. Thus, this dissertation suggests a method of sensitivity analysis 
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for CNN filters. To the best of author’s knowledge, the previous studies have not 

considered using sensitivity of CNN filters. The suggested sensitivity analysis 

method can be used to evaluate whether or not each filter has been trained properly. 

As the number of properly sensitive filters is strongly correlated to the overall 

performance, the sensitivity criteria can be used to infer the performance of the 

trained network. Also, insensitive or erroneously sensitive filters can be 

distinguished; these can then be modified to improve the trained network.   

 

Contribution 4: Suggestion of a Retraining Scheme for Minor Class 

Recognition in Imbalanced Data Sets 

This dissertation suggests a novel method to address imbalanced data set problems. 

In the suggested approach, an equally labeled mini-batch is generated by 

oversampling if the minority class samples are not enough. Previous studies have not 

considered label information in generating mini-batches from imbalanced data sets. 

The proposed method is effective for diagnosis of the minority class samples, which 

frequently happens in large machinery systems. In addition, the retraining phase 

improves the prediction accuracy of the minority class by simply formulating the 

training labels. Although the amount of improved accuracy is not great, the clear 

trend of improvement shows the validity of the suggested method. This hierarchical 

approach may be applied effectively to other imbalanced data sets as well.  

 

7.2 Suggestions for Future Research 
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This study offers various essential preprocessing steps for CNN-based diagnosis of 

fluid-film bearing rotor systems. This work focuses on deciding the optimal size of 

the vibration image with respect to the filter size. Label-based, mini-batch methods 

are analyzed using the proposed filter sensitivity method, which can be used to 

evaluate the network performance. Lastly, a novel two-phase training scheme is 

proposed to improve learning features for the minority classes. Although the three 

proposed methods clearly improve the overall performance, a few other topics can 

be explored in future work to further improve the performance.  

 

Suggestion 1: Determining the criteria for the optimal size ratio by 

considering magnitude and direction of the image gradient 

The criteria for deciding the optimal ratio of image size to filter size can reduce the 

cost of finding the hyper-parameter of a CNN. The criteria proposed in this research 

uses the magnitude of the image gradients; the popular histogram of oriented 

gradients (HOG) method uses the direction of the image gradients. Since the 

proposed method is suitable for gray-scaled gradient images, a new criteria may be 

required for other kinds of images. For example, a new criteria using both the 

magnitude and the direction can be investigated for use with images in which 

directions are important.   

 

Suggestion 2: More ‘sensitive’ sensitivity for filters in deeper layers  
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In this study, a method was proposed to analyze the sensitivity of the CNN filters. 

As the analysis was targeted to the filters in the first layer, further studies can be 

conducted to analyze the filters in the second or deeper layers. In deeper layers of a 

CNN, the input images are translated into features that may not be interpretable. Also 

the magnitude of sensitivity will be relatively minor compared to that of the first 

layer. Thus, more ‘sensitive’ sensitivity criteria may be required to properly analyze 

the trained network. In addition, correlation of filters in the deep layers may also be 

considered to develop a robust sensitivity method.  

 

Suggestion 3: Data augmentation for imbalanced data set problems 

The proposed method that enhanced the imbalanced data set problem is based on a 

hybrid approach that combines data-level and algorithm-level approaches. Recently, 

in vision recognition research, novel techniques have been developed for data 

augmentation. As both a large quantity and good quality are keys to addressing the 

data imbalanced problem, various data augmentation approaches have been 

proposed. For example, a generative adversarial network (GAN) can generate 

images of the minority health state, which are analogous to the original ones [120]. 

Also, variational autoencoders (VAE) can generate images by training the manifold 

of the minority health state [121, 122]. These data-level approaches for generating 

additional images can surely increase the size of the minority health state. However, 

it must be confirmed that the generated images represent the health state of the rotor 

system, which is another topic for future research. The quality problem of the data 

set will always exist in these types of generative techniques.   
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국문 초록 

 

딥러닝 기반 회전기계 진단을 위한 

진동신호 전처리 및 변환 연구 

 

대형 회전체 시스템은 사고 발생시 막대한 피해를 발생시킬 수 있으므로 

안전성이 최우선으로 고려된다. 따라서, 발전소의 증기터빈과 같은 대형 

회전체 시스템의 안전한 작동을 위해 상태를 정확하게 진단할 수 있는 

기술이 필요하다. 다양한 상태진단 방법 중 데이터기반 방법은 학계와 

산업에서 많은 관심을 받고 있다. 특히 딥러닝을 적용한 상태진단 

논문의 수가 최근 몇 년간 급격하게 증가하고 있고, 앞으로도 늘어날 

것으로 예상된다. 딥러닝을 적용한 연구가 활발한 이유로는 복잡해지는 

기계 시스템의 물리적인 이해가 점점 더 어려워져 정확한 상태를 

파악하기 어려워지고 있기 때문이다. 딥러닝은 물리적인 이해가 조금 

부족하더라도 데이터를 기반으로 강력한 성능을 발휘하기 때문에, 이를 

활용한 연구가 많이 진행되고 있다. 따라서 본 학위논문도 딥러닝 기반 

회전체의 강건한 상태진단을 위한 진동신호 전처리 및 변환 연구를 

주제로 정하였다. 주로 유막베어링 회전체 시스템을 대상으로 연구를 

진행하였다.   

본 학위논문에서는 진동신호 전처리 및 변환 연구로 총 3 가지를 

연구하였다. (1) 합성곱신경망의 필터 크기를 고려한 최적의 이미지 
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크기를 결정하는 연구, (2) 필터의 민감도 분석을 통한 표지기반 mini-

batch 방법의 효과 분석 연구, (3) 불균형 데이터의 학습을 위한 재학습 

방법 연구를 통하여 딥러닝 회전체 상태진단이 최적의 성능을 낼 수 

있도록 진동신호 전처리 기법 등을 제안하였다.  

첫 번째 연구는 합성곱신경망의 입력 이미지의 크기에 관한 연구이다. 

유막베어링 회전체의 일부 이상상태에서는 방향성을 갖는 상태가 

존재하는데, 이를 강건하게 진단하기 위해서 진동신호로부터 이미지를 

생성하는 방안을 제안하였다. 제안된 진동 이미지 생성방법을 통해 

다양한 크기의 이미지와 합성곱신경망의 필터의 크기를 변화해가면서 

진단 정확도를 비교하였다. 본 논문에서 제안한 입력 이미지의 구배 

(gradient)의 크기를 활용한 RSG 값을 기준으로 1.0 인 경우 최적의 

결과를 얻을 수 있음을 확인하였다.  

두 번째로는 기존의 무작위로 생성하던 mini-batch 를 학습데이터의 

지표를 기준으로 생성하는 방안을 제안하였다. 다양한 조합을 대상으로 

진단 성능을 평가해본 결과 동등한 수의 지표를 갖는 mini-batch 가 

가장 좋은 성능을 나타내었다. 즉, Mini-batch 간의 분산이 가장 적은 

조합이 합성곱신경망 학습시 하나의 지표에 치우치지 않게 하여 높은 

진단 정확도를 나타내었다. 각각의 진단 결과의 차이는 본 논문에서 

제안한 합성곱신경망 필터의 민감도로 분석하였다.  

마지막 연구로는 실제 현장에서 자주 발생하는 데이터 불균형 문제를 

해결하기 위한 방법을 제안하였다. 첫 번째 연구에서 제안한 입력 

이미지의 최적의 크기를 적용하였고, 두 번째 연구에서 제안한 필터의 

민감도 분석을 사용하였다. 제안한 재학습 방법의 두 단계 중 첫 번째 
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단계에서는 동등한 수의 지표를 갖는 mini-batch 를 과표본화를 

적용하여 생성한다. 이 때의 진단 정확도가 높지 않은 경우, 두 번째 

단계에서는 민감도가 낮은 필터들만 사용하여 다시 학습하면 더 정확한 

진단 결과를 확보할 수 있음을 증명하였다.  

 

주요어:  유막베어링 회전체 시스템 
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