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Abstract 

Unsupervised Learning and Diagnosis 

Method for Journal Bearing System in      

a Large-scale Power Plant 

 

Byung Chul Jeon 

Department of Mechanical and Aerospace Engineering 

The Graduate School 

Seoul National University 

 

Rotor systems are frequently used in machines and facilities for various industrial 

applications. Often the rotor systems fail to deliver their designed performance, thus 

resulting in substantial financial loss. These issues are very critical to some industrial 

sectors (such as power plants) where journal bearing rotor systems are regularly used. As 

a result, it is common to implement a diagnosis tool to such rotor systems. Automated 

diagnosis using data-driven techniques can enable detection of anomalies during early 

stages and can thus contribute to improved safety and increased cost savings. In the process 

of developing diagnosis algorithm, the robustness is one of the best important issues. 

Furthermore, for the diagnosis of a variety of fault conditions that may occur in a real 

system, the application of unsupervised learning techniques is needed. 



 

ii 

 

In order to facilitate the development of robust diagnosis methodologies for the rotors 

in journal bearing systems, this research aims at advancing two essential research areas: 

Research Thrust 1 – datum unit optimization and Research Thrust 2 – omnidirectional 

regeneration (ODR) of gap sensor signals. In Research Thrust 1, the optimal datum unit 

will be defined by the comparison of separability and classification performance among 

feasible datum units. In Research Thrust 2, highly accurate and robust diagnosis approach 

using ODR signals will be introduced. The virtually generated ODR signals for 

circumferential direction can fully represent the vibration behavior of rotor system. 

Following the development of Research Thrust 1 and 2, Research Thrust 3 – unsupervised 

learning framework for power plant will give the basis of extension to the actual power 

plant diagnosis. Deep learning for unsupervised technique with high-level feature gives 

the reliable clustering results for power plant diagnosis. 
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Chapter 1.  Introduction 

 

1.1 Background and Motivation 

Rotor systems are frequently used in machines and facilities for various industrial 

applications. Often the rotor systems fail to deliver their designed performance, thus 

resulting in substantial financial loss. These issues are very critical to some industrial 

sectors (such as power plants) where journal bearing rotor systems are regularly used. 

As a result, it is common to implement a diagnosis tool to such rotor systems. 

Common fault types in rotating machinery include unbalance, misalignment, 

rubbing, cracking, and bearing failures [1, 2]. Although most of the faults in rotating 

systems can be identified by diagnostic specialists who visually inspect the spectral 

analysis of various signals, the need for an automated and reliable diagnosis system 

is steadily increasing. Automated diagnosis using data-driven techniques can enable 

detection of anomalies during early stages and can thus contribute to improved safety 

and increased cost savings. In the process of developing diagnosis algorithm, the 

robustness is one of the best important issues.  

Automated diagnostic algorithms are typically developed using a supervised data 

from the test-bed or analysis model. However, for the diagnosis of a variety of fault 

conditions that may occur in a real system, the application of unsupervised learning 

techniques is needed. In recent years, deep learning is attracting attention as 
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unsupervised techniques. Deep architecture constructed by deep learning obtains the 

high level abstraction of given data, which can be used to generate features for 

machine learning. Deep learning outperforms in areas such as image recognition, 

speech recognition, handwritten character recognition. Deep learning can be applied 

to diagnosis of the actual power plant as unsupervised training using image data from 

vibration signals. 

 

1.2 Overview and Significance 

 This research aims at advancing two research areas for increasing robust 

diagnostics of journal bearing rotor system: Research Thrust 1 – datum unit 

optimization for feature generation and Research Thrust 2 – Omnidirectional 

Regeneration (ODR) of gap sensor signals for diagnostic framework. Datum unit 

optimization can increase the robustness in the initial stage of diagnosis procedures 

whereas ODR influences over the entire diagnostic procedure. In order to develop 

automated diagnostic algorithms based on physics for various fault conditions, the 

data from test-bed and analysis model were utilized. In addition to advancing the 

diagnostic rules for the actual system, this research also makes the unsupervised 

diagnostics framework for a power plant, which will be elaborated in Research 

Thrust 3 – unsupervised learning framework for a power plant. Specifically, the 

research scope in this thesis is to develop technical advances in the following three 

research thrusts: 
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Research Thrust 1: Datum Unit Optimization 

Research Thrust 1 addresses research challenges in data manipulation for feature 

extraction to improve the separatility. The performance of separation for feasible 

datum units in gap sensor signals are compared by three class separation metrics ––

Kullback-Leibler divergence (KLD), Fisher discriminant ratio (FDR), and a newly 

proposed measure: probability of separation (PoS). PoS are proposed to efficiently 

address the comparison of separability between various datum units by normalized, 

bounded and high sensitive manner. Furthermore, classification results are also 

introduced to verify that the selected datum units in separability comparison are well 

perform. 

Research Thrust 2: Omnidirectional Regeneration (ODR) of Gap Sensor 

Signals 

Research Thrust 2 suggests the generation of virtual sensing signals and its 

application to diagnosis algorithm. A journal bearing system generally uses two gap 

sensors installed in the right angle to obtain the vibration of the rotor. Employing the 

signals from two sensors at the fixed orientations may not detect direction-oriented 

anomalies like rubbing and misalignment. Omnidirectional Regeneration (ODR) of 

gab sensor signals can enable the extraction of virtual vibrations in any radial 

direction without additional installation of sensors. First the directionality of each 
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health state is quantified by the ODR signals. The diagnostics procedure for the 

directional anomalies is performed using ODR signals. 

Research Thrust 3: Unsupervised Learning Framework for a Power Plant 

Following the development of Research Thrust 1 and 2 for improvement of 

robustness of diagnosis rule, Research Trust 3 — unsupervised learning framework 

for a power plant will suggest a practical methodology for application to real system. 

Unsupervised learning is applicable to diagnosis of actual conditions out of known 

conditions which were analyzed by model or experimented. Recently, deep learning 

is considered as one of solution for clustering big unsupervised data. It is well known 

that deep learning outperforms in the recognition of big data for image, speech and 

handwritten character. After imaging the vibration signals of the various health 

conditions which may occur in the actual power plant, the deep learning diagnosis 

framework was proposed for unsupervised training. 

The proposed optimal datum unit and ODR technique are expected to make 

significant contributions for improving robustness of journal bearing rotor diagnosis 

system. This advanced knowledge will be applicable to a broad diagnosis 

methodologies which uses gap sensor signals. It is also believed that imaging of gap 

sensor signals can be used simple high-level performance features which contains 

whole vibration characteristics. The improved robustness of diagnostic procedures 
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and deep learning technique with vibration image gained from this research will 

facilitate the advances of diagnostics methodologies for the actual power plant. 

 

1.3 Thesis Layout 

The thesis is organized as follows. Chapter 2 reviews the current state of 

knowledge related to data-driven diagnosis, diagnosis of rotors in a power plant, and 

deep learning for unsupervised training. Chapter 3 describes the journal bearing rotor 

system and presents the works related to diagnostic module. Chapter 4 presents the 

methodology for datum unit optimization for robustness of feature extraction. 

Chapter 5 presents Omnidirectional Regeneration (ODR) of gap sensor signals to 

employ suitable diagnosis technique for directional health conditions. Chapter 6 

represents the unsupervised learning framework using deep learning for the actual 

power plant diagnosis. Finally, Chapter 7 summarizes the contribution of the 

research work and suggests the insight on future works.  
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Chapter 2.  Literature Review 

In this chapter, the state-of-art knowledge for data-driven diagnosis within the 

scope of this thesis will be reviewed: (1) data-driven diagnosis approach, (2) 

diagnosis of rotor system in a power plant, and (3) deep learning for unsupervised 

training. 

 

2.1 Data-driven Diagnosis Approach 

Fault diagnosis for mechanical systems has been attracting considerable attention 

from researchers in many application areas. With the development of artificial 

intelligence techniques and the Improvement of computational abilities, data-driven 

fault diagnosis methods have advanced gradually in the past decades. A commonly 

used data-driven diagnosis technique [3-8] consists of four parts; data acquisition, 

feature extraction, feature selection, and classification prediction.  

Data Acquisition 

Data acquisition describes the step of gathering and sorting useful signals from 

targeted engineering system by using appropriate sensors for the purpose of fault 

diagnosis. This process is the fundamental step in implementation of the fault 

diagnostic processes. Data collected in a condition-based maintenance program can 

be categorized into two main types: event data and condition monitoring data. Event 



 

7 

 

data include the information on what happened (e.g., installation, breakdown, 

overhaul, etc., and what the causes were) and/or what was done (e.g., minor repair, 

preventive maintenance, oil change, etc.) to the targeted physical asset [9]. Condition 

monitoring data are the measurements related to the health condition of the physical 

system [9]. Condition monitoring data can be measured in a variety of forms such as 

vibration, temperature, pressure, humidity, acoustic, etc. Among many types of 

signals, vibration data are the most widely used for the diagnosis of a rotating system 

because they directly represent the condition of system [10, 11]. Vibrations can be 

measured as three forms of signals: displacement, velocity, and acceleration. The 

vibration measure among the three forms is selected based on the frequency content 

of vibration present, the type of machine, and the type of the analysis to be conducted 

[12]. For low frequencies (<100 Hz) displacement measurements are appropriate; 

for mid frequencies (50-2000 Hz) velocity measurements are appropriate; and for 

high frequencies (>2000 Hz) acceleration measurements are appropriate [13]. In a 

journal bearing system of a power plant, two gap sensors in orthogonal axes are 

installed in the consideration of the targeting frequency and the type of system.  

Feature Extraction 

Feature extraction is the process to define a mapping from the acquired signals to 

useful information which represents more easily separable. Various signal 

processing methods for vibration data have been developed, such as angular 

resampling [14-16], statistical method [17], Wigner-Ville distribution [18, 19], 
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principle component analysis [20, 21], independent component analysis [22], 

empirical mode decomposition [23, 24], and wavelet transform [25-27]. Among 

these techniques, angular resampling is the most popular technique for journal 

bearing systems which have no contact between mechanical components in normal 

conditions [28]. The angular resampling process regenerates vibration signals based 

on the rotation angles and facilitates robust diagnosis of a journal bearing rotor 

system. Even under steady-state operating conditions, resampling can reduce the 

randomness of the data that originates from uncertain conditions like rpm, 

temperature, manufacturing tolerance, etc. Time- and frequency-domain features can 

be generated using angular resampled vibration signals. As signal features for data-

driven fault diagnosis of rotor systems, statistics-based features, such as root mean 

square (RMS) and kurtosis, are commonly used in the time-domain, while features 

related to fundamental frequency and its harmonics are widely used in the frequency-

domain [29, 30].  

Feature Selection 

Feature subset selection is an effective way for reducing dimensionality, 

eliminating irrelevant data and redundant data, and increasing accuracy [31]. It can 

reduce the computational complexity as well as improve the classifier’s 

generalization ability [32]. Although two features may carry good classification 

information when treated separately, there is little gain if they are combined into a 

feature vector because of a high mutual correlation. Thus, when the highly correlated 
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features are used in the same time, complexity increases without much gain of 

separation performance. Additionally, fewer features require less run time to train 

and to apply the classifier. Increasing the generalization ability can be considered as 

reducing the risk of overfitting. The higher the ratio of the number of training 

samples N to the number of feature dimensions, the better the generalization 

properties of the resulting classifier [32]. Feature selection is the important issues in 

pattern classification for machine diagnosis. It has three goals: reducing the cost of 

extracting features, improving the classification accuracy, and improving the 

reliability of the estimate of performance [12]. The simplest algorithm for feature 

subset selection is to test each possible subset of features finding the one which 

minimizes the error rate [31]. This is an exhaustive search of the space, and is 

computationally intractable for all but the smallest of feature sets. Usually, feature 

selection methods can be divided into three categories: exponential algorithms, 

sequential algorithms and randomized algorithms. Exponential algorithms contain 

exhaustive search, brand and bound, and beam search. These algorithms can find the 

best feature subsets whereas the calculation time is very expensive. Sequential search 

takes feature dependencies into account, which characteristic is fast speed whereas 

the best optimal solution usually cannot be obtained. Genetic algorithm (GA) is one 

of the randomized approach which can find feature subsets in good performance with 

low computation complexity. GA can deal with large search spaces efficiently, and 

hence has less chance to get local optimal solution than other algorithms [33].   
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Classification Prediction 

In a supervised learning, each state of training data is labeled as an individual 

class. Classification algorithm identifies the class of the testing data by a trained 

classifier. Training features extracted from training data are used to define statistical 

characteristics for learning classifiers. By using the trained statistical rules, the 

testing features extracted from testing data are classified into one of the trained 

classes. There are many statistical techniques can be used to design a classifier. 

Principal Component Analysis (PCA) which calculate the directions (components) 

of data according to the projection by finding eigenvectors maximizing variance is 

used to reduce the dimension of data and classify large number of data [34-36]. Also 

a statistical method, Fisher discriminant analysis (FDA) was originally widely used 

in pattern classification [37]. FDA seeks directions that are efficient for class 

discrimination whereas PCA finds directions that are only efficient for representation 

of whole data [38]. Linear statistical approach like PCA and LDA can represent high 

performance in a large number of high dimensional data processing. However, FDA 

has a limitation which may give distorted results for significantly non-Gaussian data. 

Artificial neural network (ANN) based on the biological learning process of the 

human brain is used very extensive in pattern recognition [39, 40]. ANN has 

advantages which are requiring less formal statistical training, ability to implicitly 

detect complex nonlinear relationships, ability to detect all possible interactions 

between predictor variables [41, 42]. However, it has also disadvantages which 
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include its “black box” nature, great computational burden, proneness to overfitting 

[41, 43]. Support vector machine (SVMs) is based on statistical learning theory and 

they specialize for a smaller sample number because it minimize structural risk of 

given data [39, 44]. SVM finds the hyperplane which make the maximum-margin 

distance between the closest data points of each class to the hyperplane. The larger 

the margin of SVM contributes the lower the generalization error of the classification 

prediction. PCA, FDA and SVM was suggested as linear classifier initially. However, 

they can be used for nonlinear pattern recognition problem by using Kernel method 

[45, 46]. 

Summary and Discussion 

As discussed above, generic procedures of data-driven diagnosis approach for 

engineering systems have been well established. Especially a wide variety of signal 

processing techniques have been developed for efficient and effective feature 

extraction. On the other hand, there have been only a few studies related to define 

datum although the unit of datum may affect the performance of reasoning the 

problems. Prior work has shown that the sampling rate of data acquisition and the 

amount of data available for diagnosis have an effect on the performance of the 

diagnosis algorithm.[47, 48] This implies that an optimum datum unit must be 

decided with much care for robust fault diagnosis of rotor systems. Thus, research is 

needed to determine the optimum datum unit for the given system. 
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2.2 Diagnosis of Rotor System in a Power Plant 

Rotor systems in a power plant which are commonly supported by journal 

bearings are one of the most critical components. Major fault types of rotors in a 

power plant include unbalance, misalignment, rubbing, cracking, and bearing 

failures [1, 2]. Typical malfunctions which have their representations in the 

frequency range and their corresponding symptoms have been summarized in Table 

1 [10, 49-51]. For the diagnosis of rotor system, vibration is considered as the most 

important symptoms of system behavior because it has high content of information, 

non-intrusive and easy applicability, and well-developed data processing methods 

[50]. The Depending on the vibrational signal acquisition and processing methods 

rotor, diagnostic techniques are divided in many ways. 

Table 2-1  Typical steam turbine malfunctions and their vibrational symptoms 

Malfunction Typical symptoms 

Unbalance 
1x f0 component in vertical and horizontal directions, constant 
amplitude and phase, decreasing at low rotational speed 

Misalignment
2 x f0 component in vertical and horizontal directions, ‘banana-
shaped’ or flattened shaft orbits, high harmonic components in 
axial direction 

Rubbing 
Super-harmonics or sub-harmonics, 
‘Truncated’ signal for rubbing zone 

Oil whirl and 
whip 

0.42~0.48 x f0 component in vertical and horizontal direction 
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Permanent 
rotor bow 

1 x f0 component in vertical and horizontal direction (also at low 
rotational speed), strong correlation between 1 x f0 components 
in vertical and axial directions 

Rotor crack 

Continuous changes of 1 x f0 and 2 x f0 components amplitudes 
and phases during steady-state operation, reduction of critical 
speeds and increase of vibration amplitudes on passing through 
them 

Bearing 
problems 

Increase of sub-harmonic components (typically slightly below 
0.5 x f0), relative vibration increase, shaft orbits with loops, high 
and unstable amplitudes of higher harmonic components, 
sensitive to bearing oil pressure 

 

Faults and its diagnosis methods 

All rotating machinery has an essential degree of unbalance which is one of the 

most common fault in rotordynamics. Therefore it is considered as a fault when the 

magnitude of vibration exceeded the limit level for the system [52].  Recently 

Ganeriwala et al. [53] suggested detecting unbalance by using operating deflection 

shapes (ODS). These studies showed the identification of unbalance by estimating 

differences of ODS between baseline and seven unbalance cases. As a physics-based 

approach for unbalance fault, Sudhakar and Sekhar [54] proposed the methodology 

of fault identification for unbalance using theoretical simulation model. They used 

an equivalent load minimization method which characterizes unbalance faults by 

minimizing difference between equivalent loads estimated in the system due to the 

fault and theoretical fault model. The assessment of unbalance location can 

considered as a unique part of challenges. Some recent works deal with localization 
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of unbalance of rotor system. Yang and Hsu [55] proposed orderly searching the 

possible location of faults instead of searching all combinations, and Walker et al. 

[56] have been localized unbalance through data driven approach using the artificial 

neural networks. 

Misalignment is the second most common malfunction type in a rotor system [57]. 

2X component in a large steam turbines is usually associated with misalignment, 

which has been confirmed both theoretically and experimentally [58]. frequency in  

Redmond introduced the theoretical study of misalignment in coupled rotating 

machinery [59]. The complex system forces and motions are derived by application 

of the Lagrange method without the imposition of specific harmonic-excitation 

assumptions. Additionally, a lot of the misalignment model studies have been 

conducted to demonstrate the physics and understand physical meaning [57, 59-64]. 

Tejas and Ashish showed the vibration response of misaligned rotors and its 

diagnostic results [60]. The coupled rotor system was modeled using Timoshenko 

beam elements with all six degree of freedom. To extract some diagnostic features, 

full spectra and orbit plots are effectively used to reveal the unique nature of 

misalignment fault leading to reliable misalignment diagnostic information. Sarkar 

et al. proposes a method for computing the displacement-dependent stiffness terms 

from the experimental static load-displacement data [57]. The orbit of the rotor 

around the static equilibrium is determined using a time-integration scheme.  
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Rub is commonly caused as a secondary fault from unbalance or misalignment 

and can lead the catastrophic failure of rotating system abruptly. The mechanical 

contact between stationary parts of machine and rotating elements can generate a 

variety of rub conditions. There exists some experimental studies for the purpose of 

rubbing behavior demonstration and development of diagnostic algorithms [65-70]. 

Xiaozhang demonstrated the impact and rub phenomenon of a rotating rotor with a 

fixed boundary [65]. Wang and Chu studied the determination of the rubbing 

location by using wavelet transform for the acoustic signals [68]. Dai et al. showed 

the numerical simulation of partial and full rubbings using simple Coulomb friction 

model and the multiple segments linear spring model, then experiments are 

demonstrated to verify the feasibility and the limitation of using stops to control the 

large vibration of rotors [69].  Chu and Lu established an experimental setup of a 

rub-impact multi-disk rotor system which can demonstrate the condition of the full 

rub and several severity level of impact rubbing [70]. The authors showed the result 

of vibration due to a certain level of partial rubbing and full rubbing in the form of 

orbit plot and the existence of a certain frequency components such as 1/2X, 3/2X, 

2X, 3X, etc. 

Shaft crack is potentially catastrophic fault in rotating machinery, and so early 

detection is very important. Cracked shaft may decrease the critical speed of the shaft 

and also exhibit a nonlinear vibration behavior leading to increases the amplitude of 

1X and 2X harmonics [71]. Numerous researchers have used theoretical methods for 
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the research of shaft crack, whereas, others have employed both theoretical and 

experimental ones, and a few have focused on only experimental methods. Huang et 

al. studied the dynamic response of a rotor model with a shaft crack, by introducing 

the governing equations in numerically [72]. The authors examined the frequency 

response of the shaft model with different crack depths and locations, and showed 

that the 1X and 2X harmonics were excited. Luo et al. set up for the rotor-bearing 

model with coupling faults of crack and rub-impact [73]. The results presented that 

there are unique dynamic characteristics of rotor bearing system with cracks coupled 

with rub-impact fault which are different from the ones with only one type of fault. 

Varney et al. introduced analytical model and designed an overhung rotor test rig to 

monitor seal face dynamics [74]. Experimental results of angular response orbits and 

the magnitude of the 2X harmonic tilt response are provided for cracks between 0% 

and 40% depth.  

Fluid-induced instability (so called oil whirl and whip) is one of the most common 

cause of subsynchronous faults in a journal bearing system. It can result in secondary 

anomalies such as fatigue, wear, and extensive damage to rotor systems. These fluid-

induced instabilities can be occurred in oil lubricated bearings, bearing seals, and 

clearances between blade and housing. Several studies on the fluid instability of the 

rotor system using modeling and simulation were carried out in the last few years. 

De Castro et al. suggested nonlinear mathematical models for a rotor-bearing system 

to study the fluid-induced instability [75]. The models are used to predict oil whirl 
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and whip instabilities in different unbalance conditions. The results of model 

simulations were compared with the data at a vertical power plant and a horizontal 

test-bed. The authors claimed that nonlinear solution to simulate hydrodynamic 

journal bearing system shows sufficiently accurate vibration behavior for predicting 

instabilities. Fan et al. studied to predict fluid-induced instability by the experimental 

setup and developed signal processing methodologies [76]. The authors suggested a 

Hilbert spectrum combining a full spectrum, then the transient position of a shaft 

centerline combining an acceptance region is investigated to predict instability at an 

early stage.  

Artificial Intelligence Approach 

Artificial intelligent techniques, such as expert systems, fuzzy logic, and artificial 

neural networks (ANNs), support vector machine (SVM), etc., have been 

successfully applied to automated detection and diagnosis of machine conditions 

[77]. The expert systems [78, 79] with the information from system knowledge were 

developed to diagnosis the fault of steam turbine generator sets (STGS). However, 

it is difficult to design an efficient reasoning methods which can lead appropriate 

results from a large amount of rule-based knowledge. Besides the expert systems are 

sometimes limited for real-time condition monitoring of STGS since it requires 

sufficient time for the inference process.  
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Fuzzy reasoning [80-82] is expressed as a form of many-valued logic and has 

been proposed to diagnosis vibration anomalies of rotating machinery using 

inaccurate and uncertain information. Similarly to the expert systems, fuzzy 

reasoning systems also depend heavily on the user’s experience for the construction 

of the fuzzy sets and their associated membership functions. For designing fuzzy 

rules in high performance, it requires the expert’s knowledge or trial and error 

database for possible conditions. It needs expensive cost for development and 

maintenance. Therefore, the fuzzy reasoning may not be applicable for the fault 

diagnosis of practical rotating system using vibration signals.   

Artificial neural network (ANN) [83-86] determines optimized relationships 

between input and output nodes for reasoning or regression problems. It was 

suggested as a real-time response operator in practical diagnostics applications. The 

ANN using error back propagation can train the nonlinear relationships from 

supervised data, then introduce the desired reasoning results from testing data for 

system diagnosis. However, it has still some drawbacks such as slower learning 

speed and the convergence in local minimum. In order to apply anomaly diagnosis 

of practical rotor systems using vibration signals, the performance and efficiency 

must be further tested. 

 Support vector machines (SVMs) are suggested as an intelligent fault diagnostic 

method for rotating machinery [87]. SVM is a supervised learning method which 

determines optimized hyper-planes by solving the problem of structural risk 
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minimization. It is widely used for classification and regression analysis using linear 

or nonlinear data [45, 88, 89]. Some researches were suggested that SVM is more 

efficient than ANN methods [90, 91] because the difference of a risk minimization 

function. SVM uses the structural risk minimization which has high performance in 

generalization, while ANN minimizes the traditional empirical risk. 

Summary and Discussion 

There have been many studies for major faults of a rotor system in a power plant 

and its diagnosis methodology. Most of diagnosis techniques with the consideration 

of physical meaning deals the target faults in one or two. Then sometimes it gives 

the qualitative diagnostic results which need the additional judgement in engineering 

sense. In order to overcome these problems, AI approach for autonomous diagnosis 

such as expert system, fuzzy reasoning, ANN, SVM, etc. was suggested. However, 

the expert system and fuzzy reasoning need heavy prior information to construct the 

algorithm as well as has heavy dependence of operator’s experience. The other AIs 

like ANN or SVM are not considered the physical meaning of the system. The 

understanding of system behavior and characteristics of gathered signal is very 

important part in the development of diagnostic system. Gap sensors which are 

mounted generally two sensors in fixed orientation may indicate different signal for 

the similar anomaly states when the occurrence direction of the fault. Therefore, it is 

necessary to develop the diagnosis algorithm with the consideration of the 

characteristics of gap sensor signal.   
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2.3 Deep Learning for Unsupervised Training 

In the region of artificial intelligence, deep learning has been received high 

attention over the past decade. Deep learning is a branch of machine learning 

techniques to model high-level feature abstractions in data by using multiple layers 

of processing  [92-94]. It has shown remarkable performance in image recognition 

[95-97], speech recognition [98, 99], and handwritten character recognition [100-

102]. The major reasons for the popularity of deep learning these days are the 

significantly increased computational abilities (e.g., general-purpose graphical 

processing units or GPGPUs), the highly increased size of training data, and the 

advances in signal processing and machine learning techniques.  

Deep belief network (DBN) is well-known deep learning algorithm, which is 

hierarchical multilayer neural network models to learn high-level representation for 

their input data [103]. DBN consists of several stacked restricted Boltzmann 

machines (RBMs) which is energy based and unsupervised training methodology. 

Restricted Boltzmann Machine (RBM) 

RBM is a two layer network in which stochastic, binary pixels are connected to 

stochastic, binary feature detectors using symmetrically weighted connections [104]. 

The simplest type of RBM is shown in Figure 2-1. The input data correspond to 

visible units v because their states comes from observations; the feature detectors 

correspond to hidden units h. Weights are connected between visible and hidden  
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Figure 2-1  Structure of a restricted Boltzmann machine   

units symmetrically while it is restricted the connections between visible-visible or 

hidden-hidden units. These restriction of inter-layer connection in RBM makes 

efficient and suitable building blocks for training DBNs. 

A joint configuration, (v, h) of the visible and hidden units has an energy[105] 

given by:    
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where ߠ ൌ ሼ܅, ,܊  ሽ are the model parameters, ௜ܹ௝ is the symmetric interaction܉

weight between visible unit ݅ and hidden unit ݆; bi and aj represent biases of visible 

and hidden units; ݒ௜ and ௝݄ are the binary states of visible unit ݅ and hidden unit 

݆. The energy based joint distribution over the visible and hidden units is defined by: 
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where Z(θ) represents the partition function. The probability of the visible units is 

assigned as: 
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On account of the special bipartite structure of RBM, the hidden units can be 

definitely marginalized as: 
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The conditional probability over visible vector v and hidden units h can be 

derived from equation (2.2) and are activated by logistic functions: 
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where δ(x) = 1 (1+ exp(−x)) is the logistic function used as an activation function. 

The derivative of the log-likelihood with respect to the model parameters ߠ can be 

obtained from equation (2.4): 
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where ܧ௉೏ೌ೟ೌ ൏∙൐ represents an expectation with respect to the data distribution 

ௗܲ௔௧௔ሺܐ, ;ܞ ሻߠ ൌ ܲሺܞ|ܐ; ሻߠ ௗܲ௔௧௔ሺܞሻ; ௗܲ௔௧௔ሺܞሻ ൌ
ଵ

ே
∑ ܞሺߜ െ ௞ሻ௞ܞ   is the empirical 

distribution; ܧ௉೘೚೏೐೗
൏∙൐ represents an expectation with respect to the distribution 

defined by the model. Learning process in RBM is achieved by a very simple 

learning rule for approximation to the gradient of a different objective function, 

called the “Contrastive Divergence” (CD) [106]. The equation of approximated 

weight function is represented as: 
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 ∆ ௜ܹ௝ ൌ ௉೏ೌ೟ೌܧ൫ߙ ൏ ୘ܐܞ ൐ െܧ௉೅ ൏ ୘ܐܞ ൐൯ (2.13) 

where ߙ represents the learning rate and PT is a probability distribution defined by 

running an alternating Gibbs Markov chain, initialized by setting the binary states of 

the visible units to be the same as a data-vector, for T full steps. Setting T = q (or 

CDq) represents the indication of learning using q full steps of alternating Gibbs 

sampling. In the process of RBM training, the CD learning with T = 1 (or CD1) has 

been shown efficient and high performance [107]. Nevertheless RBM may learn 

better in the case of more steps (e.g. T = 10 or above) of alternating Gibbs sampling 

[108]. 

Deep Belief Networks (DBN) 

DBN is a probabilistic generative models, containing multiple layers of hidden 

units, which can be defined as a composition of unsupervised training networks such 

as RBMs. The DBN structures are shown in Figure 2-2. Firstly, a RBM is used to 

learn the parameters between observation and hidden layer using unsupervised 

manner of training. After learning the weighting parameters, the hidden units of first 

RBM are used as visible units of another RBMs in order to generate higher level 

feature representation. These step-wise training technique is fast and effective [94]. 

After training of stacked RBMs, supervised fine-tunings are performed in DBNs.  
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Figure 2-2  Structure of a deep belief network 

The initial parameters are sequentially retrained by back-propagation from the DBN 

results to initial observations [109, 110]. 

Summary and Discussion 

The high performance of feature abstraction representing the characteristics of 

given data have enabled the deep learning methods to effectively exploit complex or 

nonlinear reasoning problems. Deep learning algorithms in superior generalization 

performance may be applied for supervised classification and unsupervised pattern 

analysis using high-level feature representation [92]. This learning approach can give 

diagnostic efficiency for the diagnosis module of the actual power plant using 

vibration signals because it already greatly outperformed in areas such as image 

recognition, speech recognition, handwritten character recognition. However, there 
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is a need for specific research about diagnostic framework and the transformation of 

information from vibration data. 
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Chapter 3.  Journal Bearing Rotor System and Diagnostic 

Module 

 

3.1 Overview of the Journal Bearing Rotor System and Its Behavior 

3.1.1 Journal Bearing Rotor System Used in a Power Plant 

As Journal bearings are frequently used in systems that operate in high-load and 

high-speed conditions. These operating conditions lead to a high risk of system 

malfunction. Power plant turbines are generally composed of three stages, including 

a high and intermediate pressure turbine and two low-pressure turbines, as shown in 

Figure 3-1(a). Each stage of turbine is supported by journal bearings, as illustrated 

in Figure 3-1(b). Journal bearings are composed of a fixed housing, a rotary shaft, 

and an oil film between the shaft and housing. Oil films support the journals while 

the shaft rotates. Unlike ball or roller bearings where accelerometers are widely used 

for acquisition of vibration signals, a gap sensor is used in journal bearings to acquire 

vibration signals in a displacement form. A gap sensor measures the radial position 

of the shaft by the variation of eddy current. Through two sensors positioned in a 

right angle, an orbit plot representing the motion of the shaft centerline can be 

generated. At the same time, the average shaft centerline position can be measured 

from the DC component of the gap sensor signal. The AC component of the gap  
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(a) 

 
 (b) 

Figure 3-1  Schematics for (a) rotor system of a power plant (b) journal bearing 

sensor signal represents the relative vibration of each revolution. These data give 

information on the behavior of the overall shaft motion in journal bearing systems. 

 

3.1.2 Test-bed for Rotor in a Journal Bearing System 

An RK4 journal bearing test-bed was used to demonstrate how effectively the 

optimum datum units diagnose potential faults in a journal bearing rotor system. This 

section introduces the fundamentals of the test setup and describes how anomaly 

conditions were seeded in the rotor system for testing.  
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This study is based on the data collected from an RK4 journal bearing test-bed, a 

product of GE Bently Nevada. As shown in Figure 3-3, a long shaft with an 800g 

disc attached is connected by a coupling to a short shaft. The whole system is  

 

Figure 3-2  Schematic diagram of an RK4 test-bed 

 

Figure 3-3  (a) RK4 test-bed and setups for (b) rubbing (c) misalignment, and (d) 

oil whirl  
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supported by three journal bearings. At the speed of 3,600 rpm, four health states 

were implemented into the journal bearing test-bed: normal, rubbing, misalignment, 

and oil whirl. The gap signals were measured at two locations on the shaft adjacent 

to the journal bearing and two proximity sensors were mounted at right angles in 

each location. One channel of a keyphasor was also located right next to the motor 

as a reference signal for each rotation. 

A bit of imbalance generally exists in the rotor system even under the normal 

condition. The normal condition is set with an RMS level of 20 m, which is 

equivalent to 40% of ISO 7019-2, that is, a vibration regulation for normal condition 

of a steam turbine in excess of 50MW at 3,600 rpm [111]. Each of the three anomaly 

conditions—rubbing, misalignment, and oil whirl—was individually implemented 

to the rotor system under the normal condition. A rubbing condition was created by 

directly rubbing a screw on Shaft 2. This condition is precisely named a point impact 

rubbing. To control the level of the rubbing condition consistently, an acceleration 

sensor was attached to the screw jig and the data within the acceleration of 2.0±0.3 

m/s2 were considered those obtained under the rubbing condition. A misalignment 

condition was made by shifting the end of Shaft 1 horizontally 20 m to the right 

using a misalignment jig. This condition is called an angular misalignment. The oil 

whirl condition was induced using an oil whirl toolkit that is designed by the RK4 

manufacturer. The condition was maintained by controlling the oil pressure at 

1.8±0.2 psi.  
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Four channels of the gap signal and one channel of the keyphasor signal were 

acquired via five proximity sensors in the RK4 test-bed. This study used a 3300 

proximity transducer, produced by GE Bently Nevada. The gap sensor measures the 

position of the rotating shaft by obtaining the eddy currents due to the interaction of 

the rotating shaft and the sensor. The signal of a proximity sensor is obtained as a 

voltage form comprised of direct current (DC) and alternating current (AC). The DC 

component provides the absolute position of the rotating shaft. The AC component 

represents the relative vibration of each revolution. These data give information of 

the overall shaft motion in the journal bearing system. The gap signals from the 

proximity sensors were acquired at 8.5 kHz via NI DAQ 4432. Every test to emulate 

the four health states—one normal and three anomalies—was conducted for sixty 

seconds and the test for each health condition was repeated twice. The acquired data 

sets were used to determine the optimal datum units by evaluating the capability of 

class separation.  

Figure 3-4 gives the graphical interpretations of the four health states in the time- 

and frequency-domains. The first-column plots represent the waveforms of gap 

signals acquired from four health states; the second column displays the orbits; the 

third exhibits the frequency responses of the resampled data. Each health condition 

has a different waveform and frequency response. For the normal case, a basic 

sinusoidal wave was confirmed with the time plot, and the frequency response 

indicated that the 1x frequency is dominant. In the rubbing scenario, the effect of 
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truncation from the rubbing screw was well observed in the wave. As the result, the 

frequency response also showed a slight increase in harmonics compared to that of 

the normal case. For the misalignment case, the heavy preload due to misalignment 

contributed to the figure-eight shaped orbit. This is expressed with the observed high  

 

Figure 3-4  Time, orbit, and frequency response plots of RK4 for (a) normal (b) 

rubbing (c) misalignment (d) oil whirl experiment results 
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2x component of the frequency response. For the oil whirl scenario, the 0.42-0.48 

times of the fundamental frequency become apparent.[10, 49] Indeed, the 0.45x 

component became highlighted in the RK4 data; this was also perceived in the 

waveform. In some situations of oil whirl, other sub-harmonic components (i.e., 

0.43x) can be dominant. 

 

3.1.3 Physics of rotor system in journal bearing using FEA 

FEA model corresponding to the test-bed was employed for double checking the 

physics of rotor in a journal bearing system. FEA model also has some advantages 

in the aspect of time and cost saving compared to the experiment. The analysis model 

enables the examination of system behavior and the gathering additional vibration 

signals for various levels for anomaly.  

The general dynamic equation is: 

 
ሻݐሷሺܠۻ ൅ ሺ۱ሻܠሶሺݐሻ ൅ ሺ۹ሻܠሺݐሻ ൌ ۴ሺݐሻ (3.1) 

where M, C and K are matrices of mass, damping and stiffness, and F is the external 

force vector. In rotordynamis, Equation (3.1) gets additional terms from gyroscopic effect 

G, and the rotating damping effect B leading [112]: 

ሻݐሷሺܠۻ  ൅ ሺ۱ ൅ ۵ሻܠሶሺݐሻ ൅ ሺ۹ ൅ ۰ሻܠሺݐሻ ൌ ۴ሺݐሻ (3.2) 
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Analytical model of the rotating system was developed by using the ANSYS 

Classic. The elements used are as follows: 3-D linear finite strain beam element 

(beam188) for shaft, 2-D spring element (COMBI214) for bearing, spring-damper 

(COMBIN14) and lumped mass combined element for flexible coupling. Material 

properties of analysis model were adjusted by the values measured from the test-bed. 

The stiffness of model was calibrated by the natural frequency of test-bed through 

impact hammer test. The natural frequencies of experiment and analysis are listed in 

Table 3-1. Modeling of flexible coupling used equivalent symmetric spring and 

lumped mass combined element because matrices of gyroscopic and rotational 

damping are supported to the only symmetric geometry in ANSYS. Then 

translational and rotational stiffness are calibrated using the natural frequency of 

system. 

Table 3-1  Natural frequencies of experiment and analysis model 

Model 
Experiment Analysis 

free-end on test-bed free-end on test-bed 

Natural 
frequency 

[Hz] 

1st bending 18.5 44.5 18.2 18.5 46.4 

2nd bending 128.0 - 136.5 137.3 82.8 

3rd bending 360.5 - 345.5 346.4 331.9 
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FEA model analyzed the health states of normal and rubbing cases. All rotating 

machinery in normal condition has an inherent degree of unbalance. The force due 

to unbalance in rotors are defied as: 

 
௨௡௕ܨ ൌ ݉ ∙ ݎ ∙ ߱ଶ (3.3) 

where m, r, and ω are mass of rotor, distance between unbalance and the axis of rotation 

and angular frequency. The unbalance force are implemented to model by ܨ௫  and ܨ௬ in 

Equations (3.4) and (3.5). 

 
௫ܨ ൌ ௨௡௕ܨ ∙ cosሺ߱ሺݐሻሻ (3.4) 

௬ܨ  ൌ ௨௡௕ܨ ∙ sinሺ߱ሺݐሻሻ (3.5) 

Rubbing conditions are modeled using CONTA178 element which executes node to 

node contact for the rubbing zone [113]. The penalty stiffness was employed between 

shaft and contact element. 

 F௡௢௥௠௔௟ ൌ ݇௡௢௥௠௔௟ ∙  ௣௘௡௘௡௧௥௔௧௜௢௡ (3.6)ݔ

where ݇௡௢௥௠௔௟  and ݔ௣௘௡௘௡௧௥௔௧௜௢௡ are stiffness in normal direction and displacement of 

penentration.  
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Figure 3-5  FEA model for rotors (a) schematics of target system (b) ANSYS model 

Dynamic responses of normal and rubbing conditions at 3,600 RPM were 

obtained using transient analysis for two seconds with 0.001s interval. Especially 

two levels of unbalance were employed to validate the linearity between the 

magnitude of unbalance and the amplitude of vibration. The results of normal 

condition are shown in Figure 3-6 and Figure 3-7. The figure shows time-base signal, 

orbit and FFT. The blue line and red line in the figure means total signal and 1x 

component signal. Behaviors of rotor system in test-bed and FEA model show 
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similar results, and the linearity between unbalance and vibration magnitude are well 

represented. Figure 3-8 shows the results of rubbing condition in test-bed and FEA 

model. The case of impact rubbing was interpreted by contacting screw in test-bed 

and penalty stiffness in FEA model. The super-harmonic component in frequency 

analysis and truncated signal in time-domain which are main phenomena of impact 

rubbing were well represented in the results of test-bed and model.  

 

Figure 3-6  Normal states for 5 ݉ߤ in RMS from (a) test-bed (b) FEA model 
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Figure 3-7  Normal states for 10 ݉ߤ in RMS from (a) test-bed (b) FEA model 
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Figure 3-8  Impact rubbing conditions from (a) test-bed (b) FEA model 

 

3. 2 Diagnosis Module for a Journal Bearing Rotor System 

Supervised machine learning has been widely used as a method for system 

diagnosis in journal bearing systems. In this section, a common diagnosis procedure 

is described where a preprocessing technique, known as angular resampling, 
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minimizes the randomness in gap signals. Subsequently, the candidates for health 

features are described in both time- and frequency-domains. 

 

3.2.1 Diagnostics Procedures 

A diagnosis module must be carefully designed to assure reliable operation of the 

system by anticipating potential failures of the system. A supervised learning method 

is suitable for the study described here because training data sets can be acquired 

from rotor test-beds or a power plant turbine rotors. The trained data sets gathered 

under normal and various anomaly conditions facilitate the development of the 

supervised learning process. The supervised algorithm can then be used to diagnose 

the system in operation. The overall procedure is presented in Figure 3-9. 

The first step is to acquire training data from a rotor test-bed or from a power 

plant turbine rotors under normal and anomaly conditions. As discussed, a gap signal 

is used for diagnosing a journal bearing rotor system. Features representing anomaly 

states must be carefully extracted from the signals obtained through time, frequency,  

 

Figure 3-9  Data-driven diagnosis procedure 
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and/or time-frequency analysis. A feature selection algorithm can be used to select 

an optimal feature set for diagnosis efficiency [32]. The selected feature set can 

provide a logical base for accurate health classification of the journal bearing rotor 

system. Finally, the test data acquired from rotor systems in operation can be 

processed and classified into normal or one of the defined anomaly states using a 

trained classifier [114, 115]. 

 

3.2.2 Time- and Frequency-domain Features 

Time- and frequency-domain features were more suitable than time-frequency 

domain ones because turbine rotors operate at steady-state operational conditions 

(i.e., 3,600 rpm). Table 3-2 lists the time-domain features, such as maximum, RMS, 

kurtosis, etc. [30, 116]. The first three features imply kinetic energy of the rotor. The 

next two features describe the statistical characteristics of the gap signals. The last 

three features indicate the shape of the sinusoidal wave. In addition, power spectrum 

data can represent important characteristics of vibration signals, which can be 

categorized as frequency domain features. The description of frequency features is 

shown in Table 3-3 [29, 117] where f and s(f) denote the frequency and the power 

spectrum function, respectively. As defined in Table 3-3, frequency center (FC) and 

root mean square frequency (RMSF) are related to the fundamental frequency of the 

system. The root variance frequency (RVF) describes how well the power spectrum 

is grouped. Other features represent the ratios of harmonic frequencies to the 
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fundamental frequency. These frequency features are commonly used in 

characterizing anomalies. 

Table 3-2  Time-domain features 

Notation Features Description Physical interpretation 

T1 Maximum Maxሺ ௜ܺሻ 

Kinetic energy related 
T2 Absolute Mean Meanሺ| ௜ܺ|ሻ 

T3 RMS ඨ∑ ௜ܺ
ଶ

ܰ
 

T4 Skewness 
∑ሺ ௜ܺ െ തܺሻଷ

ሺܰ െ 1ሻݏଷ
 

Data statistics related 

T5 Kurtosis 
∑ሺ ௜ܺ െ തܺሻସ

ሺܰ െ 1ሻݏସ
 

T6 Crest Factor 
ܺ௣௘௔௞
ܺ௥௠௦

 

Sinusoidal wave 

shape related 
T7 Shape Factor 

ܺ௥௠௦

Meanሺ| ௜ܺ|ሻ
 

T8 Impulse Factor 
Maxሺ ௜ܺሻ

Meanሺ| ௜ܺ|ሻ
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Table 3-3  Frequency-domain features 

Notation Features Description Physical interpretation 

F1 FC 
݂׬ ൈ ሺ݂ሻ݂݀ݏ

׬ ሺ݂ሻ݂݀ݏ
 

Position change of 

main frequencies 
F2 RMSF ቈ

׬ ݂ଶ ൈ ሺ݂ሻ݂݀ݏ

׬ ሺ݂ሻ݂݀ݏ
቉
ଵ/ଶ

 

F3 RVF ቈ
ሺ݂׬ െ ሻଶܥܨ ൈ ሺ݂ሻ݂݀ݏ

׬ ሺ݂ሻ݂݀ݏ
቉
ଵ/ଶ Convergence of 

spectrum power 

F4 0.5X / 1X ඨ
ሺݏ ଴݂.ହ௑ሻ

ሺݏ ଵ݂௑ሻ
 

Magnitude of the 

certain 

frequency range 

F5 2X / 1X ඨ
ሺݏ ଶ݂௑ሻ

ሺݏ ଵ݂௑ሻ
 

F6 (3x~5x)/1x 
∑ ඥݏሺ ௡݂௑ሻ
ହ
௡ୀଷ

ඥݏሺ ଵ݂௑ሻ
 

F7 (3x,5x,7x,9x)/1x
∑ ඥݏሺ ሺ݂ଶ௡ାଵሻ௑ሻ
ସ
௡ୀଵ

ඥݏሺ ଵ݂௑ሻ
 

F8 (2x~10x)/1x 
∑ ඥݏሺ ௡݂௑ሻ
ଵ଴
௡ୀଶ

ඥݏሺ ଵ݂௑ሻ
 

F9 (0-0.39x)/1x 
׬ ඥݏሺ݂ሻ
଴.ଷଽ௑
଴ ݂݀

ඥݏሺ ଵ݂௑ሻ
 

F10 (0.4x-0.49x)/1x 
׬ ඥݏሺ݂ሻ
଴.ସଽ௑
଴.ସ௑ ݂݀

ඥݏሺ ଵ݂௑ሻ
 

F11 (0.51x-0.99x)/1x
׬ ඥݏሺ݂ሻ
଴.ଽଽ௑
଴.ହଵ௑ ݂݀

ඥݏሺ ଵ݂௑ሻ
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3.2.3 Feture Selection Problem 

The goal of the feature selection is to determine an optimal set of features that 

best represents the system health states. The optimization problem is formulated to 

attain the optimal feature set by maximizing the class separation function (PoS) and 

minimizing the correlation coefficient between features to eliminate redundant 

features, if any.[118, 119] For a given size (m) of the feature set, the optimization 

problem can be formulated as:  

 Maximize  Π
௜
ൌ

ଵ

௠
∑ ݋ܲ ௝ܵ
௠
௝ୀଵ െ

ଵ

೘஼మ
∑ หߩ௝,௟ห
௠
௝ஷ௟  (3.7) 

where PoSj is the PoS of jth feature and ρj,l is the correlation coefficient between the 

jth and lth features. The design variables to be optimized are given as: 

 
࢞ௗ ൌ ሾݔଵ, ,ଶݔ … ,  ௠ሿ (3.8)ݔ

where xd is a candidate feature set composed of m number of features. 

Figure 3-10 displays the overall feature selection procedure using the GA. In this 

procedure, the size of the feature set begins with m = 2 and gradually increases up to 

the maximum number of the candidate features. The optimum feature set for each 

set size can be determined by maximizing the cost function (Пi) using the GA. In 

order to find the optimal solution, a population, Np number of candidate feature sets 

is randomly generated at first, and the cost function for each feature set in the 
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population is calculated. Then, two criteria are used to decide the termination of the 

optimization. One is the lower limit criterion (β) of the difference between the 

maximum and the average value of Пi of the population. If the criterion is not reached, 

the population is modified using the GA to meet the criterion. A sequence of 

modification can be regarded as one generation. The other criterion, kmax, is the upper 

limit of the generation numbers. The algorithm can stop at the kmax generation step 

even if the first criterion is not satisfied. A set from the last generated population, 

which has the maximum value of Пi, is selected as the optimal set. In this study, Np, 

β, and kmax are set to 200×m, 0.02, and 80, respectively, as presented in Ref. 48. Note 

that, in updating the feature sets using the GA, the crossover operator BLX-α[120] 

in equation (11) is used to select a better feature subset. The GA feature selection 

can be expressed as: 

 ݃௖௡ሺ݇ ൅ 1ሻ ൌ ߙሺ݀݊ݑ݋ݎ ∙ ݃ଵ
௡ሺ݇ሻ ൅ ሺ1 െ ሻ݃ଶߙ

௡ሺ݇ሻሻ (3.9) 

where k is the generation number, ߙ ∈ ሾ0,1ሿ with uniform distribution, ݃௖௡ means 

the nth feature of the updated feature set c, and ݃ଵ
௡ and ݃ଶ

௡ represent the nth feature 

of the parent feature sets. The optimal feature sets for a given size (m) of the feature 

set are used to demonstrate the effectiveness of the optimal datum units suggested 

by the PoS measure, as described in Section 4.3.3 
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Figure 3-10  Feature selection procedure using the GA 

 

3.2.4 Support Vector Machine (SVM) Classifier 

In a supervised learning, each state of training data is labeled as an individual 

class. Classification algorithm identifies the class of the testing data by a trained 

classifier. Training features extracted from training data are used to define statistical 

characteristics for learning classifiers. By using the trained statistical rules, the 

testing features extracted from testing data are classified into one of the trained 

classes.. 
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Health classification is accomplished through the learning of the classifier using 

the optimal features. In this study, the SVM classifier was used since it generally 

outperforms other classifiers. SVM is a supervised learning method that constructs 

an optimal hyper-plane by solving the structural risk minimizing function. In a two-

class case, the training data set can be given as follows: 

 ሼሺ࢞ଵ, ,ଵሻݕ ሺ࢞ଶ, ,ଶሻݕ … , ሺ࢞୫, ୫ሻሽݕ  (3.10) 

where ࢞௜ ∈ ܴ௡ and ݕ௜ ∈ ሼ1, െ1ሽ. ࢞௜ is the ith n-dimensional training data, and ݕ௜ 

is the class index of the ith training data. The general form of a hyper-plane for linear 

discrimination can be described as: 

 
࢝ ∙ ࢞ െ ܾ ൌ 0 (3.11) 

where ࢝ is the normal vector of the hyper-plane, and b is the bias value. The 

distance between the two support vectors from each class can be expressed as: 

 2
‖࢝‖

 (3.12) 

Thus, the optimal hyper-plane is defined by solving the following optimization 

problem as: 
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 minimize
ଶ‖ݓ‖

2
൅ ௜ߦ෍ܥ

௠

௜ୀଵ

subject	to ௜ሺ࢝ݕ ∙ ࢞௜ െ ܾሻ ൒ 1 െ ௜ߦ

 (3.13) 

where ξi is a slack variable and C is a penalty coefficient. A slack variable is a non-

negative value that allows a soft margin. A penalty coefficient controls the 

complexity of the hyper-plane and the classification error rate. In addition, if kernels 

are applied, a linear classifier turns into a non-linear one. The general description of 

a kernel, K, can be written as: 

௜ݔሺܭ  ∙ ௜ሻݔ௝ሻ=Φሺݔ ∙ Φሺݔ௝ሻ (3.14) 

where Φ is the transform function. As a result, the final decision function is 

expressed as: 

 sgn ൬෍ ௜ߙ௜ݕ ∙ ௜ݔሺܭ ∙ ௝ሻݔ
௠

௜ୀଵ
൅ ܾ൰ (3.15) 

In order to solve a multi-class problem, several binary SVM classifiers are 

required. There are two primary approaches, One-Against-One (OAO) and One-

Against-All (OAA). In this research, the OAO method that Hsu and Lin suggested 

was used because it was found to be a superior approach for practical use.[89] This 

research implemented commercial SVM code known as “LIBSVM[121]” with a 

linear kernel function.  



 

49 

 

Chapter 4. Methodology for Datum Unit Optimization 

 

While ongoing research has improved diagnostics efforts, one of the remaining 

issues in feature extraction is the determination of the optimal amount of data for 

feature generation. Prior work has shown that the sampling rate of data acquisition 

and the amount of data available for diagnosis have an effect on the performance of 

the diagnosis algorithm [47, 48]. This implies that an optimum datum unit must be 

decided with much care for robust fault diagnosis of rotor systems, even after the 

signal is resampled. Thus, research is needed to determine the optimum datum unit—

the focus of this study. 

Feature selection is a methodology to find an optimal set of features that best 

represents the states and to exclude irrelevant or redundant features. It generally 

contains an optimization problem in order to select the best features using a 

separability measure as a cost function. Kullback-Leibler divergence (KLD) has 

been proposed as a separability measure [122]. KLD quantifies the dissimilarity 

between two probability density functions (PDFs) for different features. The Fisher 

discriminant ratio (FDR), another separability measure, represents the distance 

between two PDFs using scatter matrices of mean and variance [123]. KLD has the 

advantage of estimating separability close to a Bayes error when the PDFs are known 

exactly. FDR is a straightforward separability measure because it only uses the mean 

and variance. However, these two measures have limitations in that they have no 
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upper limit for a fully separable case. A measure newly proposed in this paper, 

probability of separation (PoS), can be used to overcome this disadvantage. PoS 

quantifies the degree of class separation in a way that is analogous to the idea of 

load-strength interference [124]. The research described in this paper found that PoS 

outperforms KLD and FDR as a separability measure in a data-driven approach.  

 

4.1 Pre-processing for Gap Sensor Signals 

Although the test-bed is set to operate at a target speed, for example 3,600 rpm, 

the speed actually varies randomly. The variation is no more than 20 rpm during 

normal operation of the test-bed, but higher rpm alterations can be observed under a 

sudden impact or during an abrupt change. In general, turbine rotor systems may 

have greater variation of rpm because there are numerous uncertain factors of 

operating conditions such as an output power, steam pressure, oil temperature of the 

journal, etc. Low-pass filter which has cutoff frequencies in 400 Hz was 

implemented to reduce the effect of high frequency noise. Then the angular 

resampling process is applied for extracting accurate features amidst the substantial 

noise in the signals. This resampling process regenerates the acquired data based on 

the rotation angles and facilitates robust diagnosis of a journal bearing rotor system 

[14-16]. The idea of angular resampling is outlined in Figure 4-1. This process 

enables the vibration data to have an equal angle difference between two adjacent 

data points in a rotation. As a result, regardless of the rpm variation, the resampled 
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signal can have an equal number of points per cycle, which increases reliability in 

extracting features. Figure 4-2 represents the comparison of dispersion of the raw 

signal and the angular resampled signal from the RK4 test-bed. The variance of the 

resampled signal is substantially reduced, which strengthens diagnostic performance. 

In this research, every single cycle between the neighboring keyphasor signals was 

resampled to have 128 points. Features were then extracted for analysis. 

 

Figure 4-1  Resampling outline (a) keyphasor signal (b) raw signal (c) resampled 

signal 
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(a)  (b) 

Figure 4-2  Distributions of (a) raw data features and (b) resampled data features 

 

4.2 Definition of Feasible Datum Units 

The resampling process described in Section 4.1 can split the data by one 

complete cycle, which corresponds to a 360-degree of rotation angle.  This 

technique enables features to be extracted based on the exact number of cycles. 

However, there still remains one last problem, specifically: how many cycles are 

optimal for a particular feature. The motivation for this study came from the idea 

that even a slight change when acquiring data or when processing data could result 

in different statistical characteristics. This section concentrates on defining the 

feasible datum units for feature extraction 

The eight time-domain features used to obtain the statistical characteristics from 

vibration data are described in Table 3-2. The goal of this research was set to define 

the optimal datum units. To assess the effect of the number of cycles on feature 

characteristics, the eight time-domain features were extracted based on 1, 10, 20, 30, 
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and 60 cycles. The same amount of data using the datum units of 1, 10, 20, 30, and 

60 cycles are employed for comparison between various datum units. The maximum 

of feasible data size must be decided by considering the performance of data 

acquisition devices and the computational ability of the software in processing the 

signals. Sixty-cycles, which is equivalent to the length of a one-second signal, was 

thus set as the maximum size of a datum unit. The datum units of sixty-cycles and 

divisors of sixty-cycles were compared in terms of their diagnosis performance. 

Some submultiples were excluded to avoid excessive computational loads. 

The eleven frequency-domain features used to get information about vibration 

data are listed in Table 3-3. Initially, the feasible datum units defined for time-

domain analysis were taken into account for extracting the frequency-domain 

features. Some frequency-domain features are sensitive to the number of cycles for 

feature extraction. That is because the resolution of the frequency response of a 

signal relies on the number of cycles. For example, the k-cycle datum unit has a 

resolution of 1/k times the fundamental frequency. It is well known that a few-cycle 

datum unit cannot represent the sub-harmonics of the fundamental frequency [51]. 

Thus, this research excluded the one-cycle datum for frequency-domain analysis. 
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4.3 Class separability Metrics 

This section introduces three evaluation metrics to measure the capability of class 

separation. The metrics are used to assess the effect of the datum units on the 

capability of class separation and to suggest the optimal datum units for time- and 

frequency-domain features. The three evaluation metrics include: Kullback-Leibler 

divergence (KLD), Fisher discriminant ratio (FDR) and a new measure, namely 

Probability of Separation (PoS), proposed in this paper. Unlike the others, PoS 

quantifies the degree of class separation using a normalized scale, 0 to 1. This section 

discusses the merits and limitations of each of these three class separability metrics. 

All three metrics are used to determine the optimal datum units.  

 

4.3.1 Kullback-Leibler Divergence (KLD) 

The Kullback-Leibler divergence, also called relative entropy, is a widely used 

distance measure in a data-driven approach. Here, KLD was used to quantify 

dissimilarity between two probability density functions (PDFs) of a specific feature 

where each function denotes a condition. Equation (1) represents the definition of 

KLD for two continuous PDFs, f(x) and g(x) [122]. KLD is basically an asymmetric 

measure according to the order of the PDF, as stated in equation (1). Therefore, a 

symmetric KLD form in equation (2) was implemented as a means to quantify the 

degree of class separation [122]. Also, KLD can be represented in equation (3) for 
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the probability mass function P and Q in a discrete version. The KLD value is “0” 

when the two distributions are perfectly overlapped. In contrast, a high KLD value 

guarantees a good capability for class separation. KLD is closely related to the Bayes 

error, but it is often difficult to estimate for non-Gaussian distributed data [125]. In 

addition, KLD can be inadequate for comparison of the separability between features 

because different features may have different KLD values for the same degree of 

class separation [126, 127]. 

௄௅ሺ݂||݃ሻܦ	  ൌ න ݂ሺݔሻ
ஶ

ିஶ
log

݂ሺݔሻ
݃ሺݔሻ

 (4.1) ݔ݀

 

,௄௅ሺ݂ܦ ݃ሻ ൌ ௄௅ሺ݂||݃ሻܦ ൅  ௄௅ሺ݃||݂ሻܦ

ൌ න ሼ݂ሺݔሻ െ ݃ሺݔሻሽ
ஶ

ିஶ
log

݂ሺݔሻ
݃ሺݔሻ

 ݔ݀

(4.2) 

,௄௅ሺܲܦ  ܳሻ ൌ෍ሼܲሺ݅ሻ െ ܳሺ݅ሻሽ
௜

log
ܲሺ݅ሻ
ܳሺ݅ሻ

 (4.3) 

 

4.3.2 Fisher Discriminant Ratio (FDR) 

The definition of FDR in a two-class problem is shown in equation (4), which 

uses only the mean and the variance.[123] μi and σi represent the mean and standard 

deviation of ith class. The numerator indicates the difference between the two-class 

means while the denominator normalizes the variances of the two classes. Given a 
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relatively large separation of two-class data, the FDR results in a great value. FDR 

is easy to use since it only uses the mean and variance for each class. On the other 

hand, it may provide incorrect information when non-normal distributions are 

engaged. 

ܴܦܨ  ൌ
ሺߤ௜ െ ௝ሻଶߤ

௜ߪ
ଶ ൅ ௝ߪ

ଶ  (4.4) 

 

4.3.3 Probability of Separation (PoS) 

PoS is also a two-class separability measure based on the idea of load-strength 

interference. Failure occurs when an applied load exceeds the strength (e.g., fracture 

toughness) of a mechanical part. Taking into account uncertain load and strength 

variables, the probability of failure can be described as the chance that the load 

variable exceeds the strength.[128] The equation of probability of failure is shown 

as: 

 
௙ܲሺݏሻ ൌ න ௅݂ሺݏሻܨௌሺݏሻ݀ݔ

ஶ

ିஶ
 (4.5) 

Analogous to the load-strength interference, the probability of a non-separable 

region can be defined as: 
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ேܲௌ ൌ න ௖݂ଵሺݔሻܨ௖ଶሺݔሻ݀ݔ

ஶ

ିஶ
for ෤௖ଵݔ ൑  ෤௖ଶ (4.6)ݔ

where ௖݂ଵሺݏሻ and ܨ௖ଶሺݏሻ represent the probability density function (PDF) of class 

1 and cumulative distribution function (CDF) of class 2, respectively, while ݔ෤௖ଵ and 

 ෤௖ଶ correspond to the medians of classes 1 and 2. Noting that the probability of aݔ

non-separable region ranges between 0 and 0.5, PoS is defined as the normalized the 

separability value between 0 and 1. The equation of PoS is expressed as: 

 
ܵ݋ܲ ൌ ሺ݁ሺଵିଶൈ௉ಿೄሻ െ 1ሻ/ሺ݁ െ 1ሻ (4.7) 

PoS gives “0” if the feature data of two different classes overlaps perfectly and “1” 

if not overlapped at all. The bounded and normalized property makes PoS more 

powerful than either of the other two separability measures for partially separated 

data of two classes, which is the most common scenario in the classification problem. 

Some comparative study will be discussed in the following section. 

 

4.3.4 Discussion on the Measures of Class Separation 

A comparative study among three class separation measures was performed for 

two-class separation, as exemplified in Figure 4-3. This study entailed four 

separation cases: no separation, a minor separation, a major separation, and full 

separation. The gap signals measured from the RK4 rotor test-bed were used for 

generating the feature data. Due to the randomness in the feature data, the histogram 
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for each feature was employed for evaluating the degree of class separation using the 

separability metrics in a two-class problem. When two-class problems are expanded 

to a multi-class problem, an average of the separation values for all possible 

combinations of two-class problems represents the separation value in the multi-

class problem, as shown in equation (8). SM_c and Si,j represent the separability value 

for the M-class case and for the two class case in ith and jth, respectively. Si,j can be 

obtained by using one of the three measures—KLD, FDR, or PoS. Four health 

classes entail six (= 4C2) possible combinations.  

 ܵெ_௖ ൌ
1

ெܥଶ
෍෍ ௜ܵ,௝

ெ

௝ஷ௜

ெ

௜

 (4.8) 

Table 4-1 summarizes the results of class separation. Some observations on the 

performance of each of the class separation measures are summarized as follows: 

(i) In the case of no separation, which is shown in Figure 4-3 (a), all three 

measures have the class separation value of “0.”  

(ii) In the case of full separation, which is shown in Figure 4-3(d), different 

values are assigned by each of the three measures. KLD and FDR describe the full 

separation inconsistently, depending on the distribution shape. Unlike the earlier 

methods, PoS always gives the class separation value of “1” for the perfect 

separation. 
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(iii) In the case of partial separation, PoS expresses the degree of class 

separation in a normalized scale [0-1] proportional to how much the two distributions 

are distinct. PoS values of 0.752 and 0.989 state the degrees of class separation for 

the cases shown in Figure 4-3(b) and (c), respectively. KLD and FDR quantify the 

class separation in a non-normalized scale. KLD is more sensitive in between minor 

(Figure 4-3(b)) and major separations (Figure 4-3(c)), whereas FDR is more 

sensitive in between major (Figure 4-3(c)) and full separation (Figure 4-3(d)). 

Figure 4-4 and Table 4-2 show clearly that KLD and FDR can give 

counterintuitive results because they depend on a bin size and distribution normality. 

Figs. 8(a) and (b) have the same degree of class separation with different bin sizes. 

KLD gives different separation values, unlike the other measures. This implies that 

KLD is bin-size dependent. For this very reason, KLD may result in another 

counterintuitive situation, as shown in Figure 4-4(b) and (c). FDR may also mislead 

the class separation process because the FDR measure cannot deal with non-

normally distributed histograms properly, as shown in Figure 4-4(c) and (d). In 

summary, KLD and FDR must be used with great care; otherwise, they may 

eventually produce incorrect diagnosis results.[126, 127] 

As summarized in Table 4-3, PoS has three favorable properties: (a) 

normalization, (b) boundedness, and (c) independence from histogram. These 

attributes make the proposed measure, PoS, far more favorable as a class separation 

measure. PoS expresses the degree of class separation in a normalized scale, which 
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allows an intuitive interpretation of the class separation. Moreover, the boundedness 

property in PoS always assigns the minimum (=0) and maximum (=1) values of PoS 

to no and fully separated cases, respectively. When building a histogram, it may not 

be normally distributed, or its bin size can be arbitrary chosen. In either case KLD 

and FDR can be affected, whereas PoS is not. 

 

 

 

Figure 4-3  Four scenarios of class separation 
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Figure 4-4  Dependency on a bin size and distribution normality 

Table 4-1  Class separation results in Figure 4-3 

 (a) (b) (c) (d) 

KLD 0 6.589 20.278 23.692 

FDR 0 2.004 8.017 40.584 

PoS 0 0.752 0.989 1.000 

 

Table 4-2  Class separation results in Figure 4-4 

 (a) (b) (c) (d) 

KLD 26.801 19.701 20.506 21.117 

FDR 61.545 61.545 8.138 5.187 

PoS 1.000 1.000 0.992 1.000 
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Table 4-3  Summary of the advantages and limitations for the three separability 

measures 

Criteria Advantages Limitations 

KLD 
Close to Bayes error with exact 

PDFs 
Not bounded 
Bin size dependent 

FDR 
Simple to implement and use 
Bin size independent 

Not bounded  
Not applicable to non-normally 

distributed histogram 

PoS 
Normalized 
Bounded 
Histogram independent 

  

 

 

4.4 Diagnosis Results via Various Datum Units 

As mentioned above, the focus of this study is on defining the optimal datum 

units for vibration data that best strengthen the diagnostic performance of a journal 

bearing system. The feasible datum units were comparatively studied using several 

qualitative techniques, as described in Section 4.4.1. Section 4.4.2 suggests the 

optimum datum units through quantitative evaluation of the feasible datum units for 

anomaly diagnosis of a journal bearing system. Section 4.4.3 describes how the 

optimal datum units were verified by assessing the prediction accuracy of health 

classification. 
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4.4.1 Qualitative Study of Anomaly Diagnosis 

A qualitative study for anomaly diagnosis is essential. Time-, frequency-, and 

time-frequency analyses are often employed for examining anomaly states using 

vibration signals, i.e., acceleration, gap. In this research, gap signals were acquired 

from the RK4 test-bed under four health states: normal, rubbing, misalignment, and 

oil whirl.  

Empirical histograms of T6 and F2 acquired from RK4 experiments characterize 

the four classes, as shown in Figure 4-5 and Figure 4-6. The one-cycle datum unit is 

excluded for the frequency-domain analysis because the features (F4, F9, F10 and 

F11) representing sub-harmonics cannot be obtained with the one-cycle datum unit. 

The effect of datum units on class separability can be visually evaluated from the 

figures. Comparing the dispersion of the relative frequency in Figure 4-5, it is shown 

that an increased size of a datum unit leads to a greater variance of the T6 feature. In 

particular, the one-cycle datum unit of the oil whirl case is exceptionally different. 

In Figure 4-6, the oil whirl case exhibits a little variation of the F2 feature over the 

feasible datum units, while the others indicate little difference over the datum units. 

It is observed that the frequency resolution determined by the datum unit influences 

the F2 value of the oil whirl case. 

Although Figure 4-5 and Figure 4-6 present a qualitative analysis which gives 

intuitive and easy understanding of the class separability, a quantitative study is 
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required for more precise determination of the optimal datum units. The following 

section covers the quantitative study for anomaly diagnosis, which provides a logical 

basis for selecting the optimal datum units. 

 

Figure 4-5  Distributions of the T6 feature over the feasible datum units 

 

Figure 4-6  Distributions of the F2 feature over the feasible datum units 
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4.4.2 Quantitative Study of Anomaly Diagnosis 

This section discusses the performance of class separation using three evaluation 

metrics, specifically KLD, FDR, and PoS. This study used the vibration signals from 

RK4 experiments to characterize the four health conditions. Each of the eight time-

domain features and the eleven frequency-domain features were calculated with 

different datum unit sizes. A separability measure for multi-class cases was obtained 

from an average of separability measures for all possible combinations of two-class 

problems, as shown in equation (8). The separability results of time- and frequency-

domain features using the three evaluation metrics are shown in the following 

sections. 

Time-domain Features 

KLD values for time-domain features are shown in Figure 4-7(a). A one-cycle 

datum unit was observed to be superior in most time-domain features compared to 

the other datum units. For the time-domain features that are obtained through the 

integration of data—T2 (mean), T3 (RMS), and T7 (shape factor), the separability 

values appear to be steady over the feasible datum units. This implies that the datum 

size is not important for the data-integrated time-domain features. This trend is 

observed in both FDR and PoS methods. On the other hand, the KLD values of T6 

(crest factor) and T8 (impulse factor) were reduced as the datum unit size increased. 
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The reduction in the KLD values was due to the increased variance of features, which 

can be observed in Figure 4-5.  

The results of the FDR values are shown in Figure 4-7(b). Four time-domain 

features (T1, T4, T6, T8) of the one-cycle datum unit acquired the highest FDR 

values. The high FDR values result from the relatively small variances compared to 

those of the other cycle datum units, as shown in Figure 4-5. Just like KLD, three 

 

Figure 4-7  (a) KLD (b) FDR (c) PoS separability values of time-domain features 
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other time-domain features (T2, T3, T7) showed the same or similar FDR values 

over all datum unit sizes. However, the T5 (Kurtosis) feature gave the opposite result. 

In this case, the one-cycle datum unit obtained the lowest FDR value because, in the 

one-cycle datum unit, the T5 feature distribution of oil whirl was shifted towards that 

of normal. The FDR value of the one-cycle datum unit was decreased due to the 

reduction in the mean difference between normal and oil whirl, although they are 

fully separated. As discussed in Section 4.3.4 and Table 4-3, KLD and PoS measures 

are less sensitive than FDR in fully separated cases.  

Overall, the one-cycle datum unit earned the highest PoS in the time-domain 

features, as shown in Figure 4-7(c). However, the T1 (maximum) feature gave a 

conflicting result. For a sub-harmonic dominant signal, such as oil whirl, the 

maximum values for each single rotation cannot represent the global maximum of 

the period because the period is longer than one revolution. Therefore, T1 values for 

oil whirl of the one-cycle datum unit are reduced as compared to those found for the 

other datum units. This reduction caused the lowest PoS value for T1. However, 

KLD and FDR values of T1 gave inadequate results from a combination that had 

exceptionally high values because of non-boundedness. 

In summary, the one-cycle datum unit offers a superior capability of class 

separation in most of the time-domain features. The selection of the datum sizes are 

not important for the time-domain features which are obtained through the 

integration of data—T2 (mean), T3 (RMS), and T7 (shape factor). Among the three 
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evaluation metrics, PoS is the most favorable because of its properties of 

normalization and boundedness. 

 

Frequency-domain Features 

The frequency-domain features are extracted from the results of power spectral 

density (PSD). Figure 4-8 shows the separability values of the frequency features 

over the feasible datum units. For the analysis of the frequency-domain features over 

the datum units, the features can be divided into two groups. The first group (F1-F3) 

includes the global features, which encompass the entire frequency content, whereas 

the second group (F4-F11) are the local features that are interested in a particular 

frequency content.  

Let us first consider the first feature group, which contains the integration of both 

frequency and magnitude of PSDs. F2 (RMSF) and F3 (RVF) features showed 

greater variation over the datum units, regardless of the separability measure used. 

The large variances are mainly due to different distributions of features in the oil 

whirl case according to the datum units used, as shown in Figure 4-6 for the F2 

feature. For a sub-harmonics dominant signal, such as oil whirl, the magnitudes of 

distributions for each frequency are highly influenced by the frequency resolution 

determined by datum unit size. If the dominant frequency of oil whirl can be exactly 

represented in a certain resolution defined by the datum unit size, the F2 and F3 

features would have low variation and high separation. For example, the oil whirl of  
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Figure 4-8  (a) KLD (b) FDR (c) PoS separability values of frequency-domain 

features 

 

a 0.45x frequency component can be represented by the frequency resolutions of a 

twenty- or sixty-cycle datum unit. As a result, F2 and F3 features in twenty- and 

sixty-cycle datum units show high separability values, as shown in Figure 4-8. 

Similarly, another oil whirl case of a 0.43x frequency component can be represented 

by the frequency resolution of a thirty- or sixty-cycle datum unit. These frequency  
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Figure 4-9  PoS separability values of frequency-domain features with inclusion of 

0.43x dominant oil whirl signal 

 

resolutions lead to high separability values in thirty- and sixty-cycle datum units, as 

shown in Figure 4-9. In addition, the F1 (FC) feature has the same trend as F2 and 

F3, but it has relatively small variances because the effect of frequency change in the 

equation for F1 feature is weaker than that of two other features.  Further 

discussions related to frequency resolution are provided in Section 4.4.3. 

The local feature group (F4-F11) offers nearly the same separability values over 

all datum units studied, regardless of the separability measure used. This result can 

be explained by the two sub-groups of the local features. The first sub-group (F9-

F11) consists of the features extracted through the summation of magnitudes of PSDs 

for defined frequency ranges. The magnitude of a frequency component can be 

spanned to adjacent sidebands in certain datum units. However, the summation 

process reduces the variance of features over datum units by adding up the sidebands. 

The second sub-group (F4-F8) includes the features obtained from PSD magnitude 

value(s) at particular frequency contents. The particular frequencies used for the F4-
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F8 features can be derived from the frequency resolutions of all datum units. Thus, 

each feature for the second sub-group has similar values across the various datum 

units because the magnitudes of PDFs are not affected by datum unit sizes. 

FDR showed undesirable results due to its nature of non-normalization and 

unboundedness. This results in a greater variation in F11, substantially lower FDR 

values in the F4, F9, and F10 features, and conversely, a significantly higher FDR 

value in F7. This implies how important it is that the separability measure holds the 

properties of boundedness and normalization. Only PoS offers these features.  

In the frequency-domain, a sixty-cycle datum unit, the highest frequency 

resolution, has been consistently supporting high separability, although most 

features are not affected by datum unit sizes. 

 

4.4.3 Validation through Classification 

This section describes the work performed to validate the effectiveness of the 

optimum datum units through the classification study. The SVM classifier is used 

for the classification of four health states implemented in the RK4 test-bed. Tests 

for each health condition were repeated twice. The training process used half of the 

data from each test (chosen randomly); the rest of the data was used in the prediction 

process. Classification studies were done with eight time- domain features and 

eleven frequency-domain features. Figure 4-10 shows the class prediction results  
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Figure 4-10  Classification results using (a) the time- and (b) the frequency-domain 

optimal features selected by the PoS-based GA 

 

using the optimal features selected by the PoS-based GA. The numbers in the x-axis 

indicate the number of optimal features determined from the feature selection 

process. The classification was performed as the number of features increased.  

The classification results of time-domain features are shown in Figure 4-10(a).  
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The increase in the optimal features of time-domain results in greater accuracy of 

class prediction. Moreover, the one-cycle datum unit was superior to the others from 

the viewpoint of classification accuracy. On the other hand, different datum unit 

sizes have no or little influence on the classification accuracy using the frequency-

domain features, as shown in Figure 4-10(b). The accuracy becomes saturated with 

more than five optimal features regardless of the feature selection algorithm. 

Another interesting issue is how the combination of the features in both the time- 

and frequency-domains affects classification accuracy. Figure 4-11 shows the 

classification results using the optimal features in both the time- and frequency-

domains. A one-cycle datum unit was used for the time-domain, while all feasible 

datum units were used for the frequency-domain. A PoS-based GA was used for the  

 

 

Figure 4-11  Classification results using both the time- and frequency-domain 

optimal features: A one-cycle datum unit for the time-domain and all 

feasible datum units for the frequency-domain 
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feature selection and the SVM classifier for the classification. 99% classification 

accuracy can be achieved using more than five optimal features in both the time- and 

frequency-domains. Among various datum units in the frequency-domain, thirty- 

and sixty-cycle datum units assure the maximum classification accuracy. 

Some notable findings can be observed from the classification results: 

 PoS-based feature selection can enhance the diagnostics performance. 

 A one-cycle datum unit is optimal for time-domain classification. 

 No single distinct datum unit was found for frequency-domain classification. 

This section further discusses the third finding. It is well known that an oil whirl 

state produces sub-harmonic components, normally in the range of 0.42-0.48 times 

the fundamental frequency. The spectral leakage problem thus arises in the oil whirl 

state when the signal has a limited length.[129] This sub-harmonic component can 

be accurately represented by the twenty-, thirty- and/or sixty-cycle datum units, 

depending on the sub-harmonic components, where the twenty-, thirty- and sixty-

cycle datum units have a resolution of 0.050x (=1/20), 0.033x (=1/30), 0.017x (=1/60) 

frequency, respectively. For example, twenty- and sixty-cycle datum sizes have no 

leakage for 0.45x frequency (= 9/20 and 27/60), whereas thirty- and sixty-cycle 

datum sizes have the minimum leakage for 0.43x frequency ( 13/30 and 26/60). 

Figure 4-12 and Figure 4-13 show the PSD and distributions of F1 over the various  
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Figure 4-12  PSDs of oil whirl with (a) 0.43x and (b) 0.45x whirling frequency  

 

Figure 4-13  F1 feature distributions of oil whirl with (a) 0.43x and (b) 0.45x 

whirling frequency 

datum units. Figure 4-12(a) and Figure 4-13(a) represent 0.43x frequency dominant 

oil whirl, while Figure 4-12(b) and Figure 4-13(b) exhibit 0.45x frequency 
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dominant oil whirl. The figures well represent that the small spectral leakage leads 

to the low variances of the F1 features. The variance of each distribution is quantified 

by the coefficient of variation (CV). It is uncertain which sub-harmonic component 

appears in the oil whirl state. As suggested in Section 4.4.2, it is thus desirable to 

select the sixty-cycle datum unit, which has the highest resolution among the feasible 

units. Of course, higher-cycle datum units can be used; however, they reduce the 

amount of feature data for a given signal. Unless signals are abundantly acquired and 

managed for anomaly diagnosis, the sixty-cycle datum unit is recommended for the 

frequency features. 
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Chapter 5. Omnidirectional Regeneration of Gap Sensor 

Signals 

 

5.1 Omnidirectional Regeneration (ODR)  

5.1.1 Definition 

The acquired signals are obtained as a voltage that is inversely proportional to the 

gap between the sensor and the rotor. The voltage values are transformed into the 

exact distance by multiplying a scale factor, and eliminating the DC component of 

the voltage returns vibration signals. As the shaft rotates, as shown in Figure 5-1, the 

centerline changes from point 1 to 3 and the displacement between the rotor and the  

 

Figure 5-1  Sensor locations: ① and ③, and virtual sensor locations by ODR: ②

and ④ 
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Figure 5-2  Vibration signals from sensor locations (a) ①, (b) ②, (c) ③, and (d) 

④ in Figure 5-1  

 

sensor ③ is increased. Accordingly, the vibration signals acquired by the sensor 

③ in Figure 5-2 are decreased from point 1 to 3.  

In addition, the vibration signals from ① and ③ sensors can make the orbit. 

Figure 5-3 represents the orbit made by the vibration signals. By using the vibration 

signals as the x- and y- coordinate of the Cartesian coordinate system, respectively, 

the orbit of the rotor can be obtained. The orbit drawn by the vibration signals exactly 

matches to the actual trajectory of the shaft centerline.  

Omni-directional regeneration (ODR) is a method that produces vibration signals 

in an arbitrary direction. The vibration signals can be generated from the two  
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Figure 5-3  Orbits by signals from (a) ① and ③ sensors, and (b) ② and ④ 

sensors 

 

vibration signals acquired by two orthogonal proximity sensors, as presented ① 

and ③ in Figure 5-1. The signals from ① and ③ are measured signals, while the 

signals from ② and ④ are generated by ODR. The corresponding signals are 

presented in Figure 5-2. 

The omnidirectional regeneration (ODR) of vibration signals can be regarded as 

the signals obtained from an artificial sensor as presented in Figure 5-1 ② and ④. 

The ODR signals can be obtained by transforming the coordinates. The rotation 

about the origin of the Cartesian coordinate system generates signal which can be 

regarded as the measured signal at the rotated direction. In other words, the ODR is 

equivalent to placing an artificial sensor at a target direction. Thus, vibration signals 

in any direction that is of interest can be obtained if the real sensors are in orthogonal 

position. 
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Figure 5-4  Coordinate transformation of a point in two-dimensional system. 

 

The principle of ODR is to apply the coordinate rotation in the Cartesian system 

on two-dimensional plane. A data point A can be presented in a Cartesian coordinate 

as in Figure 5-4. The original coordinates, X଴-Y଴, denotes the x-position of point A 

as x0, and y-position as y0. However the point can be addressed differently when 

other coordinate systems are used. For example, point A can be denoted as x1, y1 

from the Xଵ-Yଵ coordinates in Figure 5-4. The coordinates Xଵ-Yଵ are rotated from 

the coordinates X଴-Y଴. The relation between the two representations, (x0, y0) and (x1, 

y1), can be described as follows:   

 ቂ
ଵݔ
ଵݕ
ቃ ൌ ቂ ߠݏ݋ܿ െߠ݊݅ݏ

ߠ݊݅ݏ ߠݏ݋ܿ
ቃ ൈ ቂ

଴ݔ
଴ݕ
ቃ (5.1) 

where θ is the angle between the two coordinate systems in a clockwise rotation. We 

can apply this principal to set of scalar values as well. The equation (5.1) can be 

modified as follows: 
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 ቂ
࢞௜
࢟௜
ቃ ൌ ቂ ߠݏ݋ܿ െߠ݊݅ݏ

ߠ݊݅ݏ ߠݏ݋ܿ
ቃ ൈ ቂ

࢞଴
࢟଴
ቃ (5.2) 

where xi=[xi(1), xi(2),…, xi(n)] and yi=[yi(1), yi(2),…, yi(n)]. The scalar values xi(k) 

and yi(k) denotes x- and y-position of the point at time sequence k in Xi–Yi coordinate 

system, respectively. The set of scalar values can describe various types of signals 

including vibration. Thus the vibration signals obtained via proximity sensors as in 

Figure 5-1 can be regarded as x0 and y0 in equation (5.2).Then, the ODR signals, xn 

and yn, can be defined as: 

 
࢔࢞ ൌ cosሺ݊ߠ߂ሻ ࢞଴ െ ሻ࢟଴ߠ߂ሺ݊݊݅ݏ
࢔࢟ ൌ sinሺ݊ߠ߂ሻ ࢞଴ ൅ ሻ࢟଴ߠ߂ሺ݊ݏ݋ܿ

ሺ݊ ൌ 1, 2, … , ܰሻ
 (5.3) 

where x0 and y0 are the acquired vibration signals from proximity sensors, Δθ is the 

increment of the rotation angle, and N (=ۂߠ߂/ߨہ) is the maximum number of ODR 

that can be generated.  

The ODR can generate vibration signals from an arbitrary direction. Multiple 

ODR signals around the rotor can be obtained by adjusting the increment of the angle, 

Δθ. To diagnose the state of the system accurately, Δθ should be fine. However, if 

Δθ is too fine, the number of ODR signals (N) will increase, and the computational 

load will also increase. In addition, the vibration signals are radially symmetric, so 

ODR signals within the π rotation angle range will be generated. Likewise, there is 
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no need to use both xn and yn, because xn signal is equal to yn+N/2, which is 90° rotated 

signal of yn. The xn covers all yn if ODR covers more than half rotation. 

 

5.1.2 Validation of ODR Signals 

The ODR signals are transformed from the acquired signals as stated in Section 

5.1.1. To use the ODR signals in the diagnosis process, the ODR signals should be 

verified that those signals are identical to the signals in the same direction. An 

example of experiment data is used to validate ODR. 

First, xN/2 which is 90° counter-clockwise (ccw) ODR signal of x0 should exactly 

match to y0. As shown in Figure 5-5, the direction of xN/2 is equal to that of y0, so the 

two signals should be identical. The two vibration signals in Figure 5-6, prove that 

they are exactly the same. Second, the direction of yN/2 is opposite from the direction 

of x0, so yN/2 and x0 should be symmetric. This is also proved by signals in Figure 

5-6. The ODR signal of yN/2 is x-symmetric to x0. The last evidence is that the orbit 

formed by xn and yn should be the same. By using both the acquired signals and the 

ODR signals, orbit shapes are compared in Figure 5-7. Although the vibration signals 

change over rotation angle, the orbit shape remains constant. From these facts, the 

ODR signals can be regarded as vibration signals in other directions.  
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Figure 5-5  Diagram of ODR signals 

 

Figure 5-6  Measured signals from (a) x0 and (b) xN/2, and ODR signals from (c) y0 

and (d) yN/2  
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Figure 5-7  Orbits by (a) measured signals (x0, xN/2), and (b) ODR signals (y0, yN/2) 

 

5.2 Directionality of Health States 

Each health state of the rotor system has its own characteristics of vibration 

signals. Among various health states, few health states show large differences among 

ODR signals. If only the acquired vibration signals are used for these health states, 

the vibration signals will vary by the direction of the sensors and anomalies, not by 

the health states. The inconsistent vibration signals will result in deterioration of the 

performance of diagnosis. Thus the evaluation of directionality will group health 

state into either directional or non-directional state. Then the ODR signals can be 

applied to health state corresponding to the directionality result.  

The directional health state denotes that variances exist among ODR signals. An 

example of an impact-rubbing state signals is presented in Figure 5-8. Among the 

ODR signals, we cannot predict which signals would be measured through proximity 

sensors. In some cases, xN/4 signal may be obtained, while in other cases, x3N/4 signal  
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Figure 5-8  Rubbing state ODR signals from sensors (a) x0, (b) xN/4, (c) x2N/4,(d) x3N/4, 

(e) y0, (f) yN/4, (g) y2N/4, and (h) y3N/4 

 

Figure 5-9  Rubbing state orbit from sensors (a) (x0, y0), (b) (xN/4, yN/4), (c) (x2N/4, 

y2N/4), and (d) (x3N/4, y3N/4) 

 

can be obtained. The conventional method which uses only the measured signals 

would give different diagnosis results for each case, xN/4 and x3N/4. Thus, for 

directional health states, the ODR signals should be considered. On the other hand, 

the non-directional health states have similar vibration signals over rotation angle as 

presented in Figure 5-10. The waveform of ODR signals for normal state does not 

change over rotation angle, which indicate that any signal can be used for the  
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Figure 5-10  Normal state ODR signals from sensors (a) x0, (b) xN/4, (c) x2N/4,(d) x3N/4, 

(e) y0, (f) yN/4, (g) y2N/4, and (h) y3N/4 

 

Figure 5-11  Normal state orbit from sensors (a) (x0, y0), (b) (xN/4, yN/4), (c) (x2N/4, 

y2N/4), and (d) (x3N/4, y3N/4) 

 

diagnosis process. The directionality of health state can also be confirmed by the 

shaft orbit. The orbits of rubbing state in Figure 5-9 express the rotation clearly as 

different ODR signals are used, whereas those of normal state orbits in Figure 5-11 

do not.   
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The decision of directionality can be made by looking at ODR signals and the 

orbits, but quantitative metric should be defined for consistent analysis. The metric 

should work for every health states, and should be irrelevant to anomaly 

characteristics. So FFT of ODR signals are used. The proposed directionality 

evaluation metric is defined as follows: 

 D ≡	
Max൫S୬ሺfଵ୶ሻ൯ െ Min൫S୬ሺfଵ୶ሻ൯

Min൫S୬ሺfଵ୶ሻ൯
ሺn ൌ 1,2, … , Nሻ (5.4) 

where Sn(f) is the power spectrum of the nth ODR signal and f1x is the frequency of 

rotating speed. The numerator of the metric, D, is the difference between the 

maximum and the minimum magnitude of power spectrum at rotating frequency (or 

fundamental frequency) among N ODR signals. Large difference between the two 

magnitudes indicates that the difference among ODR signals is large, so the health 

state maybe directional. To make the metric more general, the denominator is added. 

With the denominator term, D can be compared to that of other systems with 

different vibration levels. By the empirical study, the health state that has D larger 

than one is grouped as directional health state, and others as non-directional health 

state. To validate the metric, D is calculated for the rubbing and normal states. The 

result in Figure 5-12 shows that D of rubbing exceeds ones, while D of normal does 

not.  
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Figure 5-12  Example of Direction Evaluation Result 

 

5.3 Health Classification using ODR Signals 

As stated in Section 5.2, the rotor systems can be grouped into either directional 

or non-directional health state. To determine the directionality, ODR signals are 

generated for all health states. With the ODR signals, the directionality are obtained 

through evaluation metric proposed in Section 5.2. The overall health classification 

procedures based on directionality of ODR signals are presented in Figure 5-13. For 

the directional health states, we should use all N ODR signals for the robust diagnosis. 

The features are extracted and selected from each ODR vibration signal, and the 

selected optimal features are used for the classification process. The k selected 

  



 

89 

 

 

Figure 5-13  Overall procedures of ODR based diagnosis 

 

features of each N ODR vibration signal are used for training the classifier. The 

support vector machine algorithm trains the classifier with the labeled data. Then, 

the class of unlabeled data of each N ODR vibration signal is predicted. The 

prediction gives N results for each ODR vibration signal. The N predicted classes 

may have the same results, however if not, a decision should be made to determine 

the class of the unlabeled data.  
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In this research, majority voting scheme is used for the final decision. Originally, 

the majority voting scheme is frequently used to integrate the results from multiple 

classifiers. For example, each classification result of support vector machine (SVM), 

Fisher’s discriminant analysis (FDA), and artificial neural network (ANN) are 

obtained for the same data. The final decision can be made by selecting the most 

frequent classification result. Benchmarking the majority voting scheme, we have 

applied this scheme to the N results of ODR signals. Among the N predicted classes, 

the majority class will be the final prediction result. For cases with multiple majority 

classes, the prediction result will give no result, which indicates that the prediction 

result is not accurate. An example is shown in Figure 5-14. The majority voting 

scheme is used for the final prediction of sixteen ODR signals of rubbing state. As 

presented in Table 5-1, the majority of sixteen classes is the rubbing health state 

 

Figure 5-14  ODR signals at rubbing state 
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Table 5-1  Example of predicted class using ODR signals 

ODR 
Predicted 

Class 
ODR 

Predicted 
Class 

x1 Rubbing x9 Rubbing 

x2 Rubbing x10 
Rubbing with 

Unbance 

x3 Rubbing x11 Misalignment 

x4 Rubbing x12 Misalignment 

x5 Rubbing x13 Rubbing 

x6 Rubbing x14 Rubbing 

x7 Rubbing x15 Misalignment 

x8 Rubbing x16 
Rubbing with 

Unbance 

 

 

which counts for eleven ODR signals, thus the final prediction of the example is the 

rubbing state. 

The majority voting results can be changed by the number N. So the optimal 

number for N should be determined by the diagnosis accuracy. The definition of N 

  is inversely proportional to the increment of the rotation angle, Δθ. If the (ۂߠ߂/ߨہ=)
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Δθ is small, the fineness of ODR signals is increased, which gives better chance of 

understanding the health state. However, too small ODR signals will cost much 

computational load without improving the performance or it will yield overfitting 

problem. Thus N should be compromised or optimized between the prediction 

accuracy and the computational load. 

 

5.4 Results of ODR 

5.4.1 ODR Signals for Health States 

The time and FFT plots can display the physical interpretation of each health state. 

This section provides the time and FFT plots of the ODR signals as well as measured 

signals of the test data. Total of five health states—normal, rubbing, misalignment, 

oil whirl, rubbing with unbalance—were tested. From each test, two vibration signals 

(x0 & y0) were measured by proximity sensors in orthogonal direction. Based on x0 

& y0, ODR signals were generated as in Figure 5-15. In addition FFT plots for each 

ODR signal are presented in Figure 5-16 for further understanding.   

The signals of normal state is close to the typical sinusoidal wave irrespective of 

ODR rotation. This is also confirmed in the FFT plot that 1x frequency component 

is dominant for all ODR signals. Next, the oil whirl state is distinguished by the FFT 

plots of 0.42-0.48x dominant case [49, 130, 131]. The oil whirl is induced by  
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Figure 5-15  ODR signals of health states (a) normal, (b) oil whirl. (c) misalignment, 

(d) rubbing, (e) rubbing with unbalance 

  

instability of lubricant oil surrounding the shaft. Thus the characteristics are similar 

over the rotation angle as presented in time plots and FFT plots. For misalignment 

health state, some of the time plots resemble that of the normal case, but time plots 

change over the ODR rotation angle. Especially, some ODR signals have very small 

amplitude with 2x frequency component, which is the result of misaligned shaft. For 

the rubbing health state, time plots change greatly as the ODR rotation is changed.  
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Figure 5-16  FFT of ODR signals corresponding to Figure 5-15  

 

In some directions, the trimmed sign of sinusoidal signal due to impact-rubbing is 

obvious. But in some other directions, the signals are very hard to tell whether 

impact-rubbing is made. The FFT plots of rubbing also differs over the ODR rotation 

angle. Some FFT plots have 1x dominant with harmonic components, which is a 

typical rubbing sign. Other plots have very small 1x frequency which makes other 

frequency components dominant relatively. The rubbing with unbalance case is 
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similar to the rubbing case. The amplitude of 1x component in FFT has been 

increased and this is revealed in time plots as well.  

From the figures of FFT, normal and oil whirl health states can be grouped as 

non-directional states. The time plot of oil whirl seems to change over rotation angle, 

but the variance of time and frequency features are minor compared to those of  

 

Figure 5-17  Orbit of ODR signals corresponding to Figure 5-15 
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directional features. An example of distribution of time feature is presented in Figure 

5-18. The figure shows that the variance of oil whirl features are much smaller than 

those of rubbing features. This can also be confirmed by looking at the FFT plots. 

The FFT plots of normal and oil whirl states do not change much over rotation angle, 

while FFT plots of other states change greatly. Thus we know that ODR signals 

should be applied to rubbing, rubbing with unbalance, and misalignment cases for 

robust characterization of each health state. However, for consistent analysis of the 

directionality, the metric that is stated in Section 5.2 is applied in the next section.  

 

 

Figure 5-18  Distribution of Kurtosis and Crest Factor values for oil whirl and 

rubbing states 
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5.4.2 Directionality for Health States 

The directionality of health states is determined by the directionality evaluation 

metric, D. The objective of evaluating the directionality is to split the health data into 

two groups, directional or non-directional states. For directional states, ODR signals 

are to be applied for robust characterization, whereas for non-directional states, ODR 

signals are redundant of acquired signals. All the data used in this research is 

evaluated for directionality. A set of data includes sixty seconds signals of each 

health state. Three sets in total were evaluated and the result for each validation case 

is presented in Figure 5-19.  

For data set 1, the normal and the oil whirl states had D values less than one, 

which indicates non-directional health state. The other health states showed D values 

bigger than one, which denotes directional health state. The other two data sets had 

consistent results with the first case. Hence the first two health states can be grouped  

 

Figure 5-19  Results of directional evaluation metric for (a) data set 1, (b) data set 

2, and (c) data set 3 
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as non-directionality group, whereas the last three health states can be grouped as 

directional group. 

For rubbing and rubbing with unbalance states, a point contact occurs in a vertical 

direction. The effect of the contact is not seen in all directions but in a certain 

direction. The most evident trace of the contact is represented when the direction of 

ODR matches to that of contact. Thus, health states including rubbing can be defined 

as directional states. For misalignment state, the shaft is shifted in a horizontal 

direction, which leads to increase of horizontal stiffness on the bearing. This leads 

to uneven magnitude of the response between horizontal and vertical signals, which 

causes the ODR signals to change over rotation angle.  

 

5.4.3 Classification Results by ODR 

The five health states are grouped into either directional or non-directional state. 

For directional state group, the features are extracted from all ODR signals. Using 

the extracted features, the training of the classifier and the prediction of the unlabeled 

data are performed. Since N results are obtained for each sixty-cycle data, the final 

prediction result is obtained by majority voting. For non-directional state group, the 

features are extracted from one of the measured signals. The ODR signals are not 

used for this group because time and frequency features do not change much 



 

99 

 

compared to those of directional states. With the extracted features, the training and 

prediction processes are performed.  

To validate the effectiveness of ODR signals on directional health states, the class 

prediction result is presented. The two results including with and without ODR 

signals are compared. In addition, the results of the non-directional health state is 

also presented.  

ODR vs. Non-ODR 

First, the effectiveness of the ODR method can be validated by the results in 

Figure 5-20 for directional health states. The class prediction accuracy of ODR and 

non-ODR signals are compared in the figure. The lines marked by circles represent  

 

Figure 5-20  Classification results of directional health states using measured 

signals 
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the results by the proposed ODR methods, while the lines marked by upward- and 

downward-triangle represent the results by non-ODR signals. For both cases, the 

optimal number of features (n) for feature selection process are increased from two 

to nineteen. Each line represents average of three cross validation cases by three data 

sets. The results by ODR signals are based on the majority voting scores of sixteen 

ODR signals (Δθ = 11.25°). Contrast to that, other lines are the results of non-ODR 

signals, which uses the measured signals, x0 and y0, for training and prediction.  

The classification results clearly show that the ODR method outperform the 

conventional method which uses x0 and y0 signals separately. When six or more 

features are used, the ODR method classifies the given data without many 

misclassifications. However, the results by x0 and y0 signals show less than fifty-

percent for most of the feature numbers. These results indicate that x0 and y0 cannot 

fully characterize the directional health states. In addition, the class prediction results 

using xn and yn signals are presented in Figure 5-21. To consider the uncertainty of 

directions, all possible combinations of signals for prediction were used with x0 and 

y0 training. Since N signals were generated by ODR, N3 combinations for three health 

states were used for the prediction. The average of N3 results are presented as lines 

marked by triangles.  

As expected, the prediction accuracies of the ODR method are substantially 

higher than those of the non-ODR method. Most of the predictions by the ODR 

method reach accuracy of hundred percent when number of optimal features were  



 

101 

 

 

Figure 5-21  Classification results of directional health states: Average of all 

feasible combinations 

larger than five, while the average of the non-ODR method remain less than fifty 

percent irrespective of optimal features. However, the ODR method of five or less 

optimal features show about seventy percent due to misclassification of rubbing with 

unbalance case. The misclassification is reduced after amplitude related features are 

included in the optimal features. In addition, the low accuracies of the non-ODR 

combinations had accuracies between zero to hundred percent, which means that 

prediction heavily depends on the direction of abnormality and sensors. 

Second, the class prediction results for non-directional health states are shown in 

Figure 5-22. Likewise, the class prediction accuracy of ODR and non-ODR are 

presented in the figure. Similar to the directional case, the ODR method uses N ODR 

signals for training and prediction, whereas the non-ODR method uses only one  
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Figure 5-22  Classification results of non-directional health states: Average of all 

feasible combinations  

signal. The non-ODR results are the average prediction accuracy of N3 combinations. 

The result indicates that both ODR method and non-ODR method are valid for 

classification of non-directional health states. Not much difference exists between 

the ODR method and the non-ODR method because signals do not vary with respect 

to direction. Thus, if the health states are grouped as non-directional by evaluation 

metric, a signal from any direction can be used for the training and prediction 

processes.  
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Chapter 6. Unsupervised Learning Framework for Power 

Plant 

We introduced supervised learning for journal bearing rotor system using test-

bed data with consideration of physics. However, the application of developed 

algorithm in small-scale test-bed to the diagnosis of actual system such as rotors of 

a large-scale power plant is needed additional consideration for the un-tested 

conditions. Unsupervised learning techniques can help this problem. For these 

purpose, we would like to suggest the diagnostic framework for a power plant using 

deep learning architecture which has high performance for supervised and 

unsupervised recognition using high-level feature abstraction. 

 

6.1 Overview of Deep Learning for Diagnosis 

Resources of diagnosis algorithm development for Journal bearing rotor systems 

are classified as labeled data (for supervised learning) and unlabeled data (for 

unsupervised training). Detail categories for acquired signals from the test-bed and 

a power plant are shown in Figure 6-1. The labeled data can be used for validation 

of supervised learning directly by using classification prediction accuracies whereas 

it can also be used for validation of unsupervised learning indirectly by the 

comparison of the predicted cluster of known conditions.  
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Figure 6-1  Data categories of journal bearing rotor systems 

The goal of this chapter is execution of unsupervised learning for a power plant 

through reasonable validation process. In order to develop unsupervised training for 

a vibration signals of power plant, some validation stages are required. We 

established three stage developing procedures from test-bed to a power plant case as 

shown in Figure 6-2. Already we know the success of deep learning in an image 

recognition. Therefore, the image type of vibration data which contains overall 

characteristics of rotor behavior were used for input signal of DBN. In this study, 

five layers of hidden stage for DBN structures was used for high level feature 

abstraction as shown in Figure 6-2. The details of DBN and RBM will be explained 

in the Section 6.2. 
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Figure 6-2  Diagnosis procedures for (a) classification and validation of test-bed 

data (b) classification and validation of power plant data (c) clustering 

of test-bed and power plant data 

 

6.2 Deep Learning Architecture of Gap Sensor Signals 

The vibration data for image generation are based on the ODR signals. These 

signal contains overall vibration characteristics of rotor system as well as gives 

intuitive understanding of health states. 
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6.2.1 Image Generation for Deep Learning 

The vibration data measured by the gap sensors are pre-processed through the 

process in the Figure 6-3 for deep learning. It consists of resampling with low-pass 

filter, phase synchronizing, stacking with ODR signal generation, and normalization. 

Resampling and low-pass filter were mentioned in section 3.1. Especially, low-pass 

filter is efficiently effected for the reduction of high frequency noise of the actual 

power plant data which will contribute robust procedure for diagnosis. After 

resampling the gap sensor signals are synchronized in time-domain. The physical 

meaning of gap sensor signals in the image domain are differ according to its phase 

information. The results of image generation in various phase cases for the same  

 

Figure 6-3  Pre-processing of gap sensor signals for deep learning 
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Figure 6-4  Examples of ODR imaging (64x64 or 32x128 pixels) in the cases of 

phase delay from lst peak of 1x signal in (a) 0 (b) π/2 (c) π (d) 3π/2 

 

health state are shown in Figure 6-4. The images are shown in the size of 64x64 and 

32x128 pixels according to the methods stacking ODR signals. The vibration images 

are absolutely dependent to the phase of the signals. 

Phase Synchronization 

Phase synchronization offers the same criteria in sequence for feature-domain to 

make similar images of gap sensor signals in the similar behavior. In most case, 1x 

signal which is harmonic component of fundamental frequency is dominant in  
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Figure 6-5  Gap sensor signals for eight revolution in (a) x-direction and (b) y-

direction 

 

journal bearing rotor system. Therefore 1x signal can be used for time criteria of 

phase synchronization. In this work, the first peak of 1x signal are used as the starting 

point of signal generation. Figure 6-5 shows gap sensor signals for eight revolution 

in x- and y-direction. Total vibration and 1x signals are represented in blue and red 

line, respectively. For each two cycle of gap sensor signals (green colored region in 

Figure 6-5) are used for image generation. In the vibration signals acquired in 3,600 

RPM, thirty vibration images could be generated from the vibration data for sixty 

seconds. The generated vibration images are the outputs of ODR signals, which will 

be explained in the followings. 

Vibration Images from ODR Signals 

ODR described in Section 5 are formulate the high diagnostic performance 

because it represents the overall behavior of the system status. Applying the ODR 
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technique in the journal bearing system can create the image reflecting the overall 

omnidirectional vibration characteristics. This ODR based vibration image enables 

the robust fault diagnosis regardless the orientation of measurement and the direction 

of anomaly occurrence.  

The generation of vibration image come from stacking ODR signals. Figure 6-6(a) 

shows the ODR signal mentioned in Section 5.1. The positions of x0 and y0 in Figure 

6-6(a) mean the directions of gap sensor installation. Phase synchronized x0 and y0  

 

Figure 6-6  (a) Diagram of ODR signals (b) vibration image using ODR signals 

with normalization (c) ODR signal in x0 (d) ODR signal in x32 
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signals for two revolutions are used for ODR generation, which are resampled 

signals in 64 samples per each cycle. Two revolutions as a length of data for image 

generation are employed to improve the effectiveness of vibration characteristics 

representation. The ODR signals are generated in 32 directions which are 

represented in the direction of gray colored sensor position. Vibration image from 

the stacked ODR signals is shown in Figure 6-6(b). ODR signals are normalized 0 

to 1 by using the maximum and minimum of total ODR data in two revolution. The 

vibration image displays pixels with the value 0 as black and 1 as white. The 

examples of normalized ODR signals in the x0 and x32 direction are shown in Figure 

6-6(c) and (d). The vibration images for test-bed data in the states of normal, rubbing, 

misalignment and oil whirl are presented in Figure 6-7. 

 

Figure 6-7  Vibration images for test-bed data in the condition of (a) normal (b) 

rubbing (c) misalignment (d) oil whirl 
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6.2.2 Generation of High-level Features  

Vibration images generated from ODR signals introduced in Section 6.2.1 are 

used as inputs of DBN. The description of data used in the deep learning study is 

presented in Table 6-1. Labeled data in test-bed and power plant which are used for 

the quantification of reasoning performance consist of four health conditions such as 

normal, rubbing, misalignment, and oil whirl. The input vibration image is 4096 

(32x128) dimensional data. Candidate sizes of hidden nodes for stacked RBM were 

used 2048, 1024 and 512 dimensions which are kind of divisor for the dimension of 

input vibration image. Then, three to five hidden layers were employed for possible 

RBMs in deep learning. The number of hidden layer and the size of hidden nodes  

Table 6-1  Description of data used for deep learning 

System Status 
Health 

condition 
Data size of vibration image 

(Number x Dimension) 

Test-bed Labeled 

Normal  1000 x 4096 

Rubbing 1000 x 4096 

Misalign. 1000 x 4096 

Oil whirl 1000 x 4096 

Power Plant 
Labeled 

Normal 1000 x 4096 

Misalign. 1000 x 4096 

Oil whirl 1000 x 4096 

Unlabeled - 15000 x 4096 
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Figure 6-8  DBN using five hidden layers of which sizes are 512, 2048, 1024, 2048, 

and 512 dimensions 

are selected from the classification result of labeled data in Table 6-1. In this study,  

deep learning employed five stacked RBMs whose dimensions for each hidden layer 

are 512, 2048, 1024, 2048, 512, respectively, as shown in Figure 6-8. The 

classification results for supervised data using given DBN are represented in Section 

6.3.1. 

 

6.2.3 Reasoning Algorithms 

Deep learning algorithms are used for two kinds of diagnostic methodologies: 

health state classification and clustering. An appropriate classifiers are required 

according to the diagnosis algorithms. We selected the classifiers from the branch of 
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ANNs. The multilayer perceptron (MLP) and self-organizing map (SOM) employed 

as classifiers for classification and clustering, respectively.  

Multilayer Perceptron (MLP) for Classification 

Multilayer perceptron (MLP) is a type of feedforward neural networks (FFNNs) 

that mapping multi-dimensional inputs onto newly generated outputs [132, 133]. 

MLP basically consists of three layers: input layer, hidden layer, output layer. A 

hidden layer can be designed with a single layer or multiple layers of neurons, with 

each nodes of a layer fully connected to the nodes of next layer. The weighted sum 

of each layer and bias temp processed by a nonlinear activation function for 

generating node of next layer or outputs. MLP using a backpropagation technique is 

one of the most popular algorithm for any supervised learningpattern recognition 

process. 

Self-organizing Map (SOM) for Clustering 

The SOM is structured by nodes in a one- or two-dimensional regular grid, which 

are configured as hexagonal or rectangular configuration [134, 135]. A schematics 

of SOM with 2-D hexagonal lattice are illustrated in Figure 6-9. The SOM essentially 

defines a mapping from the input (ܠ ∈  ௡) onto a 2-D array of neurons. Every neuronࡾ

of SOM is associated with an n-dimensional weighting vector ܟ௜  where ܟ௜ ൌ

ሾݓ௜ଵ, ,௜ଶݓ ,௜ଷݓ ௜௠ሿ்ݓ… , m is the dimension of the input data. An m-dimensional 

input vector (ܠ ൌ ሾݔଵ, ,ଶݔ ,ଷݔ …  ௠ሿ்) is connected to all component of weightingݔ
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Figure 6-9  A schematic representation of a SOM [135] 

 

vectors. Additionally each neuron can be affected by neighbor neurons. Once all 

weighting vectors of neurons have been initialized, the Euclidean distances between 

and input and all weighting vectors are calculated. The weighting vector which is 

smallest Euclidean distance is called as best-matching unit (BMU). The equation for 

searching BMU is denoted as: 

 ܿ ൌ argmin
௜
ሺ‖ܠ െ  ௜‖ሻ (6.1)ܟ

All weighting vectors are updated according to the following equation as:  

ݐ௜ሺݓ  ൅ 1ሻ ൌ ሻݐ௜ሺݓ ൅ ݄௖௜ሺݐሻሾݔሺݐሻ െ  ሻሿ (6.2)ݐ௜ሺݓ
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where ݄௖௜ሺݐሻ is the neighborhood kernel around the BMU c at the time-step t in 

updating process of SOM. The neighborhood kernel is defined in the following 

equation as: 

 ݄௖௜ሺݐሻ ൌ ሻݐሺߙ ∙ ݄ሺ‖ݎ௖ െ ,‖௜ݎ  ሻ (6.3)ݐ

where ݎ௖ and ݎ௜ are the location vectors of neurons c and i, ߙሺݐሻ is learning rate 

in the range of 0 to 1. For the convergence of the SOM process, ݄௖௜ሺݐሻ	goes to 0 

when t →∞, and with increasing ‖ݎ௖ െ  .‖௜ݎ

 

6.3 Results of Deep Learning 

The diagnosis results using deep learning consist of the supervised and 

unsupervised case. Data obtained from test-bed and known data of power plants were 

performed a supervised learning. Then the whole data including unknown status of 

power plants were performed unsupervised learning. 

 

6.3.1 Supervised Learning Results 

Health Classification of Test-bed Data 

Experiments with test-bed were performed for the four conditions of health states 

– normal, rubbing, misalignment, and oil whirl. The experiments are carried out five  
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Figure 6-10  Procedures for classification of test-bed data (a) five sets of test-bed 

data in four anomaly conditions (b) the combinations of training and 

testing data set (c) classification accuracy and its meanings  

 

times for each health condition, and each experiment represented by set as show in 

Figure 6-10(a). To obtain classification results, three sets of experimental data were 

used as training data, and the rest two sets were used as testing data. The performance 

of diagnosis using health classification was obtained by the averaging of results for 

all the possible 10 combinations as shown Figure 6-10(c).  

In this study, we examined four case of classification results in order to validate 

the effect of deep learning, and MLP with 30 hidden neuron was used as classifier. 

Data used for four classification cases are as follows: raw vibration data, raw data 
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with deep learning, ODR data, and ODR data with deep learning. The performance 

of health classification for the four cases mentioned above are shown in Figure 6-11. 

Class 1 to 4 in Figure 6-11 are matched to the condition in normal, rubbing, 

misalignment, and oil whirl, respectively. When used raw data, there is not much 

difference in diagnostic performance regardless the implementation of deep learning 

and indicates relatively low accuracies as shown in Figure 6-11(a) and (b). On the 

other hand, if you use the ODR data, diagnostic performance are highly improved.  

 

Figure 6-11  Classification prediction accuracy according to selected data and 

algorithms (a) raw vibration signals without deep learning (b) raw 

vibration signals with DL (c) ODR signals without DL (d) ODR signals 

with DL 
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The classification result using the ODR with deep learning presents the best 

diagnostic performance as shown in Figure 6-11. Although some samples in rubbing 

condition in set 4 and 7 in Figure 6-11(d) are misclassified, it shows high 

classification accuracy as 98.1%. These results represent that the high-level feature 

generated by deep learning shows good performance in supervised learning. 

Health Classification of Power Plant Data 

In order to investigate the health classification performance of the power plant 

data, high-level features from test-bed and known condition of power plant described 

in Table 6-1 were used as training and testing data. Power plant data contains three 

health conditions: normal, misalignment, and oil whirl. Class l through 4 in Figure 

6-12 means normal, rubbing, misalignment, and oil whirl, respectively. Although  

 

Figure 6-12  Classification prediction results from training with test-bed data and 

testing with labeled power plant data 



 

119 

 

few misclassified results in normal and oil whirl are exist, the classification results 

confirmed high classification accuracy as 96.7 %. These result shows high potentials 

of high-level features driven by deep learning for power plant diagnosis. 

 

6.3.2 Unsupervised Learning Results  

Unsupervised learning trains the algorithm without the information of label. If we 

have some labeled data, it can be used for the validation of clustered results or as a 

basis of semi-supervised learning. Unsupervised learning used total 22,000 number 

of data described in Table 6-1 which are acquired from test-bed and power plants in 

the conditions of known and unknown. Each data for learning is high –level features 

extracted from deep learning in 512 dimension. Among all the data for unsupervised 

learning, the conditions of 32% data are known and the rest are unknowns as 

illustrated in Figure 6-13. SOM classifier with 9 cluster was employed as the  

 

Figure 6-13  Data composition for unsupervised learning 
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Figure 6-14  Results of unsupervised clustering with high-level features by deep 

learning 

 

Figure 6-15  Clustering results of supervised conditions in test-bed and power plant 

 

classifier for clustering. The results of unsupervised learning are shown in Figure 

6-14. Zone in light-blue and light-red in Figure 6-14 represent the results of test-bed 

and known conditions in power plants. The specified results for known condition 
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are shown in Figure 6-15. Clustered results of known power plants are well matched 

to the results of test-bed as 94.7% accuracy. We obtained the accuracy by dividing 

the numbers which resulted same class in test-bed and known power plant by total 

number of known power plant data. The occurrence of each clustered label for total 

testing data are presented in. Figure 6-16. The cluster 1 and 9 represents high 

occurrences than others. Cluster 1 seems to normal condition, whereas cluster 9 

remained unknown conditions. Cluster 5 and 6 are also remained unknown status in 

unsupervised results. The clustering results of unknown conditions are evenly 

distributed as shown in Figure 6-16(b). This is because the unknown data of the 

power were obtained in the condition of the anomalies intermittently generated. So 

the occurrence of several evenly distributed clustering results are reasonable in  

  

Figure 6-16  Histogram of clustered results using high-level features by deep 

learning 
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unstable power plant conditions. Figure 6 17 represents a kind of validation for 

clustered results whose vibration images for unknowns in power plant are similar to 

vibration images in test-bed for the case of same clustered label. 

 

Figure 6-17  Validation of clustered for unsupervised status by vibration images 
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Chapter 7.  Contributions and Future Works 

 

7.1 Contributions and Impacts 

The proposed research in this thesis aims at developing robust diagnosis 

algorithm for journal bearing system in a power plant and to advance conventional 

diagnosis techniques using gap sensors. This research is composed of three research 

thrusts: 1) datum unit optimization, 2) omnidirectional regeneration of gap sensor 

signals, and 3) unsupervised learning framework for a power plant. It is expected 

that the proposed offers the following potential contributions and broader impacts in 

various engineering fields: 

Contribution 1: Suggestion of optimal datum unit for diagnosis using gap 

sensor signals 

This research defines the optimal datum unit for the diagnosis of the journal 

bearing system. From the classification study for the anomaly diagnosis, it can be 

concluded that the proposed optimal datum unit guarantees the high separability. 

Since the high separability enables the accurate and robust diagnosis, the optimal 

datum unit has to be decided with much care in featuring anomaly states for robust 

fault diagnosis of the journal bearing system. The proposed optimal datum unit has 
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high performance of separation in feature space as well as outperforms in 

classification prediction results for multi-class problem. 

Contribution 2: Definition of new high effective separability metric – PoS 

This thesis proposed new separability measure, named PoS. the proposed metric 

has favorable properties like normalization and boundedness shows a superior ability 

to evaluate the class separation than conventional metrics like KLD and FDR. Under 

the multi-class cases, normalization and boundedness of PoS make it possible to 

compare the separability between different features in the identical manner even with 

complicated combinations. This implies that these favorable properties can assure 

the more robust evaluation of separability for non-separable conditions. Since the 

non-separable conditions are critical in the complex classification problem, it is 

believed that the optimal datum unit with PoS may also make steps forward to 

accurately and robustly diagnosing an actual complex engineered system. 

Contribution 3: Omnidirectional regeneration of gap sensor signals 

This research proposed omnidirectional regeneration (ODR) of gap sensor signals. 

A journal bearing system generally installs two gap sensors in the right angle with 

fixed location to obtain the vibration data of the rotor behavior. These fixed sensor 

sometimes may indicate different signals though the similar health conditions when 

the directional anomalies like rubbing and misalignment are occurred in different 

directions. However, the proposed method can generate vibration signals in an 
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arbitrary direction without using extra sensors. The signals are generated around the 

circumference of the rotor to consider vibration characteristics in all the directions. 

The ODR signals guarantee the high performance of reasoning for the journal 

bearing system.  

Contribution 4: Generation of image from vibration signals 

This research suggest the generation of image from vibration signals. As 

mentioned in this study, ODR signals can be generated in circumferential directions. 

Each regenerated signals are meaningful to the aspect of data for diagnosis. In order 

to generate vibration image consistently, phase synchronization was applied before 

ODR. Regenerated signals are stacked in the same order and procedures for 

construction of two-dimensional image which used as high-dimensional input data 

for reasoning. Additionally, the stacking of all regenerated vibration signals show 

the entire behavior of rotor in a glance. 

Contribution 5: Extension of diagnosis rule to the actual power plant system  

This study propose unsupervised technique for diagnosis of rotor system in a 

power plant. The diagnosis methodology based on deep learning which has high 

performance in feature abstraction was implemented by stepwise approach from test-

bed to power plant rotor system. These diagnostic framework  
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7.2 Suggestion of Future Research 

Although the technical advances presented in this thesis successfully address 

critical challenges in diagnostic rules for journal bearing system as well as make the 

extension of reasoning techniques to the actual power plant, there are still several 

research areas where further investigations and developments are required to truly 

bring diagnosis module into reality. Specific suggestion for the continuation of the 

study on diagnosis of rotor systems are listed as follows: 

Optimization of ODR application 

This study develops ODR of gap signals to generate virtual vibration data for 

circumferential directions. However, the optimal number of ODR signal was not 

defined. Small number of ODR signals is less likely to obtain high accuracy of 

prediction, whereas too many ODR signals may cause extra computational load 

without any or little improvement. Therefore, it is required to define appropriate 

number of ODR which guarantee high performance in classification with the 

consideration of computational efficiency.  

Establishing inverse diagnosis model 

The physics of rotor in a journal bearing system were double checked using the 

FEA model corresponding to the test-bed. FEA model has some advantages in the 

aspect of time and cost saving compared to the experiment. The development and 
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improvement the model can increase the fluency of diagnosis methodology. Using 

the FEA for the anomaly cases which are verified with the experiment, the 

information of several degree of fault can be obtained. In addition, the information 

of system condition can be recognized from sensory signals through FEA model 

inversely, which named inverse diagnosis model. 

Advances in diagnostic framework for a power plant using big data 

The diagnosis system of a power plant may be faced with a big data issue in the 

situation of advances in equipment and increasing significance of information. In 

this regard, deep learning is considered as a good approach for diagnosis of a power 

plant. As further studies for ease of engineering judgement, there is a need for the 

integrated diagnostic module between supervised and unsupervised learning which 

learned from this research. In addition, issues related to big data such as high-

dimensional data, computing ability/efficiency and data sampling criteria are also 

considered as upcoming challenges.  
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Abstract (Korean) 

대형 발전소 저널베어링 회전체 시스템의 

비지도 학습 및 진단 기법 연구 

 

전 병 철 

서울대학교 대학원 

기계항공공학부 

 

회전체 시스템은 다양한 산업용 기계 및 설비에 널리 사용되고 

있으며, 종종 시스템의 고장으로 인해 상당한 경제적 손실이 초래된다. 

특히, 저널베어링이 일반적으로 사용되는 발전소와 같은 산업분야에서는 

설비의 고장이 상당히 중요한 문제로 다루어진다. 따라서 회전체 

시스템에 대한 진단 도구들이 일반적으로 구축된다. 데이터에 기반한 

자동화 진단 시스템은 초기 단계의 비정상을 감지함으로써 시스템의 

안전성 증대와 함께 비용절감에 기여할 수 있다. 진단 알고리즘을 

개발하여 실제 시스템에 적용하기 위해서는 진단 기법의 강건성 확보가 

무엇보다 중요하며, 나아가 실제 환경에서 발생할 수 있는 다양한 고장 

조건을 진단하기 위한 비지도 학습에 대한 고려가 필요하다.  
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본 연구에서는 저널베어링 회전체 시스템의 강건한 진단 기법 개발을 

위한 두 가지 중요한 연구 내용으로 진단용 데이텀 기준 최적화와 변위 

센서의 전방향 신호 재생성을 다루고 있다. 데이텀 기준에 대한 

연구에서는 특성인자 공간에서의 분류 능력과 이상상태 진단 결과에 

대한 평가를 통해 최적의 조건이 정의된다. 전방향 신호 생성 

연구에서는 회전체의 전체적인 거동 특성을 충분히 반영할 수 있는 신호 

생성 기법을 제시함으로써 높은 진단 정확성과 강건성 확보가 가능하다. 

이상의 연구에서 개발된 강건한 진단 기법을 실제 시스템에 적용하기 

위해 비지도 학습을 이용한 진단 기법이 고려된다. 딥 러닝을 이용한 

비지도 학습은 고차원 특성인자 추출을 통해 우수한 진단 성능을 

나타내며, 발전소 진단 프레임워크로 적용 가능성을 제시한다. 

 

주제어 :  진단 

데이텀 기준 

전방향 신호 재생성 

저널 베어링 

딥 러닝 
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