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Abstract

Statistical Health Reasoning System of Power Generator Stator
Windings against Water Absorption

Kyung Min Park
Departmenbf Mechanical and Aerospace Engineering
The Graduate School
Seoul National University

The power generatpas one of the mostitical componerg in a power plant, is
typically maintaineahrough use of time or usagebased strateg\Either strategy
could result ina substantial waste of remaining useful life (RUL), high maintenance
coss, andor low plant availability due to excess, untimely, or missed maintenance
Recently, the field of prognostics and health managemasbffered new general
diagnostic and prognostic techniques to precisely assess health cendition
robustly predict the RUL of engines systers with the aim of addresig the
aforementioned deficiencies. This paper explores a smart health reasoningtbgstem
can be usedo assess the healttondition of power generator stator windings and
their levels of water absorption. The systemnitors health based on capacitance
measurements of the winding insulatiolmsparticular, anewrelative health measure,
namely the Directional Mahalanobis Distance (DMD), is proposed to quantify the
health condition of stator windisgThis paper als@roposes arempirical health
classification rulebased upon the DMDBwhich factors inmaintenance history. The
proposedsmart health reasoning system is validated using eightfesdsdata from

eight generators, each of which contains fowg windings.
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Nomenclature

60

Round down function (= floor function)
Measurement area

Capacitance

Covariance

Distance

Expected value

Electric constant

Relative static permittivity (= dielectric constant)

Threshold value/distance

The number of variablgs: data size of group)

Maximum vale
Minimum value
Sample mean
Sample size

Charge on conductor
Correlation coefficient
Covariance matrix

Standard deviation
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Voltage
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Chapter 1. Introduction

1.1 Motivation

Power generatar are critical elemerg of power plans. An unexpected
breakdown ofa generatoicanlead to plant shalown andcan result insubstantial
economic and societal loss. Recently, tremendous technological advancements have
been achieved in the development and deployment of arsulbercritical (UE)
steam generatpshown inFigure 1-1. The USC steam generatoperates at an
advanced steam temperature of ¥D3r above enabling itto achieve higher
energy conversion efficiencyyhile at the same timeedudng fuel consumption
and waste emission. However, the large gap between the operation temperature and
pressures of the advanced ©Syenerator andthose found inconventional
subcritical generatsrieads to far harsher operagiconditiors in the USC. Thus,
the USC hasa much higher risk of catastrophic failure. To minimize the losses
resulting from potential failures, the reliability of théSGtype power generator
must be ensured throughout its dgcle amidst uncertain openadgjconditiors and
manufactuing variability.

Recently, prognostics and health management (PHM) has emerged as a key
technology to evaluate the current health condition (health diagnostics) and predict
the future degradation behavior (health prognostics) of an engineered system
throughout its lifecycle. In general, PHM consists of four basic functiameealth
sensing functiona health reasoning functiom, health prognostics functipmnda
health management function. PHM halown successn lowering system

maintenance costs of maus engineered systems. Comprehensive exploration of

. o A2tk



PHM techniques for power generator windingen enablesarly anticipation of
failure. PHM can be usetb develop coseffective maintenance strategies and to
seek opportunities faextending equipmenife. Effective health reasoningystems

area crucial step towardscomprehensive exploration of PHM techniques.

Super- Ultrasuper -
critical critical (USC)

620
O State-of-the-art .
o N
) 590 (USC) Large gap:
3 harsher
< 560 Global condition
Q average J higher risk
£ 530
-

5o 30% 35% 40% 45% 50%

Efficiency
Figurel-1.Comparison of performance between subcritical, supercritical and ultra

supercritcal steam generators

1.2 Overview

This research aim® developa health reasoning systefor power generator
stator winding through bothphysical and statistical analysi&. health reasoning
system, also known as the integration of condition monitorirg)(&nd health
classification, isan algorithmbased systenused todiagnog health conditions
based on sensory signals and related health measures. Two steps are typically
involved: (1) CM to extractelevantsystem health informatiothrough feature

extraction techniques, (2) health classification to classify a systéealth state
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into diverse health classes using health classification techniques such as artificial
intelligence,a support vector machine, decision trees, and mahalanobis distance
(MD).

This research proposes a new classification technilqat can be applietb
stator windings ipower generatar The new technique eliminates the limitations
found inexisting methods anieh MD, which is widely used ithe PHM field. The
proposeddefinition for health classification is carried out wittlata fromthe

maintenancdistory that has been obtained from the field.

1.3 Thesis Layout

This thesis is organized as follows: Chapter 2 reviewisting methoddor
detecting leak and water absorption in thasulation ofstator windings found in
power generatar Chapter 3 presentie sensing function for health monitoring
and analysis of health data which can be measegatdingthe insulation obtator
windings. Chapter 4iscussefeature extractiotechniquesand introducsa health
index for a smart health reasoning systef@hapter 5 presenta new health
classification rulewhich includesconsideration of the data size. The validation
study for theproposedhealth index and grade system is giverthis chapter as

well. Finally, conclusions othe papeare presenteith Chapter6.



Chapter 2. Literature Review

This dapter reviews the existing state ofknowledge related to health
assessment of power generafothe topic of this thesis Topics reviewed inclle
(1) PHM techniques for engineered systemsluding power generatgrand (2)

existing methodsised in the field to guaraljainst leak and water absorption.

2.1 Prognostics and Health Management Techniqueassed to
Support the Health Reasoning Function

PHM is a method that permits assessment of the reliabiliysystem under its
actual application conditions. Extensive research has been conductdok
application of PHM tovarious engineered systems.

Popular tools used fahe healthreasoning funddn include statistical methods
(A. H. Christer etal. [1], and Y. Zhan e#tl. [2]), artificial intelligence (R. B.
Chinnam egl. [3] and C. C. Lin etl. [4]), support vector machés (J. Yang egl.
[5] and C. Cortes dl. [6]), kernel estimation (N. S. Altmdi7]), decision trees (L.
Rokach[8]), Mahalanobis distance (R. De Maesschalcid.g9] and G. Taguchi et
al. [10Q]), Kalman filter (J. D. Wu edl. [11] and SK. Yang[12]), among others

These algorithmgan beapplied to various engineered applicaticineluding
bearing (I. E. Alguindigue etal. [13]), gearbors (S. Ebersbach eal. [14]),
machine tools (D. E. Dimla Sf15 and K. F. Martin[1€]), transformes (C.
Bartoletti etal. [17], C. Bengtssofl8], C. Hu etal. [19] andC. Booth efal. [20]),
generatcs (C. W. Park eal. [21], J. Finn eal. [22], A. Kheirmand etal. [23] and



G. C. Stone eal. [24]) and stator insulationsedfor winding in generatorgG. A.

Jayantha edl. [25] and Z. Jia eal. [26]).

2.2 Existing Teststo DetectL eaks or Water Absorption

Generd Electric (GE), one of the largeshanufacturerof generatordan the
world, providegguidelines for sstandard outage test program for periodic overhaul
of generators. The scheduigically includesminor overhaukvery 30 monthand
major overhaukvery 4860 months.Figure 2-1 summarizes th&E maintenance
programplan. The program consists of four tests; tfl Vacuum Decay Test, (2)
the Pressure Decay Test, (8)e Helium Tracer Gas Test and (#)e Stator Bar
Capacitance Mapping Test (J. A. Wordemlef27]).

The first three tests adesigned to detedtaksin the stator winding.The frst
test the Vacuum Decay Test is a useful tool for determining the integrithef t
entire watefcooled stator hydraulic system. The primary advantdgleis tests its
sensitivity. Decay measurements are made in units of micPotygpical pressure
gage cannot detect one micron, whicredgivalent to .00002 psi. Because of the
high sensitivity of this test, ironically, extremely small leaks at flanges and
connections can result in poor test resdlite £condtest the Pressure Decay Test
has two advantagesver the Vacuum Decay Test. It provides a greater pressure
differential am applies pressure in the normal direction of the leak flow. These
factors may make it easier to find leaks undetectaibie VacuumDecay Test
During this test, exposed potential leak sites can be tastedy a bubble.

Drawbacks to pressure testing ats insensitivity to small leakandrelatively high



sensitivity to changes in the environmehhe third testthe Helium Tracer Gas

Test is a method of leak detection where the generator is pressurized with a helium
gas so that possible leak poin@ncbe detected usingteelium gas detector. In
many cases, leaks that were misegdhe Vacuum Decayestand thePressure
Decay Tesarefound with theTracerGasTest

Finally, theStator Bar Capacitance Mapping Testised to determinghe extent
of water absorption. This test assumes that good capacitance data provides a normal
distribution when plottednearly all of the datahould fall between-2 and +2
standard deviations from the average. This test uses +3 standard deviations of the
capacitanceata as a failure threshold.

Korea Electric Power Corporation Research Institut§dKEPRI) has also
developed methods usirggcapacitance reader (or wet bar detector) for detecting
water absorption using statistical tadlscluding(1) a Normal ProbabilityPlot and
(2) aBox Plot (H. S. Kim eal. [29]).

The Normal Probability Plot method determines the health classes of winding
insulation based on a normal probability plot. An operator can visually identify an
outlier or anomaly casky examiningthe plot. It is assumed that the capacitance
data ofa healthy winding follove a normal distributionThe Box Plot method is
another grapical method, which graphically depicts the health classes of the
capacitance data through thelf and 3 quartiles. The drawback ofboth
aforementioned methods is that the sensitivity of the winding health classification is
relatively low because of iptoper statistical modeling of the capacitance data and

a lack ofconsideration of data heterogeneity.
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2.3 Summary and Discussion

The aforementioned PHM techniquesn beapplied to various engineered
systems. Most monitoring systerfor power generatgruse electrical signals to
detect the faults of the generator. In the case of monitohegysem for water
absorption, basic statistical ideas have been used to detect leatks detdctthe
water absorbeth insulation based upon capacitance reasliNpte that the direct
use of capacitance measurements as the health index by the existingsmethod
reviewed previouslynakes it difficult toeasily and preciselyfer the health status
especially when the measurements are of high dimensionality, high correlation
and/or high nodinearity. Toimprove upon the status quihe work we propose
developsa new health index through statistical analysis of ndiftiensional
capacitance measurements for effedyiveletermining the health of power
generator windingsThe ultimate goal ofthis work is to better preverdudden

failure andto enablea selfsusténed generatgras shown irFigure2-2.

Health
Reasoning

\

Health
Prognostics

\

Health
Management

Figure2-2.Processes involved in a sselfistained power generator
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Chapter 3.Description of the Sensing Function
and Data Analysis

The objective of the sensing function is to ensure high damage detectability and
efficient data management by designing data ia¢tepn logistics.In addition, he
health condition ot power generator can be monitored gypperlyanalyzing the
capacitance ofhe winding insulation. This section discusses the fundamentals of
capacitance measurements, locations of capacitance me®sits, and
characteristics of measurement data. This stdmineseight power generatsr
(nineteen datasets over eight years) which hhgesame specifications: (B 500

MW output, (2)a2-path cooling system, and (860 Hz frequency.

3.1 Fundamentds of Capacitance Measurements

When a power generator is watgoled, coolant water flows into the water
channels ofthe winding, as shownin Figure 3-1. Leakageinto the surrounding
insulation canoccur due to various operational stressesuch as mechanical
vibration, thermal shogkand crevicecorrosion gee Figure 3-2). When leakage
occurs the water or moisture remains tine winding insulation. The remaining
water degades the winding insulation, which can cause insulation breakdown and
power generator failur@as shown irFigure3-3. For this reason, electric companies
and manufacturing companigsuch as KERI, GE and Toshihaassess the health

status of the winding insulatian their generatorasinga water absorption detector

: 5 A 2T 8 i

o



[27-31]. The water absorption detector infers kel of waterin the insulation by
measuringhe capacitance of the insulation. Because the relative static permittivity
(or the dielectric constant) of water is higher than that of rviddach isgenerally
used aghe insulationmateria), wet insulation has higher capacitanceC, based

upon the following equatiorséeFigure3-4 for a schematic representation)
_Q =2 deé (3.1

whereQ is thecharge on each conductdfijs thevoltage between the plateésand

t are, respectively, the measurement area and the thickness of the detetbe
electric constanty & 8.8540Fm™) andJ is the relative static permittivity ahe
material between the platedleasures of apacitance as health dapaovide
valuable information that can be used to infer the amount of moisture absorption of
a stator wnding. Healthrelevant informatioraboutthe winding can be extracted
from this measured moisture levdt should benoted that various uncertainty
factors such aghe measurement locatiothe ambient humidity andthe winding
surface condition propaggauncertaintieinto the capacitance measuremeitsese

uncertainties mudie taken into account in the health reasoning process.

M Veasurement area

<+—— Mica-epoxy Insulator
Conductive copper

Coolant channel

@ (b)
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WATER BOX

Voids in "Spongy" Selective Attack
Area of Braze of Cuz P

Copper Strand

oY

(1) Cooling Water

| Copper Strand Brazi‘ng Metal

1) Solution at braze surface (inlet water)

2) Water works its way into voids in braze and stagnates

3) Crevice corrosion of braze (primarily CuzP)

4) Critical solution or surface area conditions met, and Cu corrodes
5) Solution/surface area conditions change favoring braze corrosion
6) Solution/surface area conditions change favoring Cu corrosion

7) Leak drives down the bar to outer surface

Figure3-2.Diagram ofa crevice corrosion mechaniqia7]

Figure3-3.Failure ofa power generator stator
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Figure3-4.Capacitance reading usiagletector lodel: GEN-SWAD I) (a) andhe

basic principle othe capacitancdetector (b)

3.2 Capacitance Data Acquisition

As mentioned previouslyeach ofthe power generatoemployedin this study
hasforty-two stator windings and slotssed fora watercooled cooling system. As
shown inFigure 3-5, the cooling water flows from the to@binlet at the turbine
end, through the top and bottom bars at the collectorteadpack to the bottom
bar outlet at the turbine end. At the turbine or collector end, an assembig slot
both the top and bottom bars contains ten measurements poirgs.tefih
measurement points are summarized Teble 3-1 and graphically illustrated
together with the generator structure diagiarRigure 3-5. Notethat since only an
extrerrely small gap exists between the top and bottom bars, the capacitance on the
top side of the bottom bar cannot be measured, resultioglyrtwo measurement
points for the bottom bar. As shownTable3-1, a uniaie identification (ID) code

is assigned to each measurement point based on the location of the probing point.

3 f

T1
=
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For example, the ID codBCET-TOPO indicates that the measurement point is
located on théop side of theCollector End Top bar. The capacitancatd were
acquired from the ten measurement pofotseach ofthe forty-two slotsfound on
eachpower generator. The capacitance data measured at each measurement point

can be modeled as a random variale (

Table3-1.Summary of ten measurement points on a single stator winding

Stator side Winding Measurement Identification
location point Code
TOP CET-TOP (Xy)
Top Winding ouT CET-OUT (X,)
Collector End
(CE) IN CETIN (Xs)
o ouT CEB-OUT (X,)
Bottom Winding
IN CEB-IN (Xs)
TOP TET-TOP (Xs)
Top Winding ouT TET-OUT (X))
Turbine End
(TE) IN TET-IN (Xe)
ouT TEB-OUT (Xo)
Bottom Winding
IN TEB-IN (Xy0)
. o L= 1 I
13 s A2t ek



A-A
TOP

Coolant hose

Assembly Slot

[
Turbine End(TE) ‘r Axis of generator Collector End(CE)

Figure3-5.Structure diagram afwater-cooled power generator widi2-path cooling system
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3.3 Statistical Characterization of the Capacitance Data

The capacitance data acquired at physically isolated measurement points can be
modeled as statistically independent random variables Kse.and Xj).
Alternatively, the data can be modeled as statistically correlated random variables.
For example, a physical gap between two different wind{agsshown irFigure
3-6) is one reasorwhy the related random viables might be statistically
independent. Moreover, different winding locations (CET, CEB, TET, and TEB) in
one winding are also physically distant. Thisoimplies that the related random
variables could be statistically independent. On the other, haaigr absorption
occurs concurrently at adjacent measurement paintie same groupsuch as
CET-TOP (Xy), CET-OUT (X,), and CETIN (Xs3). Checking statistical dependence
between two random variables could confirm whether our intuitive observation is
true or not. Before checking statistical correlations, a mean shift was applied to all
datasets to take into account the inherent difference in the nominal states of water
absorption between generatoas shown inFigure 3-7. After the mean shift, the
correlation coefficients later become useful to develop the health reasoning process
for a stator winding in a power generator.

In general, the correlation coefficient is used as a measure to imply statistical
correlaton. The most famous measure of correlation is the Pearson product
moment correlation coefficient. It is a quantitative measure of a linear dependence
between two variables. Mathematically, a correlation coefficient can be calculated
from the following form

_Cov(X;.X;) _ngi - ﬂk)(xj - 62?)

r (3.2
X% X, X, Sy, §,

s (5 A=t 8



whereX; andX; are random variables, Co¢(X) is the covaance betweei; and
X, € andd are the mean and standard deviation of a random variable, respectively,

and Eff] is the expectation of a random variable.

&
RADIAL SUPPORT ARM 2=
RING TIE d

(b)

Figure3-6.Gaps between two different windings (a) and between top and bottom

stator bars (b)

Capacitance (pF) at point B
Capacitance (pF) at point B

10 12 14 16 18 20 22 24 26 28 4

Capacitance (pF) at point A

2 o 2 4 6 8 10 12

Capacitance (pF) at point A

(a) (b)
Figure3-7.Scatter plots of the data between measun¢meints before (a) and

after (b) mean shift

. AU

.-'u_;_...h SECHRIL hATIOMAL LIMIVERSTY



Table 3-2 summarizes the correlation coefficients for ten random variables,
I, x, fori,j =1 to 10, in matrix form. The highlighted valuesTiable 3-2 are the
coefficients between the correlated random variables in the same group. One can
observe two features from the highlighted values: g13tatistically positive
correlation, and (2a higher degree otorrelation within the same group. These
features indicate that the two or three capacitance data from the same group tend to
behave i(e. remain unchanged or grow) with linear dependence. This ccafiren
intuitive observations about theforementioned statistical correlation and
independence Appendix A provides pairwise scatter plots between the ten
measurement points (or ten random variables), from which two scatter plots are

extracted to show the withigroupand betweetgroup correlations.
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Table3-2.Correlation coefficient matrix (symmetric) for ten random variables in matrix form

: CET CEB TET TEB
Col\zlrztlggon TOP  OUT  IN ouT IN TOP  OUT  IN ouT  IN
(Xo) (X3) (X3) (Xa) (Xs) (Xg) (X7) (Xg) (Xg) (X10)
TOP 1
(X2)
ouT
CET )
IN
(X3) 1
OUT 70849 01572 01354 1
CEB (X4)
(I>I<\|5) -0.039 0.1686 0.0765NORZME 1
T(SG')D 0.3341 0.1553 0.1868 0.0843 -0.052 1
TET C(’;)T 0.1972 0.2506 0.2729 0.0879 0.0171
7.
(L'(\L) 0.2295 0.1423 0.3296 0.0082 0.0457 oWl Bt 1
%Z)T 0.0438 -0.128 -0.097 0.0186 -0.114 0.0887 -0.010 -0.003 1
TEB
(>I(’\1|o) 0.0354 -0.040 -0.004 0.0457 0.0870 -0.048 0.1084 o.omsM
e A 2
18 { ‘.'.'.l'-)i A =
.l‘\-\.__'...-;""- ECHIL MAT



3.4 Data Grouping

It is important to define a group of capacitance data with homogeneity prior to
the data modeling and health reasoning process. Based upon the measurement
location and correlation characteristic obtainedSastion 3.3, the measurement
points with high correlation can be conceived as individual data groups, such as
CET, CEB, TET, and TEBThis implies thatthe entire dataset for ten random
variables (or from tewimensional measureant points) would be split into four
groups with two or three random variables. This data grouping will be used for the
health reasoning process in the subsequent section, which defines a health index
and models it in a statistical forrasshownin Figure 3-8 and Table 3-3. The data
grouping makes the health reasoning process easier through dimensional reduction

of the capacitance data.

CORRELATION 1 CORRELATION |——=
MATRIX  |CET-|CET-|CET- VIATRIX | CEB-[CEB-
TOP | OUT | IN OUT | IN
CET-TOP CEB-OUT 1
CEB
CET | CET-OUT CEBIN 1

CORRELATION
MATRIX | [ET-|TET-

TET

TET-TOP 1

TET-OUT

CORRETATION [———
MATRIX | [EB-|TEB-
ouT | IN
TEB-OUT 1]
EB
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Table3-3.List of measured datasaetndtheinformation employed in this study

Power Generator Year for Winding Measured dataset
Plant Number  Measurement Number CE group TE group
1 CET CEB TET TEB
1 @5, 807, 09 (X1, Xz, X3) (X4, Xs) (Xe, X7, Xe) (Xo, X10)
42 CET CEB TET TEB
1 CET CEB TET TEB
2 6,09
A 42 CET CEB TET TEB
1 CET CEB TET TEB
3 @6,do
42 CET CEB TET TEB
1 CET CEB TET TEB
4 @6,d7,408
42 CET CEB TET TEB
1 CET CEB TET TEB
1 6,410,412
B 42 CET CEB TET TEB
1 CET CEB TET TEB
2 @9,d2
42 CET CEB TET TEB
1 CET CEB TET TEB
C 4 @6,d0
42 CET CEB TET TEB
1 CET CEB TET TEB
D 6 @9, d1
42 CET CEB TET TEB
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Chapter 4. Statistical Health Reasoning Systefn

Although the capacitance data are relevant to the health status of the stator
winding, its high dimensionality and ndinearity make it difficult toeasily and
preciselyinfer the health status. This sectiproposesa newhealth index, referred

to as the Directional Mahalanobis Distance (DMD).

4.1 Review of Mahalanobis Distance

The Mahalanobis Distance (MD) is a relative health measure that quantifies the
deviation of a measured data point from a clustered data center, which is generally
a populated mear) of a datasefThe MD degenerates mulfimension dataX) to
a onedimensia distance measure while taking into account the statistical
correlation between random variables. Mathematically, the MD measure can be

expressed as

MD(X,)=y(X, <) BE*(X &) (4.1)

where X, :(le X X )T is anN-dimensional capacitance data vector of the
i™ winding unit which belongs to a group having the mezan(ng, -, Mﬁmd
the covariance matri. Figure 4-1 plots twadimensional samples randomly

drawn from two random variables with a positive correlation. Essentially, the MD

1
[ .

Sections of this chapter habeen submitted as the following journal article: Byeng D. Youn,
Kyung Min Park, Hu Chao, Joung Taek Yoon, and Hee Soo R8tatisticalHealth Reasoning of
WaterCooled Power Generator Stator Windings against Moisture Absopti®gliability
Engineering and System Safe®ybmitted, 2014.
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transforms an ellipsoid in the original random space toircular shape in the
standard Gaussian spa@s shown inFigure 4-1. Since the distanceéD() of the

faulty point to the clustered data center is much shorter tharDpatf(the healthy
point, one could haveoncluded based upon the Euclidean distance that the faulty
point is more likely to belong to the cluster. This misleading conclusion is mainly
caused bynot taking into account the correlation coefficient of the two random
variables. Indeed, if we simpljivide the distance®; andD, by the widths of the
ellipsoid in the corresponding directions, respectively, we can easily come to the
conclusion that the faulty point is much farther away from the clustered center than

the healthy pointThiscan be cledy observed irFigure4-1.

Healthy R

X,

.
(@)

Figure4-1.Healthy and faulty points located in the original spageu(a the

normalized space (b)

As compared to the Euclidean distance, the MD measure possesses a few unique
advantages, listed as follows: (1) The MD transforms a-fligtensional dataset

that is complicated to handle into a etiemensional measure capalié easy
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comprehension and quick computation. (2) The MD is robust to differing scales of
the measurements, as the MD values are calculated after normalizing the data. (3)
By taking into account the correlation of the dataset, the MD is sensitive to inter

variable changes in multivariate measurements.

4.2 A New Concept of Statistical Distance: Directional
Mahalanobis Distance
This subsection introduces a new Mased distance measure thah be used

to imply the health condition of stator winding in gowe generator.

4.2.1 Data Projection

The MD, as a relative health measure, provides very useful information to
characterize the health condition of a stator windinga power generator
According toEquation (3.1), the capacitance valueseasuredrom a dry stator
winding with anegligible amount of water on the insulation should be smaller than
the mean value of the measurement population. Previous sf@fieg8] also
reported that measured values smaller than the population mean should be treated
asif they haveno relation to the n s u | water absoptson. Hoawver, the MD,
as a scalar distance measure, is a diredtidependent health measure in the
random capacitance spaes shown irFigure4-2. In other words, two capacitance
measurements with the same MD value ibutwo opposite directions are treated
equally, although they most likely imply the different levels of water absorption.

Let us take the dashed circle datunirigure4-1 as an example. In this case, the
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dashectircle datum is a healthy point since this datum falls into the lower tails of
the marginal distributions of the random capacitance variables. However, the MD
declares this datum to be in the fail@gaegory simphbecause it is out of the data
cluster. Fo this very reason iis necessary toefine the measureao that is better
suited for this application. In order to rebuild the measure, this study employs a
projection process which first identifies absolutely healthy variableg(g) @
capacitance vakiless than itpopulatedmnean, say; < €;) and then projects it onto
the corresponding mean value(s), eX, €) and €;, X)) shown inFigure 4-2.
Through this projection process, the absolutely healthywl#itdbe ignored in the
subsequerntransformation. The data projection underscores the consideration of the
directionin the healtlreasoningprocess of the measurement ddthisleads to the
unique capability othe proposed health indda makes use of thdistance and
degradation direction as a health measure.

After the data projection, the capacitance dafa(n=1.--,N), can be
processed as

xn,i’ If Xn,i > ”Z

4.2
m, otherwise 42

)N(ni :1?
1

whereX,; denotes the raw capacitance data antheeasurement location of tie
winding unit,, is the mean of the capacitance data anthmeasuremenbktation
and X,; denotes the processed capacitance data. The mean and variance of the
dataset must be obtained before the data projection because they are physically

meaningful in the original space.

24 “:J A—] ‘,—{3}' EH --]':IT'r_



13 14 15

e 17¢

-% ° . .
=16 oo .
© *ei g

™ e )

£ 15; B
8 [ _J ° ® Py Py
c ] ".o »

-— L [ ]

5 14; e o °

oy .

3]

Q

16

Capacitance(pF) at point A

—_
()]

Capacitance(pF) at point B

-_—
~J

15F

14/

13

@
2
®
[ ]
1 @
. s
=) e 3
L ]
0 : ° .
[ ]
1 [ ]
-1 0 1
UA
(c)

25

14 15

(b)

16
Capacitance(pF) at point A

v ﬂ__
P ECRIL MATHC



4.2.2 Transformation

The proposed inde namely the Directional Mahalanobis Distance (DMD),
assesses the MD along the degradatiioectionof a stator winding insulation after
data projection. Mathematically, the DMD shares a similar formula with the MD

exceptfor consideration ofhe data pojection It is expressed as

DMD (%)= (X, <) E* (% e) 43)

S ~ v < T . . . .
where X, =(X1,i,X2i XN.) is an N-dimensional vector of the capacitance

data from tha™ winding unit after the data projectiorg, =(ng, m--, Mﬁ andi
is the mean vector and covariance matrix of the reference dataset before the
projection.Figure4-2(c) shows the scatter plot of the DMD dataset after projection
and transformatignthe difference between the MD and DMD can be clearly
observedn this figure

One question remainsvhat is the propesequence of data projection and
transformatio? We found that the former should be done prior to the latter. The
justification for this sequence is the fact that the comparison between the absolutely
healthy data and the mean value of each random variable is physically meaningful

and vdid only in the original space, not in the transformed space.

4.3 Comparison of Performance of Mahalanobis Distance
(MD) and Directional Mahalanobis Distance(DMD)

The distance in this paper are squared in order to place progressively greater
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weight on objets that are farther apath general, quareddistance is frequently
used ininstances where onljistanceseedto be compared.

Figure 4-3 shows the scatter plot of MD and DMD with three highlighted data
points,two of which represent a healthy state and the other a faulty state. In the
case of MD, the Sland 2? data points (the twéhealthy points) are located in the
2" (top left) and & (bottom left) quadrants of the twdimensional space
composed of two &lidean distancesThe 3° data point, theffaultyd point, is
located in the % (top right) quadrant. The MD values of th& 2 and 3 points
are, respectively, 4.74, 5.71, and 3.80. In the case of DMD, the squared distances of
the three points fronthe origin are, respectively, 0.076, 0.100, and 3.80. Without
the projection before transformation, MD incorrectly treats fihealthyy data
points agifaultyd while, with the projection before the transformation, the proposed
index, DMD, correctly identies these two points ahealthy (with relatively
small distance values). Therefore, the proposed DMD achieves better performance
than the MD by accounting for the degradation direction in the health reasoning

process of the capacitance data.

3 2
2 ¢ | 1.5 ; ; :
1+ point o E| 314 point i 3 point
1l MD% 473 , ol o MDZ 3.80 | 1k ] .~ DMD? 3.80,
. G !. G
o) E' Q . .
=3 2nd point_ * a5 05 1 point gy .
mpz 571 . DMD?: 0.076} .
1r T H H i 1 r i T PR g
[ | 2" point 3 .
» . : oslovpzosdd Tt
3 ‘ ; ‘ 1 ; ‘
-3 -2 -1 0 1 2 3 -1 0 1 2
MD DMD
UA UA
() (b)

Figure4-3.Three cases to compare the performance of MD (a) and that of DMD (b)

o

21 (s A=t 8 W



Performance evaluation of these two indices requires an evaluatida that
assesssthe effectiveness of a health index in quantifying the health condition of a
generator winding. The evaluation metric considered here employs a score function
with the health index value and true health condition of a generator windthg as
inputs and a normalized score metric (ranging between 0 to 100) as the output.

Mathematically, the proposed score function can be expressed as

N a', N, 8

axy-edy - af 6

j=1 Ciz jl=1+ =+

S —
SF=100 3 - (4.9
a N NLD g, N
eda XJ - aX| o ﬁ B a
GisN4 ¥ j1= & €= I 1=+
B W

where x; denotes the health index value of tffewinding unit, y, denotes the
maintenance index of th& winding based on the actual repair history=(1if the

unit was maintained any = -1 otherwise) N denotes the number of winding units,

| denotes the number of winding units with maintenance historiesBaari W
denote the best and worst score metric values, respectiiglye 4-4 illustrates
various combinations of the health index rankithg maintenance histqrgnd the

score metric ranking of these combinations. The best and worst scenarios
(represented respectively ByandW in Equatior{4.4)) aredepicted by the leftmost

and rightmost plots, respectively.

Table 4-1 summarizes the distances and scores from the assessmest fagsul
health condition othe winding using MD and DMD, respectively. As one can see
in Table 4-1, both MD and DMD caneasily find windings that have been
maintained; thecapacitance of maintained insulation isatiwely larger tharthe

capacitance seen in the unmaintained samplesvever, MD cannot find alihe
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maintained windings inthe top ten health indices ithe CET group In addition
some unmaintained winding$fealth indices have higher vatuéhan thoseof

maintainedvindings(e.g. &, 9", and 16' health indices in TET group).

Health Repaired —j

Index ® = .
= . o
> > >
. ® 0]
. . ®
. . ®

ID (sorted), SF=100 ID (sorted) ID (sorted), SF=0

Figure4-4.Combination of health index ranking and maintenance history and

corresponding score metric ranking
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Table4-1.Distances and scores from the resekamininghealthconditionof

windings using MD and DMD

21

27

29

798
Score

CET group CEB group TET group TEB group
MD? DMD? MD? DMD? MD? DMD? MD? DMD?
11.65 11.65
9.97 9.01
9.64 8.88
9.18 HECH
9.01 7.87
8.88 734

8.69 7.04
11.05 14.11 6.86
13.36 12.25 10.85 6.75 13.98 7.87 6.45

12.76 9.9 10.78 6.70 13.55 8.91 7.74 6.23
1255 JEE 967 6.27 839 7.68 6.18
1252 9.41 951 6.08 11.79 809 7.66 5.96
11.47 K 937 530 1156 6.80 7.50 5.74
11.46 857 898 527 11.11 6.68 7.48 5.49
11.43 8.03 876 519 10.63 6.62 7.34 548

1056 6.67 7.82 4.38 [JEEE 6.86 4.60
6.25 6.77 4.06 852 6.22 4.39
560 6.52 3.94 8.39 6.17 4.32

001 000 000 0.00 0.02 0.00 0.00 0.00
96.31 9830 98.47 100 94.52 96.80 91.26 95.49
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Chapter 5. Health Classification

This section is designed to constrichealth grade system $&=d upon the
proposed health index, DMD, and field maintenance history. The ibator
maintenance databtained from th@perators of the powgeneratorarepresented
in Section 5.1 An empirical health grade systeisisuggested in Section 5.3 with

consderation of the scal#hatis discussedn Section 5.2.

5.1 Maintenance History Related to Water Absorption

In this section, the historical maintenance datiated to water absorption is
presented including data from faulty windings. Field experts collectk the
maintenance records of generator windings and identified their health conditions
using theStator Bar CapacitanceMapping test method developed by Gkhe
maintenance records can dassified into fougroups (CET, CEB, TET, and TEB).
Table 5-1 summarizes thenaintenance historyelated to water absorption over
eight years. In this table, two data points (28.413 and 33.645) were obtained from
the faulty winding and the others were measured from veditgeorbedwindings.
These maintenance records provide the physical basisdétermining an

appropriate failur¢hreshold, especially the data obtained ftberfaulty windings.
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Table5-1.Maintenance history related water absorption

Power Generator Winding 2 .
Group Plant Number Number Year DMD Condition
@5 18.598
1 20 a7 16.415 Absorbed
@9 16.394
a6 18.060
et A 5 03 @9 21,963 Absorbed
40 @9 9.511 Absorbed
@7 28.413
4 23 @8 33645 Faulty
4o 9.355
B 1 18 a2 17580 Absorbed
@6 20.625
R 2 31 @9 21.141 Absorbed
@7 14.359
CEB 4 20 @8 12.677 Absorbed
@6 13.613
C 4 11 a0 14.001 Absorbed
a7 9.334
11 @9 13.145 Absorbed
1 @5 17.665
A 20 a7 17.929 Absorbed
TET ©9  18.932
@6 20.368
2 40 @9 14.653 Absorbed
B 1 18 4Lo 15.876  Absorbed
TEB A 3 23 4o 8.080 Absorbed

5.2 Review of Scaled Mahalanobis Distance

The aim of this section is to introdue® improvement tohe concept of MD:

Scaled Mahalanobis Distance (SMD) in the Mahalan®hguchi System (MTS).

As aforementioned, this study deals wiile two groups which have different data

size (i.e. Top group and Bottom grou@nce MD and DMD do not consider the
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daa size ofeach group, it is not suitable to compare two groups directly without
any conversion. SMD is a way to solve this problem.

It has beershownthat MD follows ac>distribution withk degrees of freedom,
when the sample sizen, is large and allcharacteristicsfollow the normal
distribution (R. A. Johnson al. [32]). A ¢-distribution withk degrees of freedom
has a mean equ# k. Hence, G. Taguchi etl. [10] proposeda new idea for MD
known as SMD. Tis groupsuggested that MD should be scaled by dividigghe
number ofvariables,k. Thus, he equation for calculating SMD ithe MTS

becomes

SMD? = 1 MD? L
k k

(X, &) EYX ¢) (5.1)
wherek denotes the number of variables or the data size ofgracip andX; is a
capacitance data vector of tfawvinding unit, which belongs to a group having the
mean vectqre, and the covariance matri.

Sincethe expected value oMD? is equal tok, the expected value of SMD

becomes:

EESMD g Eé% MD? E%E V% %k ol (52
whereE[] is a function of the expectatiomhis scaling process thus allowsect
comparison between thep and bottomgroups. The scaled distarcoffers an
advantage that can be applicable tany number of variables.

For the purposes of this paperjstimportant to make sure whethar notthe
proposed ideaf the SMD works for the capacitance data measured from the stator
windings found in gneratorsTable5-2 summarizes the properties of each giisup

datg top and bottom
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Table5-2.The properties dfop and bottom groupdata

Properties Top Group Bottom Group
The number of variables 3 °
(or, the data size of groufk)
The number of@mples(n) 1,680 1,680
Expected valuer) 2.88 1.96
Expected value of SMg/k) 0.96 0.98

As shown inTable5-2, the expeted value otthe top group (CET and TETis
close tothe number of variables in the top greupikewise, the expected value of
the bottom group (CEB and TEB) approximately egtalthe number of variables
in the bottomgroups Thus, it can be concludeddt the scaled distance measures
can be uniformly used regardless of the grdupe scaling idea can also be applied

to Scaled Directional Mahalanobis Distar(&MD), just like SMD.

5.3 Health Grade System

This section aims$o definea health grade system whichthe winding$health
states are classified into diverse classes according to the-redaithnt distance
measure, SDMD.

Based upon thenaintenancestrategiedor the stator winding and theopinions
of field experts, three health classgspropased: (1)a faulty condition pr, water
absorbe} (2) a warning condition (or, close to water absorptiprand (3) a
healthy condition (or, not wateabsorbed) The failure listed in Table 5-1 which
was caused byater absorptiomesulted intwo meaningful data. These data can

defineafailure thresholdfor thedistancaneasurgh, expressed as
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h=

[(LYON

k BEMINESDMD (X, ) fMax SPMB(Xpnng) @5 (53)

where g denotes a round down functioB[ ] denotes the expected vallkes

the data size of each group (e.g. In case of top group,3) and X and

faulty
Xwaming are capacitance data vectors obtained from the faulty or vedtsorbed
windingson each grouprespectivelySixty percent of the threshold value (®)as
defined as a boundary line between the warning camdénd the healthgondition,
based upon field expe@texperienceand historic information on inspection and
maintenancéor stator windings.

Since the bottom group does not have any faulty windinthe maintenance
history, the failure threshold of btdm group cannot be calculated frorthe
equation5.3. Thus the failure threshold of top groug,, is applied tadefine the
failure threshold for the bottom hdw,.om Which can be defined by the following
expression

Ny Nbotom =32 (5.4)
Finally, Table 5-3 summarizes the definition of the tlerehealth gradesnd

suggested maintenance actions.

Table5-3.Definition of health grades andlatedmaintenance actions

Range '
Health Grade g SuggestedMaintenance
Top Bottom Actions
Faulty DMD*(25 DMD*C167 Immediate replacement
Warning 15<DMD*<25 10<DMD’<16.7 Frequent inspection
Healthy DMD?<15 DMD?<10 No immediatemaintenance
required
5 o = "l__
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5.4 Validation Study

In this section, the feasibility of the proposeDMD-basedchealth grade system
is verified by compaisonwith the maintenance historgf generatoistator windings
Figure5-1 shows the scatter plot of DMD with operating time. Leexamine the
points highlighted with circle in the figure. These circles labdlet data obtained
from the faulty winding or water absorbed windings. Each class contains several

data pointdighlighted with circlg,as shown iTable5-4.

Table5-4.Summary of the number of the data and the circled data in each grade

The number of The number of B/A

Health grade the data (A) the circled data (B) (%)
Faulty 4 4 100
Warning 15 15 100
Healthy 3,173 6 0.19

Most of the circled data points belong ®i t h efaultyd on fevarriingd class.
This indicates that the proposed health grade system properly defines the health
condition of the generatstator windings against water absorption.
In the faulty clasghere are two cases (Case 1 and Rigure5-1) which can be
split into four data pointsalthough only one failure case wastuallyrecorded in
the maintenance histaorin order to make sure if tHailure thresholdvas correct
we looked at the maintenam history in detail.
The data points in the first case are obtaimech the failed winding which was
burned in 2008According to the proposed index, DN substantial increase of
the index was found from 2006 to 200he index of this winding is equto 3.05

in 2006 and 28.41 in 2007, respectivehhis increase would have suggested by
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DMD? that a preventative maintenance action be taken the year (2007) before the
failure. This is a critically important observation in order to build the health grade
system correctlyThus, here is no problem that the data points observed from this
winding belong to the faulty class.

On the other hand, the second case contains two data points which are measured
from nonfaulty winding. It seems that the windingtuded hereshould be
contained within the warning or healthy class. This is because of stator wihdings
electrical characteristics. A voltage is induced in the stator winding when the rotor
is rotated. Typically large synchronous generators are designedafeerminal
voltage of several thousand volts. According to the opinion of exipettte power
generation field, several windings per statontinuouslyretain zerevolts. This
implies that these windingdike the second caée winding may nothavefailed
even though the water is absorbed enougloth®rwise indicate groblem.In
summary,it can be concluded based upon the above observation that replacement
should be carried out on this winding in spite of its good external appearance

Actually, this winding was replaced in 2011.
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Figure5-1.Scatter plot of DMD with operating time
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Chapter 6.Conclusion

This papeexploresa newhealth reasoning system to assess the heaittlition
of gator winding in power generators. The proposed system extraa#h
relevant features from the capacitance data in a statistical manner, to assess the
health condition of power generator stator winding, to classify the health classes
into three groupsghealthy, warning, and faulty states), and to develop health grade
system for conditioibased maintenanceCorrelation analysis of measured
capacitance data used tdhelp understand the statistical features of the dataocand
divide the variables into for groups (CET, CEB, TET, and TEB) per windifidis
paper proposes atatistical health measure Directional Mahalanobis Distance
(DMD). DMD incorporates the correlation between variables and provides the
degree of health condition considering the heattradation direction. Due to the
unique capability of DMDio makeuse of the distance amidgradatiordirection as
a health measure, it caso be applicable to a health grade systéesigned to
monitor a building The health grade systemuitlined in thispaperwas developed
with guidance fronfield maintenance records. Moreoyértakesinto account the
data size of each group with a scaling factor. This study employed the datasets from
eight generators over eight years to validate the proposed hesdtinieg system.
The proposed system can be generally applicable to health degradation trend
analysis of engineered systems. In order to accomplish the corukitsea
maintenance system, health prognostics using machine learning techniques must be

further studied.
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AppendixA. Pairwise scatter plots between the ten measurements
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Abstract

Statistical Health Reasoning System of Power Generator Stator
Windings against Water Absorption

Kyung Min Park

Department of Mechanical and Aerospace Engineering
The Graduate School

Seoul National University

The power generator, as one of the most critical components in a power plant, is
typically maintained through use of a time- or usage-based strategy. Either strategy
could result in a substantial waste of remaining useful life (RUL), high maintenance
costs, and/or low plant availability due to excess, untimely, or missed maintenance.
Recently, the field of prognostics and health management has offered new general
diagnostic and prognostic techniques to precisely assess health conditions and
robustly predict the RUL of engineered systems, with the aim of addressing the
aforementioned deficiencies. This paper explores a smart health reasoning system that
can be used to assess the health condition of power generator stator windings and
their levels of water absorption. The system monitors health based on capacitance
measurements of the winding insulations. In particular, a new relative health measure,
namely the Directional Mahalanobis Distance (DMD), is proposed to quantify the
health condition of stator windings. This paper also proposes an empirical health
classification rule, based upon the DMD, which factors in maintenance history. The
proposed smart health reasoning system is validated using eight years’ field data from

eight generators, each of which contains forty-two windings.
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Chapter 1. Introduction

1.1 Motivation

Power generators are critical elements of power plants. An unexpected
breakdown of a generator can lead to plant shut-down and can result in substantial
economic and societal loss. Recently, tremendous technological advancements have
been achieved in the development and deployment of an ultra-supercritical (USC)
steam generator, shown in Figure 1-1. The USC steam generator operates at an
advanced steam temperature of 593<C or above, enabling it to achieve higher
energy conversion efficiency, while at the same time reducing fuel consumption
and waste emission. However, the large gap between the operation temperature and
pressures of the advanced USC generator and those found in conventional
subcritical generators leads to far harsher operating conditions in the USC. Thus,
the USC has a much higher risk of catastrophic failure. To minimize the losses
resulting from potential failures, the reliability of the USC-type power generator
must be ensured throughout its life-cycle amidst uncertain operating conditions and
manufacturing variability.

Recently, prognostics and health management (PHM) has emerged as a key
technology to evaluate the current health condition (health diagnostics) and predict
the future degradation behavior (health prognostics) of an engineered system
throughout its lifecycle. In general, PHM consists of four basic functions: a health
sensing function, a health reasoning function, a health prognostics function, and a
health management function. PHM has shown success in lowering system

maintenance costs of various engineered systems. Comprehensive exploration of



PHM techniques for power generator windings can enable early anticipation of
failure. PHM can be used to develop cost-effective maintenance strategies and to
seek opportunities for extending equipment life. Effective health reasoning systems

are a crucial step towards a comprehensive exploration of PHM techniques.

Super- Ultrasuper-
critical critical (USC)

620
3) State-of-the-art _
S, K
o 590 (USC) Larige gap:
= hansher
E 560 Global condition
X average | higher risk
E 530

50 30%: 35% 40% 45% 50%
Efficiency
Figure 1-1.Comparison of performance between subcritical, supercritical and ultra-

supercritical steam generators

1.2 Overview

This research aims to develop a health reasoning system for power generator
stator windings through both physical and statistical analysis. A health reasoning
system, also known as the integration of condition monitoring (CM) and health
classification, is an algorithm-based system used to diagnose health conditions
based on sensory signals and related health measures. Two steps are typically
involved: (1) CM to extract relevant system health information through feature

extraction techniques, (2) health classification to classify a system’s health state

z 25 A&

L



into diverse health classes using health classification techniques such as artificial
intelligence, a support vector machine, decision trees, and mahalanobis distance
(MD).

This research proposes a new classification technique that can be applied to
stator windings in power generators. The new technique eliminates the limitations
found in existing methods and in MD, which is widely used in the PHM field. The
proposed definition for health classification is carried out with data from the

maintenance history that has been obtained from the field.

1.3 Thesis Layout

This thesis is organized as follows: Chapter 2 reviews existing methods for
detecting leaks and water absorption in the insulation of stator windings found in
power generators. Chapter 3 presents the sensing function for health monitoring
and analysis of health data which can be measured regarding the insulation of stator
windings. Chapter 4 discusses feature extraction techniques and introduces a health
index for a smart health reasoning system. Chapter 5 presents a new health
classification rule which includes consideration of the data size. The validation
study for the proposed health index and grade system is given in this chapter as

well. Finally, conclusions of the paper are presented in Chapter 6.



Chapter 2. Literature Review

This chapter reviews the existing state of knowledge related to health
assessment of power generators — the topic of this thesis. Topics reviewed include:
(1) PHM techniques for engineered systems, including power generators, and (2)

existing methods used in the field to guard against leak and water absorption.

2.1 Prognostics and Health Management Techniques used to
Support the Health Reasoning Function

PHM is a method that permits assessment of the reliability of a system under its
actual application conditions. Extensive research has been conducted in the
application of PHM to various engineered systems.

Popular tools used for the health reasoning function include statistical methods
(A. H. Christer et al. [1], and Y. Zhan et al. [2]), artificial intelligence (R. B.
Chinnam et al. [3] and C. C. Lin et al. [4]), support vector machines (J. Yang et al.
[5] and C. Cortes et al. [6]), kernel estimation (N. S. Altman [7]), decision trees (L.
Rokach [8]), Mahalanobis distance (R. De Maesschalck et al. [9] and G. Taguchi et
al. [10]), Kalman filter (J. D. Wu et al. [11] and S. K. Yang [12]), among others.

These algorithms can be applied to various engineered applications, including
bearings (I. E. Alguindigue et al. [13]), gearboxes (S. Ebersbach et al. [14]),
machine tools (D. E. Dimla Sr. [15] and K. F. Martin [16]), transformers (C.
Bartoletti et al. [17], C. Bengtsson [18], C. Hu et al. [19] and C. Booth et al. [20]),
generators (C. W. Park et al. [21], J. Finn et al. [22], A. Kheirmand et al. [23] and



G. C. Stone et al. [24]) and stator insulation used for winding in generators (G. A.

Jayantha et al. [25] and Z. Jia et al. [26]).

2.2 Existing Tests to Detect Leaks or Water Absorption

General Electric (GE), one of the largest manufacturers of generators in the
world, provides guidelines for a standard outage test program for periodic overhaul
of generators. The schedule typically includes minor overhaul every 30 months and
major overhaul every 48-60 months. Figure 2-1 summarizes the GE maintenance
program plan. The program consists of four tests; (1) the Vacuum Decay Test, (2)
the Pressure Decay Test, (3) the Helium Tracer Gas Test and (4) the Stator Bar
Capacitance Mapping Test (J. A. Worden et al. [27]).

The first three tests are designed to detect leaks in the stator winding. The first
test, the Vacuum Decay Test is a useful tool for determining the integrity of the
entire water-cooled stator hydraulic system. The primary advantage of this test is its
sensitivity. Decay measurements are made in units of microns. A typical pressure
gage cannot detect one micron, which is equivalent to .00002 psi. Because of the
high sensitivity of this test, ironically, extremely small leaks at flanges and
connections can result in poor test results. The second test, the Pressure Decay Test,
has two advantages over the Vacuum Decay Test. It provides a greater pressure
differential and applies pressure in the normal direction of the leak flow. These
factors may make it easier to find leaks undetectable in the Vacuum Decay Test.
During this test, exposed potential leak sites can be tested using a bubble.

Drawbacks to pressure testing are its insensitivity to small leaks, and relatively high



sensitivity to changes in the environment. The third test, the Helium Tracer Gas
Test, is a method of leak detection where the generator is pressurized with a helium
gas so that possible leak points can be detected using a helium gas detector. In
many cases, leaks that were missed by the Vacuum Decay Test and the Pressure
Decay Test are found with the Tracer Gas Test.

Finally, the Stator Bar Capacitance Mapping Test is used to determine the extent
of water absorption. This test assumes that good capacitance data provides a normal
distribution when plotted; nearly all of the data should fall between -2 and +2
standard deviations from the average. This test uses +3 standard deviations of the
capacitance data as a failure threshold.

Korea Electric Power Corporation — Research Institute (KEPRI) has also
developed methods using a capacitance reader (or wet bar detector) for detecting
water absorption using statistical tools, including (1) a Normal Probability Plot and
(2) aBox Plot (H. S. Kim et al. [28]).

The Normal Probability Plot method determines the health classes of winding
insulation based on a normal probability plot. An operator can visually identify an
outlier or anomaly case by examining the plot. It is assumed that the capacitance
data of a healthy winding follows a normal distribution. The Box Plot method is
another graphical method, which graphically depicts the health classes of the
capacitance data through their 1% and 3™ quartiles. The drawback of both
aforementioned methods is that the sensitivity of the winding health classification is
relatively low because of improper statistical modeling of the capacitance data and

a lack of consideration of data heterogeneity.
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2.3 Summary and Discussion

The aforementioned PHM techniques can be applied to various engineered
systems. Most monitoring systems for power generators use electrical signals to
detect the faults of the generator. In the case of monitoring the system for water
absorption, basic statistical ideas have been used to detect leaks and to detect the
water absorbed in insulation based upon capacitance readings. Note that the direct
use of capacitance measurements as the health index by the existing methods
reviewed previously makes it difficult to easily and precisely infer the health status,
especially when the measurements are of high dimensionality, high correlation,
and/or high non-linearity. To improve upon the status quo, the work we propose
develops a new health index through statistical analysis of multi-dimensional
capacitance measurements for effectively determining the health of power
generator windings. The ultimate goal of this work is to better prevent sudden

failure and to enable a self-sustained generator, as shown in Figure 2-2.

Health
Reasoning

\

Health
Prognostics

\

Health
Management

Figure 2-2.Processes involved in a self-sustained power generator



Chapter 3.Description of the Sensing Function
and Data Analysis

The objective of the sensing function is to ensure high damage detectability and
efficient data management by designing data acquisition logistics. In addition, the
health condition of a power generator can be monitored by properly analyzing the
capacitance of the winding insulation. This section discusses the fundamentals of
capacitance measurements, locations of capacitance measurements, and
characteristics of measurement data. This study examines eight power generators
(nineteen datasets over eight years) which have the same specifications: (1) a 500

MW output, (2) a 2-path cooling system, and (3) a 60 Hz frequency.

3.1 Fundamentals of Capacitance Measurements

When a power generator is water-cooled, coolant water flows into the water
channels of the winding, as shown in Figure 3-1. Leakage into the surrounding
insulation can occur due to various operational stresses, such as mechanical
vibration, thermal shock, and crevice corrosion (see Figure 3-2). When leakage
occurs, the water or moisture remains in the winding insulation. The remaining
water degrades the winding insulation, which can cause insulation breakdown and
power generator failure, as shown in Figure 3-3. For this reason, electric companies
and manufacturing companies, such as KEPRI, GE and Toshiba, assess the health

status of the winding insulation in their generators using a water absorption detector



[27-31]. The water absorption detector infers the level of water in the insulation by
measuring the capacitance of the insulation. Because the relative static permittivity
(or the dielectric constant) of water is higher than that of mica (which is generally
used as the insulation material), wet insulation has a higher capacitance, C, based

upon the following equation (see Figure 3-4 for a schematic representation):

Q A
(: =— =& & — :3.].
V r<o t ( )

where Q is the charge on each conductor, V is the voltage between the plates, A and
t are, respectively, the measurement area and the thickness of the detector, &, is the
electric constant (g, ~ 8.854pF-m™) and ¢, is the relative static permittivity of the
material between the plates. Measures of capacitance as health data provide
valuable information that can be used to infer the amount of moisture absorption of
a stator winding. Health-relevant information about the winding can be extracted
from this measured moisture level. It should be noted that various uncertainty
factors, such as the measurement location, the ambient humidity, and the winding
surface condition propagate uncertainties into the capacitance measurements. These

uncertainties must be taken into account in the health reasoning process.
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Figure 3-1.Power generator stator (a) and cross-section view of a winding (b)
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Figure 3-2.Diagram of a crevice corrosion mechanism [27]
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Figure 3-4.Capacitance reading using a detector (Model: GEN-SWAD 1) (a) and the

basic principle of the capacitance detector (b)

3.2 Capacitance Data Acquisition

As mentioned previously, each of the power generators employed in this study
has forty-two stator windings and slots used for a water-cooled cooling system. As
shown in Figure 3-5, the cooling water flows from the top bar inlet at the turbine
end, through the top and bottom bars at the collector end, then back to the bottom
bar outlet at the turbine end. At the turbine or collector end, an assembly slot in
both the top and bottom bars contains ten measurements points. The ten
measurement points are summarized in Table 3-1 and graphically illustrated
together with the generator structure diagram in Figure 3-5. Note that since only an
extremely small gap exists between the top and bottom bars, the capacitance on the
top side of the bottom bar cannot be measured, resulting in only two measurement
points for the bottom bar. As shown in Table 3-1, a unique identification (ID) code

is assigned to each measurement point based on the location of the probing point.



For example, the ID code “CET-TOP” indicates that the measurement point is
located on the Top side of the Collector End Top bar. The capacitance data were
acquired from the ten measurement points for each of the forty-two slots found on
each power generator. The capacitance data measured at each measurement point

can be modeled as a random variable (X).

Table 3-1.Summary of ten measurement points on a single stator winding

Stator side Winding Measurement Identification
location point Code
TOP CET-TOP (Xy)
Top Winding ouT CET-OUT (X,)
Collector End
(CE) IN CET-IN (Xs)
. ouT CEB-OUT (Xy)
Bottom Winding
IN CEB-IN (Xs)
TOP TET-TOP (Xe)
Top Winding ouT TET-OUT (X5)
Turbine End
(TE) IN TET-IN (Xs)
ouT TEB-OUT (Xo)
Bottom Winding
IN TEB-IN (Xy0)
; - L= 1 .
13 ion A2t ek
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Figure 3-5.Structure diagram of a water-cooled power generator with a 2-path cooling system
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3.3 Statistical Characterization of the Capacitance Data

The capacitance data acquired at physically isolated measurement points can be
modeled as statistically independent random variables (i.e. X; and Xy).
Alternatively, the data can be modeled as statistically correlated random variables.
For example, a physical gap between two different windings (as shown in Figure
3-6) is one reason why the related random variables might be statistically
independent. Moreover, different winding locations (CET, CEB, TET, and TEB) in
one winding are also physically distant. This also implies that the related random
variables could be statistically independent. On the other hand, water absorption
occurs concurrently at adjacent measurement points in the same group, such as
CET-TOP (X,), CET-OUT (X,), and CET-IN (X3). Checking statistical dependence
between two random variables could confirm whether our intuitive observation is
true or not. Before checking statistical correlations, a mean shift was applied to all
datasets to take into account the inherent difference in the nominal states of water
absorption between generators, as shown in Figure 3-7. After the mean shift, the
correlation coefficients later become useful to develop the health reasoning process
for a stator winding in a power generator.

In general, the correlation coefficient is used as a measure to imply statistical
correlation. The most famous measure of correlation is the Pearson product-
moment correlation coefficient. It is a quantitative measure of a linear dependence
between two variables. Mathematically, a correlation coefficient can be calculated

from the following form:

_COV(Xi,Xj)_E[(Xi_ﬂxi)(xj_'qu):| (3.2)
IOX,,XJ - Xixj B GXiaXJ .
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where X; and X; are random variables, Cov(X; X;) is the covariance between X; and
X;, u and ¢ are the mean and standard deviation of a random variable, respectively,

and E[e] is the expectation of a random variable.
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Figure 3-6.Gaps between two different windings (a) and between top and bottom

stator bars (b)
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Figure 3-7.Scatter plots of the data between measurement points before (a) and

after (b) mean shift
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Table 3-2 summarizes the correlation coefficients for ten random variables,
Py, x, for i, j = 1 to 10, in matrix form. The highlighted values in Table 3-2 are the
coefficients between the correlated random variables in the same group. One can
observe two features from the highlighted values: (1) a statistically positive
correlation, and (2) a higher degree of correlation within the same group. These
features indicate that the two or three capacitance data from the same group tend to
behave (i.e. remain unchanged or grow) with linear dependence. This confirms the
intuitive observations about the aforementioned statistical correlation and
independence. Appendix A provides pairwise scatter plots between the ten
measurement points (or ten random variables), from which two scatter plots are

extracted to show the within-group and between-group correlations.
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Table 3-2.Correlation coefficient matrix (symmetric) for ten random variables in matrix form

: CET CEB TET TEB
Col\r/lraetlfit)'(on TOP OUT IN  OUT  IN TOP OUT IN  OUT  IN
(X0 (X2) (X3) (Xa) (Xs) (Xs) (X7) (Xs) (Xq) (X10)
TOP 1
(X)
ouT
CET %)
IN
(X3) 1
OUT 50849 01572 01354 1
(Xa)
ceB %
xy 0039 0686 00765 [RICR 1
IS; 03341 0.553 01868 00343 -0.052 1
TET C(’;)T 01972 0.2506 0.2729 0.0879 00171 BWEYA
7
(le\lg) 02295 01423 03296 0.0082 0.0457 MOWLIOPEN 1
OUT 70438 0128 -0.097 00186 -0.114 00887 -0010 -0.003 1
TEs (%

xy) 00354 -0.040 -0004 00457 00870 -0.048 01084 0.0215 m

1 ok A&



3.4 Data Grouping

It is important to define a group of capacitance data with homogeneity prior to
the data modeling and health reasoning process. Based upon the measurement
location and correlation characteristic obtained in Section 3.3, the measurement
points with high correlation can be conceived as individual data groups, such as
CET, CEB, TET, and TEB. This implies that the entire dataset for ten random
variables (or from ten-dimensional measurement points) would be split into four
groups with two or three random variables. This data grouping will be used for the
health reasoning process in the subsequent section, which defines a health index
and models it in a statistical form, as shown in Figure 3-8 and Table 3-3. The data
grouping makes the health reasoning process easier through dimensional reduction

of the capacitance data.

CORRELATION 1 CORRELATION |——=
MATRIX  |CET-|CET-|CET- MATRIX %%3{ C}E‘?—

CEB-OUT 1

CEB
==

CORRELATION |———0
MATRIX | 1EB-|TEB-
out | Iy
TEB-OUT 1]

EB
TEBIN 1

CET-TOP

CET-OUT

CORRELATION
MATRIX TET- | TET- TET

TET-TOP 1
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Table 3-3.List of measured datasets and the information employed in this study

Power  Generator Year for Winding Measured dataset
Plant Number  Measurement ~ Number CE group TE group
1 CET CEB TET TEB
1 a05' ’07, ‘09 . (Xlx >§2| X3) (X4,: XS) (X6! X:7, XS) (X91:X10)
42 CET CEB TET TEB
1 CET CEB TET TEB
2 ’06, ‘09
A 42 CET CEB TET TEB
1 CET CEB TET TEB
3 ’06, ‘10
42 CET CEB TET TEB
1 CET CEB TET TEB
4 ’06, ’07, ‘08
42 CET CEB TET TEB
1 CET CEB TET TEB
1 ’06, 10, ‘12
B 42 CET CEB TET TEB
1 CET CEB TET TEB
2 09, ‘12
42 CET CEB TET TEB
1 CET CEB TET TEB
C 4 ’06, ‘10
42 CET CEB TET TEB
1 CET CEB TET TEB
D 6 09, ‘11
42 CET CEB TET TEB
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Chapter 4. Statistical Health Reasoning System®

Although the capacitance data are relevant to the health status of the stator
winding, its high dimensionality and non-linearity make it difficult to easily and
precisely infer the health status. This section proposes a new health index, referred

to as the Directional Mahalanobis Distance (DMD).

4.1 Review of Mahalanobis Distance

The Mahalanobis Distance (MD) is a relative health measure that quantifies the
deviation of a measured data point from a clustered data center, which is generally
a populated mean (u) of a dataset. The MD degenerates multi-dimension data (X) to
a one-dimension distance measure while taking into account the statistical
correlation between random variables. Mathematically, the MD measure can be

expressed as:

MD(X, ) =/(X, —1) Z*(X, ) (4.1)

where X, =(Xy;, Xy Xy )T is an N-dimensional capacitance data vector of the
i winding unit which belongs to a group having the mean =4, 1"+, 4y )T and
the covariance matrix X. Figure 4-1 plots two-dimensional samples randomly

drawn from two random variables with a positive correlation. Essentially, the MD

1
L

Sections of this chapter have been submitted as the following journal article: Byeng D. Youn,
Kyung Min Park, Hu Chao, Joung Taek Yoon, and Hee Soo Kim, “Statistical Health Reasoning of
Water-Cooled Power Generator Stator Windings against Moisture Absorption,” Reliability
Engineering and System Safety, Submitted, 2014.
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transforms an ellipsoid in the original random space to a circular shape in the
standard Gaussian space, as shown in Figure 4-1. Since the distance (D,) of the
faulty point to the clustered data center is much shorter than that (D,) of the healthy
point, one could have concluded based upon the Euclidean distance that the faulty
point is more likely to belong to the cluster. This misleading conclusion is mainly
caused by not taking into account the correlation coefficient of the two random
variables. Indeed, if we simply divide the distances D; and D, by the widths of the
ellipsoid in the corresponding directions, respectively, we can easily come to the
conclusion that the faulty point is much farther away from the clustered center than

the healthy point. This can be clearly observed in Figure 4-1.

Healthy R

X,

X1
(a) (b)
Figure 4-1.Healthy and faulty points located in the original space (a) and the

normalized space (b)

As compared to the Euclidean distance, the MD measure possesses a few unique
advantages, listed as follows: (1) The MD transforms a high-dimensional dataset

that is complicated to handle into a one-dimensional measure capable of easy
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comprehension and quick computation. (2) The MD is robust to differing scales of
the measurements, as the MD values are calculated after normalizing the data. (3)
By taking into account the correlation of the dataset, the MD is sensitive to inter-

variable changes in multivariate measurements.

4.2 A New Concept of Statistical Distance: Directional
Mabhalanobis Distance

This subsection introduces a new MD-based distance measure that can be used

to imply the health condition of a stator winding in a power generator.

4.2.1 Data Projection

The MD, as a relative health measure, provides very useful information to
characterize the health condition of a stator winding in a power generator.
According to Equation (3.1), the capacitance values measured from a dry stator
winding with a negligible amount of water on the insulation should be smaller than
the mean value of the measurement population. Previous studies [27, 28] also
reported that measured values smaller than the population mean should be treated
as if they have no relation to the insulation’s water absorption. However, the MD,
as a scalar distance measure, is a direction-independent health measure in the
random capacitance space, as shown in Figure 4-2. In other words, two capacitance
measurements with the same MD value but in two opposite directions are treated
equally, although they most likely imply the different levels of water absorption.

Let us take the dashed circle datum in Figure 4-1 as an example. In this case, the
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dashed circle datum is a healthy point since this datum falls into the lower tails of
the marginal distributions of the random capacitance variables. However, the MD
declares this datum to be in the failure category simply because it is out of the data
cluster. For this very reason it is necessary to refine the measure so that is better
suited for this application. In order to rebuild the measure, this study employs a
projection process which first identifies absolutely healthy variables(s) (e.g. a
capacitance value less than its populated mean, say X; < ;) and then projects it onto
the corresponding mean value(s), e.g. (Xi, y) and (u;, X;) shown in Figure 4-2.
Through this projection process, the absolutely healthy data will be ignored in the
subsequent transformation. The data projection underscores the consideration of the
direction in the health reasoning process of the measurement data. This leads to the
unique capability of the proposed health index to makes use of the distance and
degradation direction as a health measure.

After the data projection, the capacitance data X,;(n=1---,N), can be

processed as:

- X X 0> u
% { i H (4.2)

"\, otherwise
where X,; denotes the raw capacitance data at the n™ measurement location of the i"
winding unit, z, is the mean of the capacitance data at the "™ measurement location,
and X, denotes the processed capacitance data. The mean and variance of the
dataset must be obtained before the data projection because they are physically

meaningful in the original space.
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Figure 4-2.Scatter plots before data projection (a), after projection (b), and after transformation (c)
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4.2.2 Transformation

The proposed index, namely the Directional Mahalanobis Distance (DMD),
assesses the MD along the degradation direction of a stator winding insulation after
data projection. Mathematically, the DMD shares a similar formula with the MD,

except for consideration of the data projection. It is expressed as:

DMD(X,) = |[(%, )" £ (X, ~n) 4.3)

~ ~ ~ ~ T . . - R
where X, =(lei,xzvi,--~,XNyi) is an N-dimensional vector of the capacitance

data from the i winding unit after the data projection, p:(ﬂl,yz,m,,uN )T and X
is the mean vector and covariance matrix of the reference dataset before the
projection. Figure 4-2(c) shows the scatter plot of the DMD dataset after projection
and transformation; the difference between the MD and DMD can be clearly
observed in this figure.

One question remains: what is the proper sequence of data projection and
transformation? We found that the former should be done prior to the latter. The
justification for this sequence is the fact that the comparison between the absolutely
healthy data and the mean value of each random variable is physically meaningful

and valid only in the original space, not in the transformed space.

4.3 Comparison of Performance of Mahalanobis Distance
(MD) and Directional Mahalanobis Distance (DMD)

The distances in this paper are squared in order to place progressively greater
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weight on objects that are farther apart. In general, squared distance is frequently
used in instances where only distances need to be compared.

Figure 4-3 shows the scatter plot of MD and DMD with three highlighted data
points, two of which represent a healthy state and the other a faulty state. In the
case of MD, the 1* and 2™ data points (the two “healthy” points) are located in the
2" (top left) and 3 (bottom left) quadrants of the two-dimensional space
composed of two Euclidean distances. The 3™ data point, the “faulty” point, is
located in the 1% (top right) quadrant. The MD values of the 1%, 2" and 3" points
are, respectively, 4.74, 5.71, and 3.80. In the case of DMD, the squared distances of
the three points from the origin are, respectively, 0.076, 0.100, and 3.80. Without
the projection before transformation, MD incorrectly treats the “healthy” data
points as “faulty”” while, with the projection before the transformation, the proposed
index, DMD, correctly identifies these two points as “healthy” (with relatively
small distance values). Therefore, the proposed DMD achieves better performance
than the MD by accounting for the degradation direction in the health reasoning

process of the capacitance data.

3 2
2 ; 1 1.5 ; ; .
1% point o [2 3 point i 7 39 point
4l MD2473 4 "% 0 T MDZ:3.80 | i i | DMDZ 3.80
ot ; .
a E' g . .
=3 2nd point_ * a5 05 1 point gy .
4|Mp= 571 . L. . ol DMD= 0.076 .
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MD DMD
UA UA
(a) (b)

Figure 4-3.Three cases to compare the performance of MD (a) and that of DMD (b)
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Performance evaluation of these two indices requires an evaluation metric that
assesses the effectiveness of a health index in quantifying the health condition of a
generator winding. The evaluation metric considered here employs a score function
with the health index value and true health condition of a generator winding as the
inputs and a normalized score metric (ranging between 0 to 100) as the output.
Mathematically, the proposed score function can be expressed as:

j=1+1

%/—/
SF =100x W (4.4)

where x; denotes the health index value of the i™ winding unit, y; denotes the
maintenance index of the j™ winding based on the actual repair history (y;=1if the
unit was maintained and y; = -1 otherwise), N denotes the number of winding units,
| denotes the number of winding units with maintenance histories, and B and W
denote the best and worst score metric values, respectively. Figure 4-4 illustrates
various combinations of the health index ranking, the maintenance history, and the
score metric ranking of these combinations. The best and worst scenarios
(represented respectively by B and W in Equation(4.4)) are depicted by the leftmost
and rightmost plots, respectively.

Table 4-1 summarizes the distances and scores from the assessment results for
health condition of the winding using MD and DMD, respectively. As one can see
in Table 4-1, both MD and DMD can easily find windings that have been
maintained; the capacitance of maintained insulation is relatively larger than the

capacitance seen in the unmaintained samples. However, MD cannot find all the
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maintained windings in the top ten health indices in the CET group. In addition,
some unmaintained windings’ health indices have higher values than those of

maintained windings (e.g. 8", 9", and 10" health indices in TET group).

Health Repaired —j
O] .
Index ® = .
= . .
. > ® > > &
. . (O]
° . O]
ID (sorted), SF=100 ID (sorted) ID (sorted), SF=0

Figure 4-4.Combination of health index ranking and maintenance history and

corresponding score metric ranking
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Table 4-1.Distances and scores from the results examining health condition of

windings using MD and DMD

27
29

798
Score

CET group CEB group TET group TEB group
MD? DMD? MD’ DMD? MD’ DMD? MD? DMD?

11.65 11.65
997 9.01
9.64 8.88

9.01 787
8.88 7.34

8.69 7.04
11.05 14.11 6.86
13.36 1225 1085 6.75 13.98 7.87  6.45

1276 9.90 10.78 670 1355 891 7.74  6.23
12.55 967  6.27 839 768 6.18
1252 941 951 608 1179 809 7.66 5.96
11.47 937 530 1156 6.80 7.50 5.74
1146 857 898 527 1111 6.68 748 549
11.43 803 876 519 1063 662 7.34 548

1056 6.67 7.82 438 [JEEE 6.86  4.60
6.25 6.77 406 852 6.22  4.39
560 652 394 839 6.17 4.32

001 000 000 000 002 000 000 000
9631 9830 9847 100 9452 9680 9126 95.49

9.18




Chapter 5. Health Classification

This section is designed to construct a health grade system based upon the
proposed health index, DMD, and field maintenance history. The historical
maintenance data obtained from the operators of the power generators are presented
in Section 5.1. An empirical health grade system is suggested in Section 5.3 with

consideration of the scale that is discussed in Section 5.2.

5.1 Maintenance History Related to Water Absorption

In this section, the historical maintenance data related to water absorption is
presented, including data from faulty windings. Field experts collected the
maintenance records of generator windings and identified their health conditions
using the Stator Bar Capacitance Mapping test method developed by GE. The
maintenance records can be classified into four groups (CET, CEB, TET, and TEB).
Table 5-1 summarizes the maintenance history related to water absorption over
eight years. In this table, two data points (28.413 and 33.645) were obtained from
the faulty winding and the others were measured from water-absorbed windings.
These maintenance records provide the physical basis for determining an

appropriate failure threshold, especially the data obtained from the faulty windings.
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Table 5-1.Maintenance history related to water absorption

Power  Generator Winding

2 .

Group Plant Number  Number Year DMD Condition
‘05 18.598

1 20 ‘07 16.415 Absorbed
‘09 16.394
‘06 18.060

et A 9 03 ‘09 21963 Absorbed

40 ‘09 9.511 Absorbed
‘07 28.413

4 23 ‘08 33645 Faulty

‘10 9.355

B 1 18 12 17 580 Absorbed
‘06 20.625

A 2 31 ‘09 21141 Absorbed
‘07 14.359

CEB 4 20 ‘08 12677 Absorbed
‘06 13.613

C 4 11 ‘10 14.001 Absorbed
‘07 9.334

11 ‘09 13.145 Absorbed
1 ‘05 17.665

A 20 ‘07 17.929 Absorbed
TET ‘09 18.932
‘06 20.368

2 40 ‘09 14,653 Absorbed

B 1 18 ‘10 15.876 Absorbed

TEB A 3 23 ‘10 8.080 Absorbed

5.2 Review of Scaled Mahalanobis Distance

The aim of this section is to introduce an improvement to the concept of MD:
Scaled Mahalanobis Distance (SMD) in the Mahalanobis-Taguchi System (MTS).
As aforementioned, this study deals with the two groups which have different data

size (i.e. Top group and Bottom group). Since MD and DMD do not consider the
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data size of each group, it is not suitable to compare two groups directly without
any conversion. SMD is a way to solve this problem.

It has been shown that MD follows a Xz—distribution with k degrees of freedom,
when the sample size, n, is large and all characteristics follow the normal
distribution (R. A. Johnson et al. [32]). A y*distribution with k degrees of freedom
has a mean equal to k. Hence, G. Taguchi et al. [10] proposed a new idea for MD
known as SMD. This group suggested that MD should be scaled by dividing by the
number of variables, k. Thus, the equation for calculating SMD in the MTS

becomes:

SMD? =%MD2 =%(xi —p) =X, —p) (5.1)

where k denotes the number of variables or the data size of each group, and X; is a

capacitance data vector of the i" winding unit, which belongs to a group having the
mean vector, p, and the covariance matrix, X.

Since the expected value of MD? is equal to k, the expected value of SMD?

becomes:

, 1..,] 1 1 1
E[SMD ]:E{EMD }:EE[MD ]zE-kzl (5.2)

where E[e] is a function of the expectation. This scaling process thus allows direct
comparison between the top and bottom groups. The scaled distance offers an
advantage that it can be applicable to any number of variables.

For the purposes of this paper, it is important to make sure whether or not the
proposed idea of the SMD works for the capacitance data measured from the stator
windings found in generators. Table 5-2 summarizes the properties of each group’s

data; top and bottom.
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Table 5-2.The properties of top and bottom groups’ data

Properties Top Group Bottom Group
The number of variables 3 5
(or, the data size of group) (k)
The number of samples(n) 1,680 1,680
Expected value () 2.88 1.96
Expected value of SMD? (1/k) 0.96 0.98

As shown in Table 5-2, the expected value of the top group (CET and TET) is
close to the number of variables in the top groups. Likewise, the expected value of
the bottom group (CEB and TEB) approximately equals to the number of variables
in the bottom groups. Thus, it can be concluded that the scaled distance measures
can be uniformly used regardless of the group. The scaling idea can also be applied

to Scaled Directional Mahalanobis Distance (SDMD), just like SMD.

5.3 Health Grade System

This section aims to define a health grade system in which the windings’ health
states are classified into diverse classes according to the health-relevant distance
measure, SDMD.

Based upon the maintenance strategies for the stator windings and the opinions
of field experts, three health classes are proposed: (1) a faulty condition (or, water-
absorbed), (2) a warning condition (or, close to water absorption), and (3) a
healthy condition (or, not water-absorbed). The failure listed in Table 5-1 which
was caused by water absorption resulted in two meaningful data. These data can

define a failure threshold for the distance measure, h, expressed as:
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h =Lk - E[ min[ SDMD? (X, ) |, M| SDMD? (X i )| +0.5J (5.3)

where L‘J denotes a round down function, E[* ] denotes the expected value, k is

the data size of each group (e.g. In case of top group, k = 3) and X and

faulty
Xwaming are capacitance data vectors obtained from the faulty or water-absorbed
windings on each group, respectively. Sixty percent of the threshold value (0.6 h) is
defined as a boundary line between the warning condition and the healthy condition,
based upon field experts’ experience and historic information on inspection and
maintenance for stator windings.

Since the bottom group does not have any faulty winding in the maintenance
history, the failure threshold of bottom group cannot be calculated from the
equation 5.3. Thus the failure threshold of top group, hiy, is applied to define the
failure threshold for the bottom bar, hy.om, Which can be defined by the following
expression:

P Poottom =322 (5.4)
Finally, Table 5-3 summarizes the definition of the three health grades and

suggested maintenance actions.

Table 5-3.Definition of health grades and related maintenance actions

Range i
Health Grade 9 Suggested I\_/Iamtenance
Top Bottom Actions
Faulty DMD?*>25 DMD*>16.7 Immediate replacement
Warning 15<DMD%*<25 10<DMD°<16.7 Frequent inspection
Healthy DMD2<15 DMD?<10 No immediate maintenance
required
5 o = "l__
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5.4 Validation Study
In this section, the feasibility of the proposed SDMD-based health grade system

is verified by comparison with the maintenance history of generator stator windings.

Figure 5-1 shows the scatter plot of DMD with operating time. Let us examine the
points highlighted with circles in the figure. These circles label the data obtained
from the faulty winding or water absorbed windings. Each class contains several

data points highlighted with circles, as shown in Table 5-4.

Table 5-4.Summary of the number of the data and the circled data in each grade

The number of The number of B/A

Health grade the data (A) the circled data (B) (%)
Faulty 4 4 100
Warning 15 15 100
Healthy 3,173 6 0.19

Most of the circled data points belong to either the “faulty” or “warning” class.
This indicates that the proposed health grade system properly defines the health
condition of the generator stator windings against water absorption.

In the faulty class, there are two cases (Case 1 and 2 in Figure 5-1) which can be
split into four data points, although only one failure case was actually recorded in
the maintenance history. In order to make sure if the failure threshold was correct,
we looked at the maintenance history in detail.

The data points in the first case are obtained from the failed winding which was
burned in 2008. According to the proposed index, DMD?, a substantial increase of
the index was found from 2006 to 2007. The index of this winding is equal to 3.05

in 2006 and 28.41 in 2007, respectively. This increase would have suggested by
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DMD? that a preventative maintenance action be taken the year (2007) before the
failure. This is a critically important observation in order to build the health grade
system correctly. Thus, there is no problem that the data points observed from this
winding belong to the faulty class.

On the other hand, the second case contains two data points which are measured
from non-faulty winding. It seems that the winding studied here should be
contained within the warning or healthy class. This is because of stator windings’
electrical characteristics. A voltage is induced in the stator winding when the rotor
is rotated. Typically, large synchronous generators are designed for a terminal
voltage of several thousand volts. According to the opinion of experts in the power
generation field, several windings per stator continuously retain zero-volts. This
implies that these windings, like the second case’s winding, may not have failed
even though the water is absorbed enough to otherwise indicate a problem. In
summary, it can be concluded based upon the above observation that replacement
should be carried out on this winding in spite of its good external appearance.

Actually, this winding was replaced in 2011.
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Figure 5-1.Scatter plot of DMD with operating time
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Chapter 6.Conclusion

This paper explores a new health reasoning system to assess the health condition
of stator windings in power generators. The proposed system extracts health-
relevant features from the capacitance data in a statistical manner, to assess the
health condition of power generator stator winding, to classify the health classes
into three groups (healthy, warning, and faulty states), and to develop health grade
system for condition-based maintenance. Correlation analysis of measured
capacitance data is used to help understand the statistical features of the data and to
divide the variables into four groups (CET, CEB, TET, and TEB) per winding. This
paper proposes a statistical health measure Directional Mahalanobis Distance
(DMD). DMD incorporates the correlation between variables and provides the
degree of health condition considering the health degradation direction. Due to the
unique capability of DMD to make use of the distance and degradation direction as
a health measure, it can also be applicable to a health grade system designed to
monitor a building. The health grade system outlined in this paper was developed
with guidance from field maintenance records. Moreover, it takes into account the
data size of each group with a scaling factor. This study employed the datasets from
eight generators over eight years to validate the proposed health reasoning system.
The proposed system can be generally applicable to health degradation trend
analysis of engineered systems. In order to accomplish the condition-based
maintenance system, health prognostics using machine learning techniques must be

further studied.
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Appendix A. Pairwise scatter plots between the ten measurements
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