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Abstract 
 

Statistical Health Reasoning System of Power Generator Stator 

Windings against Water Absorption 

 

Kyung Min Park 

Department of Mechanical and Aerospace Engineering 

The Graduate School 

Seoul National University 

 

The power generator, as one of the most critical components in a power plant, is 

typically maintained through use of a time- or usage-based strategy. Either strategy 

could result in a substantial waste of remaining useful life (RUL), high maintenance 

costs, and/or low plant availability due to excess, untimely, or missed maintenance. 

Recently, the field of prognostics and health management has offered new general 

diagnostic and prognostic techniques to precisely assess health conditions and 

robustly predict the RUL of engineered systems, with the aim of addressing the 

aforementioned deficiencies. This paper explores a smart health reasoning system that 

can be used to assess the health condition of power generator stator windings and 

their levels of water absorption. The system monitors health based on capacitance 

measurements of the winding insulations. In particular, a new relative health measure, 

namely the Directional Mahalanobis Distance (DMD), is proposed to quantify the 

health condition of stator windings. This paper also proposes an empirical health 

classification rule, based upon the DMD, which factors in maintenance history. The 

proposed smart health reasoning system is validated using eight yearsô field data from 

eight generators, each of which contains forty-two windings. 
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Chapter 1. Introduction  

 
 

1.1 Motivation  

Power generators are critical elements of power plants. An unexpected 

breakdown of a generator can lead to plant shut-down and can result in substantial 

economic and societal loss. Recently, tremendous technological advancements have 

been achieved in the development and deployment of an ultra-supercritical (USC) 

steam generator, shown in Figure 1-1. The USC steam generator operates at an 

advanced steam temperature of 593°C or above, enabling it to achieve higher 

energy conversion efficiency, while at the same time reducing fuel consumption 

and waste emission. However, the large gap between the operation temperature and 

pressures of the advanced USC generator and those found in conventional 

subcritical generators leads to far harsher operating conditions in the USC. Thus, 

the USC has a much higher risk of catastrophic failure. To minimize the losses 

resulting from potential failures, the reliability of the USC-type power generator 

must be ensured throughout its life-cycle amidst uncertain operating conditions and 

manufacturing variability. 

Recently, prognostics and health management (PHM) has emerged as a key 

technology to evaluate the current health condition (health diagnostics) and predict 

the future degradation behavior (health prognostics) of an engineered system 

throughout its lifecycle. In general, PHM consists of four basic functions: a health 

sensing function, a health reasoning function, a health prognostics function, and a 

health management function. PHM has shown success in lowering system 

maintenance costs of various engineered systems. Comprehensive exploration of 
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PHM techniques for power generator windings can enable early anticipation of 

failure. PHM can be used to develop cost-effective maintenance strategies and to 

seek opportunities for extending equipment life. Effective health reasoning systems 

are a crucial step towards a comprehensive exploration of PHM techniques. 
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Figure 1-1.Comparison of performance between subcritical, supercritical and ultra-

supercritical steam generators 

 

 

1.2 Overview 

This research aims to develop a health reasoning system for power generator 

stator windings through both physical and statistical analysis. A health reasoning 

system, also known as the integration of condition monitoring (CM) and health 

classification, is an algorithm-based system used to diagnose health conditions 

based on sensory signals and related health measures. Two steps are typically 

involved: (1) CM to extract relevant system health information through feature 

extraction techniques, (2) health classification to classify a systemôs health state 
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into diverse health classes using health classification techniques such as artificial 

intelligence, a support vector machine, decision trees, and mahalanobis distance 

(MD).  

This research proposes a new classification technique that can be applied to 

stator windings in power generators. The new technique eliminates the limitations 

found in existing methods and in MD, which is widely used in the PHM field. The 

proposed definition for health classification is carried out with data from the 

maintenance history that has been obtained from the field. 

 

 

1.3 Thesis Layout 

This thesis is organized as follows: Chapter 2 reviews existing methods for 

detecting leaks and water absorption in the insulation of stator windings found in 

power generators. Chapter 3 presents the sensing function for health monitoring 

and analysis of health data which can be measured regarding the insulation of stator 

windings. Chapter 4 discusses feature extraction techniques and introduces a health 

index for a smart health reasoning system. Chapter 5 presents a new health 

classification rule which includes consideration of the data size. The validation 

study for the proposed health index and grade system is given in this chapter as 

well. Finally, conclusions of the paper are presented in Chapter 6. 
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Chapter 2. Literature Review 

 

 

This chapter reviews the existing state of knowledge related to health 

assessment of power generators ï the topic of this thesis. Topics reviewed include: 

(1) PHM techniques for engineered systems, including power generators, and (2) 

existing methods used in the field to guard against leak and water absorption. 

 

2.1 Prognostics and Health Management Techniques used to 

Support the Health Reasoning Function 

PHM is a method that permits assessment of the reliability of a system under its 

actual application conditions. Extensive research has been conducted in the 

application of PHM to various engineered systems.  

Popular tools used for the health reasoning function include statistical methods 

(A. H. Christer et al. [1], and Y. Zhan et al. [2]), artificial intelligence (R. B. 

Chinnam et al. [3] and C. C. Lin et al. [4]), support vector machines (J. Yang et al. 

[5] and C. Cortes et al. [6]), kernel estimation (N. S. Altman [7]), decision trees (L. 

Rokach [8]), Mahalanobis distance (R. De Maesschalck et al. [9] and G. Taguchi et 

al. [10]), Kalman filter (J. D. Wu et al. [11] and S. K. Yang [12]), among others.  

These algorithms can be applied to various engineered applications, including 

bearings (I. E. Alguindigue et al. [13]), gearboxes (S. Ebersbach et al. [14]), 

machine tools (D. E. Dimla Sr. [15] and K. F. Martin [16]), transformers (C. 

Bartoletti et al. [17], C. Bengtsson [18], C. Hu et al. [19] and C. Booth et al. [20]), 

generators (C. W. Park et al. [21], J. Finn et al. [22], A. Kheirmand et al. [23] and 
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G. C. Stone et al. [24]) and stator insulation used for winding in generators (G. A. 

Jayantha et al. [25] and Z. Jia et al. [26]). 

 

 

2.2 Existing Tests to Detect Leaks or Water Absorption 

General Electric (GE), one of the largest manufacturers of generators in the 

world, provides guidelines for a standard outage test program for periodic overhaul 

of generators. The schedule typically includes minor overhaul every 30 months and 

major overhaul every 48-60 months. Figure 2-1 summarizes the GE maintenance 

program plan. The program consists of four tests; (1) the Vacuum Decay Test, (2) 

the Pressure Decay Test, (3) the Helium Tracer Gas Test and (4) the Stator Bar 

Capacitance Mapping Test (J. A. Worden et al. [27]). 

The first three tests are designed to detect leaks in the stator winding. The first 

test, the Vacuum Decay Test is a useful tool for determining the integrity of the 

entire water-cooled stator hydraulic system. The primary advantage of this test is its 

sensitivity. Decay measurements are made in units of microns. A typical pressure 

gage cannot detect one micron, which is equivalent to .00002 psi. Because of the 

high sensitivity of this test, ironically, extremely small leaks at flanges and 

connections can result in poor test results. The second test, the Pressure Decay Test, 

has two advantages over the Vacuum Decay Test. It provides a greater pressure 

differential and applies pressure in the normal direction of the leak flow. These 

factors may make it easier to find leaks undetectable in the Vacuum Decay Test. 

During this test, exposed potential leak sites can be tested using a bubble. 

Drawbacks to pressure testing are its insensitivity to small leaks, and relatively high 
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sensitivity to changes in the environment. The third test, the Helium Tracer Gas 

Test, is a method of leak detection where the generator is pressurized with a helium 

gas so that possible leak points can be detected using a helium gas detector. In 

many cases, leaks that were missed by the Vacuum Decay Test and the Pressure 

Decay Test are found with the Tracer Gas Test. 

Finally, the Stator Bar Capacitance Mapping Test is used to determine the extent 

of water absorption. This test assumes that good capacitance data provides a normal 

distribution when plotted; nearly all of the data should fall between -2 and +2 

standard deviations from the average. This test uses +3 standard deviations of the 

capacitance data as a failure threshold. 

Korea Electric Power Corporation ï Research Institute (KEPRI) has also 

developed methods using a capacitance reader (or wet bar detector) for detecting 

water absorption using statistical tools, including (1) a Normal Probability Plot and 

(2) a Box Plot (H. S. Kim et al. [28]). 

The Normal Probability Plot method determines the health classes of winding 

insulation based on a normal probability plot. An operator can visually identify an 

outlier or anomaly case by examining the plot. It is assumed that the capacitance 

data of a healthy winding follows a normal distribution. The Box Plot method is 

another graphical method, which graphically depicts the health classes of the 

capacitance data through their 1
st
 and 3

rd
 quartiles. The drawback of both 

aforementioned methods is that the sensitivity of the winding health classification is 

relatively low because of improper statistical modeling of the capacitance data and 

a lack of consideration of data heterogeneity. 
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Figure 2-1.Major output leak test plan (GE) [27] 
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2.3 Summary and Discussion 

The aforementioned PHM techniques can be applied to various engineered 

systems. Most monitoring systems for power generators use electrical signals to 

detect the faults of the generator. In the case of monitoring the system for water 

absorption, basic statistical ideas have been used to detect leaks and to detect the 

water absorbed in insulation based upon capacitance readings. Note that the direct 

use of capacitance measurements as the health index by the existing methods 

reviewed previously makes it difficult to easily and precisely infer the health status, 

especially when the measurements are of high dimensionality, high correlation, 

and/or high non-linearity. To improve upon the status quo, the work we propose 

develops a new health index through statistical analysis of multi-dimensional 

capacitance measurements for effectively determining the health of power 

generator windings. The ultimate goal of this work is to better prevent sudden 

failure and to enable a self-sustained generator, as shown in Figure 2-2.  

 

Figure 2-2.Processes involved in a self-sustained power generator 
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Chapter 3. Description of the Sensing Function 

and Data Analysis 

 

Equation Section 3 

The objective of the sensing function is to ensure high damage detectability and 

efficient data management by designing data acquisition logistics. In addition, the 

health condition of a power generator can be monitored by properly analyzing the 

capacitance of the winding insulation. This section discusses the fundamentals of 

capacitance measurements, locations of capacitance measurements, and 

characteristics of measurement data. This study examines eight power generators 

(nineteen datasets over eight years) which have the same specifications: (1) a 500 

MW output, (2) a 2-path cooling system, and (3) a 60 Hz frequency. 

 

 

3.1 Fundamentals of Capacitance Measurements 

When a power generator is water-cooled, coolant water flows into the water 

channels of the winding, as shown in Figure 3-1. Leakage into the surrounding 

insulation can occur due to various operational stresses, such as mechanical 

vibration, thermal shock, and crevice corrosion (see Figure 3-2). When leakage 

occurs, the water or moisture remains in the winding insulation. The remaining 

water degrades the winding insulation, which can cause insulation breakdown and 

power generator failure, as shown in Figure 3-3. For this reason, electric companies 

and manufacturing companies, such as KEPRI, GE and Toshiba, assess the health 

status of the winding insulation in their generators using a water absorption detector 
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[27-31]. The water absorption detector infers the level of water in the insulation by 

measuring the capacitance of the insulation. Because the relative static permittivity 

(or the dielectric constant) of water is higher than that of mica (which is generally 

used as the insulation material), wet insulation has a higher capacitance, C, based 

upon the following equation (see Figure 3-4 for a schematic representation): 

 0r

Q A
C

V t
e e= =  (3.1) 

where Q is the charge on each conductor, V is the voltage between the plates, A and 

t are, respectively, the measurement area and the thickness of the detector, Ů0 is the 

electric constant (Ů0 å 8.854pF-m
-1
) and Ůr is the relative static permittivity of the 

material between the plates. Measures of capacitance as health data provide 

valuable information that can be used to infer the amount of moisture absorption of 

a stator winding. Health-relevant information about the winding can be extracted 

from this measured moisture level. It should be noted that various uncertainty 

factors, such as the measurement location, the ambient humidity, and the winding 

surface condition propagate uncertainties into the capacitance measurements. These 

uncertainties must be taken into account in the health reasoning process. 

  
(a) (b) 

Figure 3-1.Power generator stator (a) and cross-section view of a winding (b) 
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Figure 3-2.Diagram of a crevice corrosion mechanism [27] 

 

 

Figure 3-3.Failure of a power generator stator 
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(a) (b) 

Figure 3-4.Capacitance reading using a detector (Model: GEN-SWAD I) (a) and the 

basic principle of the capacitance detector (b) 

 

3.2 Capacitance Data Acquisition 

As mentioned previously, each of the power generators employed in this study 

has forty-two stator windings and slots used for a water-cooled cooling system. As 

shown in Figure 3-5, the cooling water flows from the top bar inlet at the turbine 

end, through the top and bottom bars at the collector end, then back to the bottom 

bar outlet at the turbine end. At the turbine or collector end, an assembly slot in 

both the top and bottom bars contains ten measurements points. The ten 

measurement points are summarized in Table 3-1 and graphically illustrated 

together with the generator structure diagram in Figure 3-5. Note that since only an 

extremely small gap exists between the top and bottom bars, the capacitance on the 

top side of the bottom bar cannot be measured, resulting in only two measurement 

points for the bottom bar. As shown in Table 3-1, a unique identification (ID) code 

is assigned to each measurement point based on the location of the probing point. 
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For example, the ID code ñCET-TOPò indicates that the measurement point is 

located on the Top side of the Collector End Top bar. The capacitance data were 

acquired from the ten measurement points for each of the forty-two slots found on 

each power generator. The capacitance data measured at each measurement point 

can be modeled as a random variable (X). 

 

 

Table 3-1.Summary of ten measurement points on a single stator winding 

Stator side 
Winding 

location 

Measurement 

point 

Identification 

Code 

Collector End 

(CE) 

Top Winding 

TOP CET-TOP (X1) 

OUT CET-OUT (X2) 

IN CET-IN (X3) 

Bottom Winding 
OUT CEB-OUT (X4) 

IN CEB-IN (X5) 

Turbine End 

(TE) 

Top Winding 

TOP TET-TOP (X6) 

OUT TET-OUT (X7) 

IN TET-IN (X8) 

Bottom Winding 
OUT TEB-OUT (X9) 

IN TEB-IN (X10) 
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Figure 3-5.Structure diagram of a water-cooled power generator with a 2-path cooling system 
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3.3 Statistical Characterization of the Capacitance Data 

The capacitance data acquired at physically isolated measurement points can be 

modeled as statistically independent random variables (i.e. X1 and X10). 

Alternatively, the data can be modeled as statistically correlated random variables. 

For example, a physical gap between two different windings (as shown in Figure 

3-6) is one reason why the related random variables might be statistically 

independent. Moreover, different winding locations (CET, CEB, TET, and TEB) in 

one winding are also physically distant. This also implies that the related random 

variables could be statistically independent. On the other hand, water absorption 

occurs concurrently at adjacent measurement points in the same group, such as 

CET-TOP (X1), CET-OUT (X2), and CET-IN (X3). Checking statistical dependence 

between two random variables could confirm whether our intuitive observation is 

true or not. Before checking statistical correlations, a mean shift was applied to all 

datasets to take into account the inherent difference in the nominal states of water 

absorption between generators, as shown in Figure 3-7. After the mean shift, the 

correlation coefficients later become useful to develop the health reasoning process 

for a stator winding in a power generator. 

In general, the correlation coefficient is used as a measure to imply statistical 

correlation. The most famous measure of correlation is the Pearson product-

moment correlation coefficient. It is a quantitative measure of a linear dependence 

between two variables. Mathematically, a correlation coefficient can be calculated 

from the following form: 

 
( ) ( )( )

,

ECov ,
i j

i j

i j

i X j Xi j

X X

i j X X

X XX X

X X

m m
r

s s

è ø- -
ê ú

= =  (3.2) 



16 

 

where Xi and Xj are random variables, Cov(Xi, Xj) is the covariance between Xi and 

Xj, ɛ and ů are the mean and standard deviation of a random variable, respectively, 

and E[¶] is the expectation of a random variable. 

 

 
 

(a) (b) 

Figure 3-6.Gaps between two different windings (a) and between top and bottom 

stator bars (b) 

 

  
(a) (b) 

Figure 3-7.Scatter plots of the data between measurement points before (a) and 

after (b) mean shift 
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Table 3-2 summarizes the correlation coefficients for ten random variables, 

,i jX Xr for i, j = 1 to 10, in matrix form. The highlighted values in Table 3-2 are the 

coefficients between the correlated random variables in the same group. One can 

observe two features from the highlighted values: (1) a statistically positive 

correlation, and (2) a higher degree of correlation within the same group. These 

features indicate that the two or three capacitance data from the same group tend to 

behave (i.e. remain unchanged or grow) with linear dependence. This confirms the 

intuitive observations about the aforementioned statistical correlation and 

independence. Appendix A provides pairwise scatter plots between the ten 

measurement points (or ten random variables), from which two scatter plots are 

extracted to show the within-group and between-group correlations. 
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Table 3-2.Correlation coefficient matrix (symmetric) for ten random variables in matrix form 

Correlation 

Matrix  

CET CEB TET TEB 
TOP 

(X1) 

OUT 

(X2) 

IN  

(X3) 

OUT 

(X4) 

IN  

(X5) 

TOP 

(X6) 

OUT 

(X7) 

IN  

(X8) 

OUT 

(X9) 

IN  

(X10) 

CET 

TOP 

(X1) 
1          

OUT 

(X2) 
0.4761 1         

IN  

(X3) 
0.4194 0.5503 1        

CEB 

OUT 

(X4) 
0.0849 0.1572 0.1354 1       

IN  

(X5) 
-0.039 0.1686 0.0765 0.3445 1      

TET 

TOP 

(X6) 
0.3341 0.1553 0.1868 0.0343 -0.052 1     

OUT 

(X7) 
0.1972 0.2506 0.2729 0.0879 0.0171 0.4377 1    

IN  

(X8) 
0.2295 0.1423 0.3296 0.0082 0.0457 0.4269 0.4900 1   

TEB 

OUT 

(X9) 
0.0438 -0.128 -0.097 0.0186 -0.114 0.0887 -0.010 -0.003 1  

IN  

(X10) 
0.0354 -0.040 -0.004 0.0457 0.0870 -0.048 0.1084 0.0215 0.3385 1 
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3.4 Data Grouping 

It is important to define a group of capacitance data with homogeneity prior to 

the data modeling and health reasoning process. Based upon the measurement 

location and correlation characteristic obtained in Section 3.3, the measurement 

points with high correlation can be conceived as individual data groups, such as 

CET, CEB, TET, and TEB. This implies that the entire dataset for ten random 

variables (or from ten-dimensional measurement points) would be split into four 

groups with two or three random variables. This data grouping will be used for the 

health reasoning process in the subsequent section, which defines a health index 

and models it in a statistical form, as shown in Figure 3-8 and Table 3-3. The data 

grouping makes the health reasoning process easier through dimensional reduction 

of the capacitance data. 

 

 

Figure 3-8.Data grouping using a statistical correlation
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Table 3-3.List of measured datasets and the information employed in this study 

Power 

Plant 

Generator 

Number 

Year for  

Measurement 

Winding  

Number 

Measured dataset 

CE group TE group 

A 

1 ô05, ô07, ó09 

1 
CET 

(X1, X2, X3) 

CEB 

(X4, X5) 

TET 

(X6, X7, X8) 

TEB 

(X9, X10) 

     

42 CET CEB TET TEB 

2 ô06, ó09 

1 CET CEB TET TEB 

     

42 CET CEB TET TEB 

3 ô06, ó10 

1 CET CEB TET TEB 

     

42 CET CEB TET TEB 

4 ô06, ô07, ó08 

1 CET CEB TET TEB 

     

42 CET CEB TET TEB 

B 

1 ô06, ô10, ó12 

1 CET CEB TET TEB 

     

42 CET CEB TET TEB 

2 ô09, ó12 

1 CET CEB TET TEB 

     

42 CET CEB TET TEB 

C 4 ô06, ó10 

1 CET CEB TET TEB 

     

42 CET CEB TET TEB 

D 6 ô09, ó11 

1 CET CEB TET TEB 

     

42 CET CEB TET TEB 
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Chapter 4. Statistical Health Reasoning System1 

 

Equation Section 4 

Although the capacitance data are relevant to the health status of the stator 

winding, its high dimensionality and non-linearity make it difficult to easily and 

precisely infer the health status. This section proposes a new health index, referred 

to as the Directional Mahalanobis Distance (DMD). 

 

 

4.1 Review of Mahalanobis Distance 

The Mahalanobis Distance (MD) is a relative health measure that quantifies the 

deviation of a measured data point from a clustered data center, which is generally 

a populated mean (ɛ) of a dataset. The MD degenerates multi-dimension data (X) to 

a one-dimension distance measure while taking into account the statistical 

correlation between random variables. Mathematically, the MD measure can be 

expressed as: 

 ( ) ( ) ( )
T 1MD X X ɛ Ɇ X ɛi i i

-= - - (4.1) 

where ( )
T

1, 2, ,, , ,X i i i N iX X X= is an N-dimensional capacitance data vector of the 

i
th
 winding unit which belongs to a group having the mean ( )

T

1 2, , ,ɛ Nm m m= and 

the covariance matrix Ɇ. Figure 4-1 plots two-dimensional samples randomly 

drawn from two random variables with a positive correlation. Essentially, the MD 

                                                           1 Sections of this chapter have been submitted as the following journal article: Byeng D. Youn, 

Kyung Min Park, Hu Chao, Joung Taek Yoon, and Hee Soo Kim, ñStatistical Health Reasoning of 

Water-Cooled Power Generator Stator Windings against Moisture Absorption,ò Reliability 

Engineering and System Safety, Submitted, 2014. 
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transforms an ellipsoid in the original random space to a circular shape in the 

standard Gaussian space, as shown in Figure 4-1. Since the distance (D1) of the 

faulty point to the clustered data center is much shorter than that (D2) of the healthy 

point, one could have concluded based upon the Euclidean distance that the faulty 

point is more likely to belong to the cluster. This misleading conclusion is mainly 

caused by not taking into account the correlation coefficient of the two random 

variables. Indeed, if we simply divide the distances D1 and D2 by the widths of the 

ellipsoid in the corresponding directions, respectively, we can easily come to the 

conclusion that the faulty point is much farther away from the clustered center than 

the healthy point. This can be clearly observed in Figure 4-1. 

 

  

(a) (b) 

Figure 4-1.Healthy and faulty points located in the original space (a) and the 

normalized space (b) 

As compared to the Euclidean distance, the MD measure possesses a few unique 

advantages, listed as follows: (1) The MD transforms a high-dimensional dataset 

that is complicated to handle into a one-dimensional measure capable of easy 
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comprehension and quick computation. (2) The MD is robust to differing scales of 

the measurements, as the MD values are calculated after normalizing the data. (3) 

By taking into account the correlation of the dataset, the MD is sensitive to inter-

variable changes in multivariate measurements. 

 

 

4.2 A New Concept of Statistical Distance: Directional 

Mahalanobis Distance 

This subsection introduces a new MD-based distance measure that can be used 

to imply the health condition of a stator winding in a power generator. 

 

4.2.1 Data Projection 

The MD, as a relative health measure, provides very useful information to 

characterize the health condition of a stator winding in a power generator. 

According to Equation (3.1), the capacitance values measured from a dry stator 

winding with a negligible amount of water on the insulation should be smaller than 

the mean value of the measurement population. Previous studies [27, 28] also 

reported that measured values smaller than the population mean should be treated 

as if they have no relation to the insulationôs water absorption. However, the MD, 

as a scalar distance measure, is a direction-independent health measure in the 

random capacitance space, as shown in Figure 4-2. In other words, two capacitance 

measurements with the same MD value but in two opposite directions are treated 

equally, although they most likely imply the different levels of water absorption. 

Let us take the dashed circle datum in Figure 4-1 as an example. In this case, the 
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dashed circle datum is a healthy point since this datum falls into the lower tails of 

the marginal distributions of the random capacitance variables. However, the MD 

declares this datum to be in the failure category simply because it is out of the data 

cluster. For this very reason it is necessary to refine the measure so that is better 

suited for this application. In order to rebuild the measure, this study employs a 

projection process which first identifies absolutely healthy variables(s) (e.g. a 

capacitance value less than its populated mean, say Xi < ɛi) and then projects it onto 

the corresponding mean value(s), e.g. (Xi, ɛj) and (ɛi, Xj) shown in Figure 4-2. 

Through this projection process, the absolutely healthy data will  be ignored in the 

subsequent transformation. The data projection underscores the consideration of the 

direction in the health reasoning process of the measurement data. This leads to the 

unique capability of the proposed health index to makes use of the distance and 

degradation direction as a health measure.  

After the data projection, the capacitance data ( ), 1, ,n iX n N= , can be 

processed as: 

 
, ,

,

, if

, otherwise

n i n i n

n i

n

X X
X

m

m

>ëî
=ì
îí

 (4.2) 

where Xn,i denotes the raw capacitance data at the n
th 

measurement location of the i
th
 

winding unit, ɛn is the mean of the capacitance data at the n
th
 measurement location, 

and ,n iX  denotes the processed capacitance data. The mean and variance of the 

dataset must be obtained before the data projection because they are physically 

meaningful in the original space. 
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(a) (b) 

 
(c) 

Figure 4-2.Scatter plots before data projection (a), after projection (b), and after transformation (c)
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4.2.2 Transformation  

The proposed index, namely the Directional Mahalanobis Distance (DMD), 

assesses the MD along the degradation direction of a stator winding insulation after 

data projection. Mathematically, the DMD shares a similar formula with the MD, 

except for consideration of the data projection. It is expressed as: 

 ( ) ( ) ( )
T

1DMD X X ɛ Ɇ X ɛi i i

-= - - (4.3) 

where ( )
T

1, 2, ,, , ,X i i i N iX X X=  is an N-dimensional vector of the capacitance 

data from the i
th
 winding unit after the data projection, ( )

T

1 2, , ,ɛ Nm m m=  and Ɇ 

is the mean vector and covariance matrix of the reference dataset before the 

projection. Figure 4-2(c) shows the scatter plot of the DMD dataset after projection 

and transformation; the difference between the MD and DMD can be clearly 

observed in this figure. 

One question remains: what is the proper sequence of data projection and 

transformation? We found that the former should be done prior to the latter. The 

justification for this sequence is the fact that the comparison between the absolutely 

healthy data and the mean value of each random variable is physically meaningful 

and valid only in the original space, not in the transformed space. 

 

 

4.3 Comparison of Performance of Mahalanobis Distance 

(MD) and Directional Mahalanobis Distance (DMD) 

The distances in this paper are squared in order to place progressively greater 
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weight on objects that are farther apart. In general, squared distance is frequently 

used in instances where only distances need to be compared. 

Figure 4-3 shows the scatter plot of MD and DMD with three highlighted data 

points, two of which represent a healthy state and the other a faulty state. In the 

case of MD, the 1
st
 and 2

nd
 data points (the two ñhealthyò points) are located in the 

2
nd

 (top left) and 3
rd
 (bottom left) quadrants of the two-dimensional space 

composed of two Euclidean distances. The 3
rd
 data point, the ñfaultyò point, is 

located in the 1
st
 (top right) quadrant. The MD values of the 1

st
, 2

nd
 and 3

rd
 points 

are, respectively, 4.74, 5.71, and 3.80. In the case of DMD, the squared distances of 

the three points from the origin are, respectively, 0.076, 0.100, and 3.80. Without 

the projection before transformation, MD incorrectly treats the ñhealthyò data 

points as ñfaultyò while, with the projection before the transformation, the proposed 

index, DMD, correctly identifies these two points as ñhealthyò (with relatively 

small distance values). Therefore, the proposed DMD achieves better performance 

than the MD by accounting for the degradation direction in the health reasoning 

process of the capacitance data. 

 

  
(a) (b) 

Figure 4-3.Three cases to compare the performance of MD (a) and that of DMD (b) 
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Performance evaluation of these two indices requires an evaluation metric that 

assesses the effectiveness of a health index in quantifying the health condition of a 

generator winding. The evaluation metric considered here employs a score function 

with the health index value and true health condition of a generator winding as the 

inputs and a normalized score metric (ranging between 0 to 100) as the output. 

Mathematically, the proposed score function can be expressed as: 

 
1 1 1

1 1 1 1

SF 100

N l N

j j j j

j j j l

W

N N l l N

j j j j

j N l j j j l

B W

x y x x

x x x x

= = = +

-

= - + = = = +

å õ
- -æ ö
ç ÷

= ³
å õ å õ

- - -æ ö æ ö
ç ÷ ç ÷

ä ä ä

ä ä ä ä

 (4.4) 

where xj denotes the health index value of the j
th
 winding unit, yj denotes the 

maintenance index of the j
th
 winding based on the actual repair history (yj = 1 if the 

unit was maintained and yj = -1 otherwise), N denotes the number of winding units, 

l denotes the number of winding units with maintenance histories, and B and W 

denote the best and worst score metric values, respectively. Figure 4-4 illustrates 

various combinations of the health index ranking, the maintenance history, and the 

score metric ranking of these combinations. The best and worst scenarios 

(represented respectively by B and W in Equation(4.4)) are depicted by the leftmost 

and rightmost plots, respectively. 

Table 4-1 summarizes the distances and scores from the assessment results for 

health condition of the winding using MD and DMD, respectively. As one can see 

in Table 4-1, both MD and DMD can easily find windings that have been 

maintained; the capacitance of maintained insulation is relatively larger than the 

capacitance seen in the unmaintained samples. However, MD cannot find all the 
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maintained windings in the top ten health indices in the CET group. In addition, 

some unmaintained windingsô health indices have higher values than those of 

maintained windings (e.g. 8
th
, 9

th
, and 10

th
 health indices in TET group). 

 

 

Figure 4-4.Combination of health index ranking and maintenance history and 

corresponding score metric ranking 
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Table 4-1.Distances and scores from the results examining health condition of 

windings using MD and DMD 

Rank 
CET group CEB group TET group TEB group 

MD
2
 DMD

2
 MD

2
 DMD

2
 MD

2
 DMD

2
 MD

2
 DMD

2
 

1 33.64 33.64 21.14 21.14 20.37 20.37 11.65 11.65 

2 28.41 28.41 20.63 20.63 18.93 18.93 9.97 9.01 

3 21.96 21.96 17.96 14.36 17.93 17.93 9.64 8.88 

4 18.60 18.60 15.87 14.00 17.67 17.67 9.18 8.08 

5 18.06 18.06 14.36 13.61 15.88 15.88 9.01 7.87 

6 17.58 17.58 14.27 12.68 15.75 14.65 8.88 7.34 

7 16.42 16.42 12.68 8.18 14.65 13.57 8.69 7.04 

8 16.39 16.39 11.05 7.86 14.11 13.15 8.08 6.86 

9 13.36 12.25 10.85 6.75 13.98 9.33 7.87 6.45 

10 12.76 9.90 10.78 6.70 13.55 8.91 7.74 6.23 

11 12.55 9.51 9.67 6.27 13.15 8.39 7.68 6.18 

12 12.52 9.41 9.51 6.08 11.79 8.09 7.66 5.96 

13 11.47 9.36 9.37 5.30 11.56 6.80 7.50 5.74 

14 11.46 8.57 8.98 5.27 11.11 6.68 7.48 5.49 

15 11.43 8.03 8.76 5.19 10.63 6.62 7.34 5.48 

         

21 10.56 6.67 7.82 4.38 9.33  6.86 4.60 

         

27 9.51 6.25 6.77 4.06 8.52  6.22 4.39 

         

29 9.36 5.60 6.52 3.94 8.39  6.17 4.32 

         

798 0.01 0.00 0.00 0.00 0.02 0.00 0.00 0.00 

Score 96.31 98.30 98.47 100 94.52 96.80 91.26 95.49 
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Chapter 5. Health Classification 

 

Equation Section 5 

This section is designed to construct a health grade system based upon the 

proposed health index, DMD, and field maintenance history. The historical 

maintenance data obtained from the operators of the power generators are presented 

in Section 5.1. An empirical health grade system is suggested in Section 5.3 with 

consideration of the scale that is discussed in Section 5.2. 

 

5.1 Maintenance History Related to Water Absorption 

In this section, the historical maintenance data related to water absorption is 

presented, including data from faulty windings. Field experts collected the 

maintenance records of generator windings and identified their health conditions 

using the Stator Bar Capacitance Mapping test method developed by GE. The 

maintenance records can be classified into four groups (CET, CEB, TET, and TEB). 

Table 5-1 summarizes the maintenance history related to water absorption over 

eight years. In this table, two data points (28.413 and 33.645) were obtained from 

the faulty winding and the others were measured from water-absorbed windings. 

These maintenance records provide the physical basis for determining an 

appropriate failure threshold, especially the data obtained from the faulty windings. 
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Table 5-1.Maintenance history related to water absorption 

Group 
Power 

Plant 

Generator 

Number 

Winding 

Number 
Year DMD

2
 Condition 

CET 

A 

1 20 

ó05 18.598 

Absorbed ó07 16.415 

ó09 16.394 

2 
03 

ó06 18.060 
Absorbed 

ó09 21.963 

40 ó09 9.511 Absorbed 

4 23 
ó07 28.413 

Faulty 
ó08 33.645 

B 1 18 
ó10 9.355 

Absorbed 
ó12 17.580 

CEB 

A 

2 31 
ó06 20.625 

Absorbed 
ó09 21.141 

4 20 
ó07 14.359 

Absorbed 
ó08 12.677 

C 4 11 
ó06 13.613 

Absorbed 
ó10 14.001 

TET 
A 

1 

11 
ó07 9.334 

Absorbed 
ó09 13.145 

20 

ó05 17.665 

Absorbed ó07 17.929 

ó09 18.932 

2 40 
ó06 20.368 

Absorbed 
ó09 14.653 

B 1 18 ó10 15.876 Absorbed 

TEB A 3 23 ó10 8.080 Absorbed 

 

 

5.2 Review of Scaled Mahalanobis Distance 

The aim of this section is to introduce an improvement to the concept of MD: 

Scaled Mahalanobis Distance (SMD) in the Mahalanobis-Taguchi System (MTS). 

As aforementioned, this study deals with the two groups which have different data 

size (i.e. Top group and Bottom group). Since MD and DMD do not consider the 
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data size of each group, it is not suitable to compare two groups directly without 

any conversion. SMD is a way to solve this problem. 

It has been shown that MD follows a ɢ
2
-distribution with k degrees of freedom, 

when the sample size, n , is large and all characteristics follow the normal 

distribution (R. A. Johnson et al. [32]). A ɢ
2
-distribution with k degrees of freedom 

has a mean equal to k. Hence, G. Taguchi et al. [10] proposed a new idea for MD 

known as SMD. This group suggested that MD should be scaled by dividing by the 

number of variables, k. Thus, the equation for calculating SMD in the MTS 

becomes: 

 ( ) ( )
T2 2 11 1

SMD MD X ɛ Ɇ X ɛi i
k k

-= = - - (5.1) 

where k denotes the number of variables or the data size of each group, and X i is a 

capacitance data vector of the i
th 

winding unit, which belongs to a group having the 

mean vector, ɛ, and the covariance matrix, S. 

Since the expected value of MD
2
 is equal to k, the expected value of SMD

2
 

becomes: 

 2 2 21 1 1
E SMD E MD E MD 1k

k k k

è ø
è ø è ø= = = Ö =ê ú ê úé ù

ê ú
 (5.2) 

where E[¶] is a function of the expectation. This scaling process thus allows direct 

comparison between the top and bottom groups. The scaled distance offers an 

advantage that it can be applicable to any number of variables. 

For the purposes of this paper, it is important to make sure whether or not the 

proposed idea of the SMD works for the capacitance data measured from the stator 

windings found in generators. Table 5-2 summarizes the properties of each groupôs 

data; top and bottom. 
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Table 5-2.The properties of top and bottom groupsô data 

Properties Top Group Bottom Group 

The number of variables  

(or, the data size of group) (k) 
3 2 

The number of samples(n) 1,680 1,680 

Expected value (m) 2.88 1.96 

Expected value of SMD
2 
(m/k) 0.96 0.98 

 

As shown in Table 5-2, the expected value of the top group (CET and TET) is 

close to the number of variables in the top groups. Likewise, the expected value of 

the bottom group (CEB and TEB) approximately equals to the number of variables 

in the bottom groups. Thus, it can be concluded that the scaled distance measures 

can be uniformly used regardless of the group. The scaling idea can also be applied 

to Scaled Directional Mahalanobis Distance (SDMD), just like SMD. 

 

5.3 Health Grade System  

This section aims to define a health grade system in which the windingsô health 

states are classified into diverse classes according to the health-relevant distance 

measure, SDMD. 

Based upon the maintenance strategies for the stator windings and the opinions 

of field experts, three health classes are proposed: (1) a faulty condition (or, water-

absorbed), (2) a warning  condition (or, close to water absorption), and (3) a 

healthy condition (or, not water-absorbed). The failure listed in Table 5-1 which 

was caused by water absorption resulted in two meaningful data. These data can 

define a failure threshold for the distance measure, h, expressed as: 
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 ( ) ( )2 2E min SDMD ,max SDMD 0.5h ké ùè øè ø è ø= Ö +
é ùê ú ê úê úê úfaulty warningX X  (5.3) 

where ¶é ùê ú denotes a round down function, E[̋] denotes the expected value, k is 

the data size of each group (e.g. In case of top group, k = 3) and faultyX  and 

warningX  are capacitance data vectors obtained from the faulty or water-absorbed 

windings on each group, respectively. Sixty percent of the threshold value (0.6 h) is 

defined as a boundary line between the warning condition and the healthy condition, 

based upon field expertsô experience and historic information on inspection and 

maintenance for stator windings.  

Since the bottom group does not have any faulty winding in the maintenance 

history, the failure threshold of bottom group cannot be calculated from the 

equation 5.3. Thus the failure threshold of top group, htop, is applied to define the 

failure threshold for the bottom bar, hbottom, which can be defined by the following 

expression: 

 top bottom: 3:2h h =  (5.4) 

Finally, Table 5-3 summarizes the definition of the three health grades and 

suggested maintenance actions. 

 

Table 5-3.Definition of health grades and related maintenance actions 

Health Grade 
Range Suggested Maintenance 

Actions Top Bottom 

Faulty DMD
2
Ó25 DMD

2
Ó16.7 Immediate replacement 

Warning 15<DMD
2
<25 10<DMD

2
<16.7 Frequent inspection 

Healthy DMD
2
<15 DMD

2
<10 

No immediate maintenance 

required 
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5.4 Validation Study 

In this section, the feasibility of the proposed SDMD-based health grade system 

is verified by comparison with the maintenance history of generator stator windings. 

Figure 5-1 shows the scatter plot of DMD with operating time. Let us examine the 

points highlighted with circles in the figure. These circles label the data obtained 

from the faulty winding or water absorbed windings. Each class contains several 

data points highlighted with circles, as shown in Table 5-4. 

Table 5-4.Summary of the number of the data and the circled data in each grade 

Health grade 
The number of  

the data (A) 

The number of  

the circled data (B) 

B/A 

(%)  

Faulty 4 4 100 

Warning 15 15 100 

Healthy 3,173 6 0.19 

 

Most of the circled data points belong to either the ñfaultyò or ñwarningò class. 

This indicates that the proposed health grade system properly defines the health 

condition of the generator stator windings against water absorption.  

In the faulty class, there are two cases (Case 1 and 2 in Figure 5-1) which can be 

split into four data points, although only one failure case was actually recorded in 

the maintenance history. In order to make sure if the failure threshold was correct, 

we looked at the maintenance history in detail. 

The data points in the first case are obtained from the failed winding which was 

burned in 2008. According to the proposed index, DMD
2
, a substantial increase of 

the index was found from 2006 to 2007. The index of this winding is equal to 3.05 

in 2006 and 28.41 in 2007, respectively. This increase would have suggested by 
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DMD
2
 that a preventative maintenance action be taken the year (2007) before the 

failure. This is a critically important observation in order to build the health grade 

system correctly. Thus, there is no problem that the data points observed from this 

winding belong to the faulty class.  

On the other hand, the second case contains two data points which are measured 

from non-faulty winding. It seems that the winding studied here should be 

contained within the warning or healthy class. This is because of stator windingsô 

electrical characteristics. A voltage is induced in the stator winding when the rotor 

is rotated. Typically, large synchronous generators are designed for a terminal 

voltage of several thousand volts. According to the opinion of experts in the power 

generation field, several windings per stator continuously retain zero-volts. This 

implies that these windings, like the second caseôs winding, may not have failed 

even though the water is absorbed enough to otherwise indicate a problem. In 

summary, it can be concluded based upon the above observation that replacement 

should be carried out on this winding in spite of its good external appearance. 

Actually, this winding was replaced in 2011. 
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Figure 5-1.Scatter plot of DMD with operating time 
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Chapter 6. Conclusion 

 

This paper explores a new health reasoning system to assess the health condition 

of stator windings in power generators. The proposed system extracts health-

relevant features from the capacitance data in a statistical manner, to assess the 

health condition of power generator stator winding, to classify the health classes 

into three groups (healthy, warning, and faulty states), and to develop health grade 

system for condition-based maintenance. Correlation analysis of measured 

capacitance data is used to help understand the statistical features of the data and to 

divide the variables into four groups (CET, CEB, TET, and TEB) per winding. This 

paper proposes a statistical health measure Directional Mahalanobis Distance 

(DMD). DMD incorporates the correlation between variables and provides the 

degree of health condition considering the health degradation direction. Due to the 

unique capability of DMD to make use of the distance and degradation direction as 

a health measure, it can also be applicable to a health grade system designed to 

monitor a building. The health grade system outlined in this paper was developed 

with guidance from field maintenance records. Moreover, it takes into account the 

data size of each group with a scaling factor. This study employed the datasets from 

eight generators over eight years to validate the proposed health reasoning system. 

The proposed system can be generally applicable to health degradation trend 

analysis of engineered systems. In order to accomplish the condition-based 

maintenance system, health prognostics using machine learning techniques must be 

further studied. 
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Abstract 

 

Statistical Health Reasoning System of Power Generator Stator 

Windings against Water Absorption 

 

Kyung Min Park 

Department of Mechanical and Aerospace Engineering 

The Graduate School 

Seoul National University 

 

The power generator, as one of the most critical components in a power plant, is 

typically maintained through use of a time- or usage-based strategy. Either strategy 

could result in a substantial waste of remaining useful life (RUL), high maintenance 

costs, and/or low plant availability due to excess, untimely, or missed maintenance. 

Recently, the field of prognostics and health management has offered new general 

diagnostic and prognostic techniques to precisely assess health conditions and 

robustly predict the RUL of engineered systems, with the aim of addressing the 

aforementioned deficiencies. This paper explores a smart health reasoning system that 

can be used to assess the health condition of power generator stator windings and 

their levels of water absorption. The system monitors health based on capacitance 

measurements of the winding insulations. In particular, a new relative health measure, 

namely the Directional Mahalanobis Distance (DMD), is proposed to quantify the 

health condition of stator windings. This paper also proposes an empirical health 

classification rule, based upon the DMD, which factors in maintenance history. The 

proposed smart health reasoning system is validated using eight years’ field data from 

eight generators, each of which contains forty-two windings. 
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Chapter 1. Introduction 

 
 

1.1 Motivation 

Power generators are critical elements of power plants. An unexpected 

breakdown of a generator can lead to plant shut-down and can result in substantial 

economic and societal loss. Recently, tremendous technological advancements have 

been achieved in the development and deployment of an ultra-supercritical (USC) 

steam generator, shown in Figure 1-1. The USC steam generator operates at an 

advanced steam temperature of 593°C or above, enabling it to achieve higher 

energy conversion efficiency, while at the same time reducing fuel consumption 

and waste emission. However, the large gap between the operation temperature and 

pressures of the advanced USC generator and those found in conventional 

subcritical generators leads to far harsher operating conditions in the USC. Thus, 

the USC has a much higher risk of catastrophic failure. To minimize the losses 

resulting from potential failures, the reliability of the USC-type power generator 

must be ensured throughout its life-cycle amidst uncertain operating conditions and 

manufacturing variability. 

Recently, prognostics and health management (PHM) has emerged as a key 

technology to evaluate the current health condition (health diagnostics) and predict 

the future degradation behavior (health prognostics) of an engineered system 

throughout its lifecycle. In general, PHM consists of four basic functions: a health 

sensing function, a health reasoning function, a health prognostics function, and a 

health management function. PHM has shown success in lowering system 

maintenance costs of various engineered systems. Comprehensive exploration of 
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PHM techniques for power generator windings can enable early anticipation of 

failure. PHM can be used to develop cost-effective maintenance strategies and to 

seek opportunities for extending equipment life. Effective health reasoning systems 

are a crucial step towards a comprehensive exploration of PHM techniques. 

Subcritical Super-
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Figure 1-1.Comparison of performance between subcritical, supercritical and ultra-

supercritical steam generators 

 

 

1.2 Overview 

This research aims to develop a health reasoning system for power generator 

stator windings through both physical and statistical analysis. A health reasoning 

system, also known as the integration of condition monitoring (CM) and health 

classification, is an algorithm-based system used to diagnose health conditions 

based on sensory signals and related health measures. Two steps are typically 

involved: (1) CM to extract relevant system health information through feature 

extraction techniques, (2) health classification to classify a system’s health state 
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into diverse health classes using health classification techniques such as artificial 

intelligence, a support vector machine, decision trees, and mahalanobis distance 

(MD).  

This research proposes a new classification technique that can be applied to 

stator windings in power generators. The new technique eliminates the limitations 

found in existing methods and in MD, which is widely used in the PHM field. The 

proposed definition for health classification is carried out with data from the 

maintenance history that has been obtained from the field. 

 

 

1.3 Thesis Layout 

This thesis is organized as follows: Chapter 2 reviews existing methods for 

detecting leaks and water absorption in the insulation of stator windings found in 

power generators. Chapter 3 presents the sensing function for health monitoring 

and analysis of health data which can be measured regarding the insulation of stator 

windings. Chapter 4 discusses feature extraction techniques and introduces a health 

index for a smart health reasoning system. Chapter 5 presents a new health 

classification rule which includes consideration of the data size. The validation 

study for the proposed health index and grade system is given in this chapter as 

well. Finally, conclusions of the paper are presented in Chapter 6. 
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Chapter 2. Literature Review 

 

 

This chapter reviews the existing state of knowledge related to health 

assessment of power generators – the topic of this thesis. Topics reviewed include: 

(1) PHM techniques for engineered systems, including power generators, and (2) 

existing methods used in the field to guard against leak and water absorption. 

 

2.1 Prognostics and Health Management Techniques used to 

Support the Health Reasoning Function 

PHM is a method that permits assessment of the reliability of a system under its 

actual application conditions. Extensive research has been conducted in the 

application of PHM to various engineered systems.  

Popular tools used for the health reasoning function include statistical methods 

(A. H. Christer et al. [1], and Y. Zhan et al. [2]), artificial intelligence (R. B. 

Chinnam et al. [3] and C. C. Lin et al. [4]), support vector machines (J. Yang et al. 

[5] and C. Cortes et al. [6]), kernel estimation (N. S. Altman [7]), decision trees (L. 

Rokach [8]), Mahalanobis distance (R. De Maesschalck et al. [9] and G. Taguchi et 

al. [10]), Kalman filter (J. D. Wu et al. [11] and S. K. Yang [12]), among others.  

These algorithms can be applied to various engineered applications, including 

bearings (I. E. Alguindigue et al. [13]), gearboxes (S. Ebersbach et al. [14]), 

machine tools (D. E. Dimla Sr. [15] and K. F. Martin [16]), transformers (C. 

Bartoletti et al. [17], C. Bengtsson [18], C. Hu et al. [19] and C. Booth et al. [20]), 

generators (C. W. Park et al. [21], J. Finn et al. [22], A. Kheirmand et al. [23] and 
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G. C. Stone et al. [24]) and stator insulation used for winding in generators (G. A. 

Jayantha et al. [25] and Z. Jia et al. [26]). 

 

 

2.2 Existing Tests to Detect Leaks or Water Absorption 

General Electric (GE), one of the largest manufacturers of generators in the 

world, provides guidelines for a standard outage test program for periodic overhaul 

of generators. The schedule typically includes minor overhaul every 30 months and 

major overhaul every 48-60 months. Figure 2-1 summarizes the GE maintenance 

program plan. The program consists of four tests; (1) the Vacuum Decay Test, (2) 

the Pressure Decay Test, (3) the Helium Tracer Gas Test and (4) the Stator Bar 

Capacitance Mapping Test (J. A. Worden et al. [27]). 

The first three tests are designed to detect leaks in the stator winding. The first 

test, the Vacuum Decay Test is a useful tool for determining the integrity of the 

entire water-cooled stator hydraulic system. The primary advantage of this test is its 

sensitivity. Decay measurements are made in units of microns. A typical pressure 

gage cannot detect one micron, which is equivalent to .00002 psi. Because of the 

high sensitivity of this test, ironically, extremely small leaks at flanges and 

connections can result in poor test results. The second test, the Pressure Decay Test, 

has two advantages over the Vacuum Decay Test. It provides a greater pressure 

differential and applies pressure in the normal direction of the leak flow. These 

factors may make it easier to find leaks undetectable in the Vacuum Decay Test. 

During this test, exposed potential leak sites can be tested using a bubble. 

Drawbacks to pressure testing are its insensitivity to small leaks, and relatively high 
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sensitivity to changes in the environment. The third test, the Helium Tracer Gas 

Test, is a method of leak detection where the generator is pressurized with a helium 

gas so that possible leak points can be detected using a helium gas detector. In 

many cases, leaks that were missed by the Vacuum Decay Test and the Pressure 

Decay Test are found with the Tracer Gas Test. 

Finally, the Stator Bar Capacitance Mapping Test is used to determine the extent 

of water absorption. This test assumes that good capacitance data provides a normal 

distribution when plotted; nearly all of the data should fall between -2 and +2 

standard deviations from the average. This test uses +3 standard deviations of the 

capacitance data as a failure threshold. 

Korea Electric Power Corporation – Research Institute (KEPRI) has also 

developed methods using a capacitance reader (or wet bar detector) for detecting 

water absorption using statistical tools, including (1) a Normal Probability Plot and 

(2) a Box Plot (H. S. Kim et al. [28]). 

The Normal Probability Plot method determines the health classes of winding 

insulation based on a normal probability plot. An operator can visually identify an 

outlier or anomaly case by examining the plot. It is assumed that the capacitance 

data of a healthy winding follows a normal distribution. The Box Plot method is 

another graphical method, which graphically depicts the health classes of the 

capacitance data through their 1
st
 and 3

rd
 quartiles. The drawback of both 

aforementioned methods is that the sensitivity of the winding health classification is 

relatively low because of improper statistical modeling of the capacitance data and 

a lack of consideration of data heterogeneity. 
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Figure 2-1.Major output leak test plan (GE) [27] 
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2.3 Summary and Discussion 

The aforementioned PHM techniques can be applied to various engineered 

systems. Most monitoring systems for power generators use electrical signals to 

detect the faults of the generator. In the case of monitoring the system for water 

absorption, basic statistical ideas have been used to detect leaks and to detect the 

water absorbed in insulation based upon capacitance readings. Note that the direct 

use of capacitance measurements as the health index by the existing methods 

reviewed previously makes it difficult to easily and precisely infer the health status, 

especially when the measurements are of high dimensionality, high correlation, 

and/or high non-linearity. To improve upon the status quo, the work we propose 

develops a new health index through statistical analysis of multi-dimensional 

capacitance measurements for effectively determining the health of power 

generator windings. The ultimate goal of this work is to better prevent sudden 

failure and to enable a self-sustained generator, as shown in Figure 2-2.  

 

Figure 2-2.Processes involved in a self-sustained power generator 
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Chapter 3. Description of the Sensing Function 

and Data Analysis 

 

Equation Section 3 

The objective of the sensing function is to ensure high damage detectability and 

efficient data management by designing data acquisition logistics. In addition, the 

health condition of a power generator can be monitored by properly analyzing the 

capacitance of the winding insulation. This section discusses the fundamentals of 

capacitance measurements, locations of capacitance measurements, and 

characteristics of measurement data. This study examines eight power generators 

(nineteen datasets over eight years) which have the same specifications: (1) a 500 

MW output, (2) a 2-path cooling system, and (3) a 60 Hz frequency. 

 

 

3.1 Fundamentals of Capacitance Measurements 

When a power generator is water-cooled, coolant water flows into the water 

channels of the winding, as shown in Figure 3-1. Leakage into the surrounding 

insulation can occur due to various operational stresses, such as mechanical 

vibration, thermal shock, and crevice corrosion (see Figure 3-2). When leakage 

occurs, the water or moisture remains in the winding insulation. The remaining 

water degrades the winding insulation, which can cause insulation breakdown and 

power generator failure, as shown in Figure 3-3. For this reason, electric companies 

and manufacturing companies, such as KEPRI, GE and Toshiba, assess the health 

status of the winding insulation in their generators using a water absorption detector 
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[27-31]. The water absorption detector infers the level of water in the insulation by 

measuring the capacitance of the insulation. Because the relative static permittivity 

(or the dielectric constant) of water is higher than that of mica (which is generally 

used as the insulation material), wet insulation has a higher capacitance, C, based 

upon the following equation (see Figure 3-4 for a schematic representation): 

 0r

Q A
C

V t
    (3.1) 

where Q is the charge on each conductor, V is the voltage between the plates, A and 

t are, respectively, the measurement area and the thickness of the detector, ε0 is the 

electric constant (ε0 ≈ 8.854pF-m
-1

) and εr is the relative static permittivity of the 

material between the plates. Measures of capacitance as health data provide 

valuable information that can be used to infer the amount of moisture absorption of 

a stator winding. Health-relevant information about the winding can be extracted 

from this measured moisture level. It should be noted that various uncertainty 

factors, such as the measurement location, the ambient humidity, and the winding 

surface condition propagate uncertainties into the capacitance measurements. These 

uncertainties must be taken into account in the health reasoning process. 

  
(a) (b) 

Figure 3-1.Power generator stator (a) and cross-section view of a winding (b) 
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Figure 3-2.Diagram of a crevice corrosion mechanism [27] 

 

 

Figure 3-3.Failure of a power generator stator 
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(a) (b) 

Figure 3-4.Capacitance reading using a detector (Model: GEN-SWAD I) (a) and the 

basic principle of the capacitance detector (b) 

 

3.2 Capacitance Data Acquisition 

As mentioned previously, each of the power generators employed in this study 

has forty-two stator windings and slots used for a water-cooled cooling system. As 

shown in Figure 3-5, the cooling water flows from the top bar inlet at the turbine 

end, through the top and bottom bars at the collector end, then back to the bottom 

bar outlet at the turbine end. At the turbine or collector end, an assembly slot in 

both the top and bottom bars contains ten measurements points. The ten 

measurement points are summarized in Table 3-1 and graphically illustrated 

together with the generator structure diagram in Figure 3-5. Note that since only an 

extremely small gap exists between the top and bottom bars, the capacitance on the 

top side of the bottom bar cannot be measured, resulting in only two measurement 

points for the bottom bar. As shown in Table 3-1, a unique identification (ID) code 

is assigned to each measurement point based on the location of the probing point. 
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For example, the ID code “CET-TOP” indicates that the measurement point is 

located on the Top side of the Collector End Top bar. The capacitance data were 

acquired from the ten measurement points for each of the forty-two slots found on 

each power generator. The capacitance data measured at each measurement point 

can be modeled as a random variable (X). 

 

 

Table 3-1.Summary of ten measurement points on a single stator winding 

Stator side 
Winding 

location 

Measurement 

point 

Identification 

Code 

Collector End 

(CE) 

Top Winding 

TOP CET-TOP (X1) 

OUT CET-OUT (X2) 

IN CET-IN (X3) 

Bottom Winding 
OUT CEB-OUT (X4) 

IN CEB-IN (X5) 

Turbine End 

(TE) 

Top Winding 

TOP TET-TOP (X6) 

OUT TET-OUT (X7) 

IN TET-IN (X8) 

Bottom Winding 
OUT TEB-OUT (X9) 

IN TEB-IN (X10) 
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Figure 3-5.Structure diagram of a water-cooled power generator with a 2-path cooling system 
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3.3 Statistical Characterization of the Capacitance Data 

The capacitance data acquired at physically isolated measurement points can be 

modeled as statistically independent random variables (i.e. X1 and X10). 

Alternatively, the data can be modeled as statistically correlated random variables. 

For example, a physical gap between two different windings (as shown in Figure 

3-6) is one reason why the related random variables might be statistically 

independent. Moreover, different winding locations (CET, CEB, TET, and TEB) in 

one winding are also physically distant. This also implies that the related random 

variables could be statistically independent. On the other hand, water absorption 

occurs concurrently at adjacent measurement points in the same group, such as 

CET-TOP (X1), CET-OUT (X2), and CET-IN (X3). Checking statistical dependence 

between two random variables could confirm whether our intuitive observation is 

true or not. Before checking statistical correlations, a mean shift was applied to all 

datasets to take into account the inherent difference in the nominal states of water 

absorption between generators, as shown in Figure 3-7. After the mean shift, the 

correlation coefficients later become useful to develop the health reasoning process 

for a stator winding in a power generator. 

In general, the correlation coefficient is used as a measure to imply statistical 

correlation. The most famous measure of correlation is the Pearson product-

moment correlation coefficient. It is a quantitative measure of a linear dependence 

between two variables. Mathematically, a correlation coefficient can be calculated 

from the following form: 

 
    

,

ECov ,
i j

i j

i j

i X j Xi j

X X

i j X X

X XX X

X X

 


 

  
 

   (3.2) 
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where Xi and Xj are random variables, Cov(Xi, Xj) is the covariance between Xi and 

Xj, μ and σ are the mean and standard deviation of a random variable, respectively, 

and E[] is the expectation of a random variable. 

 

 
 

(a) (b) 

Figure 3-6.Gaps between two different windings (a) and between top and bottom 

stator bars (b) 

 

  
(a) (b) 

Figure 3-7.Scatter plots of the data between measurement points before (a) and 

after (b) mean shift 
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Table 3-2 summarizes the correlation coefficients for ten random variables, 

,i jX X for i, j = 1 to 10, in matrix form. The highlighted values in Table 3-2 are the 

coefficients between the correlated random variables in the same group. One can 

observe two features from the highlighted values: (1) a statistically positive 

correlation, and (2) a higher degree of correlation within the same group. These 

features indicate that the two or three capacitance data from the same group tend to 

behave (i.e. remain unchanged or grow) with linear dependence. This confirms the 

intuitive observations about the aforementioned statistical correlation and 

independence. Appendix A provides pairwise scatter plots between the ten 

measurement points (or ten random variables), from which two scatter plots are 

extracted to show the within-group and between-group correlations. 
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Table 3-2.Correlation coefficient matrix (symmetric) for ten random variables in matrix form 

Correlation 

Matrix 

CET CEB TET TEB 
TOP 

(X1) 

OUT 

(X2) 

IN  

(X3) 

OUT 

(X4) 

IN 

(X5) 

TOP 

(X6) 

OUT 

(X7) 

IN 

(X8) 

OUT 

(X9) 

IN 

(X10) 

CET 

TOP 

(X1) 
1          

OUT 

(X2) 
0.4761 1         

IN 

(X3) 
0.4194 0.5503 1        

CEB 

OUT 

(X4) 
0.0849 0.1572 0.1354 1       

IN 

(X5) 
-0.039 0.1686 0.0765 0.3445 1      

TET 

TOP 

(X6) 
0.3341 0.1553 0.1868 0.0343 -0.052 1     

OUT 

(X7) 
0.1972 0.2506 0.2729 0.0879 0.0171 0.4377 1    

IN 

(X8) 
0.2295 0.1423 0.3296 0.0082 0.0457 0.4269 0.4900 1   

TEB 

OUT 

(X9) 
0.0438 -0.128 -0.097 0.0186 -0.114 0.0887 -0.010 -0.003 1  

IN 

(X10) 
0.0354 -0.040 -0.004 0.0457 0.0870 -0.048 0.1084 0.0215 0.3385 1 
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3.4 Data Grouping 

It is important to define a group of capacitance data with homogeneity prior to 

the data modeling and health reasoning process. Based upon the measurement 

location and correlation characteristic obtained in Section 3.3, the measurement 

points with high correlation can be conceived as individual data groups, such as 

CET, CEB, TET, and TEB. This implies that the entire dataset for ten random 

variables (or from ten-dimensional measurement points) would be split into four 

groups with two or three random variables. This data grouping will be used for the 

health reasoning process in the subsequent section, which defines a health index 

and models it in a statistical form, as shown in Figure 3-8 and Table 3-3. The data 

grouping makes the health reasoning process easier through dimensional reduction 

of the capacitance data. 

 

 

Figure 3-8.Data grouping using a statistical correlation
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Table 3-3.List of measured datasets and the information employed in this study 

Power 

Plant 

Generator 

Number 

Year for  

Measurement 

Winding  

Number 

Measured dataset 

CE group TE group 

A 

1 ’05, ’07, ‘09 

1 
CET 

(X1, X2, X3) 

CEB 

(X4, X5) 

TET 

(X6, X7, X8) 

TEB 

(X9, X10) 

⁞ ⁞ ⁞ ⁞ ⁞ 

42 CET CEB TET TEB 

2 ’06, ‘09 

1 CET CEB TET TEB 

⁞ ⁞ ⁞ ⁞ ⁞ 

42 CET CEB TET TEB 

3 ’06, ‘10 

1 CET CEB TET TEB 

⁞ ⁞ ⁞ ⁞ ⁞ 

42 CET CEB TET TEB 

4 ’06, ’07, ‘08 

1 CET CEB TET TEB 

⁞ ⁞ ⁞ ⁞ ⁞ 

42 CET CEB TET TEB 

B 

1 ’06, ’10, ‘12 

1 CET CEB TET TEB 

⁞ ⁞ ⁞ ⁞ ⁞ 

42 CET CEB TET TEB 

2 ’09, ‘12 

1 CET CEB TET TEB 

⁞ ⁞ ⁞ ⁞ ⁞ 

42 CET CEB TET TEB 

C 4 ’06, ‘10 

1 CET CEB TET TEB 

⁞ ⁞ ⁞ ⁞ ⁞ 

42 CET CEB TET TEB 

D 6 ’09, ‘11 

1 CET CEB TET TEB 

⁞ ⁞ ⁞ ⁞ ⁞ 

42 CET CEB TET TEB 
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Chapter 4. Statistical Health Reasoning System1 

 

Equation Section 4 

Although the capacitance data are relevant to the health status of the stator 

winding, its high dimensionality and non-linearity make it difficult to easily and 

precisely infer the health status. This section proposes a new health index, referred 

to as the Directional Mahalanobis Distance (DMD). 

 

 

4.1 Review of Mahalanobis Distance 

The Mahalanobis Distance (MD) is a relative health measure that quantifies the 

deviation of a measured data point from a clustered data center, which is generally 

a populated mean (μ) of a dataset. The MD degenerates multi-dimension data (X) to 

a one-dimension distance measure while taking into account the statistical 

correlation between random variables. Mathematically, the MD measure can be 

expressed as: 

      
T 1MD X X μ Σ X μi i i

    (4.1) 

where  
T

1, 2, ,, , ,Xi i i N iX X X is an N-dimensional capacitance data vector of the 

i
th
 winding unit which belongs to a group having the mean  

T

1 2, , ,μ N   and 

the covariance matrix Σ. Figure 4-1 plots two-dimensional samples randomly 

drawn from two random variables with a positive correlation. Essentially, the MD 

                                                           1 Sections of this chapter have been submitted as the following journal article: Byeng D. Youn, 

Kyung Min Park, Hu Chao, Joung Taek Yoon, and Hee Soo Kim, “Statistical Health Reasoning of 

Water-Cooled Power Generator Stator Windings against Moisture Absorption,” Reliability 

Engineering and System Safety, Submitted, 2014. 
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transforms an ellipsoid in the original random space to a circular shape in the 

standard Gaussian space, as shown in Figure 4-1. Since the distance (D1) of the 

faulty point to the clustered data center is much shorter than that (D2) of the healthy 

point, one could have concluded based upon the Euclidean distance that the faulty 

point is more likely to belong to the cluster. This misleading conclusion is mainly 

caused by not taking into account the correlation coefficient of the two random 

variables. Indeed, if we simply divide the distances D1 and D2 by the widths of the 

ellipsoid in the corresponding directions, respectively, we can easily come to the 

conclusion that the faulty point is much farther away from the clustered center than 

the healthy point. This can be clearly observed in Figure 4-1. 

 

  

(a) (b) 

Figure 4-1.Healthy and faulty points located in the original space (a) and the 

normalized space (b) 

As compared to the Euclidean distance, the MD measure possesses a few unique 

advantages, listed as follows: (1) The MD transforms a high-dimensional dataset 

that is complicated to handle into a one-dimensional measure capable of easy 
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comprehension and quick computation. (2) The MD is robust to differing scales of 

the measurements, as the MD values are calculated after normalizing the data. (3) 

By taking into account the correlation of the dataset, the MD is sensitive to inter-

variable changes in multivariate measurements. 

 

 

4.2 A New Concept of Statistical Distance: Directional 

Mahalanobis Distance 

This subsection introduces a new MD-based distance measure that can be used 

to imply the health condition of a stator winding in a power generator. 

 

4.2.1 Data Projection 

The MD, as a relative health measure, provides very useful information to 

characterize the health condition of a stator winding in a power generator. 

According to Equation (3.1), the capacitance values measured from a dry stator 

winding with a negligible amount of water on the insulation should be smaller than 

the mean value of the measurement population. Previous studies [27, 28] also 

reported that measured values smaller than the population mean should be treated 

as if they have no relation to the insulation’s water absorption. However, the MD, 

as a scalar distance measure, is a direction-independent health measure in the 

random capacitance space, as shown in Figure 4-2. In other words, two capacitance 

measurements with the same MD value but in two opposite directions are treated 

equally, although they most likely imply the different levels of water absorption. 

Let us take the dashed circle datum in Figure 4-1 as an example. In this case, the 
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dashed circle datum is a healthy point since this datum falls into the lower tails of 

the marginal distributions of the random capacitance variables. However, the MD 

declares this datum to be in the failure category simply because it is out of the data 

cluster. For this very reason it is necessary to refine the measure so that is better 

suited for this application. In order to rebuild the measure, this study employs a 

projection process which first identifies absolutely healthy variables(s) (e.g. a 

capacitance value less than its populated mean, say Xi < μi) and then projects it onto 

the corresponding mean value(s), e.g. (Xi, μj) and (μi, Xj) shown in Figure 4-2. 

Through this projection process, the absolutely healthy data will be ignored in the 

subsequent transformation. The data projection underscores the consideration of the 

direction in the health reasoning process of the measurement data. This leads to the 

unique capability of the proposed health index to makes use of the distance and 

degradation direction as a health measure.  

After the data projection, the capacitance data  , 1, ,n iX n N , can be 

processed as: 

 
, ,

,

, if

, otherwise

n i n i n

n i

n

X X
X






 


 (4.2) 

where Xn,i denotes the raw capacitance data at the n
th 

measurement location of the i
th
 

winding unit, μn is the mean of the capacitance data at the n
th
 measurement location, 

and ,n iX  denotes the processed capacitance data. The mean and variance of the 

dataset must be obtained before the data projection because they are physically 

meaningful in the original space. 
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(a) (b) 

 
(c) 

Figure 4-2.Scatter plots before data projection (a), after projection (b), and after transformation (c)
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4.2.2 Transformation 

The proposed index, namely the Directional Mahalanobis Distance (DMD), 

assesses the MD along the degradation direction of a stator winding insulation after 

data projection. Mathematically, the DMD shares a similar formula with the MD, 

except for consideration of the data projection. It is expressed as: 

      
T

1DMD X X μ Σ X μi i i

    (4.3) 

where  
T

1, 2, ,, , ,Xi i i N iX X X  is an N-dimensional vector of the capacitance 

data from the i
th
 winding unit after the data projection,  

T

1 2, , ,μ N    and Σ 

is the mean vector and covariance matrix of the reference dataset before the 

projection. Figure 4-2(c) shows the scatter plot of the DMD dataset after projection 

and transformation; the difference between the MD and DMD can be clearly 

observed in this figure. 

One question remains: what is the proper sequence of data projection and 

transformation? We found that the former should be done prior to the latter. The 

justification for this sequence is the fact that the comparison between the absolutely 

healthy data and the mean value of each random variable is physically meaningful 

and valid only in the original space, not in the transformed space. 

 

 

4.3 Comparison of Performance of Mahalanobis Distance 

(MD) and Directional Mahalanobis Distance (DMD) 

The distances in this paper are squared in order to place progressively greater 
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weight on objects that are farther apart. In general, squared distance is frequently 

used in instances where only distances need to be compared. 

Figure 4-3 shows the scatter plot of MD and DMD with three highlighted data 

points, two of which represent a healthy state and the other a faulty state. In the 

case of MD, the 1
st
 and 2

nd
 data points (the two “healthy” points) are located in the 

2
nd

 (top left) and 3
rd

 (bottom left) quadrants of the two-dimensional space 

composed of two Euclidean distances. The 3
rd

 data point, the “faulty” point, is 

located in the 1
st
 (top right) quadrant. The MD values of the 1

st
, 2

nd
 and 3

rd
 points 

are, respectively, 4.74, 5.71, and 3.80. In the case of DMD, the squared distances of 

the three points from the origin are, respectively, 0.076, 0.100, and 3.80. Without 

the projection before transformation, MD incorrectly treats the “healthy” data 

points as “faulty” while, with the projection before the transformation, the proposed 

index, DMD, correctly identifies these two points as “healthy” (with relatively 

small distance values). Therefore, the proposed DMD achieves better performance 

than the MD by accounting for the degradation direction in the health reasoning 

process of the capacitance data. 

 

  
(a) (b) 

Figure 4-3.Three cases to compare the performance of MD (a) and that of DMD (b) 
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Performance evaluation of these two indices requires an evaluation metric that 

assesses the effectiveness of a health index in quantifying the health condition of a 

generator winding. The evaluation metric considered here employs a score function 

with the health index value and true health condition of a generator winding as the 

inputs and a normalized score metric (ranging between 0 to 100) as the output. 

Mathematically, the proposed score function can be expressed as: 

 
1 1 1

1 1 1 1

SF 100

N l N

j j j j

j j j l

W

N N l l N

j j j j

j N l j j j l

B W

x y x x

x x x x

   



      

 
  
 

 
   

     
   

  

   

 (4.4) 

where xj denotes the health index value of the j
th
 winding unit, yj denotes the 

maintenance index of the j
th
 winding based on the actual repair history (yj = 1 if the 

unit was maintained and yj = -1 otherwise), N denotes the number of winding units, 

l denotes the number of winding units with maintenance histories, and B and W 

denote the best and worst score metric values, respectively. Figure 4-4 illustrates 

various combinations of the health index ranking, the maintenance history, and the 

score metric ranking of these combinations. The best and worst scenarios 

(represented respectively by B and W in Equation(4.4)) are depicted by the leftmost 

and rightmost plots, respectively. 

Table 4-1 summarizes the distances and scores from the assessment results for 

health condition of the winding using MD and DMD, respectively. As one can see 

in Table 4-1, both MD and DMD can easily find windings that have been 

maintained; the capacitance of maintained insulation is relatively larger than the 

capacitance seen in the unmaintained samples. However, MD cannot find all the 
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maintained windings in the top ten health indices in the CET group. In addition, 

some unmaintained windings’ health indices have higher values than those of 

maintained windings (e.g. 8
th
, 9

th
, and 10

th
 health indices in TET group). 

 

 

Figure 4-4.Combination of health index ranking and maintenance history and 

corresponding score metric ranking 
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Table 4-1.Distances and scores from the results examining health condition of 

windings using MD and DMD 

Rank 
CET group CEB group TET group TEB group 

MD
2
 DMD

2
 MD

2
 DMD

2
 MD

2
 DMD

2
 MD

2
 DMD

2
 

1 33.64 33.64 21.14 21.14 20.37 20.37 11.65 11.65 

2 28.41 28.41 20.63 20.63 18.93 18.93 9.97 9.01 

3 21.96 21.96 17.96 14.36 17.93 17.93 9.64 8.88 

4 18.60 18.60 15.87 14.00 17.67 17.67 9.18 8.08 

5 18.06 18.06 14.36 13.61 15.88 15.88 9.01 7.87 

6 17.58 17.58 14.27 12.68 15.75 14.65 8.88 7.34 

7 16.42 16.42 12.68 8.18 14.65 13.57 8.69 7.04 

8 16.39 16.39 11.05 7.86 14.11 13.15 8.08 6.86 

9 13.36 12.25 10.85 6.75 13.98 9.33 7.87 6.45 

10 12.76 9.90 10.78 6.70 13.55 8.91 7.74 6.23 

11 12.55 9.51 9.67 6.27 13.15 8.39 7.68 6.18 

12 12.52 9.41 9.51 6.08 11.79 8.09 7.66 5.96 

13 11.47 9.36 9.37 5.30 11.56 6.80 7.50 5.74 

14 11.46 8.57 8.98 5.27 11.11 6.68 7.48 5.49 

15 11.43 8.03 8.76 5.19 10.63 6.62 7.34 5.48 

⁞ ⁞ ⁞ ⁞ ⁞ ⁞ ⁞ ⁞ ⁞ 

21 10.56 6.67 7.82 4.38 9.33  6.86 4.60 

⁞ ⁞ ⁞ ⁞ ⁞ ⁞ ⁞ ⁞ ⁞ 

27 9.51 6.25 6.77 4.06 8.52  6.22 4.39 

⁞ ⁞ ⁞ ⁞ ⁞ ⁞ ⁞ ⁞ ⁞ 

29 9.36 5.60 6.52 3.94 8.39  6.17 4.32 

⁞ ⁞ ⁞ ⁞ ⁞ ⁞ ⁞ ⁞ ⁞ 

798 0.01 0.00 0.00 0.00 0.02 0.00 0.00 0.00 

Score 96.31 98.30 98.47 100 94.52 96.80 91.26 95.49 
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Chapter 5. Health Classification 

 

Equation Section 5 

This section is designed to construct a health grade system based upon the 

proposed health index, DMD, and field maintenance history. The historical 

maintenance data obtained from the operators of the power generators are presented 

in Section 5.1. An empirical health grade system is suggested in Section 5.3 with 

consideration of the scale that is discussed in Section 5.2. 

 

5.1 Maintenance History Related to Water Absorption 

In this section, the historical maintenance data related to water absorption is 

presented, including data from faulty windings. Field experts collected the 

maintenance records of generator windings and identified their health conditions 

using the Stator Bar Capacitance Mapping test method developed by GE. The 

maintenance records can be classified into four groups (CET, CEB, TET, and TEB). 

Table 5-1 summarizes the maintenance history related to water absorption over 

eight years. In this table, two data points (28.413 and 33.645) were obtained from 

the faulty winding and the others were measured from water-absorbed windings. 

These maintenance records provide the physical basis for determining an 

appropriate failure threshold, especially the data obtained from the faulty windings. 
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Table 5-1.Maintenance history related to water absorption 

Group 
Power 

Plant 

Generator 

Number 

Winding 

Number 
Year DMD

2
 Condition 

CET 

A 

1 20 

‘05 18.598 

Absorbed ‘07 16.415 

‘09 16.394 

2 
03 

‘06 18.060 
Absorbed 

‘09 21.963 

40 ‘09 9.511 Absorbed 

4 23 
‘07 28.413 

Faulty 
‘08 33.645 

B 1 18 
‘10 9.355 

Absorbed 
‘12 17.580 

CEB 

A 

2 31 
‘06 20.625 

Absorbed 
‘09 21.141 

4 20 
‘07 14.359 

Absorbed 
‘08 12.677 

C 4 11 
‘06 13.613 

Absorbed 
‘10 14.001 

TET 
A 

1 

11 
‘07 9.334 

Absorbed 
‘09 13.145 

20 

‘05 17.665 

Absorbed ‘07 17.929 

‘09 18.932 

2 40 
‘06 20.368 

Absorbed 
‘09 14.653 

B 1 18 ‘10 15.876 Absorbed 

TEB A 3 23 ‘10 8.080 Absorbed 

 

 

5.2 Review of Scaled Mahalanobis Distance 

The aim of this section is to introduce an improvement to the concept of MD: 

Scaled Mahalanobis Distance (SMD) in the Mahalanobis-Taguchi System (MTS). 

As aforementioned, this study deals with the two groups which have different data 

size (i.e. Top group and Bottom group). Since MD and DMD do not consider the 
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data size of each group, it is not suitable to compare two groups directly without 

any conversion. SMD is a way to solve this problem. 

It has been shown that MD follows a χ
2
-distribution with k degrees of freedom, 

when the sample size, n , is large and all characteristics follow the normal 

distribution (R. A. Johnson et al. [32]). A χ
2
-distribution with k degrees of freedom 

has a mean equal to k. Hence, G. Taguchi et al. [10] proposed a new idea for MD 

known as SMD. This group suggested that MD should be scaled by dividing by the 

number of variables, k. Thus, the equation for calculating SMD in the MTS 

becomes: 

    
T2 2 11 1

SMD MD X μ Σ X μi i
k k

     (5.1) 

where k denotes the number of variables or the data size of each group, and Xi is a 

capacitance data vector of the i
th 

winding unit, which belongs to a group having the 

mean vector, μ, and the covariance matrix, . 

Since the expected value of MD
2
 is equal to k, the expected value of SMD

2
 

becomes: 

 2 2 21 1 1
E SMD E MD E MD 1k

k k k

 
           

 
 (5.2) 

where E[] is a function of the expectation. This scaling process thus allows direct 

comparison between the top and bottom groups. The scaled distance offers an 

advantage that it can be applicable to any number of variables. 

For the purposes of this paper, it is important to make sure whether or not the 

proposed idea of the SMD works for the capacitance data measured from the stator 

windings found in generators. Table 5-2 summarizes the properties of each group’s 

data; top and bottom. 
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Table 5-2.The properties of top and bottom groups’ data 

Properties Top Group Bottom Group 

The number of variables  

(or, the data size of group) (k) 
3 2 

The number of samples(n) 1,680 1,680 

Expected value () 2.88 1.96 

Expected value of SMD
2 
(/k) 0.96 0.98 

 

As shown in Table 5-2, the expected value of the top group (CET and TET) is 

close to the number of variables in the top groups. Likewise, the expected value of 

the bottom group (CEB and TEB) approximately equals to the number of variables 

in the bottom groups. Thus, it can be concluded that the scaled distance measures 

can be uniformly used regardless of the group. The scaling idea can also be applied 

to Scaled Directional Mahalanobis Distance (SDMD), just like SMD. 

 

5.3 Health Grade System  

This section aims to define a health grade system in which the windings’ health 

states are classified into diverse classes according to the health-relevant distance 

measure, SDMD. 

Based upon the maintenance strategies for the stator windings and the opinions 

of field experts, three health classes are proposed: (1) a faulty condition (or, water-

absorbed), (2) a warning  condition (or, close to water absorption), and (3) a 

healthy condition (or, not water-absorbed). The failure listed in Table 5-1 which 

was caused by water absorption resulted in two meaningful data. These data can 

define a failure threshold for the distance measure, h, expressed as: 



35 

 

    2 2E min SDMD ,max SDMD 0.5h k       
      faulty warningX X  (5.3) 

where     denotes a round down function, E[• ] denotes the expected value, k is 

the data size of each group (e.g. In case of top group, k = 3) and faultyX  and 

warningX  are capacitance data vectors obtained from the faulty or water-absorbed 

windings on each group, respectively. Sixty percent of the threshold value (0.6 h) is 

defined as a boundary line between the warning condition and the healthy condition, 

based upon field experts’ experience and historic information on inspection and 

maintenance for stator windings.  

Since the bottom group does not have any faulty winding in the maintenance 

history, the failure threshold of bottom group cannot be calculated from the 

equation 5.3. Thus the failure threshold of top group, htop, is applied to define the 

failure threshold for the bottom bar, hbottom, which can be defined by the following 

expression: 

 top bottom: 3: 2h h   (5.4) 

Finally, Table 5-3 summarizes the definition of the three health grades and 

suggested maintenance actions. 

 

Table 5-3.Definition of health grades and related maintenance actions 

Health Grade 
Range Suggested Maintenance 

Actions Top Bottom 

Faulty DMD
2
≥25 DMD

2
≥16.7 Immediate replacement 

Warning 15<DMD
2
<25 10<DMD

2
<16.7 Frequent inspection 

Healthy DMD
2
<15 DMD

2
<10 

No immediate maintenance 

required 
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5.4 Validation Study 

In this section, the feasibility of the proposed SDMD-based health grade system 

is verified by comparison with the maintenance history of generator stator windings. 

Figure 5-1 shows the scatter plot of DMD with operating time. Let us examine the 

points highlighted with circles in the figure. These circles label the data obtained 

from the faulty winding or water absorbed windings. Each class contains several 

data points highlighted with circles, as shown in Table 5-4. 

Table 5-4.Summary of the number of the data and the circled data in each grade 

Health grade 
The number of  

the data (A) 

The number of  

the circled data (B) 

B/A 

(%) 

Faulty 4 4 100 

Warning 15 15 100 

Healthy 3,173 6 0.19 

 

Most of the circled data points belong to either the “faulty” or “warning” class. 

This indicates that the proposed health grade system properly defines the health 

condition of the generator stator windings against water absorption.  

In the faulty class, there are two cases (Case 1 and 2 in Figure 5-1) which can be 

split into four data points, although only one failure case was actually recorded in 

the maintenance history. In order to make sure if the failure threshold was correct, 

we looked at the maintenance history in detail. 

The data points in the first case are obtained from the failed winding which was 

burned in 2008. According to the proposed index, DMD
2
, a substantial increase of 

the index was found from 2006 to 2007. The index of this winding is equal to 3.05 

in 2006 and 28.41 in 2007, respectively. This increase would have suggested by 
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DMD
2
 that a preventative maintenance action be taken the year (2007) before the 

failure. This is a critically important observation in order to build the health grade 

system correctly. Thus, there is no problem that the data points observed from this 

winding belong to the faulty class.  

On the other hand, the second case contains two data points which are measured 

from non-faulty winding. It seems that the winding studied here should be 

contained within the warning or healthy class. This is because of stator windings’ 

electrical characteristics. A voltage is induced in the stator winding when the rotor 

is rotated. Typically, large synchronous generators are designed for a terminal 

voltage of several thousand volts. According to the opinion of experts in the power 

generation field, several windings per stator continuously retain zero-volts. This 

implies that these windings, like the second case’s winding, may not have failed 

even though the water is absorbed enough to otherwise indicate a problem. In 

summary, it can be concluded based upon the above observation that replacement 

should be carried out on this winding in spite of its good external appearance. 

Actually, this winding was replaced in 2011. 
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Figure 5-1.Scatter plot of DMD with operating time 
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Chapter 6. Conclusion 

 

This paper explores a new health reasoning system to assess the health condition 

of stator windings in power generators. The proposed system extracts health-

relevant features from the capacitance data in a statistical manner, to assess the 

health condition of power generator stator winding, to classify the health classes 

into three groups (healthy, warning, and faulty states), and to develop health grade 

system for condition-based maintenance. Correlation analysis of measured 

capacitance data is used to help understand the statistical features of the data and to 

divide the variables into four groups (CET, CEB, TET, and TEB) per winding. This 

paper proposes a statistical health measure Directional Mahalanobis Distance 

(DMD). DMD incorporates the correlation between variables and provides the 

degree of health condition considering the health degradation direction. Due to the 

unique capability of DMD to make use of the distance and degradation direction as 

a health measure, it can also be applicable to a health grade system designed to 

monitor a building. The health grade system outlined in this paper was developed 

with guidance from field maintenance records. Moreover, it takes into account the 

data size of each group with a scaling factor. This study employed the datasets from 

eight generators over eight years to validate the proposed health reasoning system. 

The proposed system can be generally applicable to health degradation trend 

analysis of engineered systems. In order to accomplish the condition-based 

maintenance system, health prognostics using machine learning techniques must be 

further studied. 
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Appendix A. Pairwise scatter plots between the ten measurements 



47 

 

국문 초록 

 

발전소 내 가장 중요한 설비들 중 하나인 발전기는 일반적으로 운영 

시간 혹은 사용 정도에 따라 유지 보수를 진행한다. 이런 종류의 유지 

보수 형태는 분명 정확한 일정에 따라 움직일 수 있다는 장점이 있으나 

아직 사용이 가능한 부품을 보수 한다거나 보수 하기 이전에 고장이 날 

수 있는 단점을 항시 내재하고 있다. 최근 들어 건전성 예지 및 관리 

분야에서는 앞서 언급한 단점들을 해결하기 위해 진단/예지 기술들을 

활용하여 다양한 공학적 설비들의 현재 상태를 진단하고 잔여 수명을 

예측하는 연구가 활발히 진행되고 있다. 본 논문에서는 발전기 고정자의 

권선 절연체에서 발생하는 흡습에 따른 사고를 사전에 방지하기 위하여 

정전용량을 측정하고 그 측정치로 하여금 현재 권선 절연체의 흡습 

건전성을 평가하고자 한다. 본 논문에서 제안된 건전성 지수인 

Directional Mahalanobis Distance (DMD)는 권선 절연체의 흡습 

건전성을 확인하기에 최적화된 값으로써 정량적인 분석이 가능하게 해줄 

뿐만 아니라 정전용량이 가지고 있는 특수성을 해결해줄 수 있다. 

제안된 지수 DMD 는 전문가 측으로부터 받은 실제 발전기 고정자 

권선의 흡습 의심 이력들을 바탕으로 하여 실증적 건전성 등급제를 

구축하는 데에 사용된다. 마지막으로 본 연구에서 제안된 지능형 건전성 

추론/진단 시스템은 8 개의 발전기로부터 8 년 동안 축적된 데이터를 

이용하여 그 유효성을 입증하였다. 

 

주요어:  발전기 

 고정자 권선 
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 통계적 상관성 

 건전성 진단 

 디렉셔널 마하라노비스 거리 

 흡습 
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에 막대한 영향을 미칠 수 있음을 이르는 말. (국립 국어원, 표준국어대사

전 발췌) 
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구와 나누던 대화가 있었습니다. “얘(로봇)가 고장이 났는지 아닌지 미리 

알 수 있는 방법이 없나?” 친구와 열띤 토론을 벌이며 각자 나름대로 방

법도 생각해봤지만 실현되진 않았습니다. 그로부터 2 년 뒤, 대학원 진학

을 앞두고 여러 연구실들을 알아보던 중 저의 시선을 멈추게 만든 것이 

있었습니다. ‘고장 진단 및 예지.’ 인생에 있어 나비의 날갯짓 같았던 몇 

십 분의 친구와의 대화가 2 년 뒤의 저에게 와서 저의 진로를 바꾸는 태
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사실 많은 사람들이 본인이 원하는 연구 분야를 공부하기 위해 준비하

는 기간이 짧지 않다고 합니다. 하지만 저는 ‘고장 진단 및 예지’ 분야에 

대해 전혀 아는 것이 없었기에 그 기간이 짧았고 그만큼 부족했습니다. 

그럼에도 불구하고 면담 이후에 이 분야에 대한 저의 관심과 제가 가지

고 있는 가능성에 대해 믿어주신 윤병동 교수님 덕분에 저의 연구가 시
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리 연구실 식구들에게도 깊은 감사를 드립니다. 여러분들이 없었다면 이 
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본인 일처럼 알아봐주었고 제가 혼자 고민하고 있으면 비록 자신의 고민

이 아니더라도 같이 고민해주는 사람들이 있었기에 저의 2 년 간의 연구

실 생활은 고독하지 않았습니다. ‘멀리 가려면 함께 가라’ 라는 말이 있듯 

저와 함께 해준 인연들이 있었기에 이렇게 멀리 올 수 있었습니다. 앞으

로는 제가 떠남으로 인해 연구는 함께 하지 못하지만 인생에 있어서 함
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여드리겠습니다. 표현을 잘 하지 않는 무뚝뚝한 아들이자 형이지만 모두 

사랑한다는 말을 이 지면을 통해 전하고 싶습니다. 
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님들 모두 저에게 연구 외적으로 물리적/정신적으로 도움을 주었던 사람

들입니다. 모두 고맙습니다. 더불어 연구 내용과는 별개로 저의 졸업을 

도와주셨던 모든 분들께 감사의 인사를 전합니다. 

마지막으로 논문을 심사해주시기 위해 귀한 시간을 내어주신 조맹효 
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