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Seoul National University 

 

Highly credible computational models have long been a dream of engineers. One factor 

that impacts the credibility of a computational model is the existence of unknown input 

variables in the model. For this reason, model calibration – a process of estimating 

unknown input variables in a computational model – has been explored, with the goal 

of providing solutions that could ultimately improve the credibility of computational 

models. Optimization-based model calibration (OBMC) is recognized as a promising 

solution for estimating the unknown input variables in a computational model through 

the use of optimization techniques. For OBMC, a question of fundamental importance 

arises: How can OBMC be carried out accurately and efficiently under various sources 

of uncertainties and errors? In order to facilitate OBMC for model calibration in a 

statistical sense, this doctoral dissertation aims to address four essential issues: 1) 
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Research Thrust 1 – Characterize the uncertainty in experimental observations 

considering the systematic and random measurement errors; 2) Research Thrust 2 – 

Derive analytical sensitivity information for checking the convexity of the optimization 

problem formulated by OBMC, and conduct robust OBMC using the derived analytical 

sensitivity information; 3) Research Thrust 3 – Formulate an optimization under 

uncertainty loop for accurate and efficient OBMC, and the associated optimization and 

uncertainty propagation processes; 4) Research Thrust 4 – Validate the calibrated 

computational model that is derived from OBMC not only in a statistical sense, but also 

with a straightforward explanation. 

Research Thrust 1: The process of model calibration estimates unknown input 

variables of a computational model with a goal of maximizing the agreement (or 

minimizing the disagreement) between probability distributions that result from 

computational predictions and experimental observations. To execute accurate model 

calibration, a proper probability distribution is required that describes the uncertainty 

in the experimental observations (data). However, experimental observations may 

include systematic and random measurement errors. When characterizing the 

uncertainty in the experimental observations, no consideration of systematic and 

random measurement errors may degrade the accuracy of calibrated results. Thus, 

Research Thrust 1 proposes a method that utilizes maximum likelihood estimation with 

modeling of systematic and random errors to properly develop a probability distribution 

that describes the uncertainty in the experimental observations. 

Research Thrust 2: Occasionally, gradient-based optimization algorithms are 

effective for use in OBMC. However, the calibrated results derived from gradient-

based algorithms that use existing calibration metrics result in inaccurate and unstable 
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calibration. Therefore, Research Thrust 2 aims to 1) investigate the fundamental 

explanations of the inaccurate and unstable calibrated results that arise from using 

existing calibration metrics, and 2) enhance the robustness of OBMC by providing 

gradient information. 

Research Thrust 3: OBMC is a probabilistic method used to estimate unknown 

input variables through the use of optimization under uncertainty (OUU). OUU 

combines the optimization process with the probabilistic analysis; this is used for the 

uncertainty propagation process in OBMC. Performing OBMC using an OUU 

formulation requires a high computational cost because the optimization and 

uncertainty propagation processes are associated in a loop. To improve the efficiency 

of OBMC, Research Thrust 3 presents a sequential OBMC approach that makes use of 

first 1) an efficient, and then 2) a highly accurate uncertainty propagation method, in 

sequence. The proposed method is called sequential optimization and uncertainty 

propagation (SOUP). 

Research Thrust 4: As the final process of model calibration, model validation 

checks whether the calibrated result is valid or not. The validation should be conducted 

in a quantitative and statistical way. Research Thrust 4 proposes a new validation metric 

called probability of coincidence (POC). The POC calculates the probabilistic degree 

to which the computational prediction agrees with the experimental observations. 
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Chapter 1  Introduction 

 

Introduction 

 

1.1 Motivation  

Today, engineering is a discipline that requires significant use of computational and 

software instruments. Computer-assisted design, computational fluid dynamics, and 

finite-element analysis applications are some of the basic instruments that engineers 

deploy when creating or improving new engineered products or systems (Molina et 

al. 1995) (Benek et al. 1998) (Zhan et al. 2011) (Xu et al. 2011) (Shi et al. 2012) 

(Fender et al. 2014) (Lee and Gard 2014) (Silva and Ghisi 2014) (Zhu et al. 2016) 

(Jung et al. 2016). Although various computer-aided instruments have enhanced the 

power of engineers, the credibility of the use of computational models in real-world 

applications has been a growing concern. To this end, this concern has inspired 

significant research interest in using model calibration and validation techniques to 

enable more accurate and trustworthy computational models (Babuska and Oden 

2004) (Hills et al. 2008) (Oberkampf and Trucano 2008) (Kwaśniewski 2009) (Roy 

and Oberkampf 2010) (Sargent 2013) (Oden et al. 2013) (Mousaviraad et al. 2013) 

(Borg et al. 2014) (Sankararaman and Mahadevan 2015). 
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The existence of unknown input variables in a computational model is one 

reason for the low predictive capability of the model. In many cases, establishing 

and conducting physical experiments to measure quantities of the unknown input 

variables is time consuming and expensive. In contrast, conducting experiments to 

observe system responses is often more feasible. Therefore, efforts have been made 

to devise model calibration to estimate the unknown input variables by comparing 

the system responses from computational predictions and experimental observations, 

as shown in Figure 1-1 (Kennedy and O'Hagan 2001) (Campbell 2006) (Higdon et 

al. 2008) (Youn et al. 2011) (Zhan et al. 2011) (Arendt et al. 2012b). 

Despite the increasing interest in model calibration, it remains a difficult task 

due to two important challenges (Kennedy and O'Hagan 2001) (Campbell 2006). 

The first challenge is that model calibration requires solving an implicit inverse 

function. For most computational models that emulate the behavior of an engineered 

 

Figure 1-1 Scheme of Statistical Calibration of the Unknown Input Variables of a 

Computational Model 
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system, it is almost impossible to obtain a closed form (explicit form) of the inverse 

function. Thus, an analytical solution for model calibration in real-world applications 

is not available. The second challenge is that model calibration must address issues 

related to the uncertainties in the experiments and computational models 

(Oberkampf et al. 2002) (Chen et al. 2004) (Helton and Davis 2003) (Ferson et al. 

2004) (Bayarri et al. 2007). Due to the various sources of uncertainties, deterministic 

calibration of a set of unknown input variables can significantly degrade the 

predictive capability of a computational model. Therefore, statistical approaches are 

required to statistically calibrate the unknown input variables. To deal with the 

challenges outlined above, optimization-based model calibration has been 

recognized as a promising solution to statistically calibrate the unknown input 

variables using optimization techniques (Youn et al. 2011) (Zhan et al. 2011) (Jung 

et al. 2016) (Lee et al. 2018). Despite the increasing interest in calibrating unknown 

input variables using optimization techniques, a trustworthy optimization-based 

model calibration method will only be available for use after several important 

technical issues are addressed. Section 1.2 overviews optimization-based model 

calibration and introduces four technical issues.  

 

1.2 Research Scope and Overview 

The objective of optimization-based model calibration (OBMC) is to estimate the 

statistical parameters (θ) of unknown input variables (Xunknown) in a computational 

model by formulating an optimization problem. The following equation presents the 

mathematical formulation of OBMC that uses an unconstrained optimization 
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problem (Lee et al. 2018): 

 Maximize
𝛉𝐗unknown

 or Minimize
𝛉𝐗unknown

𝑓(𝑝Y(𝐘obs), 𝑝Y(𝐘pre(𝛉𝐗known
, 𝛉𝐗unknown

))) (1-1) 

where θXunknown is a set of calibration parameters (design variables of an optimization 

problem) and f denotes a calibration metric (an objective function of an optimization 

problem). (The input variables (X) of a computational model can be deterministic. 

In this case, only the mean value is incorporated as a deterministic input variable.) 

In a probabilistic sense, the observed (Yobs) and predicted (Ypre) system responses 

are characterized by probability distributions (p(·)). A calibration metric (f) 

quantifies the agreement or disagreement between the two probability distributions 

that arise from the observations and predictions. By maximizing or minimizing the 

calibration metric, the statistical parameters (θ) of the unknown input variables 

(XUnknown) are calibrated toward making computational predictions (Ypre) that are in 

accordance with experimental observations (Yobs). 

Figure 1-2 presents the overall scheme of OBMC. OBMC consists of four 

important processes: 1) uncertainty characterization of experimental observations; 2) 

iterative optimization until the calibration metric (f), which is the objective function 

of OBMC, converges to its maximum or minimum; 3) uncertainty propagation to 

obtain the probability distribution (p(Ypre)) of the predicted system responses; 4) a 

validity check of the calibrated results. For each process, technical issues should be 

addressed to improve the credibility of the computational models that are derived 

from OBMC. 
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Figure 1-2 Overall Scheme of Optimization-Based Model Calibration 
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This doctoral dissertation aims to advance OBMC by tackling four technical 

issues: 1) the existence of systematic and random measurement errors in 

experimental observations; 2) the inaccuracy and instability of the calibrated results 

derived from OBMC; 3) the inefficiency of optimization under uncertainty for 

OBMC; and 4) a procedure for a validity check of the calibrated results. To address 

the above-mentioned technical issues, the research scope described in this doctoral 

dissertation is to develop technical advances in the following four research thrusts: 

 

Research Thrust 1: Uncertainty Characterization of Experimental 

Observations Considering Systematic and Random 

Measurement Errors Using Maximum Likelihood 

Estimation 

Uncertainty characterization, also called uncertainty modeling, is the science of 

quantitative characterization of uncertainties in engineering applications (Parry 1996) 

(Agarwal et al. 2004) (Helton et al. 2006) (Ghanem et al. 2008) (McFarland and 

Mahadevan 2008a) (Jung et al. 2011) (XI et al. 2013). One of the main activities in 

uncertainty characterization is to characterize the uncertainties in given data. As 

previously explained, OBMC requires that a description of the uncertainties in 

experimental observations be compared with the predicted system responses (Figure 

1-3). Various sources of uncertainty, which include physical uncertainties in 

geometry and material properties, and systematic and random measurement errors, 

affect the variability observed in experimental observations. Among them, 

systematic and random measurement errors are often disregarded in the uncertainty 
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characterization process, even though they may be responsible for much of the 

variability in the experimental observations. To address this issue, Research Thrust 

1 proposes an uncertainty characterization method to consider systematic and 

random measurement errors. The proposed method separately distinguishes each 

source of measurement error by using a specific type of probability distribution. 

Then, statistical parameters of each assumed probability distribution are estimated 

by adopting the maximum likelihood estimation. 

 

 

 

 

Figure 1-3 Uncertainty Characterization of Experimental Observations in 

Optimization-Based Model Calibration 
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Research Thrust 2: Robust Optimization-Based Model Calibration with 

Analytical Sensitivity Information 

OBMC adopts an optimization algorithm to calibrate the unknown input variables of 

a computational model (Youn et al. 2011) (Zhan et al. 2011) (Jung et al. 2016) (Lee 

et al. 2018). As an important element of OBMC, a calibration metric is defined as an 

objective function that can quantify the difference or the similarity between the 

system responses derived from computational predictions and experimental 

observations (Figure 1-4). However, OBMC utilizing existing calibration metrics 

(e.g., likelihood function, probability residual) has resulted in inaccurate and 

unstable model calibrations. For example, 1) (inaccurate calibration) the calibrated 

result may converge to large standard deviations or biased mean values, as shown in 

Figure 1-5c and Figure 1-5d; 2) (instable calibration) the optimization may diverge 

rather than converge. To work to address this issue, Research Thrust 2 investigates 

the possible reasons (e.g., non-convexity of the optimization problem, local minima, 

and others) to address the inaccuracy and instability of the calibrated results derived 

from OBMC. As part of the research, analytical sensitivity information (the first- and 

second order derivatives of the calibration metrics (objective functions) with respect 

to calibration parameters (statistical parameters of unknown input variables) is 

derived with assumptions. Ultimately, it is proved that OBMC performed using 

existing calibration metrics is not globally convex, and OBMC performed with 

analytical sensitivity information showed better accuracy and stability. 
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Figure 1-4 Iterative Optimization of Optimization-Based Model Calibration  

with a Calibration Metric (an Objective Function for Optimization-

Based Model Calibration) 
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Figure 1-5 Illustration of Optimization-Based Model Calibration Results: (a) Two PDFs of Observations and Predictions 

Before Calibration, (b) an Accurate Calibrated Result, (c) and (d) Inaccurate Calibrated Results (Lee et al. 2018) 
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Research Thrust 3: Sequential Optimization and Uncertainty 

Propagation for Optimization-Based Model 

Calibration 

OBMC is a probabilistic way to estimate statistical parameters (e.g., the mean and 

standard deviation) of the unknown input variables through the use of optimization 

techniques. Performing optimization in a probabilistic sense adopts optimization 

under uncertainty (OUU), which requires a high computational cost (Eldred et al. 

2002) (Agarwal et al. 2004) (Liu et al. 2006) (Yao et al. 2011). OBMC that 

implements OUU associates the optimization process with the uncertainty 

 

Figure 1-6 Using Optimization Under Uncertainty to Associate the Optimization 

and Uncertainty Propagation Processes for Optimization-Based Model 

Calibration 
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propagation (UP) process (Figure 1-6), also called probabilistic assessment or 

probabilistic analysis, where the uncertainties in the input variables are propagated 

through a model to obtain the variability in the outputs or system responses of a 

system. Since the optimization and UP processes are both computationally expensive, 

it costs even more when the two processes are associated in a loop. Therefore, 

increasing the efficiency of OBMC, while retaining high accuracy, is an important 

issue deserving research attention. To improve the efficiency of OUU for OBMC, 

Research Thrust 3 proposes a sequential optimization-based model calibration 

approach. The proposed idea is based on a comprehensive review of OUU 

formulations and uncertainty propagation methods from the society of reliability-

based design optimization, one category of OUU. 

 

Research Thrust 4: Validation Metric – Probability of Coincidence 

Model validation is the process of determining the degree to which a computational 

model is an accurate representation of the real phenomenon, from the perspective of 

the model’s intended uses (Babuska and Oden 2004) (Hills et al. 2008) (Oberkampf 

and Trucano 2008) (Weathers et al. 2009) (Sankararaman and Mahadevan 2011) 

(Ling and Mahadevan 2013). Model validation can be executed at the completion of 

model calibration to check whether the calibrated result is valid or not (Figure 1-7). 

Many research efforts have been made to develop statistical model validation in 

order to quantitatively and statistically determine the degree of validity (Oberkampf 

and Barone 2006) (Ferson et al. 2008) (Liu et al. 2011). Among them, the area metric 

possesses most of the desirable features of a validation metric for quantitative 
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comparison of experiments and simulations. Hypothesis testing could be devised to 

evaluate the null hypothesis – if a calibrated model is valid – by comparing the 

computed area metric value with a designated critical value. However, there is still 

a great need for a new validation metric. First, a new validation metric should be 

able to be calculated with a full description (probability distribution) of the 

experimental observations from the validation experiments. Second, the results of 

statistical validation should be straightforwardly probabilistic; thereby, an analyst 

can make decisions based on the results of the validity check. To address these needs, 

Research Thrust 4 proposes a new validation metric, called probability of 

coincidence.  

  

 

Figure 1-7 A Validity Check of the Calibrated Results by Optimization-Based 

Model Calibration 
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1.3 Dissertation Layout 

This doctoral dissertation is organized as follows. Chapter 2 proposes an uncertainty 

characterization method that considers systematic and random errors (Research 

Thrust 1). Chapter 3 presents a method to enhance robustness of OBMC by providing 

analytical sensitivity information (Research Thrust 2). Chapter 4 proposes a 

sequential optimization and uncertainty propagation method for efficient OBMC 

(Research Thrust 3). Chapter 5 proposes a new validation metric – probability of 

coincidence – to check the validity of the calibrated results (Research Thrust 4). In 

Chapter 6, four engineering problems (uncertainty characterization of observed 

cantilever beam deflections, and model calibration of a bearing capacity equation, 

an automobile steering column and wheel vibrational model, and a thin-film 

transistor liquid crystal display deflection model) are employed to demonstrate the 

proposed research thrusts. Finally, Chapter 7 discusses the contributions of this 

dissertation and potential future research directions. 

 

 

 

 

Sections of this chapter have been published or submitted as the following 

journal article:  

1) Guesuk Lee, Wongon Kim, Hyunseok Oh, and Byeng D. Youn, Nam H. Kim 

“Review of Statistical Model Calibration and Validation – From the 

Perspective of Uncertainty Structures,” Structural and Multidisciplinary 

Optimization, Submitted in September 2018. 
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Chapter 2  Uncertainty Characterization of Experimental Observations Considering Systematic and Random Measurement Errors 

 

Uncertainty Characterization of 

Experimental Observations 

Considering Systematic and 

Random Measurement Errors 

 

The true value of the quantity of interest (QOI) is usually estimated using 

measurements or observations gathered by conducting physical experiments. (For 

conducting statistical model calibration, characterizing the uncertainty in measured 

system responses (the QOI) must be compared with the uncertainty in the predicted 

system responses through the use of a computational model.) To improve the 

estimate of the true value (or the true uncertainty characterized by a probability 

distribution) of the QOI, repeated measurements in the same experimental conditions 

are often conducted. Multiple measurements are used to enable consideration of the 

various sources of uncertainties, such as physical uncertainties or measurement 

errors. Thus, the variability due to physical or inherent uncertainties (e.g., geometric 

uncertainty – manufacturing tolerance, material uncertainty – elastic modulus of a 

material) becomes the subject to be accurately characterized. On the other hand, 

measurement errors are a barrier to accurate estimation of the true value of the QOI. 
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Measurement error, or observational error, refers to the difference between the 

measured value of a quantity and its true value. Carrying out a perfect, error-free 

experiment is impossible. Whether its degree is large or small, a measured value 

cannot avoid measurement errors. Furthermore, in many cases, physical experiments 

are carried out across different experimental conditions. In this case, experimental 

observations from different experimental conditions should be aggregated to 

minimize the degree of statistical uncertainty present due to an insufficient amount 

of data. 

Significant efforts have been made to quantify the true variability in a QOI. To 

the best of the author’s knowledge, most previous works have focused on examining 

how to quantify the variability with a limited amount of observed data; these efforts 

have ignored measurement errors. Other prior studies have been conducted with a 

focus on eliminating sources of measurement errors, for example, making effort to 

1) maintain the same experimental conditions, 2) continuously calibrate 

measurement instruments, or 3) use expensive instruments to minimize random 

errors in the measured values. In many cases, however, it may not be possible to 

invest a large expense in experiments. Even when funding is available, results from 

expensive equipment still can contain errors. 

Chapter 2 thus proposes an uncertainty characterization method that considers 

measurement errors. Especially for model calibration, which estimates statistical 

parameters of unknown input variables in a computational model by comparing 

probability distributions that describe the uncertainties in observations and 

predictions, accurate calibration requires accurate characterization or modeling of 

the uncertainty in experimental observations by considering measurement errors in 
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the data. The proposed method offers two primary contributions: 1) Accurate 

characterization of the true variability in a QOI; 2) Additional data that can be 

derived under different experimental conditions. 

The remainder of Chapter 2 is organized as follows. Section 2.1 provides an 

overview of measurement errors that can be observed in engineering problems. 

Section 2.2 explains how the proposed method is formulated to develop a probability 

distribution for the true variability in a QOI, considering measurement errors. The 

conclusions for Research Thrust 1 are provided in Section 2.3. Case studies for 

proving the effectiveness of the proposed method are presented in Chapter 6. 

 

2.1 Measurement Errors Observed in Engineering Problems 

Section 2.1 presents the research topics of Research Thrust 1. Section 2.1.1 includes 

a brief discussion of uncertainty and variability to aid in understanding measurement 

errors in engineering problems. Section 2.1.2 explains measurement errors, which 

include systematic and random measurement errors. Section 2.1.3 provides a 

discussion on how to model measurement errors using parametric probability 

distributions. 

 

2.1.1 Uncertainty and Variability 

When it is said that there is “uncertainty” in a QOI, it means a lack of certainty or a 

state of limited knowledge that prevents exact determination of a certain value of a 
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QOI. Thus, in general, uncertainty in a QOI is characterized or quantified by a 

probability distribution, which is assigned based upon the information or evidence 

about the likelihood of what the true value might be (Soundappan et al. 2004) (Guo 

and Du 2007) (Lin et al. 2014). The engineering information for a QOI refers, for 

example, to the values of data, the number of data, the type of probability distribution, 

the upper and lower bound, and other related information. 

In measured or observed data of a QOI, “variability” exists due to physical 

uncertainties and measurement errors (Zhang and Mahadevan 2000) (Oberkampf et 

al. 2004a) (Buranathiti et al. 2006) (Hills 2006) (Xie et al. 2007) (Urbina et al. 2011) 

(Sankararaman et al. 2011) (Zhang et al. 2013) (Jung et al. 2014) (Zhu et al. 2016). 

Physical uncertainty arises due to the natural inherent uncertainty in material and 

geometric properties (e.g., inherent uncertainty in the elastic modulus and 

manufacturing tolerances). In general, physical uncertainty is considered aleatory 

uncertainty, which means irreducible uncertainty. In this case, the goal is to quantify 

the uncertainty well using a probability distribution in the uncertainty 

characterization process. However, one challenge in accurately characterizing the 

variability in observed data by physical uncertainties is the existence of measurement 

errors. 

 

2.1.2 Systematic and Random Measurement Error 

Measurement errors, or observational errors, are another cause of difference between 

measured values of a QOI and its true value (Hills 2006) (Harmel et al. 2010) (da 

Silva Hack and Schwengber ten Caten 2012) (Ling and Mahadevan 2013) (Uusitalo 
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et al. 2015). The true value denotes the variability in a QOI that results only from the 

previously introduced physical uncertainty sources. Measurement errors can be 

categorized into two types: 1) systematic measurement error, and 2) random 

measurement error (Ferson and Ginzburg 1996) (Easterling 2001) (Liang and 

Mahadevan 2011) (Ling and Mahadevan 2013). 

Systematic measurement error, also known as measurement bias, is introduced 

by inaccuracy factors that occur during the observation or measurement process. For 

example, when a particular sensor is used in all of the replicate tests, or when all 

replicate tests are conducted in a certain experimental setting (e.g., a higher 

temperature than a normal condition), then all measurements may have a similar 

biased error. For another example, a system response, which is the QOI for 

conducting model calibration, can be measured under different experimental 

conditions. From the standpoint of one experimental condition, other experimental 

conditions can be considered to be systematic measurement errors. In this case, the 

observations from two different experimental conditions can be integrated into one 

data set, which can be used for estimating the unknown input variables. 

Random measurement error is caused by poor precision factors. Human errors, 

like fluctuations in the experimenter’s interpretation of the instrumental readings, are 

one example. As another example, measurements may be gathered from a sensor that 

is picked randomly from a population of sensors; in this case, multiple measurements 

may have inaccuracy that is described by a distribution of error.  

Figure 2-1 helps to explain systematic and random measurement errors. Each 

data set of the green, blue, and red shaded part in Figure 2-1 denotes ten repeated 
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experiments. In Figure 2-1a, the data in the upper part (the green shaded part) 

describe the true variability, or the value of the QOI, which results only from the 

previously introduced physical uncertainty sources. If there is no measurement error 

in the experiments while the inherent uncertainties exist, the observed data should 

appear like the data in the upper part of Figure 2-1a. The green probability 

distribution of the right-hand side exhibits the mother population of the QOI; this 

can be quantified or characterized after a perfect uncertainty characterization process. 

On the other hand, the sample data in the lower part (the blue shaded part) of Figure 

2-1a describe that each datum is biased due to systematic error. Note that each datum 

has not been biased with the same magnitude of error – this is an important 

clarification. The blue probability distribution presents that the mother population of 

the QOI (the above red probability distribution) is biased. In Figure 2-1b, the data 

(the red shaded part) describe the observations that result from a situation where both 

systematic and random errors are present. For example, in the third observation from 

the left, the datum (the upper red point) is observed to deviate slightly from the datum 

(the lower blue point) that exhibits only systematic error. (Note that random 

measurement error does not affect the average, only the variability around the 

average.) In the presence of systematic and random measurement errors, the 

observed data will be like the data shown in Figure 2-1b. If the systematic and 

random measurement exist, the probability distribution will be wrongly 

characterized as the red probability distribution. The goal of this research is to 

characterize the variability in the true value (the green probability distribution in 

Figure 2-1a) by using the observed data and subtracting the influence by the 

systematic and random measurement errors.
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Figure 2-1 Illustration of Measurement Errors: Observed Data (a) With Systematic Measurement Error and (b) With 

Systematic and Random Measurement Errors 
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2.1.3 Characterization of Measurement Errors 

The major difference between the two types of measurement errors is that a particular 

source of a systematic measurement error will affect all the replicate measurements 

in the same manner. In contrast, a source of random measurement error will 

randomly affect the measurements. Generally, for this reason, the uncertainties that 

arise due to systematic and random measurement errors are characterized by a 

uniform distribution and a normal distribution, respectively. This section presents 

how to characterize the two measurement errors using probability distributions. 

Figure 2-2 describes probability distributions for systematic and random 

measurement errors for given observed data (y). First, systematic measurement 

errors, which bias the measurement from the true value, emerge from a source of 

measurement error that is effectively the same in all the replicate tests. This is 

described by a uniform distribution that is defined by a lower bound and an upper 

bound (Figure 2-2a). One of the two bounds is set to ‘0’, which means there is no 

bias from the true value. The other bound denotes the maximum amount of bias ‘α’, 

relative to the measured value (y). For a negative systematic error (Figure 2-2a, 

where a negative systematic error biases the true value to a smaller measured value), 

the upper bound is set to ‘0’ and the lower bound is set to ‘-α’ relative to the measured 

value (y), and vice-versa for a positive systematic error ([0, αy]). Second, the random 

measurement errors are characterized to follow normal distributions due to the 

indefinite multiple sources of the randomness. The random measurement error, 

which follows a normal distribution with ‘0’ mean and ‘βy’ standard deviation, is 

added to the value biased by the systematic measurement error. Note that the random 

measurement error can cause either an increase or a decrease in the estimate of the 
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true value. 

Figure 2-3 describes the PDFs of the true value with measurement errors (y + 

e). First, the gray-shaded PDFs (p(y)) in the upper part of Figure 2-3 denote the PDF 

of the true value (y) without any measurement error. The proposed method aims to 

obtain p(y), which describes the uncertainty in the observed data without 

measurement errors. Suppose that y1 and y2 are arbitrarily sampled from p(y). 

Depending on the randomly sampled values (y1 and y2), the PDFs of e are defined 

using the method explained in Figure 2-3 (p(esys|y), p(eran|y)). Then, the PDFs of the 

true value with two measurement errors (y + esys, y + eran) are formulated as the 

bottom parts of Figure 2-3a and 2-3b, respectively. In Figure 2-3a, two uniform 

distributions are defined by the lower bounds (y1 - αy1, y2 – αy2) and upper bounds 

(y1, y2) for two samples, y1 and y2. This explains that an observation y1 with 

systematic measurement error (esys) can be observed from the left blue-shaded 

uniform distribution. Therefore, an uncertainty characterization process is required 

to eliminate the biased effect from the systematic measurement error (esys) to obtain 

the gray-shaded true population p(y). In Figure 2-3b, two normal distributions are 

defined by the means (y1, y2) and standard deviations (β1y1, β2y2) of the two samples, 

y1 and y2. An observation y1 with a random measurement error (eran) can be observed 

from the left red-shaded uniform distribution. Therefore, an uncertainty 

characterization process is required to eliminate the random effect that arises from 

the random measurement error (eran) to obtain the gray-shaded true population p(y). 

For a case where both systematic and random measurement errors exist, p(y + e|y) 

can be defined by integrating the systematic (esys) and random measurement (eran) 

errors into e. Based on the characterization of uncertainties and measurement errors 
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in this section, the following section introduces the step-by-step mathematical 

formulations for the proposed method. 
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Figure 2-2 Probability Density Function of Measurement Errors: (a) Systematic Measurement Error, (b) Random 

Measurement Error 
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Figure 2-3 Probability Density Function (PDF) of the True Value (y) of the Quantity of Interest, with Measurement Errors 

(e): (a) PDF of y and Systematic Measurement Error (esys), (b) PDF of y and Random Measurement Error (eran) 
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2.2 Uncertainty Characterization of Experimental 

Observations Using the Maximum Likelihood 

Estimation 

The objective of Research Thrust 1 is to estimate the statistical parameters of an 

assumed parametric probability distribution (p(y)) that describes the variability and 

uncertainties of the QOI using n numbers of experimental observations (Y = {y1, …, 

yn}). The proposed method uses maximum likelihood estimation to estimate the 

values of the statistical parameters that maximize the formulated likelihood function. 

This section outlines the overall steps for characterizing the uncertainty of 

experimental observations using maximum likelihood estimation. Section 2.2.1 

develops the probability density function (PDF) for the variability in observed 

system responses, which results from the physical uncertainties and measurement 

errors. Section 2.2.2 formulates the likelihood function using developed and 

assumed PDFs for the observed system response and measurement errors. Section 

2.2.3 derives the mathematical formulation for obtaining the values of the statistical 

parameters that maximize the formulated likelihood function. 

 

2.2.1 Step 1: Development of Parametric Probability Distributions for 

Describing the Uncertainty in Experimental Observations 

Considering Measurement Errors 

First, Equation (2-1) explains how the observed data (yobs) includes the true 

variability (ytrue) and measurement errors (e), which are composed of systematic (esys) 

and random (eran) measurement errors. 
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 𝑦obs = 𝑦true + 𝑒 = 𝑦true + 𝑒sys + 𝑒ran (2-1) 

To describe the true variability of experimental observations (ytrue), a Gaussian 

distribution is assumed with statistical parameters ((the mean (µytrue) and standard 

deviation (σytrue)) to be estimated later (Equation (2-2)). 

 

𝑝(𝑦true) = 𝑁(𝜇𝑦true
, 𝜎𝑦true

)

=  
1

√2𝜋𝜎𝑦true

exp (−
(𝑦true − 𝜇𝑦true

)
2

2𝜎𝑦true
2

) 
(2-2) 

Based on the information given in previous section, a uniform and normal 

distribution are formulated for the probability distributions of the systematic and 

random measurement errors for a given system response (y), respectively (Equations 

(2-3) and (2-4). 

 𝑝(𝑒sys|𝑦) =  {

1

𝛼𝑦
(−𝛼𝑦 ≤ 𝑒sys ≤ 0)

0 otherwise

 (2-3) 

 
𝑝(𝑒ran|𝑦) = 𝑁(0, 𝛽𝑦) =  

1

√2𝜋(𝛽𝑦)
exp (−

(𝑒ran − 0)2

2(𝛽𝑦)2
) (2-4) 

Then, by defining the integrated error (e) as e = esys + eran, the probability distribution 

of e for a given y can be presented as the convolution of the systematic and random 

measurement errors, as shown in Equations (2-5) and (2-6). 

 𝑝(𝑒|𝑦) = ∫𝑝(𝑒 − 𝑒sys|𝑦)𝑝(𝑒sys|𝑦)𝑑𝑒sys (2-5) 

 

𝑝(𝑒|𝑦) =
1

𝛼𝑦
∫

1

√2𝜋(𝛽𝑦)
×  exp (−

(𝑑 − 𝑦 − 𝑒sys)
2

2(𝛽𝑦)2
)𝑑𝑒sys

0

−𝛼𝑦

 (2-6) 

Using Equation (2-1), the marginal probability distribution of the observed system 

response (yobs) for a given y can be formulated as 
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𝑝𝑦obs|𝑦
(𝑦obs|𝑦) = 𝑝𝑒|𝑦(𝑦obs − 𝑦|𝑦)

=
1

𝛼𝑦
∫  𝑁(𝑒sys|𝑦obs − 𝑦, 𝛽𝑦)𝑑𝑒sys

0

−𝛼𝑦

 
(2-7) 

Then, using the sum and product rule, the marginal distribution (p(y)) can be 

expressed as 

 𝑝(𝑦obs) = ∫𝑝(𝑦obs|𝑦)𝑝(𝑦)𝑑𝑦 (2-8) 

The following section introduces how to develop the likelihood function based on 

the results of this section. 

 

2.2.2 Step 2: Formulation of the Likelihood Function 

In general, the most effective way to characterize the uncertainties in an engineered 

system is to represent the uncertainty in the form of a PDF. Parametric methods are 

common for a PDF to be parameterized or characterized by statistical parameters, 

for example, the mean and standard deviation of a Gaussian distribution (Yates 1934) 

(Smirnov 1948) (Massey Jr 1951) (Anderson and Darling 1952) (Anderson and 

Darling 1954) (Stephens 1974) (Plackett 1983). As long as a parametric PDF for a 

system response can be clearly specified, parametric methods are without doubt 

powerful tools for characterizing uncertainties. A parametric method requires two 

steps: 1) selecting a proper type of PDF to describe the uncertainty, and; 2) 

estimating values for statistical parameters of the selected PDF. In this study, the 

first step is completed assuming that the type of probability distribution for the 

system responses follows a Gaussian distribution. After an appropriate PDF is 

determined, statistical parameters can be estimated by several methods, including 
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maximum likelihood estimation (Charnes et al. 1976) (Scholz 1985) (Newey and 

West 1987) (Myung 2003). 

Maximum likelihood estimation can be used to estimate the unknown statistical 

parameters of a parametric probability distribution (McLachlan and Krishnan 2007). 

Maximum likelihood estimation searches for proper values of the statistical 

parameters that maximize the likelihood function for given the observations. This 

implies that using maximum likelihood estimation requires building of the likelihood 

function. Therefore, this section presents how to construct the likelihood function. 

Equation (2-9) denotes the likelihood function (L) for a given n number of 

observations (Y = {y1, …, yn}). 

 𝐿(𝑦) = ∏𝑝(𝑦𝑖)

𝑛

𝑖=1

= ∏∫𝑝(𝑦𝑛|𝑦)𝑝(𝑦)𝑑𝑦

𝑛

 (2-9) 

Since the type of probability distribution for a system response is assumed to follow 

a Gaussian distribution in this study, Equation (2-9) can be reformulated as 

 𝐿(𝑦|𝜇, 𝜎) = ∏∫𝑝(𝑦𝑛|𝑦)𝑁(𝜇𝑦, 𝜎𝑦)𝑑𝑦

𝑛

 (2-10) 

Using the logarithm, the log-likelihood function can then be formulated as 

 ln (𝐿(𝐷|𝜇, 𝜎)) = ∑ln (∫𝑝(𝑦𝑛|𝑦)𝑁(𝜇𝑦, 𝜎𝑦)𝑑𝑦)

𝑛

 (2-11) 

  

2.2.3 Step 3: Maximization of the Likelihood Function 

Based on the work described in Section 2.2.2, this section computes derivatives of 

Equation (2-11) with respect to the mean (µy) and standard deviation (σy). By 
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equating the derivative of Equation (2-11) to zero, an analytical solution for the value 

of the mean (µy) and standard deviation (σy) can be obtained. The derived results are 

shown as Equations (2-12) and (2-13): 

 𝜇𝑦 =
1

𝑛
∑

∫ 𝑦𝑝(𝑦𝑛|𝑦)𝑁(𝜇𝑦, 𝜎𝑦)𝑑𝑦
∞

−∞

∫ 𝑝(𝑑𝑛|𝑦)𝑁(𝜇𝑦, 𝜎𝑦)𝑑𝑦
∞

−∞𝑛

 (2-12) 

 

𝜎𝑦
2 =

1

𝑛
∑

∫ (𝑦 − 𝜇𝑦)
2
𝑝(𝑦𝑛|𝑦)𝑁(𝜇𝑦, 𝜎𝑦)𝑑𝑦

∞

−∞

∫ 𝑝(𝑦𝑛|𝑦)𝑁(𝜇𝑦, 𝜎𝑦)𝑑𝑦
∞

−∞𝑛

 (2-13) 

Finally, by substituting Equations (2-2) and (2-7) into N(µy, σy) and p(yn|y), 

respectively, in Equations (2-12) and (2-13), the analytical estimate of µy and σy
2 can 

be obtained. However, it should be noted that Equations (2-12) and (2-13) are not 

explicit; this means that a final estimate is required to calculate the estimate. In this 

case, the estimate can be obtained by updating iteratively until convergence. 
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2.3 Summary and Discussion 

With an aim to characterize the uncertainty in experimental observations for a system 

response of an engineered system, Research Thrust 1 utilized maximum likelihood 

estimation to estimate the unknown statistical parameters of an assumed probability 

distribution. First, the likelihood function was formulated with characterization of 

the variability by physical uncertainties, systematic measurement error, and random 

measurement error. To prove the effectiveness of the proposed idea, a case study 

“cantilever beam problem” (introduced in Section 6.1: Case Study 1) is used to show 

that the proposed method produces accurate estimation when measurement errors 

exist in the observations. Also, by adopting the method to the case studies “an 

automobile steering column problem (Section 6.3: Case Study 3)” and “a liquid 

crystal display panel problem (Section 6.4: Case Study 4),” the proposed method is 

shown to be applicable to a real-world engineering problem. In Case Study 3, an 

automobile steering column problem, the proposed method is adopted to consider 

the systematic measurement error due to different experimental conditions and the 

random measurement error due to human errors for accurate characterization of the 

true variability in observations. In Case Study 4, a LCD panel problem, the proposed 

method is used to gather the observation data from different experimental conditions. 

With the proposed idea, statistical uncertainty by lack of data could be eased by 

increased numbers of experimental observations for the same experimental condition.   

To expand use of the proposed method, it will be challenging to determine the 

value of statistical parameters for the probability distribution of systematic and 

random measurement errors. For example, in this study, the maximum amount of 

bias ‘α’ of systematic measurement error and ‘βy’ standard deviation for random 
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measurement are considered to be given information. However, information about 

those parameters may not be available in real-world applications. Thus, there is a 

need for a systematic way to determine the amount of systematic and random 

measurement errors present in real-world settings. 

In addition, this chapter introduces only the Gaussian case. However, when 

using a parametric approach, it should be noted that an incorrect assumption about 

the type of probability distribution may cause numerical error, or statistical 

uncertainty. In case the type of probability distribution is known to be non-Gaussian, 

the mathematical derivations from Equation (2-2) to Equation (2-13) should be re-

derived. However, the mathematical derivation process can be extended to non-

Gaussian types of probability distributions. 
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Chapter 3  Robust Optimization-Based Model Calibration with Analytical Sensitivity Information 

 

Robust Optimization-Based Model 

Calibration with Analytical 

Sensitivity Information 

 

Optimization-based model calibration (OBMC) adopts optimization techniques to 

estimate unknown input variables of a computational model in a probabilistic sense. 

The fields of design optimization have developed various optimization algorithms; 

these can be broadly classified as gradient-based (local) and global (non-local or 

evolutionary) algorithms (Arora 2004) (Tekin and Sabuncuoglu 2004) (Snyman 

2005). Compared to global algorithms, gradient-based algorithms require a relatively 

small number of function evaluations to find the optimum point (calibrated point). 

Therefore, prior studies on OBMC have primarily used gradient-based algorithms 

due to the efficiency issue (Youn et al. 2011) (Fender et al. 2014) (Jung et al. 2014) 

(Jung et al. 2016).  

A calibration metric, which is defined as an objective function of OBMC, is an 

important element of OBMC. Various types of calibration metrics have been 

developed to quantify the difference or the similarity between the system responses 
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derived from computational predictions and experimental observations, such as the 

likelihood function, the probability residual, and others (Oberkampf et al. 2004a) 

(McFarland and Mahadevan 2008a) (McFarland and Mahadevan 2008b) (Youn et al. 

2011) (Jung et al. 2014) (Choi et al. 2016) (Oh et al. 2017). Based on the author’s 

experience, however, OBMC that uses existing calibration metrics has been shown 

to lead to instable calibration processes and inaccurate calibrated results (e.g., 

divergence or convergence at large standard deviations or biased mean values, as 

depicted in Figure 1-5). 

There are four possible reasons that cause unstable and inaccurate OBMC when 

gradient optimization algorithms and existing calibration metrics are used, including: 

1) non-convexity of the optimization problem when OBMC is performed with 

existing calibration metrics; 2) existence of a local minimum; 3) an extremely low 

degree of sensitivity, and; 4) randomness due to sampling methods used for the 

uncertainty propagation process (Figure 3-1). Thus, Research Thrust 2 first 

investigates the global convexity of OBMC optimization problems with calibration 

metrics. In order to check the global convexity, the first- and second-order 

derivatives (sensitivity information) of the objective functions (calibration metrics) 

with respect to the calibration parameters are derived. This analytical derivation 

includes several assumptions. Next, a condition for convex optimization (e.g., a 

determinant of the Hessian matrix) is investigated using the derivatives. Using the 

analytical sensitivity information, other remaining possible causes are investigated. 

Finally, OBMC with derived analytical sensitivity information is performed, 

showing a robust optimization process. 
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Figure 3-1 Possible Causes of Inaccurate and Unstable Calibrated Results Derived Optimization-Based Model Calibration 

with Existing Calibration Metrics 
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The remainder of Chapter 3 is organized as follows. Section 3.1 summarizes 

mathematical formulations used to check the global convexity for the optimization 

problem. Section 3.2 reviews two existing calibration metrics: 1) the likelihood 

function and 2) the probability residual. In Section 3.3, a comprehensive analysis of 

OBMC using introduced calibration metrics is given; both analytical results and 

numerical example results are provided. Later, in Section 6.2, a case study of a 

“bearing capacity equation” is introduced to check the effectiveness of the proposed 

idea; this case study executes OBMC using the analytical sensitivity information 

derived in previous sections. Section 3.4 presents an overview of robust OBMC with 

analytical sensitivity information. Finally, the conclusions of this work are provided 

in Section 3.5. 

 

3.1 Conditions of a Convex Optimization for Optimization-

Based Model Calibration 

For the optimization algorithms used in OBMC, gradient-based algorithms (e.g., the 

gradient descent method, Newton’s methods, or sequential quadratic programming) 

are recommended due to their efficiency. However, gradient methods do not ensure 

that the subsequence of iterations converges to the global optimum unless it is 

confirmed to be a convex optimization problem. If OBMC with calibration metrics 

is confirmed to be convex, it can be solved efficiently and accurately. Furthermore, 

a convex optimization converges to the global optimum regardless of the location of 

the initial point. In summary, recognizing or formulating a convex optimization is a 

great advantage when solving an optimization problem, including OBMC. Thus, this 
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section provides and overview of a way to check the convexity of an optimization 

problem. First, Section 3.1.1 provides a general way to check global convexity of a 

function. Section 3.1.2 presents how to derive analytical sensitivity information to 

check the global convexity under assumptions. 

 

3.1.1 Analysis of Global Convexity for a Function 

For a function of several variables, f(x), where x is an n-vector, the multidimensional 

Taylor’s expansion at the given point x* can be formulated as 

 𝑓(𝐱) = 𝑓(𝐱∗) + 𝛁𝑓(𝐱∗)T𝐝 +
1

2
𝐝𝑇𝐇(𝐱∗)𝐝 + 𝑅 (3-1) 

where x – x* = d, H is the n×n Hessian matrix, and R is the remainder term. 

Alternatively, a change in the function Δf = f(x) – f(x*) is given as 

 ∆𝑓 = 𝛁𝑓(𝐱∗)T𝐝 +
1

2
𝐝𝑇𝐇(𝐱∗)𝐝 + 𝑅 (3-2) 

If x* is a local minimum for a convex function, then Δf must be non-negative. Δf can 

be non-negative for all possible d unless ᐁf(x*) = 0. Considering the second term, 

the positivity of Δf is assured if dTH(x*)d  > 0. This is true if the Hessian H(x*) is 

a positive definite matrix. For a twice differentiable f, the positive definite of the 

H(x*) can be confirmed by 

 det𝐇(𝑓(𝐱∗)) > 0 or ≥ 0 (3-3) 

where > 0 denotes positive definite and ≥ 0 denotes positive semidefinite. For a two-

variable case, a function is convex if and only if 

 
𝜕2𝑓

𝜕x1
2
(𝑥)

𝜕2𝑓

𝜕x2
2
(𝑥) −

𝜕2𝑓

𝜕𝑥1𝜕𝑥2

(𝑥)
𝜕2𝑓

𝜕𝑥2𝜕𝑥1

(𝑥) > 0 or ≥ 0 (3-4) 
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and 
𝜕2𝑓

𝜕x1
2
(𝑥),

𝜕2𝑓

𝜕x2
2
(𝑥) > 0 or ≥ 0 for 𝑎𝑙𝑙 𝑥 ∈ 𝐴 

where > 0 denotes positive definite and ≥ 0 denotes positive semidefinite. If the 

above (the Hessian matrix of the function (f) is positive semidefinite or positive 

definite) is checked for all points in set A, then the function can be called globally 

convex (strictly convex for positive definite) in set A.  

 

3.1.2 Derivation of Analytical Sensitivity Information for OBMC 

Under Assumptions 

Following the work described in Section 3.1.1, it is required to obtain the first-order 

derivatives (gradient vector) and the Hessian matrix composed of the second-order 

derivatives to check the convexity of OBMC using calibration metrics. For a 

continuous and at least twice continuously differentiable function (f, the calibration 

metric in this study), the first- and second-order derivatives can be obtained by using 

the chain rule and the product rule, as follows  

 
∂𝑓

∂𝛉𝐗unknown

=
𝜕𝑓

𝜕𝛉𝑦

×
𝜕𝛉𝑦

∂𝛉𝐗unknown

 (3-5) 

 ∂2𝑓

∂𝛉𝐗unknown

2 =
𝜕2𝑓

𝜕𝛉𝑦 ∂𝛉𝐗unknown

×
𝜕𝛉𝑦

∂𝛉𝐗unknown

+
𝜕𝑓

𝜕𝛉𝑦

×
𝜕2𝛉𝑦

∂𝛉𝐗unknown

2  (3-6) 

By assuming that, 1) there are multiple known input variables, one unknown input 

variable, and one system response (output), 2) the inputs (X = {Xknown, xunknown}) 

follow normal distribution, 3) the relationship (M, model) between the inputs (X) 

and one output (y) is linear, and 4) the output (y) follows normal distribution, 

Equations (3-5) and (3-6) can be reformulated with two statistical parameters (i.e., 

mean (𝜇𝑥unknown
) and standard deviation (𝜎𝑥unknown

)) of unknown input variables as 
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follows 

 
∂𝑓

∂𝜇𝑥unknown

=
𝜕𝑓

𝜕𝜇𝑦

×
𝜕𝜇𝑦

∂𝜇𝑥unknown

 (3-7) 

 ∂𝑓

∂𝜎𝑥unknown

=
𝜕𝑓

𝜕𝜎𝑦

×
𝜕𝜎𝑦

∂𝜎𝑥unknown

 (3-8) 

 ∂2𝑓

∂𝜇𝑥unknown
2

=
𝜕2𝑓

𝜕𝜇𝑦
2
×

𝜕𝜇𝑦

∂𝜇𝑥unknown

×
𝜕𝜇𝑦

∂𝜇𝑥unknown

+
𝜕𝑓

𝜕𝜇𝑦

×
𝜕2𝜇𝑦

∂𝜇𝑥unknown
2

 (3-9) 

 ∂2𝑓

∂𝜎𝑥unknown
2

=
𝜕2𝑓

𝜕𝜎𝑦
2
×

𝜕𝜎𝑦

∂𝜎𝑥unknown

×
𝜕𝜎𝑦

∂𝜎𝑥unknown

+
𝜕𝑓

𝜕𝜎𝑦

×
𝜕2𝜎𝑦

∂𝜎𝑥unknown
2

 (3-10) 

 ∂2𝑓

∂𝜇𝑥u
∂𝜎𝑥u

=
𝜕2𝑓

𝜕𝜇𝑦𝜕𝜎𝑦

×
𝜕𝜎𝑦

∂𝜎𝑥u

×
𝜕𝜇𝑦

∂𝜇𝑥u

+
𝜕𝑓

𝜕𝜇𝑦

×
𝜕2𝜇𝑦

∂𝜇𝑥u
2

 (3-11) 

Since the relationship between the inputs (X) and the output (y) is linear, for example, 

 𝑦 = 𝑎1𝑥1 + 𝑎2𝑥2 + ⋯+ 𝑎𝑛𝑥𝑁 + 𝑏 (3-12) 

 ∂𝑓

∂𝜎𝑥unknown

=
𝜕𝑓

𝜕𝜎𝑦
×

𝜕𝜎𝑦

∂𝜎𝑥unknown

 (3-13) 

 
𝜇𝑦 = 𝑎1𝜇𝑥1

+ 𝑎2𝜇𝑥2
+ ⋯+ 𝑎𝑁𝜇𝑥𝑁

+ 𝑏 (3-14) 

 
𝜕𝜇𝑦

∂𝜇𝑥u

= 𝑎u and 
𝜕2𝜇𝑦

∂𝜇𝑥u
2 = 0 (3-15) 

 
𝜎𝑦

2 = 𝑎u
2𝜎𝑥

2 (𝜎𝑦 = |𝑎u|𝜎𝑥) (3-16) 

where N is the total number of input variables, including known and unknown input 

variables, and u denotes the index of the unknown input variable that needs to be 

calibrated. ai (i = 1, …, N) and b are respectively the coefficients of inputs and the 

constant term of the linear problem. au, which is one of the coefficients of inputs, 

denotes the linear coefficient for the unknown input variable. Thus, equations from 

(3-7) to (3-11) can be reformulated as 
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∂𝑓

∂𝜇𝑥u

=
𝜕𝑓

𝜕𝜇𝑦
× 𝑎u (3-17) 

 ∂𝑓

∂𝜎𝑥u

=
𝜕𝑓

𝜕𝜎𝑦
× |𝑎u| (3-18) 

 ∂2𝑓

∂𝜇𝑥u
2 =

𝜕2𝑓

𝜕𝜇𝑦
2 × 𝑎u

2 (3-19) 

 ∂2𝑓

∂𝜎𝑥u
2 =

𝜕2𝑓

𝜕𝜎𝑦
2 × 𝑎u

2 (3-20) 

 
 

∂2𝑓

∂𝜇𝑥u ∂𝜎𝑥u

=
𝜕2𝑓

𝜕𝜇𝑦𝜕𝜎𝑦
× |𝑎u| × 𝑎u (3-21) 

The next section introduces existing calibration metrics with mathematical 

formulations. Later, using the equation derived in this section, the convexity of 

OBMC with those calibration metrics is investigated. 

 

3.2 Brief Review of Calibration Metrics for OBMC 

Prior research efforts have developed calibration metrics for calibrating unknown 

input variables. Among them, two popular calibration metrics are introduced in this 

section: 1) the likelihood function (Section 3.2.1) and 2) the probability residual 

(Section 3.2.2). 

 

3.2.1 The Likelihood Function 

The likelihood function is one frequently used method for estimating statistical 

parameters in statistics (White 1982) (Myung 2003). The likelihood function has also 

been used for OBMC, which aims at estimating the statistical parameters of unknown 
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input variables (Youn et al. 2011) (Fender et al. 2014) (Jung et al. 2014) (Jung et al. 

2016). The likelihood function for OBMC is defined as 

 𝐿(𝐘obs|𝛉𝐗) = 𝐿(𝑦1, 𝑦2, … , 𝑦𝑛|𝛉𝐗k
, 𝛉𝐗u

) = ∏𝑝𝐘pre
(

𝑛

𝑖=1

𝑦𝑖|𝛉𝐱) (3-22) 

where pYpre(·) denotes the PDF of predicted system responses described by a vector 

of statistical parameters (θX) of both known and unknown input variables. yi denotes 

the i-th observed system response from a set of n measurements in experiments. For 

given statistical parameters (θX), the likelihood (L(Yobs|θX)) is evaluated using a set 

of independent experimental observations (yi). The likelihood value shows a 

maximum value when the predicted PDF (pYpre(·)) with a given set of the statistical 

parameters (θX) shows utmost agreement with the experimental data (yi). For OBMC, 

the statistical parameters (θX) of unknown input variables are calibrated by 

maximizing the likelihood function value. Frequently, in practical use, the natural 

logarithm of the likelihood function is convenient to work with; it can be 

reformulated as 

 

𝐿(𝐘obs|𝛉𝐗) = 𝐿(𝑦1, 𝑦2, … , 𝑦𝑛|𝛉𝐗k
, 𝛉𝐗u

)

= ∑ ln (𝑝𝐘pre
(𝑦𝑖|𝛉𝐱))

𝑛

𝑖=1
 

(3-23) 

Since the logarithm is a monotonically increasing function, the result estimated by 

the log-likelihood function is the same as the one determined by the likelihood 

function itself. By taking the natural logarithm, a product of individual likelihood 

functions is converted to a sum of individual logarithms. This allows convenient 

computation of the derivations. In the next section, the analytical sensitivity 

information of the likelihood function is examined, which involves taking the first-

order and second-order derivatives of the likelihood function. Therefore, the log-

likelihood formulation is used for this study. One drawback of the likelihood function 
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is that it can produce a negative infinite number when there is a big difference 

between the experimental data and the predicted PDF. Mathematically, the value of 

(pYpre(yi|θX)) can have an extremely small value for the predicted PDF described by 

θX, of which the mean value is too biased from the expected optimum point, and the 

standard deviation is too small or large.  

 

3.2.2 The Probability Residual 

To quantify the differences between distributions of the simulation and experimental 

data, the probability residual (PR) (Choi et al. 2016) (Oh et al. 2017) is formulated 

either by the integral of the absolute difference or the squared Euclidean distance, 

which is defined as  

 
𝑃𝑅abs(𝐘obs|𝛉𝐗) = ∫ |𝑝𝐘obs

(𝑦) − 𝑝𝐘pre
(𝑦|𝛉𝐗)|𝑑𝑦

∞

−∞

 
(3-24) 

 𝑃𝑅squ(𝐘obs|𝛉𝐗) = ∫ (𝑝𝐘obs
(𝑦) − 𝑝𝐘pre

(𝑦|𝛉𝐗))
2

𝑑𝑦
∞

−∞

 (3-25) 

where pYobs(y) denotes the PDF of the system response from experimental 

observation and pYpre(y|θ) denotes the PDF of the system response from 

computational prediction. For both types of the PR, the minimum value ‘zero' of the 

PR is obtained when the predicted PDF from a given set of the statistical parameters 

shows the best agreement with the observed PDF. Compared with the likelihood 

function, the PR requires an uncertainty characterization process for the PDF 

(pYobs(y)) of experimental observation, which may cause statistical uncertainty, since 

a dearth of observed data can lead to erroneous characterization of the PDF. One 

merit of the PR is that accurate one-to-one comparison between two probability 

distributions from observations and predictions is available. For accurate OBMC, 
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this is a desired characteristic. 

It is noteworthy that the formulation of the PR is based on a quadratic function, 

which is normally convex for the entire domain. However, as examined in the next 

section, OBMC with PR is not strictly convex for the entire domain of optimization 

variables (calibration parameters). 

 

3.3 Comprehensive Investigation of OBMC with Calibration 

Metrics 

The first objective of Research Thrust 2 is to examine whether OBMC with existing 

calibration metrics formulates a convex optimization problem. This section presents 

analytical (Section 3.3.1) and numerical (Section 3.3.2) investigations for checking 

the convexity of OBMC, using the two previously introduced calibration metrics. 

 

3.3.1 Analytical Investigation 

Analytical investigation of OBMC with two calibration metrics is conducted with 

four assumptions: 1) the model is in a linear relationship, 2) only one unknown input 

variable exists in the model, 3) the uncorrelated input variables of the model follow 

a normal distribution, and 4) the simulation and experimental data both follow 

normal distributions. 

To check the convexity of OBMC with the likelihood function (Section 3.3.1.1) 

and PR (Section 3.3.1.2) (in this study, the probability residual based on the integral 

of squared difference is adopted), the first-order derivatives (gradient vector) and the 
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Hessian matrix composed of the second-order derivatives are derived. A major 

proposition is the assumption that the PDFs (pYpre(y|θ), pYobs(y)) in Equations (3-23) 

and (3-25) follow the normal distribution described with the mean and standard 

deviation (or variance). Another important assumption is that a linear relationship 

exists between inputs and an output.  

 

3.3.1.1. Analytical Sensitivity Information of the Likelihood Function 

First, OBMC using the likelihood function (L) is a maximization problem. In this 

study, for consistency with the other metric, the maximization problem is reversed 

to minimization by multiplying by ‘-1’. With the aforementioned assumptions, the 

likelihood function in Equation (3-23) can be reformulated as 

 𝐿(𝐘obs|𝛉𝐗) =
1

2𝜎𝑦
2
∑ (𝑦𝑖 − 𝜇𝑦)

2𝑛

𝑖=1
+

𝑛

2
ln𝜎𝑦

2 +
𝑛

2
ln2𝜋 (3-26) 

Let variance 𝑠𝑦 = 𝜎𝑦
2 (𝑠𝑦 > 0). The first derivative (gradient vector) of L with 

respect to two statistical parameters, the mean (𝜇𝑦) and variance (𝑠𝑦) of the predicted 

PDF, is represented as follows  

 

[
 
 
 
 
𝜕𝐿

𝜕𝜇𝑦

𝜕𝐿

𝜕𝑠𝑦 ]
 
 
 
 

=

[
 
 
 −

1

𝑠
∑ (𝑦𝑖 − 𝜇𝑦)

𝑛

𝑖=1

−
1

2𝑠2
∑ (𝑦𝑖 − 𝜇𝑦)

2𝑛

𝑖=1
+

𝑁

2𝑠]
 
 
 

 (3-27) 

Differentiating the gradient vector once again, a matrix of the second partial 

derivatives for the likelihood function with respect to two statistical parameters – 

mean (𝜇𝑦) and variance (𝑠𝑦) of the predicted PDF – can be obtained as 
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 (

 
 

𝜕2𝑓

𝜕𝜇𝑦
2

𝜕2𝐿

𝜕𝜇𝑦𝜕𝑠𝑦

𝜕2𝐿

𝜕𝑠𝑦𝜕𝜇𝑦

𝜕2𝑓

𝜕𝑠𝑦
2

)

 
 

 

=

(

 
 

𝑛

𝑠𝑦

1

𝑠𝑦
2
∑ (𝑦𝑖 − 𝜇𝑦)

𝑛

𝑖=1

1

𝑠𝑦
2
∑ (𝑦𝑖 − 𝜇𝑦)

𝑛

𝑖=1

1

𝑠𝑦
3
∑ (𝑦𝑖 − 𝜇𝑦)

2𝑛

𝑖=1
−

𝑛

2𝑠𝑦
2
)

 
 

 

(3-28) 

Using the Equations from (3-17) to (3-21) in Section 3.1, the first-order derivatives 

and the Hessian matrix composed of the second-order derivatives with respect to 

calibration parameters can be obtained as 

 

ᐁ𝐿(𝜇𝑥u
,  𝑠𝑥u

) =

[
 
 
 
 

∂𝑓

∂𝜇𝑥u

∂𝑓

∂𝑠𝑥u ]
 
 
 
 

=
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𝜕𝑓

𝜕𝜇𝑦
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𝜕𝑓

𝜕𝑠𝑦
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2

]
 
 
 
 

 

=

[
 
 
 
 −

𝑎u

𝑠𝑦
∑ (𝑦𝑖 − 𝜇𝑦)

𝑛

𝑖=1
)

−
𝑎u

2

2𝑠𝑦
2
∑ (𝑦𝑖 − 𝜇𝑦)

2𝑛

𝑖=1
+

𝑛𝑎u
2

2𝑠𝑦 ]
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𝐇(𝐿(𝜇𝑥u
,  𝑠𝑥u

)) =
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∂2𝑓

∂𝜇𝑥u
2

∂2𝑓

∂𝜇𝑥u
∂𝑠𝑥u

∂2𝑓

∂𝜇𝑥u
∂𝑠𝑥u

 
∂2𝑓
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2
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2 × 𝑎u

2
𝜕2𝑓

𝜕𝜇𝑦𝜕𝑠𝑦
× 𝑎u

3

𝜕2𝑓

𝜕𝜇𝑦𝜕𝑠𝑦
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3
𝜕2𝑓

𝜕𝑠𝑦
2 × 𝑎u

4
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2
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3
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𝑛

𝑖=1

𝑎u
3

𝑠𝑦
2
∑ (𝑦𝑖 − 𝜇𝑦)

𝑛

𝑖=1

𝑎u
4

𝑠𝑦
3
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2𝑛

𝑖=1
−

𝑛𝑎u
4

2𝑠𝑦
2
)

 
 

 

(3-30) 
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The determinant of the Hessian matrix is then, 

 

det𝐇 (𝐿(𝜇𝑥u
,  𝑠𝑥u

)) 

=
𝑛𝑎u

6

𝑠𝑦

(
1

𝑠𝑦
3
∑ (𝑦𝑖 − 𝜇𝑦)

2𝑛

𝑖=1
−

𝑛

2𝑠𝑦
2
) −

𝑎u
6

𝑠𝑦
4
(∑ (𝑦𝑖 − 𝜇𝑦)

𝑛

𝑖=1
)

2

 
(3-31) 

For a data set of observations (Yobs = {y1, …, yn}), let 

 𝜇𝑦0
=

1

𝑛
∑ 𝑦𝑖

𝑛
𝑖=1 , 𝑠𝑦0

=
1

𝑛
∑ (𝑦𝑖 − 𝜇𝑦0

)
2𝑛

𝑖=1  (3-32) 

Then 

 
1

𝑛
∑ (𝑦𝑖 − 𝜇𝑦)

2𝑛

𝑖=1
= 𝑠𝑦0

+ (𝜇𝑦0
− 𝜇𝑦)

2
 (3-33) 

 
∑ (𝑦𝑖 − 𝜇𝑦)

𝑛

𝑖=1
= ∑ 𝑦𝑖

𝑛

𝑖=1
− 𝑛𝜇𝑦 = 𝑛(𝜇𝑦0

− 𝜇𝑦) 
(3-34) 

Thus, the Hessian matrix and the determinant of the Hessian matrix can be 

reformulated as 

 

𝐇(𝐿(𝜇𝑥u
,  𝑠𝑥u

)) 

=

(

 
 

𝑛

𝑠𝑦
𝑎u

2
𝑛(𝜇𝑦0

− 𝜇𝑦) 

𝑠𝑦
2

𝑎u
3

𝑛(𝜇𝑦0
− 𝜇𝑦) 

𝑠𝑦
2

𝑎u
3

𝑛𝑎u
4

𝑠𝑦
3

(𝑠𝑦0
+ (𝜇𝑦0

− 𝜇𝑦)
2
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4
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2
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 det𝐇 (𝐿(𝜇𝑥u
,  𝑠𝑥u

))

= [
𝑛2

𝑠𝑦
4
(𝑠𝑦0

+ (𝜇𝑦0
− 𝜇𝑦)

2
) −

𝑛2

2𝑠𝑦
3

−
𝑛2

𝑠𝑦
4 (𝜇𝑦0

− 𝜇𝑦)
2
]𝑎u

6 =
𝑛2

𝑠𝑦
3
(
𝑠𝑦0

𝑠𝑦
−

1

2
)𝑎u

6 

(3-36) 

Since n2/𝑠𝑦
3 always results in a positive value, the likelihood function is convex for 

𝑠𝑦, satisfying  

 2𝑠𝑦0
> 𝑠𝑦 (3-37) 
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3.3.1.2. Analytical Sensitivity Information of the Probability Residual 

For convenience of investigation, this section lets p(y) and q(y) be the observed PDF 

and the predicted PDF of the system response (y), respectively, in Equation (3-25). 

With the aforementioned assumptions, the probability residual in Equation (3-25) 

can be reformulated as  

 

∫ (𝑓(𝑦) − 𝑔(𝑦))2𝑑𝑦
∞

−∞

=
1

√4𝜋𝜎𝑦
2

+
1

√4𝜋𝜎𝑦0
2

−
2

√2𝜋

1

√𝜎𝑦
2 + 𝜎𝑦0

2

e
−

0.5(𝜇𝑦−𝜇𝑦0)
2

𝜎𝑦
2+𝜎𝑦0

2
 

(3-38) 

where the statistical parameters (𝛉𝑦0
) describe the observed PDF characterized by 

the moments method for a data set of observations (Yobs) with the previously 

introduced Gaussian assumption. (For the details of the derivations, please refer to 

(Lee et al. 2018).) Let z = - 0.5(𝜇𝑦 − 𝜇𝑦0
)2/(𝜎𝑦

2 + 𝜎𝑦0
2), a = 1/(𝜎𝑦

2 + 𝜎𝑦0
2), b = 

𝜇𝑦 − 𝜇𝑦0
 , t = (2/π)0.5eza3/2. The first derivative (gradient vector) of the PR with 

respect to two statistical parameters, mean (μ) and standard deviation (σ) of the 

predicted PDF, is represented as follows 

 

[
 
 
 
 
𝜕𝑃𝑅
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𝜕𝑃𝑅
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(𝜎𝑦
2 + 𝜎𝑦0

2)
3 2⁄

]
 
 
 
 
 
 
 

 (3-39) 

Differentiating the gradient vector once again, a matrix of the second partial 

derivatives for the probability residual (PR) can be obtained as 



49 

 

 

(

 
 

𝜕2𝑃𝑅

𝜕𝜇𝑦
2

𝜕2𝑃𝑅

𝜕𝜇𝑦𝜕𝜎𝑦

𝜕2𝑃𝑅

𝜕𝜎𝑦𝜕𝜇𝑦

𝜕2𝑃𝑅

𝜕𝜎𝑦
2

)

 
 

 

where 

𝜕2𝑃𝑅

𝜕𝜇𝑦
2 = 𝑡(1 − 𝑎𝑏2) 

𝜕2𝑃𝑅

𝜕𝜇𝑦𝜕𝜎𝑦
= 𝑡𝑎𝑏𝜎𝑦(−3 + 𝑎𝑏2) 

𝜕2𝑃𝑅

𝜕𝜎𝑦
2 =

1

√𝜋𝜎𝑦
3
− 𝑡(𝑎2𝑏2𝜎𝑦

2(𝑎𝑏2 − 3) − (3𝑎𝜎𝑦
2 − 1)(𝑎𝑏2 − 1) 

(3-40) 

Using the Equations from (3-17) to (3-21) in Section 3.1, the first-order derivatives 

and the Hessian matrix composed of the second-order derivatives with respect to 

calibration parameters can be obtained as 

 

𝐇(𝑃𝑅(𝜇𝑥u
,  𝜎𝑥u

)) 

=

(

 
 

𝜕2𝑃𝑅
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𝜕2𝑃𝑅

𝜕𝜎𝑦
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(3-41) 

The determinant of the Hessian matrix is then 

 
det𝐇 (𝑃𝑅(𝜇𝑥u

, 𝜎𝑥u
)) 

= [𝑡(1 − 𝑎𝑏2)
1

√𝜋𝜎𝑦
3 − 𝑡2(𝑎𝜎𝑦

2(𝑎2𝑏4 + 3) − (𝑎𝑏2 − 1)2)] × 𝑎u
4  

(3-42) 

Finally, the probability residual is convex for 𝜇𝑥u
 and 𝜎𝑥u

, satisfying  

 𝑡(1 − 𝑎𝑏2)
1

√𝜋𝜎𝑦
3 − 𝑡2(𝑎𝜎𝑦

2(𝑎2𝑏4 + 3) − (𝑎𝑏2 − 1)2) > 0  (3-43) 

Through examination, it can be seen that OBMC with two calibration metrics 

is not convex for the entire design domain, because the determinants of Hessian 

matrices in Equations (3-36) and (3-42) are not always positive for the entire design 

domain. The entire design domain is separated into convex and concave domains. 



50 

 

The boundaries between the convex and concave domains are called inflection lines. 

Thus, in conclusion, OBMC using the existing two calibration metrics cannot take 

advantage of the benefits of convexity. 

 

3.3.1.3. The Global Optimum of OBMC Using Calibration Metrics 

In the previous section, it is confirmed that the optimization problem of OBMC with 

two calibration metrics is not globally convex. To further understand the causes of 

the unstable and inaccurate calibrated results introduced in Figure 1-5, this section 

first obtains the point that satisfies the first-order necessary condition for the 

optimum of OBMC. The point satisfying the first-order necessary condition for the 

optimum ((µL, opt, σL, opt) denotes the optimum of OBMC with the likelihood function 

(L); (µPR, opt, σPR, opt) denotes the optimum of OBMC with the probability residual 

(PR)) and can be obtained by letting the first derivatives of the calibration metrics 

equal zero, as shown: 

 

ᐁ𝐿(𝜇𝐿,opt,  𝑠𝐿,opt) 

= [

−
1

𝑠𝐿,opt
∑ (𝑦𝑖 − 𝜇𝐿,opt)

𝑛
𝑖=1 × 𝑎u

(−
1

2𝑠𝐿,opt
2
∑ (𝑦𝑖 − 𝜇𝐿,opt)

2𝑛
𝑖=1 +

𝑛

2𝑠𝐿,opt
) × 𝑎u

2
] = 0  

(3-44) 

 

[
𝜇𝐿,opt

𝑠𝐿,opt
] =

[
 
 
 
 

∑ 𝑦𝑖
𝑛
𝑖=1

𝑛

∑ (𝑦𝑖 − 𝜇𝐿,opt)
2𝑛

𝑖=1

𝑛 ]
 
 
 
 

= [
𝜇𝑦0

𝑠𝑦0
] (3-45) 

 
ᐁ𝐿(𝜇𝑃𝑅,opt,  𝑠𝑃𝑅,opt) = 0  (3-46) 

 
[
𝜇𝑃𝑅,opt

𝜎𝑃𝑅,opt
] = [

𝜇𝑦0

𝜎𝑦0
] 

(3-47) 
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The point presented in Equations (3-45) and (3-47) is not necessarily the optimum; 

thus, it should be checked whether the point satisfies the second-order sufficient 

condition. By substituting the point (µL, opt, σL, opt) and (µPR, opt, σPR, opt) into Equations 

(3-36) and (3-42), respectively, it can be checked whether the determinant of the 

Hessian matrix is positive definite. In conclusion, the points (µL, opt, σL, opt) and (µPR, 

opt, σPR, opt) in Equations (3-45) and (3-47) are indeed the optimum of OBMC 

performed with the two calibration metrics. 

The conclusion of this section shows that a single optimum, which is the global 

optimum, exists in the optimization problem that is solved using either of the two 

calibration metrics. In other words, using either of the two calibration metrics, the 

issue of OBMC converging to a local optimum is not a concern anymore. (It is 

confirmed that there is no local optimum.) Therefore, the phenomenon of OBMC 

stopping at inaccurate points can be explained by the existence of a large flat space 

associated with semi-definite Hessian matrices, where the optimization algorithms 

cannot find the proper direction that would lead to the global optimum. 

 

3.3.2 Numerical Investigation 

To follow up on the previous section, numerical investigation of OBMC with two 

calibration metrics is conducted to help understand the analytical results from 

previous section using a simple numerical example. For example, the linear model 

in Equation (3-12) has three uncertain input variables (X, two known and one 

unknown) and one system response (y). The values for model parameters a1, a2, a3, 

and b are chosen as 0.5, -0.5, 1, and 0, respectively. The two known input variables 
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follow normal distributions (𝑥1,known  ~ N(0,1), 𝑥2,known  ~ N(0,1)). A model 

calibration problem is formulated to estimate the statistical parameters of an 

unknown input variable (𝑥3,unknown) that is assumed to follow a normal distribution. 

For an arbitrary normalized data set of observations (Yobs = (y1, y2, ..., yn)), such as 

Yobs = (-1, 0, 1), the true mean (μ0) and standard deviation (σ0) of the unknown input 

variable are assigned as ‘0’ and ‘1’ (s0 = 1), respectively, when the method of 

moments is used to estimate the statistical moments of the population. 

Figure 3-2 shows the 2- and 3-dimensional response surfaces of the two 

calibration metrics in terms of variations in the two calibration parameters (mean and 

standard deviation) of the unknown input (x3, unknown). The exact same optimum point, 

(μ0, σ0) = (0, 1), is shown as a point on the two response surfaces provided by the 

two calibration metrics. As confirmed in the analytical examination, optimization 

problems using the two metrics are not convex over the entire design domain. Figure 

3-2b and Figure 3-2d, which are seen from an aerial view (i.e., 2-dimensional plot) 

of Figure 3-2a and Figure 3-2c, respectively, show that each response surface is 

separated into convex (the red shaded area) and concave (the blue shaded area) 

domains by an inflection line (a yellow dotted line). The global optimum of this 

example is identified as the points within the convex domains. It is shown that the 

inflection line of the likelihood function is a straight line, and a relatively large 

convex domain, 𝜇 ∈ 𝑅 and 𝜎 ≤ 2, is clearly separated from the concave domain.  

It is important to notice that a part of the response surface is flat. For further 

examination, Figure 3-3a and Figure 3-3b show, respectively for each metric, the 

determinant of the Hessian matrix of the objective function with respect to the two 

calibration parameters (mean and standard deviation) of the unknown input. A large 
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portion of the determinant surface of the Hessian matrix between clear convex and 

concave areas have values close to zero; this means there is little change in slopes of 

the objective function with respect to the two calibration parameters of the unknown 

input. This means that the optimization may not progress toward the optimum point 

unless the exact gradient information is provided. For example, if there is no given 

gradient information, a gradient optimization algorithm can approximately calculate 

the gradient at the current point using finite difference gradient calculations; this may 

cause the issues depicted in Figure 1-5. This concern can be solved when the 

optimization is conducted using explicit sensitivity information, which is available 

from derivative derivations for the convexity checking. In addition, an extremely 

low degree of slope and approximate calculation of sensitivity information can be 

exacerbated by the randomness that arises due to the sampling method, if it is used 

for the uncertainty propagation process. In this case, a large enough number of 

samples is required to produce a robust and accurate result of uncertainty 

propagations. Otherwise, other uncertainty propagation methods can be devised to 

solve this problem. Discussion of uncertainty propagation methods is continued in 

next chapter. 
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Figure 3-2 Response Surface (RS) of Calibration Metrics for the Calibration Parameters (the Mean and Standard Deviation 

of the Unknown Input Variable): (a) 3-D RS of the Likelihood Function, (b) 2-D RS of the Likelihood Function, 

(c) 3-D RS of the PR, and (d) 2-D RS of the PR 
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Figure 3-3 Determinant of the Hessian Matrix for the Calibration Parameters (the Mean and Standard Deviation of the 

Unknown Input Variable), as Derived Using: (a) the Likelihood Function, (b) the Probability Residual 
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3.4 Robust Optimization-Based Model Calibration with 

Analytical Sensitivity Information 

As previously mentioned, gradient-based algorithms are recommended for the 

optimization algorithms used in OBMC due to their efficiency. Gradient-based 

algorithms for unconstrained gradient-based optimization can be described as shown 

in Table 3-1. In summary, two major issues related to the use of gradient-based 

algorithms are 1) computing the search direction (pk) and 2) finding the step size (αk). 

To find the step size, the search direction should be determined first. 

Success of optimization with gradient-based algorithms (e.g., steepest descent 

method, Conjugate gradient method, Newton’s method, modified Newton method, 

quasi-Newton method, trust region methods, or sequential quadratic programming), 

requires an exact calculation of sensitivity information, including the first-order, 

second-order, and Hessian. (Note that if an optimization is globally convex, it is 

guaranteed to converge to the global optimum with various advanced gradient-based 

algorithms. However, as shown in the previous section, it is proved that OBMC 

performed with the two existing calibration metrics is not globally convex.) 

For exact calculation of sensitivity information, analytical sensitivity 

information is desired. However, analytical sensitivity information is not readily 

available for most optimization problems. In this case, finite difference gradient 

calculations (Venter 2010) provide approximated gradient information. 

Unfortunately, the accuracy of finite difference calculations depends on the selected 

step size, which means the optimization may not be robust unless a proper step size 

is used. Furthermore, estimating the gradient information using finite difference 
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calculations requires expensive computational time due to the required function 

evaluations. 

Fortunately, if the analytical gradient information is provided, then gradient-

based optimization can produce more efficient and accurate optimized results. Thus, 

this study attempts to use the analytical gradient information, which is derived during 

the examination of global convexity in Section 3.3.1, to improve the results of the 

optimization-based model calibration problems. The effectiveness of calibration by 

OBMC with analytical sensitivity information is checked in the case study section. 

 



58 

 

 

 

 

Table 3-1 General Steps for Unconstrained Gradient-Based Optimization Algorithms 

Step 1: Start optimization Start optimization with iteration number k = 0 and a starting point, xk. 
 

Step 2: Test for convergence If the conditions for convergence are satisfied, then the optimization can stop 

and xk is the solution. 

 

Step 3: Compute a search direction Compute the vector pk that defines the direction in a space along which 

optimization progresses. 

 

Step 4: Compute the step length Find a positive scalar, αk, such that f(xk + αkpk) < f(xk). 
 

Step 5: Update the design variables Set xk+1 = xk + αkpk, k = k + 1 and go back to Step 1. 
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3.5 Summary and Discussion 

The motivation of Research Thrust 2 was to address the unstable and inaccurate 

calibrated results, which implies that the optimization of OBMC with existing 

calibration metrics was not terminated at the global optimum. Analytical and 

numerical investigations of optimization for OBMC with the two existing calibration 

metrics have confirmed that 1) OBMC with the existing calibration metrics is not 

globally convex. In other words, many gradient-based algorithms, which have 

advantages for searching for the global optimum, cannot work for OBMC when used 

with the two existing calibration metrics; 2) Under some assumptions, no local 

minima exists, however, this is not guaranteed for other cases, such as the nonlinear 

model or other types of probability distribution; 3) A large portion of the determinant 

surface of the Hessian matrix has a near zero value, which may cause difficulty in 

obtaining the sensitivity information, which includes the first- and second-order 

derivatives, and Hessian. In the end, this may cause the optimization to not progress 

toward the expected optimum point; 4) Even a small degree of randomness due to 

sampling methods for the uncertainty propagation process can mean that the 

optimization does not progress toward the global optimum, when it is related to the 

third issue. Four conclusions of analytical and numerical investigations are 

summarized in Figure 3-4. To overcome this situation, the analytical results were 

used for the sensitivity information of OBMC. To prove the effectiveness of the 

proposed idea, a case study of a “bearing capacity equation” (introduced in Section 

6.2) is examined to show that OBMC with analytical sensitivity information provides 

better calibrated results, compared with the sensitivity information calculated 

through a finite difference approach embedded in the optimization solvers. 
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Figure 3-4 The Results of Analytical and Numerical Investigation on Possible Causes of Inaccurate and Unstable Calibrated 

Results 
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One limitation of this study is that four assumptions are required for deriving 

the analytical sensitivity information. Assumptions include: 1) the model is in a 

linear relationship, 2) only one unknown input variable exists in the model, 3) the 

uncorrelated input variables of the model follow a normal distribution, and 4) the 

simulation and experimental data both follow normal distributions. For example, if 

a model is in a nonlinear relationship and the variability of a system response does 

not follow a normal distribution, then the obtained analytical information is not 

applicable.  

To expand use of the proposed method, it will be possible to devise a new 

calibration metric that constructs a convex optimization problem for OBMC. This 

inspires an idea for next research thrust, described in Chapter 4. In addition, 

limitations due to the assumptions about the type of probability distribution of a 

system response can be overcome by a follow-up study, such as a study on deriving 

gradient information for different types of PDFs of a system response. 
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Chapter 4  Sequential Optimization and Uncertainty Propagation Method for Efficient Optimization-Based Model Calibration 

 

Sequential Optimization and 

Uncertainty Propagation Method 

for Efficient Optimization-Based 

Model Calibration 

 

Optimization-based model calibration (OBMC) adopts optimization under 

uncertainty (OUU) to calibrate statistical parameters (e.g., the mean and standard 

deviation) of the unknown input variables of the computational model. OUU 

associates the optimization process with the uncertainty propagation (UP) process 

(also called probabilistic assessment) where uncertainties in input variables are 

propagated through a model to obtain the variability in the system responses (Eldred 

et al. 2002) (Swiler et al. 2008) (Youn et al. 2011) (Yao et al. 2011) (Arendt et al. 

2012a) (Fender et al. 2014) (De Cursi and Sampaio 2015) (Jung et al. 2016) (Lee et 

al. 2018) (Hu et al. 2018). The computational cost of OUU associating the 

optimization and UP processes in a loop is highly expensive. In summary, 

formulating an OUU for OBMC and selecting a method for the UP process are 

important issues for developing efficient OBMC. The objective of Research Thrust 

3 is thus to develop an efficient OUU formulation for OBMC, while retaining the 
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accuracy. The new OUU formulation is based on a comprehensive study of the OUU 

formulations and UP methods developed from the society of reliability-based design 

optimization (RBDO).  

First, Research Thrust 3 begins with a review of studies on the developed OUU 

formulations and UP methods. The field of RBDO, which is a field of study adopting 

OUU formulations, has developed various OUU formulations (e.g., double-loop, 

single-loop, decoupled RBDO formulations, and others (Enevoldsen and Sørensen 

1994) (Tu et al. 1999) (Du and Chen 2002) (Youn et al. 2004) (Aoues and 

Chateauneuf 2010)) and reliability assessment methods (e.g., expansion method, 

most probable point method, sampling method, approximate integration method, and 

others (Li et al. 2003) (Rahman and Xu 2004) (Xu and Rahman 2004) (Lee et al. 

2008a) (Lee et al. 2008b) (Youn et al. 2008)). (Note that the reliability assessment 

in RBDO refers to the UP process in OBMC, also called probabilistic assessment or 

probabilistic analysis.) Research Thrust 3 thus elects an appropriate OUU 

formulation and a UP method for developing an efficient and accurate OBMC. 

Next, Research Thrust 3 inaugurates a new formulation for OBMC called 

sequential optimization and uncertainty propagation (SOUP). The proposed SOUP 

employs a two-stage, sequential, single-loop OUU for an efficient and accurate 

OBMC. The first stage of SOUP is formulated to utilize an efficient process. Then, 

the second stage of SOUP formulates an accurate process. Thereby, SOUP aims to 

achieve a process for OBMC that is both efficient and accurate. Meanwhile, two 

calibration metrics, the moment matching metric and probability residual, are 

devised to be used in each sequence of SOUP.  
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The remainder of Chapter 4 is organized as follows. Sections 4.1 and 4.2, 

respectively, review OUU formulations and UP methods developed from the field of 

RBDO. In Section 4.3, the proposed formulation for an efficient and accurate OBMC 

is introduced, with discussion of two UP methods and two calibration metrics. The 

effectiveness of SOUP is investigated through examination of a case study “bearing 

capacity equation” presented later in Section 6.2. Finally, the conclusions of 

Research Thrust 3 are provided in Section 4.4. 

 

4.1 Brief Review of Optimization Under Uncertainty 

Formulations 

First, Section 4.1.1 provides an overview of four types of OUU formulations. Section 

4.1.2 provides a summary and discussion of the possible use of existing OUU 

formulations for OBMC. 

 

4.1.1 Overview of Optimization Under Uncertainty Formulations 

The society of reliability-based design optimization (RBDO) has developed various 

OUU formulations to achieve a reliable design by associating the design 

optimization and reliability assessment processes. Based on the author’s intention, 

developed OUU formulations can be categorized into four types: 1) basic single-loop, 

2) double-loop, 3) single-loop, and 4) decoupled formulations (Du and Chen 2002) 

(Aoues and Chateauneuf 2010) (Yoon 2018). Table 4-1 summarizes the four 

categories OUU formulations and algorithm examples. 
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 Basic single-loop RBDO: A basic way to formulate an OUU for RBDO is to 

organize a single-loop RBDO where the single loop includes the reliability 

assessment process, as depicted in Figure 4-1a. Normally, Monte Carlo simulations 

(MCS) are used for the sampling-based reliability assessment process for a single-

loop RBDO. The sampling methods ensure high accuracy when a sufficient number 

of samples are available. However, sequential execution of the two processes is too 

computationally expensive to be applied to real-world applications. Note that other 

reliability assessment methods can substitute MCS for efficiency, but with lower 

accuracy. A review of the reliability assessment methods, which refer UP methods 

for OBMC, is presented in Section 4.2. 

Double-loop RBDO: Double-loop formulations (e.g., the reliability index 

approach-based RBDO (Nikolaidis and Burdisso 1988) and the performance 

measure approach-based RBDO (Tu et al. 1999)) were developed to substitute for 

expensive sampling methods in a single-loop RBDO (basic single loop RBDO) by 

formulating nested optimization problems, where the inner loop deals with the 

Table 4-1 Summary of Optimization Under Uncertainty Formulations 

OUU Formulation Algorithm Example 

Basic single-loop RBDO Sampling method-based RBDO 

Double-loop RBDO 
Reliability index approach-based RBDO 

Performance measure approach-based RBDO 

Single-loop RBDO Single-loop single vector 

Decoupled RBDO 
Sequential optimization  

and reliability assessment 
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reliability assessment (UP) and the outer loop deals with the design optimization 

(Figure 4-1b). The fundamental idea of the double-loop formulation is to conduct the 

reliability assessment process by measuring the direct distance (reliability index) 

from the design point to the constraints. However, the computational cost still can 

be high because the inner loop formulates another optimization inside of the outer 

loop to find the optimal point on the constraints to calculate the reliability. 

Single-loop and Decoupled RBDO: To ease the computational cost by 

separating the double-loop, single-loop approaches (e.g., single-loop, single-vector 

(Liang et al. 2008) (Nguyen et al. 2010)) and decoupled approaches (e.g., sequential 

optimization and reliability assessment (Du and Chen 2002)) have been developed. 

Single-loop RBDO eliminates the inner loop for the reliability assessment by 

approximating probabilistic constraints to deterministic ones (Figure 4-1c). 

Probabilistic constraints are approximated into deterministic ones and then simple 

design optimization is conducted without additional reliability assessment. 

Decoupled RBDO decouples two loops into the outer loop for deterministic design 

optimization and the inner loop for the reliability assessment (Figure 4-1d). The two 

separated loops are performed sequentially until a design optimization converges. 

Compared to the double-loop RBDO, which conducts the reliability assessment for 

all design changes in the outer loop, the decoupled RBDO conducts the reliability 

assessment only once after the deterministic optimum design from the outer loop is 

achieved. 
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Figure 4-1 Formulations of Optimization Under Uncertainty: a) Basic Single-Loop, b) Double-Loop, c) Single-Loop, and 

d) Decoupled Reliability-Based Design Optimization 
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4.1.2 Summary and Discussion 

To summarize the review of the developed RBDO formulations, RBDO 

formulations, such as double loop, single loop, or decoupled RBDO, were available 

for two reasons: 1) the reliability assessment process is performed with respect to the 

constraints, 2) the result of the reliability assessment process can be conservatively 

approximated. However, OBMC is an unconstrained optimization problem. 

Therefore, OBMC cannot take the advantages of the OUU formulation associating 

reliability constraints. Furthermore, the result of the UP should be accurate, because 

a probability distribution describing the variability in a system response should be 

accurate enough to be compared with the one from experimental observations. In 

conclusion, OBMC can only use a basic single-loop formulation. Thus, the way to 

increase the efficiency of OBMC is to either take advantage of the basic single loop 

formulation, or to increase the efficiency of the UP process within it. 

 

4.2 Brief Review of Uncertainty Propagation Methods 

The conclusion of the review in Section 4.1 implies that there is still a limitation that 

can be addressed to improve the efficiency of OBMC by formulating an OUU 

developed from the society of RBDO. The remaining way to improve the efficiency 

of OBMC is to adopt a proper UP method, which can be used in the basic single-

loop formulation. This section begins with a review of uncertainty propagation 

methods developed to date by members of the RBDO society (Section 4.2.1). After 

that, a summary and discussion about electing a proper UP method for OBMC is 

provided in Section 4.2.2. 
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4.2.1 Overview of Uncertainty Propagation Methods 

Various techniques for UP methods have been developed through various 

engineering societies. Existing UP methods can be broadly classified into three 

categories: 1) analytical methods, 2) sampling methods, and 3) numerical integration 

methods (Fonseca et al. 2002). 

 

4.2.1.1. Analytical Methods 

Based on the author’s understanding, analytical methods for UP, such as expansion 

methods and most probable point methods, are considered inadequate or inapplicable 

for the UP process of OBMC. Expansion methods are simple to implement, but 

require partial derivatives of the system responses and are inaccurate for non-

Gaussian cases (Schuëller and Jensen 2008). The method of most probable point is 

efficient and accurate for reliability-based design optimization (Lee et al. 2008c) 

(Lee et al. 2010). However, the reliability index, which is the result of the most 

probable point method, is inappropriate for OBMC, where the probabilistic 

characteristics of the system responses are required. 

 

4.2.1.2. Sampling Methods 

Basically, UP is designed to determine the probabilistic characteristics (e.g., a 

probability distribution or statistical moments) of the system responses. For OBMC, 

where probability distributions from computational predictions and experimental 

observations are quantitatively compared through a calibration metric, a probability 
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distribution is the most desirable way to describe the probabilistic characteristics of 

the system responses. In this respect, sampling methods, of which result in a full 

description of uncertainty in the system response by a probability distribution, could 

be an appropriate method. 

Sampling methods (e.g., direct-, quasi- Monte Carlo simulation, importance 

sampling) generate independent samples of all input variables of a computational 

model and repeat deterministic simulations to obtain the probability distributions of 

the system responses (Rahman and Xu 2004) (Beyer and Sendhoff 2007) (Yao et al. 

2011). To obtain a fully accurate probability distribution of the system responses, 

however, a large number of simulations is required. Thus, sampling methods are 

considered impractical for the OUU where the UP is incorporated with the 

optimization process. The computational burden can be serious when the 

computational prediction includes expensive calculations (e.g., a system-level finite-

element model). In general, sampling methods are used for benchmark studies where 

accurate computation is required. 

 

4.2.1.3. Numerical Integration Methods 

Statistical moments are another way to describe the probabilistic characteristics of 

the system responses. Calculating the statistical moments of the system responses 

entails numerical integration. For an N-variable computational model, however, N-

dimensional integration, of which computational cost exponentially increases as the 

number of input variables increases, is required to calculate the statistical moments. 

Approximate integration methods, such as the univariate dimension reduction (UDR) 
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method (Rahman and Xu 2004) (Lee et al. 2008b), the generalized dimension 

reduction method (Xu and Rahman 2004), and the eigenvector dimension reduction 

method (Youn et al. 2008) (Youn and Wang 2008), have been proposed and 

developed to efficiently calculate the statistical moments by simplifying one multi-

dimensional integration into multiple one-dimensional integrations by using additive 

decomposition.  

Approximation integration methods have strengths in terms of computational 

cost. Their computational costs only increase additively (rather than exponentially) 

when the number of random variables increases. However, two issues exist that limit 

the use of approximate integration methods in OBMC. First, the final result of an 

approximate integration method is a set of statistical moments. With a few statistical 

moments, approximate comparison is available; for example, for the first four 

statistical moments (mean, standard deviation, skewness, and kurtosis), probability 

distributions of the system responses can be approximately constructed by the 

Pearson system (Youn and Wang 2008) (Youn and Xi 2009) (Choi et al. 2010). 

However, accurate comparison between two probability distributions from 

experimental observations and computational predictions is not available. The 

second issue is the numerical error that arises due to high non-linearity or large 

random variations. The numerical error from using univariate dimension reduction 

or eigenvector dimension reduction is less than the second-order Taylor series 

approximation. (It is noteworthy that the numerical error is less than that found in 

analytical methods.) This means that numerical error occurs, for example, when a 

computational model includes a cross-term, the term including multiplication of two 

variables. This numerical error is due to additive decompositions eliminating the 

cross-term in the integration. Although the degree of error is less than the second-
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order Taylor series approximation, the numerical error may not be trivial for a 

particular case. 

 

4.2.2 Summary and Discussion 

In summary, among three broadly classified UP methods, sampling methods and 

numerical integration methods are available to be used in OBMC, since their results 

provide probabilistic characteristics (e.g., a probability distribution derived from a 

sampling method or statistical moments from numerical integration methods) of the 

system responses. Comparing these two methods, sampling methods have strength 

in terms of their high accuracy, and numerical integration methods have strength in 

efficiency, while retaining a degree of accuracy. The strengths from each method 

inspire formulation of a new OUU formulation for OBMC. 

In this study, the direct Monte Carlo sampling (MCS) method is used to 

represent the sampling methods and the univariate dimension reduction (UDR) 

method is used to represent the approximation integration methods. Other advanced 

methods for each category may show better accuracy and efficiency; however, this 

study focuses on a representative method for each category that can be used in 

OBMC without difficulty.  
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4.3 Sequential Optimization and Uncertainty Propagation 

for Optimization-Based Model Calibration 

This section introduces the proposed OUU formulation for an efficient and accurate 

OBMC. First, Section 4.3.1 explains how the proposed method – sequential 

optimization and uncertainty propagation (SOUP) – is formulated for OBMC. 

Second, Section 4.3.2 explains how the selected UP methods – the direct Monte 

Carlo simulations (direct MCS) and univariate dimension reduction (UDR) – are 

adopted in SOUP for OBMC. Third, Section 4.3.3 discusses on the two calibration 

metrics – the proposed moment-matching metric (MMM) and probability residual 

(PR).  

 

4.3.1 Scheme of Sequential Optimization and Uncertainty Propagation 

From the comprehensive study of OUU formulations and UP methods found in 

Sections 4.1 and 4.2, it can be concluded that 1) the available OUU formulation for 

OBMC is the basic single optimization loop, and 2) the available UP methods for 

OBMC are sampling methods (e.g., direct MCS) and approximation integration 

methods (e.g., UDR). As discussed in Section 4.2, sampling methods are accurate 

but computationally expensive. On the other hand, approximation integration 

methods are efficient, but have questionable accuracy (numerical errors may exist). 

To take advantage of the positive aspects of each UP method, the proposed 

method links two sequential optimization loops that involve both of the UP processes, 

as shown in Figure 4-2. The proposed method is named sequential optimization and 

uncertainty propagation (SOUP). The first sequence of SOUP, which is called the 
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efficient sequence, employs approximate integration methods for the UP process. In 

this paper, UDR is used to represent the approximate integration methods. As 

depicted in Figure 4-2, the first sequence of OBMC calibrates the initial calibration 

parameter (θXu, k=1) with an approximate integration method and moment matching 

metric. The optimal (final) calibration parameters of the first sequence of OBMC 

becomes the intermediate calibration parameters (�̂�Xu), which then are the initial 

calibration parameters for the second sequence of OBMC. In the second sequence of 

SOUP, which is called the accuracy sequence, the optimization associated with 

accurate sampling methods aims to search for the optimal values for the calibration 

parameters ( �̂� Xu, opt). Though the computational efficiency is low when using 

sampling methods in OBMC, SOUP’s efficiency is improved as compared to using 

OBMC entirely with sampling methods. This is because the initial point of OBMC 

with sampling methods is closer to the potential optimum; thereby, the function 

counts until the convergence by the OBMC with sampling methods decreases. 

Despite the computational cost of the second sequence of SOUP (due to its use of 

sampling methods), the second sequence of SOUP can guarantee accuracy, since the 

UP result derived from the sampling methods is a full description of the uncertainty 

in a system response, through which an accurate calibration is available. 
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Figure 4-2 Sequential Optimization and Uncertainty Propagation for an Efficient and Accurate Optimization-Based Model 

Calibration 
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4.3.2 Uncertainty Propagation Methods in SOUP 

For the proposed SOUP procedure, two UP methods, one using a sampling method 

and the other using an approximate integration method, are used to formulate a two-

sequence OUU. In this paper, the direct MCS and univariate dimension reduction 

method are used to represent the sampling methods and approximate integration 

methods, respectively. Section 4.3.2.1 introduces a procedure to adopt direct MCS 

in OBMC and provides a discussion about the accuracy and efficiency issue. Section 

4.3.2.2 presents how UDR eases the computational cost in the UP process and the 

reason why the numerical errors occur. 

 

4.3.2.1. Direct Monte Carlo Simulations 

Direct Monte Carlo sampling (MCS) or simulation is one representative method that 

belongs to the general category referred to as sampling methods. Table 4-2 

summarizes the five steps used to conduct direct MCS. Direct MCS repeatedly 

evaluates a deterministic prediction through a computational model using sets of 

random numbers as input variables (Step 4). Due to randomness in generating sets 

of random input variables (Step 2), a sufficient number (m) of repetitions (Step 4) is 

required to obtain a robust result of the predictions. Herein, robustness in predictions 

means the convergence of constructed probability distributions or calculated 

statistics in Step 5. 

The strength of sampling methods, including direct MCS, is that the UP result 

will be accurate if a sufficient number (m) of repeating deterministic predictions 

from sets of random numbers is promised. To analyze the repeated predictions, 

probability distributions can be constructed either by parametric methods (e.g., 
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maximum likelihood estimation with an assumption of the type of probability 

distribution) or non-parametric methods (e.g., Kernel density estimation). Because a 

full description of the probability distribution of the system responses is available 

with a sufficient number of samples, use of direct MCS in OBMC improves the 

accuracy of the calibrated results. 

As the number (m) of repetitions increases, however, the computational cost for 

the UP increases. The computational burden gets even worse when the deterministic 

prediction using one set of random input variables is also expensive (e.g., a 

complicated finite difference element model of an engineered system). Therefore, it 

is too expensive to proceed with the entire process of OBMC until the initial part 

converges to the optimum.  

 

 

Table 4-2 Steps for Direct Monte Carlo Sampling for Optimization-Based Model 

Calibration 

Step 1 Define a computational model (y = Mmodel(x1, x2, …, xN)) with n 

number of input variables. 

Step 2 Generate a set of random input variables (Xi = (xi1, xi2, …, xiN)). 

Step 3 Evaluate the model (Mmodel) and store the prediction as yi. 

Step 4 Repeat steps 2 and 3 for i = 1 to m. 

Step 5 Analyze the predictions (Ypre = (y1, y2, …, ym)) by constructing 

probability distributions (p(y)) or calculating statistics (θY). 
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4.3.2.2. The Univariate Dimension Reduction Method 

Uncertainty propagation (UP) using numerical integration methods is designed to 

obtain the statistical moments (e.g., mean, standard deviation, skewness, kurtosis) 

that describe the uncertainty in the system response (y). To calculate the mth statistical 

moment of the predicted system response (ypre), a multivariate (N-dimensional) 

integration is required, as 

 

𝐸[𝑦𝑚(𝐗)]

≡ ∫ ⋯
+∞

−∞

 ∫ {𝑦(𝑥1, … , 𝑥𝑁}𝑚𝑝𝑥1,…,𝑥𝑁
(𝑥1, … , 𝑥𝑁)𝑑𝑥1 ⋯𝑑𝑥𝑁

+∞

−∞

 
(4-1) 

where E[·] denotes the expectation operator and pX(X) denotes the joint probability 

distribution of N numbers of input variable (X). To compute Equation (4-1), an 

expensive multivariate integration (I[·]) is required, such as 

 𝐼[𝑦𝑚(𝐗)] ≡ ∫ ⋯
+∞

−∞

 ∫ {𝑦(𝑥1, … , 𝑥𝑁}𝑚𝑑𝑥1 ⋯𝑑𝑥𝑁

+∞

−∞

 (4-2) 

To ease the expensive computational cost of the multivariate integration, 

approximate integration methods have been developed; the univariate dimension 

reduction (UDR) method provides a representative outcome. The UDR method 

utilizes a dimension reduction method using additive decomposition. The additive 

decomposition converts a multivariate equation (y(X)) into a univariate 

approximation (ya), given as 

 

𝑦(𝑥1, … , 𝑥𝑁) ≅ 𝑦a(𝑥1, … , 𝑥𝑁) 

= ∑𝑦(𝜇1, … , 𝜇𝑗−1, 𝑥𝑗 , 𝜇𝑗+1, … , 𝜇𝑁)

𝑁

𝑗=1

− (𝑁 − 1)𝑦(𝜇1, … , 𝜇𝑁) 
(4-3) 

where µj is the first statistical moment of µj, y(µ1, …, µj-1, xj, µj+1, …, µN) denotes a 

random system response that depends on xj, and y(µj, …, µj) is deterministic system 

response when X = µ. Using the univariate approximation, multivariate integration 

of Equation (4-2) can be reduced to a univariate one, given as 
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𝐼[𝑦𝑚(𝐗)] 

≅ [∑𝐼[𝑦(𝜇1, … , 𝜇𝑗−1, 𝑥𝑗 , 𝜇𝑗+1, … , 𝜇𝑁)] − (𝑁 − 1)𝐼[𝑦(𝜇1, … , 𝜇𝑁)]

𝑁

𝑗=1

]

𝑚

 
(4-4) 

Then, the mth statistical moment of the predicted system response (ypre) is 

approximately calculated as 

 

𝐸[𝑦𝑚(𝐗)] ≅ 𝐸[𝑦a
𝑚(𝐗)] 

= 𝐸 [{∑𝑦(𝜇1, … , 𝜇𝑗−1, 𝑥𝑗 , 𝜇𝑗+1, … , 𝜇𝑁) − (𝑁 − 1)𝑦(𝜇1, … , 𝜇𝑁)

𝑁

𝑗=1

}

𝑚

] 

= ∫ {∑𝑦(𝜇1, … , 𝜇𝑗−1, 𝑥𝑗 , 𝜇𝑗+1, … , 𝜇𝑁) − (𝑁 − 1)𝑦(𝜇1, … , 𝜇𝑁)

𝑁

𝑗=1

}

𝑚
+∞

−∞

∙ 𝑝𝑥𝑗
(𝑥𝑗)𝑑𝑥𝑗 

(4-5) 

where one multivariate integration is converted to multiple univariate integrations. 

To calculate Equation (4-5), a binomial formulate can be used to recursively execute 

univariate integration, which requires using (M - 1) × N + 1 integration points, where 

N is the number of input variables and M is the number of integration points along 

each random variable (Rahman and Xu 2004). To carry out each univariate 

integration effectively, the eigenvector dimension reduction method proposes 2M + 

1 and 4M + 1 eigenvector sampling schemes, while maintaining high accuracy. For 

further information about univariate dimension reduction and eigenvector dimension 

reduction, please refer to (Rahman and Xu 2004) (Youn et al. 2008) (Youn and Wang 

2008). 

The computational cost for the UP can be decreased by using dimension 

reduction methods, however, the accuracy issue remains. According to (Youn et al. 

2008), the numerical error in the use of the additive decomposition (Equation (4-4)) 

is given as 
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𝑇[𝐸[𝑦𝑚(𝐗)]] − 𝑇[𝐸[𝑦a
𝑚(𝐗)]] 

=
1

2! 2!
∑

𝜕4𝑦𝑚

𝜕𝑥𝑖
2𝜕𝑥𝑗

2

𝑥𝑖,𝑥𝑗=0

𝐸[𝑥𝑖
2𝑥𝑗

2] + ⋯

𝑖<𝑗

 (4-6) 

where T[·] denotes the multivariate Taylor expansion at X = 0. For example, when 

propagating the uncertainty in two input variables (x1 and x2) of a computational 

model (y = x1x2), the numerical error exists in obtained statistical moments, as 

summarized in Table 4-3. 
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Table 4-3 Numerical Errors for Using Dimension Reduction in Calculation of the First Four Statistical Moments 

The Statistical Moments Numerical Errors for y = x1x2 

1st order (m = 1) 
=

1

2! 2!
∑

𝜕4𝑥1𝑥2

𝜕𝑥1
2𝜕𝑥2

2
(𝟎)E(𝑥1𝑥2) = 0

𝑖<𝑗

 

2nd order (m = 2) 
=

1

2! 2!
∑

𝜕4(𝑥1𝑥2)
2

𝜕𝑥1
2𝜕𝑥2

2
(𝟎)E((𝑥1𝑥2)

2)

𝑖<𝑗

+ ⋯ =
1

4

𝜕4(𝑥1
2𝑥2

2)

𝜕𝑥1
2𝜕𝑥2

2 E(𝑥1
2𝑥2

2) 

=
1

4
(4)E(𝑥1

2𝑥2
2) = E(𝑥1

2𝑥2
2) 

3rd order (m = 3) 
=

1

2! 2!
∑

𝜕4(𝑥1𝑥2)
3

𝜕𝑥1
2𝜕𝑥2

2
(𝟎)E((𝑥1𝑥2)

3)

𝑖<𝑗

+
1

3! 3!
∑

𝜕6(𝑥1
3𝑥2

3)

𝜕𝑥1
3𝜕𝑥2

3 E(𝑥1
3𝑥2

3) + ⋯

𝑖<𝑗

 

=
1

36

𝜕4(𝑥1
3𝑥2

3)

𝜕𝑥1
3𝜕𝑥2

3 E(𝑥1
3𝑥2

3) =
1

36
(36)E(𝑥1

3𝑥2
3) = E(𝑥1

3𝑥2
3) 

4th order (m = 4) 
=

1

4! 4!
∑

𝜕4(𝑥1𝑥2)
4

𝜕𝑥1
4𝜕𝑥2

4
(𝟎)E((𝑥1𝑥2)

4)

𝑖<𝑗

=
1

4! 4!

𝜕4(𝑥1
4𝑥2

4)

𝜕𝑥1
2𝜕𝑥2

2 E(𝑥1
4𝑥2

4) 

=
1

4! 4!
(4! 4!)E(𝑥1

4𝑥2
4) = E(𝑥1

4𝑥2
4) 
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4.3.3 Calibration Metrics for SOUP 

The proposed SOUP method uses two UP methods in sequential formulation of two 

single loops. As explained in Section 3, the results of each UP method are different. 

The result from direct MCS is a probability distribution; the result from UDR is a set 

of statistical moments. Thus, two different calibration metrics that quantify the 

agreement or disagreement between experimental observations and computational 

predictions should be devised in two sequences. This study adopts 1) the moment 

matching metric (MMM) for the 1st sequence of SOUP and 2) the probability residual 

(PR) for the 2nd sequence of SOUP.  

 

4.3.3.1. The Moment Matching Metric 

The Moment Matching Metric (MMM) quantifies the difference between the 

statistical moments of the system responses from the observations and predictions. 

Thus, the MMM can be used with the UDR, of which the UP results are in statistical 

moments. The MMM, formulated either by the absolute difference or the squared 

difference, is defined as 

 𝑀𝑀𝑀abs = ∑|𝛉𝐘obs, 𝑖 − 𝛉𝐘pre, 𝑖|

4

𝑖=1

 (4-7) 

 

𝑀𝑀𝑀squ = ∑(𝛉𝐘obs, 𝑖 − 𝛉𝐘pre, 𝑖)
2

4

𝑖=1

 (4-8) 

where θY denotes the statistical moments of the system responses (Y) from the 

observations and predictions. Both the absolute and the squared difference-based 

MMM calculate the differences in the first four statistical moments (mean, standard 

deviation, skewness, kurtosis). In general, the first four statistical moments are 

enough to describe the uncertainty or variability in the outputs. For example, the 
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Pearson system is available for characterizing a probability distribution using the 

first four statistical moments (Youn and Wang 2008) (Youn and Xi 2009) (Choi et al. 

2010). However, the first four statistical moments are insufficient information for a 

full comparison of the probability distributions. For a perfect match between the 

observations and predictions, the MMM gives a ‘zero’ value, which means no 

difference. 

 

4.3.3.2. The Probability Residual 

The PR quantifies the difference between the two probability distributions that are 

derived from the observations and predictions (Lee et al. 2018). The PR formulated 

either by the integral of the absolute difference or squared difference is defined as 

 𝑃𝑅abs = ∫ |𝑝𝐘obs
(𝑦) − 𝑝𝐘pre

(𝑦|𝛉𝐗)|𝑑𝑦
∞

−∞

 (4-9) 

 
𝑃𝑅squ = ∫ (𝑝𝐘obs

(𝑦) − 𝑝𝐘pre
(𝑦|𝛉𝐗))

2

𝑑𝑦
∞

−∞

 (4-10) 

where pYobs(y) denotes the PDF of the system response from the experimental 

observations and pYpre(y|θ) denotes the PDF of the system responses from the 

computational predictions. For a perfect match between the observations and 

predictions, the PR also gives a ‘zero’ value, which means no difference. Unlike the 

MMM, the PR can expect accurate model calibration, in that it can quantify the 

overall shape difference of the PDF. For accurate OBMC, accurate one-to-one 

comparison between two probability distributions from observations and predictions 

is desired. In this context, the PR is a better choice than the MMM.  
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4.3.3.3. Summary and Discussion 

One desired characteristic of a calibration metric is whether it can formulate a convex 

optimization problem. When an optimization problem is confirmed to be convex, it 

can be solved accurately and efficiently using existing optimization tools (Boyd and 

Vandenberghe 2004). However, the previous study by Lee et al. (Lee et al. 2018) 

proved that OBMC with PR cannot formulate a convex optimization problem. On 

the other hand, the MMM can formulate a convex optimization for OBMC. For the 

MMM, the determinant of the Hessian matrix is always positive. The convexity of 

OBMC using the MMM allows the optimization to always converge to the optimum. 

 

4.4 Summary and Discussion 

In conclusion, SOUP can grasp both the efficiency and accuracy of available 

methods by using two UP methods with two calibration metrics. The first sequence 

in SOUP uses UDR to obtain the statistical moments of the predicted system 

responses and compares the observations and predictions using the MMM. Due to 

the efficiency of UDR, the computational time for the first sequence is fast. By using 

the MMM, it can be expected that the optimization converges at the end of the first 

sequence. While numerical errors from the UDR and incomplete comparison from 

the MMM may cause inaccurate OBMC in the first sequence, these issues can be 

improved in the second sequence of SOUP. The global optimum at the end of the 

first sequence becomes the intermediate calibration parameter, the initial calibration 

parameter for the second SOUP sequence. Although the computational cost of direct 

MCS is high, it can be confirmed that the intermediate calibration parameter from 

the second sequence with UDR and the MMM reaches the near-true optimum. In 
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other words, the number of iterations required for the second sequence and the 

optimization can be conducted in the convex zone. Since the second sequence with 

direct MCS and the PR shows the best accuracy, accurate calibration can be expected 

at the end of the two-step SOUP process. 

 

 

 

 

 

 

 

  

Sections of this chapter have been published or submitted as the following 

journal article:  

1) Guesuk Lee and Byeng D. Youn, “Sequential Optimization and Uncertainty 

Propagation Method for Efficient Optimization-Based Model Calibration,” 

Structural and Multidisciplinary Optimization, Submitted in September 2018. 
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Chapter 5 Statistical Model Validation – Probability of Coincidence 

 

Development of a Statistical 

Validation Metric –Probability of 

Coincidence  

 

Model validation is the process of determining the degree to which a computational 

model is an accurate representation of a real phenomenon, from the perspective of 

the model’s intended uses (Babuska and Oden 2004) (Oberkampf et al. 2004b) 

(Trucano et al. 2006) (Hills et al. 2008) (Oberkampf and Trucano 2008) (Kutluay 

and Winner 2014). In this dissertation, model validation is implemented to check 

whether calibration has been conducted accurately at the completion of model 

calibration. (Note that validation experiments are designed to validate the calibrated 

results with different types of system responses.) However, model validation can be 

a stand-alone process to assess the credibility of a computational model with or 

without the calibration process. In addition, the validation results can help the 

process of improving the model. Like statistical model calibration, the process of 

model validation should also be conducted in a statistical sense. The objective of 

Research Thrust 4 is thus to develop a way to statistically validate the calibrated 

computational model.  
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First, Research Thrust 4 begins with a review of studies of the developed 

validation methods. In particular, the review focuses on the area metric with 

hypothesis testing. Due to its several merits, many prior studies have adopted the 

area metric with the hypothesis testing for statistical model validation. First, the area 

metric quantifies the statistical difference between computational predictions and 

experimental observations. Second, the hypothesis testing decides whether or not the 

prediction of the computational model is acceptable based on the evaluation of the 

area metric. Nonetheless, several limitations of the area metric with hypothesis 

testing remain; these remaining issues motivated Research Thrust 4. Research Thrust 

4 thus elects an appropriate validation metric for validating the calibrated results by 

OBMC. At the end, a new validation metric is proposed, which is motivated by the 

previous studies. 

The remainder of Chapter 5 is organized as follows. Section 5.1 reviews 

statistical model validation methods developed from the field of verification and 

calibration (V&V) (Oberkampf and Roy 2010). In Section 5.2, a validation metric – 

probability of coincidence (POC) – is proposed for the validity check of the 

calibrated results derived from OBMC. Finally, the conclusions of Research Thrust 

4 are provided in Section 5.3. 

 

5.1 Brief Review of Statistical Model Validation 

This section provides a review of statistical model validation. Earlier studies by 

Oberkampf and Barone (Oberkampf and Barone 2006), Ferson et al. (Ferson et al. 
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2008), and Liu et al. (Liu et al. 2011) summarized the desired features of validation 

metrics. Based on these studies, the desired features of a validation metric can be 

summarized as “objective” or “stochastic or statistical.” Furthermore, in a statistical 

sense, a system response is presented as a variation, for example, by a probability 

distribution or a random process, due to the existence of various uncertainties. A 

“statistical or stochastic” validation metric should be able to compare the system 

responses from experiments and simulations in a variation by considering 

uncertainties (Schwer 2007) (Sarin et al. 2010) (Jiang and Mahadevan 2011). For 

statistical comparison, the stationary type of system responses needs a distribution 

comparison method because the scalar values build a distribution from different 

conditions of prediction and observation (Chen et al. 2004) (Mahadevan and Rebba 

2005) (Halder and Bhattacharya 2011). This dissertation focuses on the model 

validation method for the stationary type of system responses; however, there also 

exists a need for model validation methods for the dynamic type of system responses.  

Normally, the developed methods of statistical model validation are composed 

of the validation metric (Section 5.1.1) and the decision problem (Section 5.1.2). At 

the end of a review of each of these, Section 5.1.3 summarizes the conclusions. 

 

5.1.1 Validation Metric – The Area Metric 

As a powerful validation metric, numerous studies in the model validation 

community show that the area metric possesses most of the desirable features of a 

validation metric for comparing experimental observations and computational 

predictions (Ferson et al. 2008) (Ferson and Oberkampf 2009) (Liu et al. 2011) (Roy 
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and Oberkampf 2011) (Thacker and Paez 2013) (Voyles and Roy 2015). To obtain 

the area metric value, propagated system responses of computational prediction 

produce a probability box or p-box (F(y)), while n numbers of experimental 

measurements are used to construct an empirical cumulative density function (CDF, 

Sn(y)) of system responses (Ferson et al. 2008). Finally, the minimum area between 

these two structures is referred to as the value of the area metric (darea), shown as:  

 𝑑area(𝐹(𝑦), 𝑆𝑛(𝑦)) = ∫ |𝐹(𝑦) − 𝑆𝑛(𝑦)|𝑑𝑦
∞

−∞

 (5-1) 

Prior comparative studies (Oberkampf and Barone 2006) (Ferson et al. 2008) (Liu et 

al. 2011) (Roy and Oberkampf 2011) (Thacker and Paez 2013) (Li et al. 2014), 

showed the area metric to be promising due to its favorable features, as compared to 

other methods. First, the area metric is one of only a few developed distribution 

comparison metrics. It measures the entire distribution, rather than statistical 

moments, thereby accounting for uncertainties in both the simulation and the 

experiments. Second, sampling uncertainty that arises due to limited experimental 

data available for the validity check is considered in the area metric (Jung et al. 2014). 

U-pooling and T-pooling methods are proposed to assist with usage of the area 

metric (Ferson et al. 2008) (Liu et al. 2011) (Li et al. 2014). While the area metric 

can validate the prediction with a small number of data, conducting a few more 

experiments could still be a burden to the analysts. The U-pooling method can ease 

this burden by pooling all experimental observations at different validation sites into 

a u-value CDF (Ferson et al. 2008) (Liu et al. 2011) (Li et al. 2014). Through the u-

pooling technique, the area metric takes advantage when multiple experiments at 

various validation sites are available. The original u-pooling method is only 

applicable for a single-system response at a single validation site. To extend the 
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usage of the area metric for validating correlated multiple responses, Li et al. (Li et 

al. 2014) proposed the t-pooling method, accompanied by probability integral 

transformation. The multivariate probability integral transformation method 

transforms the joint CDF of the system responses into a univariate CDF; then, the t-

pooling method integrates the evidence from all relevant data of multi-response 

quantities over an intended validation domain into a single measure to assess the 

overall disagreement. The area metric with U-pooling and T-pooling methods is 

attractive in that it uses all possible data to validate a model. However, defining the 

range of validation sites where the data are pooled in one distribution is an important 

challenge. 

 

5.1.2 Decision Problem - Hypothesis Testing 

A validation metric is a stand-alone measure that indicates the degree of agreement 

or disagreement between computational predictions and experimental observations. 

(Note that the area metric quantifies the minimum disagreement between 

computational predictions and experimental observations.) However, the acceptance 

criteria for a yet-to-be-validated model is another important issue. Suppose a 

desirable validation metric quantified the difference between the experiment and the 

simulation. It is then necessary to establish a method to determine the validity of the 

model (Oberkampf and Trucano 2002). 

Statistical hypothesis testing with a specified level of significance is widely used 

as a decision-making tool for model validation (Chen et al. 2004) (Liu et al. 2011) 

(Kokkolaras et al. 2013) (Jung et al. 2014). Hypothesis testing aims to determine 

whether the acceptance or rejection of a model is valid or not using quantitative 
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measurements of the discrepancy between the experiment and the simulation. Two 

kinds of hypothesis testing have been studied: classical and Bayesian (Oberkampf 

and Barone 2006) (Jiang and Mahadevan 2007) (Jiang and Mahadevan 2008) (Oliver 

et al. 2015) (Li and Mahadevan 2016). The significant difference between the two 

testing methods is that classical testing focuses on model rejection in the validity 

check; whereas, the Bayesian method focuses on model acceptance by using prior 

information (Liu et al. 2011). This dissertation, however, focuses on discussing the 

classical hypothesis testing. 

Classical hypothesis testing is a well-developed statistical method for accepting 

or rejecting a model’s validity based on statistics (Chen et al. 2004) (Oberkampf and 

Barone 2006) (Kat and Els 2012) (Ling and Mahadevan 2013) (Jung et al. 2014). 

Table 5-1 summarizes the hypothesis testing. First, the null hypothesis (H0, which 

represents that a computational model is valid) and the alternative hypothesis (H1, 

which represents that a computational model is not valid) are defined. The former 

means that the difference between the predicted and observed system responses is 

not statistically significant; the latter means there is a statistically significant 

difference. Hypothesis testing is based on test statistics (θ). If the test statistic falls 

outside of the critical region of the test statistic, the null hypothesis is rejected, 

meaning that the observations from experiments and the simulation prediction are 

significantly different. To use the area metric, the calculated area metric becomes a 

test statistic. Figure 5-1 shows an example of model validation with the area metric 

(darea) and hypothesis testing. The corresponding P-value (Parea(0.05) = 0.137, when 

the number (n) of experimental observations is 18 and the significance level is 0.05, 

in Figure 5-1) is calculated as the probability that the test statistic will fall outside 

the range defined by the calculated value of the test statistic under the null hypothesis 
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(Rebba and Mahadevan 2006) (Ling and Mahadevan 2013). 

According to Liu et al. (Liu et al. 2011), classical hypothesis testing seldom 

rejects a better model. A problem arises when a small amount of physical experiment 

data is available; this is common in many fields. Comparing full distribution data is 

impossible, but with a small number of data there is possibility that the result is not 

trustworthy. In this situation, the confidence interval of prediction distribution can 

be used by checking if the observed data fall inside the interval (Halder and 

Bhattacharya 2011) (Ghanem et al. 2008) (Buranathiti et al. 2006) (Chen et al. 2004). 

However, this strategy can tend not to reject an incorrect model, since a small number 

of data fall inside the confidence interval of prediction with high possibility (Liu et 

al. 2011). Furthermore, specifying the confidence level creates another problem, 

since a small perturbation of the confidence level largely affects the results of 

acceptance or rejection. On the other hand, a large number of samples can give 

 

Figure 5-1 An Example of a Probability Density Function of the Area Metric’s 

Value for n =18 Number of Experimental Observations 
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misleading results, because as the number of samples increases, the null hypothesis 

tends to be rejected at a given significance level (Ling and Mahadevan 2013). Above 

all, it should be noted that failing to reject the null hypothesis does not prove that the 

null hypothesis is true. 
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Table 5-1 Summary of Hypothesis Testing 

The Null Hypothesis (H0) A computational model is valid. 

(e.g., The area metric value – the difference between experimental observations 

and computational predictions – is significantly small.) 

The Alternative Hypothesis (H1/Ha) A computational model is not valid. 

(e.g., The area metric value – the difference between experimental observations 

and computational predictions – is significantly large.) 

False Positive (Type 1 Error) Incorrect rejection of a true null hypothesis  

(e.g., a computational model is judged as not valid, although it is truly valid.) 

False Negative (Type 2 Error) Failure to reject a false null hypothesis 

(e.g., a computational model is judged as valid, although it is truly not valid.) 

True Positive Successfully not rejecting a true null hypothesis 

True Negative Successfully rejecting a false null hypothesis 

Significance Level  

(P-value/Probability of Type 1 Error) 

The probability of a value accurately rejecting the null hypothesis 
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5.1.3 Summary and Conclusion 

So far, a comprehensive review of the area metric and hypothesis testing, 

respectively, as a validation metric and decision making tool, was introduced. 

Despite several merits of using the area metric with hypothesis testing, there are two 

limitations of its use as a statistical validation method for OBMC. 

First, the area metric cannot quantify the difference between PDFs from 

experimental observations and the computational predictions that are characterized 

by Research Thrust 1. In a probabilistic context, it is generally necessary to quantify 

the variability in QOI due to various uncertainty factors using a probability 

distribution. In the first part of OBMC (Research Thrust 1), the uncertainty 

characterization of experimental observations results in a parametric PDF. 

Characterized variability derived from experimental observations can be applied to 

both calibration and validation processes. For calibration by OBMC, the 

optimization progresses toward maximizing the agreement between the PDFs of 

experimental observations and computational predictions. Also, for validation, the 

uncertainty characterization resulting from the proposed method in Research Thrust 

1 can be used. With the proposed uncertainty characterization method that considers 

different experimental conditions as systematic measurement errors, experimental 

observations from different experiment settings are integrated into one parametric 

PDF. Thereby, the statistical uncertainty that arises from a dearth of data can be eased. 

However, to use the results of the method proposed in Research Thrust 1, a validation 

metric should be able to quantify the difference between the PDFs derived from the 

experimental observations and computational predictions. However, the area metric 

is computed by the minimum area between a probability box or p-box that comes 

from the propagated system responses of prediction and an empirical CDF derived 
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from the experimental observations.  

Second, the decision by hypothesis testing based on calculated values of the area 

metric does not provide the justification that a computational model is valid. Four 

decisions can be made based on the hypothesis testing: 1) false positive (type 1 error); 

2) false negative (type 2 error); 3) true negative (correct decision), or; 4) true positive 

(correct decision). First, wrong decisions, or statistical errors, can be made in 

statistical hypothesis testing, as summarized in Figure 5-2. A false positive (type 1 

error) denotes an incorrect rejection of a true null hypothesis (H0) that a 

computational model is valid, which means that the system response from a 

computational model follows the system response from the experiments; an 

alternative hypothesis (H1) stands for the opposite. A false negative (type 2 error) is 

the failure to reject a false null hypothesis. A wrong decision, or a statistical error 

(type 1 and 2 error) can be adjusted by the criteria, the rate of type 1 or 2 error. For 

example, as type 1 error (or significance level, α) increases, type 2 error decreases. 

By adjusting a type 1 error to be high (high significance level), the probability of 

accurately rejecting the null hypothesis becomes high, which means the decision can 

be made conservatively. Likewise, there are two possible correct decisions. A true 

positive decision denotes success in not rejecting a true null hypothesis. A true 

negative decision denotes success in rejecting a false null hypothesis. The decision 

of true negative states that the computational model is not valid for its intended use. 

However, the decision of true positive does not strictly state that the computational 

is definitely valid for its intended use. This is because the hypothesis testing is 

formulated only to reject an invalid computational model. 

In summary, the area metric with hypothesis testing has limitations when it is 

used in OBMC, as advanced in this dissertation, specifically: 1) the area metric 
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cannot be used to quantify the difference between PDFs from experimental 

observations and computational predictions, and; 2) a true positive decision that 

results from the hypothesis testing does not prove a computational model is valid for 

its intended use. 

 

 

 

 

 

Figure 5-2 Decisions by Hypothesis Testing: 1) False Positive (Type 1 Error); 2) 

False Negative (Type 2 Error); 3) True Negative (Correct Decision); 

4) True Positive (Correct Decision) 
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5.2 Probability of Coincidence 

This section introduces the proposed statistical validation method – probability of 

coincidence (POC). First, Section 5.2.1 explains the motivations behind the proposed 

POC. Second, Section 5.2.2 presents the mathematical formulation of the proposed 

POC. 

 

5.2.1 Motivations Behind the Probability of Coincidence Method 

Probability of coincidence (POC) is a new validation metric motivated by the idea 

of 1) probability of failure for reliability analysis (Ichikawa 1993) (Hu et al. 2018) 

and 2) probability of separation (POS) for a class separability metric (Jeon 2016). 

Taking into account that failure occurs when an applied load exceeds the strength of 

a system, the probability of failure (pf) can be described as the probability that the 

load or stress (L) exceeds the strength (S), shown as 

 𝑝f(𝑥) = ∫ 𝐹𝑆(𝑥)𝑓𝐿(𝑥)𝑑𝑥
∞

0

 (5-2) 

where FS and fL denote the CDF of strength (S) and the PDF of stress or loading (L), 

respectively. Figure 5-3 depicts the probability of failure, which is calculated by 

multiplying the probability (fL(x*)) that a loading has x* value and the probability 

(FS(x*)) that the strength is lower than the x* value. 

The POS is also motivated by the probability of failure. First, the probability (PNS) 

of a non-separable region is computed as 

 𝑃NS = ∫ 𝐹c2(𝑥)𝑓c1(𝑥)𝑑𝑥
∞

−∞

 𝑓𝑜𝑟 �̃�c1 ≤ �̃�c2 (5-3) 



99 

 

where fc1 and Fc2 represent the PDF of class 1 and the CDF of class 2, respectively, 

while �̃�c1 and �̃�c2 correspond to the medians of classes 1 and 2, respectively. PNS 

should have a value range between 0 and 0.5. Thus, to have a normalized value 

between 0 and 1, the POS is formulated as 

 𝑃𝑂𝑆 = (𝑒(1−2𝑃NS) − 1)/(𝑒 − 1) (5-4) 

Finally, the POS can have a “0” value if the feature data of two different classes 

overlaps perfectly and can have a “1” value if not overlapped at all. 

 

 

 

 

 

 

Figure 5-3 Illustration of the Failure by Probability Density Functions of Loading  

and Strength 
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5.2.2 Formulation of Probability of Coincidence 

Motivated by the idea that the POS can have a “0” value if the feature data of two 

different classes overlaps perfectly and a “1” value if not overlapped at all, the 

probability of coincidence (POC) is presented as 

 𝑃𝑂𝐶 = (1 −
𝑒(1−2𝑃OV) − 1

𝑒 − 1
) × 100 [%] (5-5) 

where the probability of the overlapped area (pov) is presented as: 

 

𝑃ov = ∫ 𝑃obs(𝑦)𝑝pre(𝑦)𝑑𝑦
∞

−∞

 

= ∫ (∫ 𝑝obs(𝑦) 𝑑𝑦
𝑦

−∞

)𝑝pre(𝑦)𝑑𝑦
∞

−∞

 

 𝑓𝑜𝑟 �̃�obs ≤ �̃�pre 

(5-6) 

 
𝑃ov = ∫ 𝑃pre(𝑦)𝑝obs(𝑦)𝑑𝑦

∞

−∞

 

= ∫ (∫ 𝑝pre(𝑦) 𝑑𝑦
𝑦

−∞

)𝑝obs(𝑦)𝑑𝑦
∞

−∞

 

 𝑓𝑜𝑟 �̃�pre ≤ �̃�obs 

(5-7) 

Figure 5-4 describes the probability of the overlapped area (pov). Equation (5-6) can 

be described by Figure 5-4, in that pov is calculated by the integral of multiplication 

of the shaded area (Pypre(y*)) and the dotted length (pypre(y*)). Finally, the POC can 

have a 0 [%] percentage value if the two probability distributions from the 

observations and predictions show no match; and 100 [%] percentage value if the 

two probability distributions show a perfect match. The validation results from the 

POC can provide valuable information to the analysts who make the decision 

whether to believe the credibility of a computational model about the probability 

(percentage) of the agreement between the observations and predictions. 
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Figure 5-4 Illustration of the Probability of Overlapped Area Derived from 

Probability Density Functions of Computational Predictions and 

Experimental Observations 



102 

 

5.3 Summary and Discussion 

Research Thrust 4 aims to develop a method for statistical model validation, which 

is the final process of OBMC. Statistical model validation checks the calibrated 

results using a validation metric and a decision method. Chapter 5 begins by 

providing a comprehensive review of the limitations of the area metric and 

hypothesis testing. Research Thrust 4 attempts to develop a new validation method 

for alternating the area metric and hypothesis testing. Ultimately, a new validation 

metric POC is proposed. POC itself quantifies the agreement and provides 

probabilistic information to the analysts who make a decision about whether or not 

to use a computational model. However, there is still a room for developing other 

validation methods. Suggestions for future study are discussed in the conclusion 

section of this dissertation. 

 

Sections of this chapter have been published or submitted as the following 

journal article:  

1) Guesuk Lee, Wongon Kim, Hyunseok Oh, and Byeng D. Youn, Nam H. Kim 

“Review of Statistical Model Calibration and Validation – From the Perspective 

of Uncertainty Structures,” Structural and Multidisciplinary Optimization, 

Submitted in September 2018. 
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Chapter 6 Case Studies 

 

Case Studies 

 

To demonstrate the four proposed research thrusts, this chapter employs four case 

studies, as summarized in Table 6-1, specifically: 1) uncertainty characterization of 

experimental observations of a cantilever beam deflection (Section 6.1), 2) model 

calibration of a bearing capacity equation (Section 6.2), 3) model calibration and 

validation of a steering wheel’s vibrational model (Section 6.4), and 4) model 

calibration and validation of a thin-film transistor liquid crystal display’s deflection 

model (Section 6.3). The first two case studies are introduced to demonstrate the 

effectiveness and accuracy of the proposed methods using problems with known 

answers. The final two cases studies are implemented to check the applicability of 

the proposed methods using actual, real-world engineering examples. 
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Table 6-1 Summary of Case Studies 

 Research Thrust 1 Research Thrust 2 Research Thrust 3 Research Thrust 4 

Case Study 1: 

Cantilever Beam’s 

Deflection 

∨ 

Check the accuracy 

with a known answer 

- - - 

Case Study 2: 

Bearing Capacity 

Equation 
- 

∨ 

Check the accuracy 

with a known answer 

∨ 

Check the accuracy 

with a known answer 

- 

Case Study 3:  

Steering Wheel 

Vibrational Model 

∨ 

Check the 

applicability in a 

practical example 

- 

∨ 

Check the 

applicability in a 

practical example 

∨ 

Check the 

applicability in a 

practical example 

Case Study 4:  

Liquid Crystal 

Display Deflection 

Model 

∨ 

Check the 

applicability in a 

practical example 

- 

∨ 

Check the 

applicability in a 

practical example 

∨ 

Check the 

applicability in a 

practical example 
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6.1 Case Study 1: Uncertainty Characterization of Observed 

Cantilever Beam Deflection 

As a case study, a cantilever beam problem is adopted to check the accuracy of 

Research Thrust 1. Section 6.1.1 presents the problem description of Case Study 1. 

Section 6.1.2 presents the estimated results of the probability density functions for 

the variability and two measurement errors in the observed deflections. For data of 

the beam’s deflection, the author intentionally generated sample data. At the end, 

Section 6.1.3 summarizes the results of Case Study 1. 

 

6.1.1 Problem Description 

The subject of the case study is a cantilever beam horizontally protruding from a 

rigid, unyielding vertical wall (Figure 6-1). As a QOI, the problem seeks to define 

the cantilever beam’s deflection (yD) at the free end of the beam when a vertical 

downward loading (PD) is applied at the same point. For repeated measurements, 

samples are randomly selected from a population of rectangular cantilever beams, of 

which the geometric (length, height, and width of a cantilever beam) and material 

properties (density and Young’s modulus of a cantilever beam) vary among the 

population. In the problem, it is tentatively assumed that the beam is made of a 

homogeneous isotropic material, which denotes that the same value of the material 

properties can be attributed to the beam’s deflection through the entire beam. (Note 

that there is no dependency or statistical correlation among the geometric and 

material properties.) Due to somewhat large variations in the geometric and material 

properties, the randomly selected beam shows the variability in the observed system 

response (yD, obs). 
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In the problem, the observed deflection (yD, obs) is further subject to two 

measurement errors that arise during the pick-up and usage of a measuring sensor. 

Here, a measuring sensor is randomly picked from a population of sensors and the 

selected sensor is repeatedly used for a set of data. When the chosen sensor has 

biased accuracy, described by a distribution or range of error, then all the 

measurements of each set produced from that sensor may have similar biased error; 

this is called systematic measurement error. Meanwhile, random measurement errors 

may exist both inside the set of data and across the sets of data. For example, 

detachment of the chosen sensor for reuse in four different beams may cause random 

measurement errors through the entire data in a set. Also, the chosen sensor for each 

set of data can have random measurement errors, since the data are randomly picked 

from a sensor population, across which variability in accuracy may exist. 

 

 

Figure 6-1 Illustration of Deflection of a Cantilever Beam When a Vertical 

Downward Loading is Applied at the Tip End of the Beam. 
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6.1.2 Uncertainty Characterization of Observed Deflection of a 

Cantilever Beam Considering Measurement Errors 

The true mean and standard deviation of observed beam’s deflections (YD, obs) are set 

to ‘0.1631’ and ‘0.0153’, respectively. (The unit for the deflection is omitted since 

it does not matter in developing the discussion.) To generate the observed data (YD, 

obs), including the two measurement errors, the maximum amount of bias ‘α’ for 

systematic measurement error and ‘βy’ standard deviation for random measurement 

are provided as ‘-0.1’ (negative bias) and ‘0.1y’, respectively (refer to Equations (2-3) 

and (2-4)). Second, increasing numbers (n = {3, 4, 5, 10, 25, 50}) of data are sampled 

to examine the statistical uncertainty that is present due to randomness in the 

generated random samples. For each number of sampled data, 30 iterative studies 

are conducted to check the accuracy. The method of moments, without considering 

the measurement errors in the observed data, is devised to check the effectiveness 

using the proposed method. 

Figure 6-2 represents the estimated mean (µy) and standard deviation (σy) using 

repeatedly sampled (observed) deflection data. Each blue dot denotes an estimation 

with n numbers of sampled data. The upper parts (Figure 6-2a and Figure 6-2c) show 

the estimated results by the method of moments, without considering measurement 

errors; the lower figures (Figure 6-2b and Figure 6-2d) show the estimated results 

using the proposed method. In common for all figures in Figure 6-2, as the amount 

of observed data increases, the variations of the estimated results get narrower; this 

is because the larger amount of data alleviates the degree of statistical uncertainty 

that is present in earlier results due to a lack of data. By comparing Figure 6-2a and 

Figure 6-2b, it can be confirmed that the proposed method restores the biased results 
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that are seen from the results found without the proposed method. Figure 6-2c shows 

that existence of random measurement error in observations results in larger 

estimations of standard deviation. On the other hand, Figure 6-2d shows that the 

proposed method adequately estimates the standard deviation by eliminating the 

effect of random measurement error. 

 

6.1.3 Summary and Discussion 

The method proposed in Research Thrust 1 is adopted for a case study of cantilever 

beam. Using the proposed method, more accurate estimations were available when 

both systematic and random measurement errors exist in the observations. Compared 

with a known answer for the estimations (the true mean and standard deviation of 

deflection of a cantilever beam), it could be confirmed that the estimated bias mean 

due to systematic measurement error was restored and the largely estimated standard 

deviation due to random measurement error was narrowed when the proposed 

method was used. With properly characterized variability of observed deflection 

available through use of the proposed method, the calibration will be more accurate. 

For example, if the biased estimation of the mean and largely estimated standard 

deviation were used for calibrating the unknown input variables, the calibrated input 

variables would have biased and largely calibrated results, which is untrue.  
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Figure 6-2 Estimated Mean and Standard Deviation with Increasing Numbers of Observations with/without Consideration 

of Measurement Errors 
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6.2 Case Study 2: Model Calibration of the Terzaghi’s 

Bearing Capacity Equation 

Section 6.2 introduces an example that examines a calibration problem of a bearing 

capacity equation for building a shallow foundation. The case study is formulated to 

check the effectiveness of the idea proposed in Research Thrusts 2 and 3. Section 

6.2.1 presents the problem description of Case Study 2. Section 6.2.2 presents the 

calibrated results of the bearing capacity equation. First, the calibrated results check 

the effectiveness of the idea proposed in Research Thrust 2, OBMC with analytical 

sensitivity information. Next, the calibrated results check how the proposed SOUP 

(Research Thrust 3) improves the efficiency and accuracy of the calibration results 

by OBMC. 

 

6.2.1 Problem Description 

A textbook written by Halder and Mahadevan (Haldar and Mahadevan 2000) 

provides an example study for teaching quantification of uncertainty in the response 

when there are random input variables. A shallow foundation is a building technique 

that transfers building load to the earth near to the surface. A shallow strip footing, 

which is typical in ordinary buildings located in a dense sand layer, has a wider strip 

footing Bs than depth Hs from the ground surface (Figure 6-3). When designing a 

shallow strip footing to avoid general shear failure, the bearing capacity of the soil 

is an important system performance. General shear failure can result in sudden 

catastrophe associated with plastic flow and lateral expulsion of the soil. Terzaghi’s 

bearing capacity (qu) equation is a classic equation proposed by Terzaghi (Terzaghi 

1944) that is still used in its original form, given as 
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 𝑞u = 𝑐s𝑁𝑐 + 𝛾𝐻𝑁𝑞 + 0.5𝛾𝐵𝑁𝛾 (6-1) 

where cs is the cohesion, γs is the unit weight of the soil, and Nc, Nq, and Nγ are the 

bearing capacity factors that can be determined from the given information on the 

angle of internal friction of the soil. 

This linear relationship between one response (qu) and seven inputs (cs, γ, Nc, 

Nq, Nγ, H, and B) is reformulated into a model calibration problem. In this model 

calibration problem, cs, the soil cohesion, is assumed to be an unknown random input 

variable that follows a normal distribution, γs is a known random variable that 

follows a normal distribution, and the other inputs are constants. Assume that the 

soil layer has an angle of internal friction Φ of 20°, and the corresponding bearing 

capacity factors Nc, Nq, and Nγ are 17.7, 7.4, and 5.0, respectively. Further assume 

that γs = 1842 kg/m3, Hs = 1.0 m, and Bs = 1.5 m. The properties of the seven input 

variables are shown in Table 6-2. The statistical information of experimental 

observations of the bearing capacity is given in Table 6-3. By using direct Monte 

 

Figure 6-3 Scheme of a Shallow Strip Footing 
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Carlo Simulation method, the predicted PDF of the bearing capacity (qu) can be 

obtained. For the unknown input variable (Table 6-2), the soil cohesion (cs) and 

experimental observations (Table 6-3), bearing capacity (qu), two cases are designed 

to check the effectiveness of the proposed method. The first case presents a smaller 

value of standard deviation for the unknown input variable and the second case 

presents a larger value of standard deviation for the unknown input variable. 

Note that Terzaghi’s bearing capacity equation is explicit; thus, the inverse 

problem of this equation can be solved analytically in a straightforward manner. In 

Table 6-2, values given for the cohesion in round brackets are the expected calibrated 

point (i.e., the exact solution); these values are calculated through the analytical 

function. The values can be compared with calibrated solutions computed using 

general methods, and with the proposed approaches for OBMC.  

 

6.2.2 Model Calibration by Optimization-Based Model Calibration 

Two subcases are formulated for Research Thrusts 2 and 3. The first subcase in 

Section 6.2.2.1 is formulated to compare the calibrated results from OBMC 1-1) 

without analytical sensitivity information and 1-2) with analytical sensitivity 

information (Research Thrust 2). Next, the second subcase in Section 6.2.2.2 is 

formulated to compare the calibrated results from 2-1) the basic single loop with 

MCS and 2-2) the proposed SOUP (Research Thrust 3). For the first subcase, the 

value of the unknown input variable and experimental observations are set to the 

smaller values shown in Table 6-2 and Table 6-3. For the second subcase, the value 

of the unknown input variable and experimental observations are set to both the 



113 

 

smaller and larger values shown in Table 6-2 and Table 6-3. 

 

6.2.2.1. Subcase 1: Optimization-Based Model Calibration with 

Analytical Sensitivity Information 

The calibrated results from four different initial points are summarized in Table 6-4 

and Table 6-5. The four initial points are selected based on the analytical information 

derived in Section 3.3.1, such as the inflection separating the convex and non-convex 

area of the response surface of the calibration metrics with respect to the calibration 

parameters. Initial point #1 lies on the convex of the likelihood function and PR. 

Initial point #2 and #3 lie on the convex of the likelihood function, but on the non-

convex of the PR. Initial point #4 lies on the non-convex of the likelihood function 

and PR. The four initial points and global optimum are depicted in Figure 6-4. 

Table 6-4 shows the calibrated results from OBMC without analytical 

sensitivity information, which means the finite difference gradient calculation is used 

to obtain the approximated sensitivity information. The red-shaded case denotes an 

initial point that lies on the non-convex area; the blue-shaded case denotes an initial 

point that lies on the convex area. Only when the OBMC from initial point #1 and 

the calibration metric is PR, do the calibrated results show robustness and accuracy. 

The results in Table 6-4 imply that the calibrated results may not be robust and 

accurate, even though OBMC begins from the convex area. OBMC that uses the 

finite difference gradient calculation is highly dependent on the accuracy of the 

sensitivity information. 

Table 6-5 shows the calibrated results derived using analytical sensitivity 
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information. Compared with the previous case, the calibrated results show better 

performance. In particular, PR produces almost perfect results that are very close to 

the expected results. The calibrated results that come from using the likelihood 

function also provide much improved results; however, the OBMC starting from 

initial point #4 still gives calibrated results with low accuracy and robustness. 

  

 

 

 

Figure 6-4 Four Initial Points and the Global Optimum on a Two-Dimensional 

Response Surface of Determinant of Calibration Metrics’ Hessian 

Matrix 
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6.2.2.2. Subcase 2: Sequential Optimization and Uncertainty 

Propagation for Optimization-Based Model Calibration 

The calibrated results from two different initial points are summarized in Table 6-6 

and Table 6-7. Table 6-6 and Table 6-7 provide calibrated results of the unknown 

input variable (cs) and predicted statistical moments (MYpre) of system responses (qu, 

pre), with the objective function value (calibration metric) and the computational 

times in seconds. The two initial points are selected based on the analytical 

information derived in Section 3.3.1, such as the inflection separating the convex 

and non-convex area of the response surface of calibration metrics with respect to 

calibration parameters. Specifically, initial point #1 lies on the convex of the PR and 

initial point #2 lies on the non-convex of the PR. The two initial points and the global 

optimum are depicted in Figure 6-5. For the subcase in Section 6.2.2.2, the unknown 

input variable (Table 6-2), the soil cohesion (cs), and the experimental observations 

(Table 6-3), bearing capacity (qu), two cases are designed to check the effectiveness 

of the proposed method. The first case for initial point #1 presents a smaller value of 

standard deviation for the unknown input variable; the second case for initial point 

#2 presents a larger value of standard deviation for the unknown input variable. 

From the initial point #1 (nonconvex area), 1) single-loop only with direct MCS 

and 2) single-loop only with UDR were used for calibrating the statistical parameters 

(μc, opt, σc, opt) of the unknown input variable (cs). The calibrated result derived from 

method 1 shows non-convergence of the optimization. This is because initial point 

#1 is on the nonconvex area when OBMC is conducted using PR. On the other hand, 

the calibrated result derived from method 2 shows convergence, because OBMC 

with the MMM formulates a convex optimization problem. However, the UP result 

shows numerical errors in the third (100.00%) statistical moment of the predicted 
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system response. This numerical error led to an inaccurate calibrated result σc, opt 

(12.13%). The objective value of the calibration metric (MMM) also shows ‘1.00’, 

of which the value should be ‘0’ if it was accurately calibrated. 

From initial point #2 (convex area), 1) single-loop only with direct MCS, 2) 

single-loop only with UDR, and 3) the proposed SOUP method were used to 

calibrate the statistical parameters (μc, opt, σc, opt) of the unknown input variable (cs). 

Since the optimization starts from inside of the convex area, the calibrated result 

from method 1 shows convergence and no significant numerical errors. To check the 

effect of numerical noise in the direct MCS, model calibration was carried out three 

times in succession. The repeated test results show that the numerical noise from the 

randomness did not affect the robustness of the OBMC.  The calibrated result 

derived from method 2 also shows convergence. However, the UP result shows 

numerical errors in the third (100.00%) and fourth (29.66%) statistical moments of 

the predicted system responses. This numerical error led to an inaccurate calibrated 

result, σc, opt = 12.13% and a nonzero objective function, MMM = 1.10. The large 

value of standard deviation in the input variables (σc, = 9576.2) resulted in larger 

numerical errors in the predicted statistical parameters of system responses, as 

compared to the results from case #1 (smaller std. (σc, = 1915.2)) from the initial 

point #1. The calibrated result from method 3 shows a decrease in computational 

time compared to the calibrated result from method 1, and a decrease in numerical 

error compared to the calibrated result from method 2. The results from the case 

study prove that the proposed method offers improvements both in efficiency and 

accuracy. 
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Figure 6-5 Two Initial Points and the Global Optimum on a Two-Dimensional 

Response Surface of Determinant of the Calibration Metrics’ Hessian 

Matrix 
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Table 6-2 Properties of Input Variables in Terzaghi’s Bearing Capacity Equation 

Variable Unit Type Mean Std. Dev.  

Nc Dimensionless Deterministic 17.7 -  

Nq Dimensionless Deterministic 7.4 -  

Nγ Dimensionless Deterministic 5.0 -  

Hs m Deterministic 1.0 -  

Bs m Deterministic 1.5 -  

γs kg/m3 Normal 1842.0 184.2  

cs (Case #1) kg/m2 Normal Unknown 

 (19152.0) 

Unknown 

 (1915.2) 

 

cs (Case #2) kg/m2 Normal Unknown 

 (19152.0) 

Unknown 

 (9576.2) 

 

 

 

 

Table 6-3 Statistical Information of Experimental Observations in Terzaghi’s Bearing Capacity Example 

System Response Unit Type Mean Std. Dev.  

qu (Case #1) kg/m2 Normal 359528.7 33933 (Small Std.)  

qu (Case #2) kg/m2 Normal 359528.7 254700 (Large Std.)  
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Table 6-4 Subcase 1: Calibrated Results from Optimization-Based Model Calibration without Analytical Sensitivity 

Information 

 Likelihood Function Probability Residual 

Initial Points Calibrated Mean Calibrated Std. Calibrated Mean Calibrated Std. 

Ⅰ (19179, 1697.1) 19145 

19146 

19165 

1919.7 

1915.5 

1860.4 

19143 

19145 

19030 

1912.9 

1913.3 

1906.7 

Ⅱ (22586, 1697.1) 19141 

18959 

19133 

1914.4 

3679.9 

1747.5 

19438 

19629 

17646 

1779.0 

1719.4 

2077.1 

Ⅲ (19179, 3108.5) 19142 

18148 

19129 

1912.2 

2652.3 

1894.4 

19146 

16823 

26628 

1912.4 

2021.5 

2630.6 

Ⅳ (22586, 8475.0) 19123 

19151 

18439 

3796.1 

525.25 

9659.6 

19124 

19167 

19347 

1909.5 

1908.5 

1890.8 
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Table 6-5 Subcase 1: Calibrated Results from Optimization-Based Model Calibration with Analytical Sensitivity Information 

 Likelihood Function Probability Residual 

Initial Points Calibrated Mean Calibrated Std. Calibrated Mean Calibrated Std. 

Ⅰ (19179, 1697.1) 19155 

19154 

19154 

1913.0 

1913.3 

1915.3 

19153 

19156 

19152 

1912.2 

1912.4 

1914.0 

Ⅱ (22586, 1697.1) 19153 

19149 

19153 

1913.5 

1914.6 

1913.7 

19150 

19150 

19152 

1911.9 

1913.2 

1912.9 

Ⅲ (19179, 3108.5) 19154 

19152 

19152 

1913.1 

1912.7 

1913.1 

19154 

19155 

19154 

1914.1 

1913.7 

1913.9 

Ⅳ (22586, 8475.0) 19530 

18967 

19681 

70715 

90523 

70815 

19152 

19150 

19154 

1912.5 

1914.0 

1913.8 
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Table 6-6 Subcase 2: Calibrated Results from Initial Point #1 

 Calibrated Results Obj. Time (s) Predicted Statistical Moments of System 

Response (Ypre) 

 Calibrated 

Mean 

Calibrated 

Std. 

M1 

(×105) 

M2 

(×104) 

M3 

(×10-1) 

M4 

(×100) 

True 

Value 

19152 1915.2 - - 3.595 3.797 1.057 3.016 

Single 

OUU by 

MCS 

The OBMC diverges 

Avg. 

Error (%) 

- - - - - - - - 

Single 

OUU by 

UDR 

19153 1915.7 1.00 10.17 3.595 3.797 0.000 3.000 

Avg. 

Error (%) 

0.00 0.03 - - 0.00 0.00 100.00 0.53 
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Table 6-7 Subcase 2: Calibrated Results from Initial Point #2 

 Calibrated Results Obj. Time (s) Predicted Statistical Moments of System 

Response (Ypre) 

 Calibrated 

Mean 

Calibrated 

Std. 

M1 

(×105) 

M2 

(×104) 

M3 

(×10-1) 

M4 

(×100) 

True 

Value 

19152 9576.2 - - 3.595 2.547 8.897 4.265 

Single 

OUU by 

MCS 

19112 

19161 

19114 

9587.7 

9597.5 

9592.6 

0.00 

0.00 

0.00 

95.64 

108.29 

103.04 

3.589 

3.599 

3.588 

2.540 

2.549 

2.543 

8.866 

8.919 

8.879 

4.246 

4.268 

4.240 

Avg. 

Error (%) 

0.45 0.49 - - 0.47 0.51 0.80 1.10 

Single 

OUU by 

UDR 

19153 10738 1.10 10.17 3.595 2.543 0.000 3.000 

Avg. 

Error (%) 

0.00 12.13 - - 0.00 0.16 100.00 29.66 

SOUP by 

UDR & 

MCS 

19154 

19158 

19158 

9576.7 

9574.3 

9525.4 

0.00 

0.00 

0.00 

55.74 

57.25 

53.65 

3.592 

3.594 

3.596 

2.545 

2.541 

2.534 

8.899 

8.844 

8.813 

4.272 

4.269 

4.234 

Avg. 

Error (%) 

0.07 0.56 -  0.13 0.82 1.56 1.10 
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6.3 Case Study 3: Model Calibration of an Automobile 

Steering Wheel Column’s Vibration Analysis Model 

Section 6.3 introduces an example that studies a calibration problem of an 

automobile steering wheel column’s vibration analysis model. The case study is 

formulated to check the applicability of the proposed ideas in Research Thrust 1, 3, 

and 4 to a real-world application. Section 6.3.1 presents the problem description of 

Case Study 3. Section 6.3.2 presents the uncertainty characterization of observed 

natural frequency considering measurement errors. Section 6.3.3 provides the 

calibrated results from the SOUP method proposed in Research Thrust 4, with the 

results in the previous Section 6.3.2. However, after the validity check by the 

proposed POC, the calibrated results by the first round of model calibration does not 

show the high credibility. Therefore, this study conducts model refinement and re-

calibration process.  

 

6.3.1 Problem Description 

An automobile steering system is the collection of components that allows the driver 

to guide an automobile vehicle (Figure 6-6) (Pak et al. 1991) (Zaremba et al. 1998) 

(Demers 2001). The collection broadly include a steering wheel, a steering column, 

and a cowl cross bar. An automobile steering system transmits the vibration 

generated by the engine directly to the driver. Thus, a design for avoiding resonance 

of the vibration transmitted to the driver is desired. For achieving a resonance 

avoidance design, the natural frequency of an automobile steering system is an 

important system performance or response. This dissertation aims to calibrate an 
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automobile’s column model in a statistical sense.  

 

 

 

 

Figure 6-6 An Automobile Steering System including a Steering Wheel and a 

Steering Column: a) Finite Element Model of a Steering Wheel and a 

Steering Column, b) a Steering Wheel, and c) a Steering Column 



125 

 

6.3.2 Uncertainty Characterization of the Observed Natural 

Frequency of an Automobile Steering Column and Wheel Under 

Consideration of Measurement Errors 

Three target vibrational modes are 1) vertical, 2) horizontal, and 3) rim modes, as 

depicted in Figure 6-7. Figure 6-7 presents the loading site by an impact hammer and 

the measuring site by a 3-axis acceleration sensor for three vibrational modes. The 

corresponding simulated vibration modes for each target vibration modes are the 1st, 

2nd, and 4th natural frequency. (The 3rd natural frequency corresponds to a torsional 

vibration.) 

An experiment for model calibration is designed for considering physical 

uncertainties and measurement errors as summarized in Table 6-8. First, three 

different steering wheels and six different steering columns are prepared to be used 

in experiments. Overall 18 combinations of steering wheel-columns can provide the 

 

Figure 6-7 Three Vibrational Modes of a Steering Wheel Column: Vertical, 

Horizontal, and Rim Modes 
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variability by the physical uncertainties in manufacturing tolerance and material 

properties. Second, the experiments are conducted in three different experimental 

conditions (Laboratory at 1) Seoul national university, 2) Ajou university, and 3) 

Dong-Eui university). Three different experimental sites suggests systematic 

measurement errors. Each systematic measurement errors from three different 

experimental conditions could be quantified by the difference between the overall 

mean value and three mean values of each observation set from three experimental 

conditions. Third, measurements were repeated 5 times for each combination of 

steering wheel-column and experimental condition. With repetitions, random 

measurement errors could be quantified. Table 6-9 summarizes the quantified 

systematic and random measurement errors. Figure 6-8 presents the experimental 

observations of three vibrational modes. The proposed uncertainty characterization 

method that considers systematic and random measurement errors estimates the 

mean and standard deviation describing the true variability of three vibrational 

models (Table 6-10). 
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Table 6-8 Statistical Experiments for Model Calibration Considering Physical Uncertainties and Measurement Errors 

Sources of Uncertainty and Error Numbers Note 

Physical Uncertainties in 

Geometry and Material 

Properties 

Variability in Steering 

Wheels 
×3 Variability by Physical 

Uncertainties 

Variability in Columns ×6 Variability by Physical 

Uncertainties 

Experimental Conditions SNU/Ajou/Dong-Eui ×3 Systematic Measurement 

Error 

Measurement Repetition ×5 Random Measurement 

Error 

 Total 270  
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Table 6-9 Quantification of Systematic and Random Measurement Errors 

Measurement Error Experimental Conditions Degree of Error (%) Note 

Systematic Measurement 

Error 

SNU -0.19 Negative 

Ajou -0.43 Negative 

Dong-Eui 0.74 Positive 

Random Measurement 

Error 

SNU 0.27/0.14/0.10 

Vertical/Horizontal/Rim Ajou 0.32/0.37/0.24 

Dong-Eui 0.11/0.11/0.07 
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Figure 6-8 Experimental Observations of Three Vibrational Modes: a) Vertical, b) Horizontal, and 3) Rim Modes 

 

Table 6-10 Characterized Uncertainty in Observed Three Vibrational Modes After Consideration of Measurement Errors 

Experimental 

Observations 

Unit Number of Data Mean Standard 

Deviation 

Note 

Natural Freq. of 

Vertical Mode 
Hz 90×3 46.8274 0.9136 

QOI for 

Calibration 

Natural Freq. of 

Horizontal Mode 
Hz 90×3 45.6175 0.8338 

QOI for 

Calibration 

Natural Freq. of 

Rim Mode 
Hz 90×3 80.6908 1.2479 

QOI for 

Validation 
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6.3.3 1st Round of Model Calibration and Validation of Steering-

Column Vibrational Model 

This section presents the first round of model calibration and validation of steering-

column vibrational model. First, the calibration is conducted by the proposed SOUP 

in Section 6.3.3.1. Second, the proposed POC provides the first round of validity 

check of the calibrated result. 

 

6.3.3.1. Model Calibration by the Proposed SOUP 

To improve the credibility of the automobile steering column model, a model 

calibration is formulated with two system responses (natural frequencies of vertical 

and horizontal modes) and two unknown input variables. Calibrating two unknowns 

by two known outputs formulates a determined problem. Among 36 input variables 

of the model (9 variables in the wheel part and 27 variables in the column part), the 

two unknown input variables are determined by a variable screening process: 1) 

 

Figure 6-9 The Frame and Cover of a Steering Wheel: a) Cross Section of a Real 

Specimen, b) Shell Element in Finite Element Model 
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density of aluminum in the wheel part (ρwheel, alum) and 2) thickness of polyurethane 

in the wheel cover part (twheel, poly). It is acceptable choice of unknown input variables 

since there was an awkward modeling of the steering wheel frame (aluminum) and 

cover (polyurethane) as depicted in Figure 6-9. To substitute the expensive 

computational model, a Kriging surrogate modeling technique (Kleijnen 2009) is 

devised with Latin hyper cube design of experiments (Baghdasaryan et al. 2002) 

(Lee and Chen 2009). In this model calibration problem, the density of aluminum in 

the wheel part (ρwheel, alum) and the thickness of polyurethane in the wheel cover part 

(twheel, poly) are assumed to follow a normal distribution. Using the information for the 

system response observed in Section 6.3.2, model calibration is conducted using the 

SOUP method proposed in Research Thrust 3. (However, it is expected that the low 

degree of systematic and random error quantified in Section 6.3.2 may not impact 

the significant change in the calibrated result.) Table 6-11 presents the calibrated 

results by OBMC with considering measurement errors and using the proposed 

SOUP method. 

 

6.3.3.2. Model Validation by the Proposed POC 

To validate the calibrated result in previous section, a new validation metric, POC, 

is adopted. Using the area metric with hypothesis testing for model validation, 

however, is impossible, because the characterized variability in Section 6.3.2 is a 

probability distribution. With a parametric probability distribution, an area metric, 

which is based on the empirical CDF of experimental observation is not able to be 

calculated. In the end, in this case study, the proposed POC is used for validating the 

calibration result. 
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The model validation is conducted with one system response natural frequency 

which corresponds to the rim vibration mode. The statistical information of 

characterized uncertainty in observations of the rim vibration mode is summarized 

in Table 6-10. The predictions are characterized by a nonparametric distribution. 

Thus, two probability distributions are compared by POC, calculated as ’76.50 %.’ 

The POC value before calibration is calculated as ‘16.51%.’ This results shows that 

the model calibration improved the credibility of the model credibility by ’76.50 %’. 

However, the POC value shows the low predictive credibility of the calibrated model. 

Thus, it can be concluded that the calibrated model requires model improvement or 

refinement process (Oh et al. 2016).  

 

6.3.4 2nd Round of Model Calibration and Validation of Steering-

Column Vibrational Model 

This section presents the second round of model calibration and validation of 

steering-column vibrational model. First, the calibration problem is reformulated and 

the unknown input variables are calibrated by the proposed SOUP. Second, the 

proposed POC provides the second round of validity check of the calibrated result. 

After a systematic model refinement following the previous study (Oh et al. 2016), 

it is found that there exist awkward modeling of the linkage element between a 

steering wheel and air bag (Figure 6-10). This study modify the rigid link to a spring 

element, of which stiffness is set to new calibration parameter. Therefore, in the 2nd 

round of model calibration and validation, the two unknown input variables are 

determined: 1) thickness of polyurethane in the wheel cover part (twheel, poly) and 2) 

stiffness of air bag-wheel spring linkage. Table 6-12 presents the calibrated results 
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by OBMC with considering measurement errors and using the proposed SOUP 

method. The proposed POC is used for validating the calibration result. The 

validation result shows the improvement in predictive capability that is increased 

from 76.5% to 96.5%. In the end, using the calibrated model, it is expected that more 

accurate prediction will be available. 

 

 

 

 

Figure 6-10 (a) Steering Wheel and Air Bag; (b) Finite Element Model of the 

Steering Wheel 
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Table 6-11 The First Round Calibrated Results of Unknown Input Variables of the Steering Wheel Column Vibrational 

Model 

Variable Unit Type 

Before Calibration Calibrated Results 

Mean 
Standard 

Deviation 
COV Mean 

Standard 

Deviation 
COV 

ρwheel, alum g/cm3 Normal 2.76 0.14 5.07% 2.50 0.14 5.60% 

twheel, poly mm Normal 5.00 0.25 5.00% 9.76 1.08 11.13% 

 

Table 6-12 The Second Round Calibrated Results of Unknown Input Variables of the Steering Wheel Column Vibrational 

Model 

Variable Unit Type 

Before Calibration Calibrated Results 

Mean 
Standard 

Deviation 
COV Mean 

Standard 

Deviation 
COV 

kair N/mm Normal 1000 100.0 10.00% 1071 332.5 31.05% 

twheel, poly mm Normal 9.76 1.08 11.13% 3.02 1.29 42.72% 
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6.4 Case Study 4: Model Calibration of a Thin-Film 

Transistor Liquid Crystal Display Panel Deflection 

Model 

Section 6.4 introduces an example that studies a calibration problem of a thin-film 

transistor liquid crystal display (TFT-LCD) panel’s deflection model. The case study 

is formulated to check the applicability of the proposed ideas in Research Thrust 1 

and 3 to a real-world application. Section 6.4.1 presents the problem description of 

Case Study 4. Section 6.4.2 presents the uncertainty characterization of observed 

deflection from two different experimental conditions. Section 6.4.3 provides the 

calibrated results from the SOUP method proposed in Research Thrust 3, with the 

results in the previous Section 6.4.2. At the end, Section 6.4.4 provides the validity 

check of calibrated results from Section 6.4.3. 

 

6.4.1 Problem Description 

A TFT-LCD is a popular flat-panel display that is used in appliances such as 

televisions, monitors, mobile phones, and others. A TFT-LCD adopts Thin-film 

transistor (TFT) technology as its active switching device (Katayama 1999) (Kim et 

al. 2004) (Pan and Chen 2007) (Vepakomma et al. 2013). Figure 6-11 describes the 

structure of a TFT-LCD, which consists of polarizers, a color filter, glass substrates, 

a thin-film transistor array, a back light unit, and a thin layer of liquid crystals (Su et 

al. 2012). To manufacture a certain size of TFT-LCD panel for various types of 

appliances, a one drop fill liquid crystal injection process is used, and a large mother 

panel is cut into medium/small panel sizes by 1) diamond wheel cutting or 2) laser 
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cutting (Figure 6-12) (Pan et al. 2008). The method of diamond wheel cutting is a 

mechanical way of cutting the mother glass panel, which includes scribing the glass 

using a wheel and cleaving the substrate using a mechanical stress. Due to the thick 

scribing on the panel by contact cutting and micro cracks that can develop during the 

cleaving, large variations (manufacturing tolerance or error) exist in panels that are 

manufactured by the diamond wheel cutting process. On the other hand, laser cutting 

utilizes an ultraviolet laser for the scribing the mother glass by noncontact cutting. 

This leads to small variations in manufacturing quality. The difficulties in adopting 

laser cutting include the requirement of a pre-bending technique and the need to 

control the thermal stress (Tsai and Lin 2007). To apply the pre-bending technique, 

a computational model is used to predict deflection along the cutting path. 

Electric appliances, such as mobile phones, are subjected to various mechanical 

loads during transportation, dropping, or bending while in use (Chung et al. 2011). 

In general, to examine mechanical failures, 3-point or 4-point bending experiments 

and simulations are applied (Cui and Wisnom 1992) (Quinn et al. 2009) (Lin et al. 

2010) (Hein and Brancheriau 2018). (Drop simulation and experiments are available, 

 

Figure 6-11 The Scheme of a Thin-Film Transistor Liquid Crystal Display 
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however, they have difficulties in repetition of experimental observations and 

validation due to the many uncontrollable factors inherent in these types of 

experiments and simulations. (Pan and Chen 2007))  

This case study aims to calibrate a computational model for a TFT-LCD panel 

with 3-point bending experiments. The calibrated and validated model with 3-point 

bending performance can be used for 1) examination of future failure by 

transportation, or dropping and bending while in use, and 2) design of laser cutting 

manufacturing by a pre-bending technique. For accurate model calibration, 

uncertainty characterization, as described in Research Thrust 1, and OBMC by 

SOUP, as proposed in Research Thrust 3, are implemented in Section 6.4.2 and 

Section 6.4.3, respectively. 
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Figure 6-12 The Manufacturing Process of Cutting an LCD Panel: Wheel and Laser Cutting 
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Figure 6-13 Three-Point/Four-Point Bending Tests of Brittle Materials 
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6.4.2 Uncertainty Characterization of Observed Deflection of a Thin-

Film Transistor Liquid Crystal Display Panel’s Deflection from 

Different Experimental Conditions 

A 3-point or 4-point bending test is a general way to evaluate the quality of a glass 

panel by measuring the static bending strength (Figure 6-13). With a 3-point or 4-

point bending test, a force-displacement diagram can be obtained when a force is 

applied in three directions: Top X, Top Y, and Bottom X (Figure 6-14). It is known 

that a 3-point bending test provides higher bending strength than the bending 

strength obtained by a 4-point bending test. In Figure 6-13, it can be confirmed that 

a larger volume of material is subjected to the same bending moment in a four-point 

bending. A failure from bending stress begins from a micro crack produced from the 

manufacturing process, which means the larger the volume is, the higher the 

probability that a defect exists. 

Table 6-13 presents experimental observations of the bending strength from two 

different experimental and manufacturing conditions: 1) 3-point bending/diamond 

wheel cutting, and 2) 4-point bending/laser cutting. Three different system responses 

are observed under two different experimental and manufacturing conditions, as 

depicted in Figure 6-14: 1) Top-X (the front face of the panel facing upward and jig 

 

Figure 6-14 Three-Point Bending Test of a TFT-LCD Panel in Three Directions 
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parallel to the x axis), 2) Top-Y (the jig parallel to the y axis), and 3) Bottom-X (the 

back face of the panel facing upward). 

This case study aims to calibrate a computational model for two reasons: 1) 

examination of future failure that may result from transportation, or dropping or 

bending while in use, 2) design of the laser cutting manufacturing process through a 

pre-bending technique. Therefore, this case study calibrates a computational model 

about 3-point bending for the experimental condition and laser cutting for the 

manufacturing method. Thus, uncertainty characterization for experimental 

observations from different experimental conditions and manufacturing methods is 

required.  

From the reference (Cui and Wisnom 1992), the use of a 4-point bending test 

for a glass substrate, rather than a 3-point bending test, reduces the bending strength 

by approximately 20%. The difference in the bending strength observed from the 

two different experimental conditions can be recognized as a systematic error. In this 

case, it can be considered that the 4-point bending test has 20 % negative systematic 

error. Also, the panel specimen manufactured by diamond wheel cutting has more 

random errors, as explained in Section 6.4.1, and the degree of random measurement 

errors is identified as 10% more, compared with a panel produced by the laser cutting 

method (Pan et al. 2008). Table 6-14 presents the results of uncertainty 

characterization using the method proposed in Research Thrust 1. As depicted in 

Figure 6-15, the probability distribution of QOI (Top-X Bending Strength) can be 

obtained. 
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Table 6-13 The Statistical Information of Experimental Observations from Different Experimental Conditions and 

Manufacturing Methods (Before Considering the Measurement Errors) 

Number Bending 

Direction 

# of Data Bending 

Method 

Cutting  

Method 

Mean Std. Note 

#1 Top X 10 3-Point Wheel 53.20 5.74 QOI for 

Calibration 

#2 Top X 10 4-point Laser 44.33 2.04 

#3 Top Y 10 3-point Wheel 110.70 31.57 QOI for 

Calibration  

#4 Top Y 10 4-point Laser 92.25 4.25 

#5 Bottom X 10 3-point Laser 31.57 2.27 QOI for 

Validation 
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Table 6-14 The Statistical Information of Experimental Observations from Different Experimental Conditions and 

Manufacturing Methods (After Considering the Measurement Errors) 

Number Bending 

Direction 

# of Data Bending 

Method 

Cutting 

Method 

Mean Std. Note 

#1 Top X 20 3-Point Laser 53.16 1.17 QOI for 

Calibration 

#2 Top Y 20 3-Point Laser 110.17 2.31 QOI for 

Calibration 

#3 Bottom X 10 3-Point Laser 31.57 2.27 QOI for 

Validation 
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6.4.3 Model Calibration Using Sequential Optimization and 

Uncertainty Propagation 

To improve the credibility of the TFT-LCD panel deflection model, a model 

calibration is formulated with two system responses (deflections by Top-X, Top-Y 

loadings) and two unknown input variables (the Young’s modulus of glass (Eg) and 

polarizer (Epy)). In this model calibration problem, the Young’s modulus of glass (Eg) 

and polarizer (Epy) is assumed to follow a log-normal distribution and geometric 

properties are set to deterministic. Using the information for the system response 

observed in Section 6.4.2, model calibration is conducted using the SOUP method 

proposed in Research Thrust 3. To simulate 3-point bending, finite element analysis 

is performed using LS-DYNA. Due to the computational burden required by finite 

element analysis, Kriging surrogate modeling and perturbation by ±3σ of each 

 

Figure 6-15 The Probability Distribution of the Experimental Observations 
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variable for design of experiments are used. 

Table 6-10 presents the calibrated results. First, compared with the initial value 

of the mean and standard deviation of the unknown input variables, the calibrated 

mean and standard deviation are both decreased. Thus, using the calibrated value, 

more accurate prediction will be available. The column listing the results after 

calibration in Table 6-10 presents three cases of calibrated results: 1) OBMC without 

considering measurement errors, 2) OBMC with considering measurement errors, 

but not by SOUP, and 3) OBMC with considering measurement errors and using the 

proposed SOUP method. The first case is the result from the previous study (Jung 

2011) (Oh et al. 2016). Since the previous study did not consider the existence of 

measurement errors, the calibrated results may be wrong. Unfortunately, the second 

case did not show the convergence of optimization by OBMC, due to the possible 

causes discussed in Research Thrust 2. 
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Table 6-15 The Calibrated Results of Unknown Input Variables of the Thin-Film Transistor Liquid Display Panel Deflection 

Model 

Variable Unit Type Before Calibration After Calibration Note 

Mean Std. 

Dev. 

Mean Std. Dev. C.V. 

E
g
 GPa Lognormal 93.77 4.29 

72.13 2.86 3.97% No Consideration of Errors 

No Convergence Original OBMC 

72.20 2.30 3.19% OBMC by SOUP 

E
py

 GPa Lognormal 4.42 1.94 

3.40 1.29 37.94% No Consideration of Errors 

No Convergence Original OBMC 

3.43 0.58 16.91% OBMC by SOUP 
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6.4.4 Model Validation of Calibrated Results 

To validate the calibrated results in Section 6.4.3, model validation is conducted with 

one system response (deflection by Bottom-X). Because the experimental 

observations of deflection by Bottom-X loading are obtained from an experimental 

condition where the 3-point bending test is used to measure the deflection and laser 

cutting method is used to manufacture the small size of panel. In other words, there 

is no need to use uncertainty characterization method that considers measurement 

errors. Thereby, the area metric with hypothesis testing is able to be used for 

validating the calibrated results. Case Study 4 compares the usage of the area metric 

with hypothesis testing (Section 6.3.4.1) with the proposed probability of 

coincidence (POC) (Section 6.3.4.2). 

 

6.4.4.1. Model Validation by the Area Metric and Hypothesis Testing 

For the validity check by the area metric and hypothesis testing, first, the area metric 

between u-value CDFs from simulated predictions (F(upre)) and 10 numbers of 

observations (S(uobs)) is calculated as ‘0.0933’, as shown in Figure 6-16. The critical 

value of the area metric at a significance level of 0.05 is provided as ‘0.1805’ in case 

ten experimental data are used for the validity check as shown in Figure 6-17. The 

smaller value of the area metric ‘0.0933’ than the critical value denotes that the null 

hypothesis which states a computational model is valid, would not be rejected. In 

conclusion, there is not enough evidence to conclude that the calibrated model is 

invalid. However, strictly speaking, this conclusion does not prove that the calibrated 

model is valid to be used for intended use. 
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Figure 6-16 Calculation of the Area Metric by u-Value CDFs 

 

Figure 6-17 Probability Density Function of the Area Metric When the Number 

of Observations is Ten 
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6.4.4.2. Model Validation by the Probability of Coincidence 

A new statistical validation metric, POC, is employed to quantify the probability 

degree of coincidence. To use POC, the observed deflections by a loading Bottom-

X are assumed to follow a normal distribution. The predictions are characterized by 

a nonparametric distribution. Thus, two probability distributions are compared by 

POC, calculated as ’98.03 %’. This results provides an analyst who will use the 

calibrated model that the model has the credibility by ‘98.03 %’. 
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Chapter 7 Conclusion 

 

Conclusion 

 

7.1 Summary and Contributions  

The ultimate goal of this doctoral dissertation is to provide a process to improve the 

credibility of computational models by enabling calibration of the unknown input 

variables in computational models. The proposed research in this doctoral 

dissertation aims to establish a complete optimization-based model calibration 

(OBMC) method, by tackling four technical issues. It is expected that the proposed 

research offers the following potential contributions and broader impacts to work 

towards achieving a long-held vision of engineers to build highly credible 

computational models. 

 

Contribution 1: Uncertainty Characterization of Experimental Observations 

using Parametric Probability Distributions Under 

Consideration of Measurement Errors 

Research Thrust 1 in this doctoral dissertation proposes an uncertainty 

characterization method that uses maximum likelihood estimation. To best of the 
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author’s knowledge, most existing works in uncertainty characterization are focused 

on how to quantify the variability in a quantity of interest through a probability 

distribution while ignoring measurement errors. By applying the proposed method 

to case studies, this research confirmed that the proposed method can contribute to: 

1) characterizing the accurate probability distribution by eliminating the effect of 

measurement errors and 2) easing the degree of statistical uncertainty present from 

a lack of observation data by integrating experimental observation data from 

different experimental conditions. Through these two contributions, an improved 

calibration by OBMC is available.  

 

Contribution 2: Identification of Possible Causes of Inaccurate and Unstable 

Calibrated Results that occur for OBMC that uses the Existing 

Two Calibration Metrics and Improvement of OBMC with 

Analytical Sensitivity Information 

Research Thrust 2 identifies the possible causes of inaccurate and unstable model 

calibration resulting from OBMC that uses either the likelihood function or 

probability residual. The analytical and numerical investigations reveal 1) non-

convexity of OBMC when it is performed with either of the two existing calibration 

metrics, 2) a low degree of sensitivity and approximate calculation of sensitivity 

information, which is required to conduct gradient-based optimization, and 3) 

randomness due to sampling methods used for the uncertainty propagation process 

cause the inaccurate and unstable calibrated results. To address these issues, this 

dissertation research proposes the idea of OBMC with analytical sensitivity 
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information to improve the calibration. Additionally, a comparative study of existing 

calibration metrics is provided for future use of these methods in model calibration. 

Investigation of the technical issues that should be addressed to achieve improved 

OBMC motivated the research outlined in Research Thrust 3.  

 

Contribution 3: Development of Sequential Optimization and Uncertainty 

Propagation for Efficient and Accurate Model Calibration 

using OBMC 

OBMC adopts an optimization under uncertainty (OUU) process that requires 

expensive computational cost. Research Thrust 3 proposes a process of sequential 

optimization and uncertainty propagation (SOUP) to improve the efficiency of 

OBMC, while retaining the accuracy. To conduct SOUP, a new calibration metric, 

the moment matching metric, is proposed, which makes an effort to address the 

technical issues introduced in Research Thrust 3. In addition, the review study that 

examines the developed OUU formulations and uncertainty propagation methods 

provides a guide to develop an OUU loop for OBMC.  

 

Contribution 4: Proposition of a New Validation Metric - Probability of 

Coincidence 

Research Thrust 4 presents a new validation metric, called probability of coincidence 

(POC), to statistically validate the calibrated results. To the best of the author’s 
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knowledge, the area metric with hypothesis testing has shown best performance for 

a validation method, among available options. However, to the best of author’s 

knowledge, the area metric with hypothesis testing still has limitations. Research 

Thrust 4 attempts to overcome these limitations, while satisfying the desired 

characteristics of a validation method. The POC is not a perfect validation metric, 

however, it is worth suggesting various ways of validating a computational model. 

In the end, the discussion provides the desired characteristics of a validation method 

for future work.  

 

7.2 Suggestions for Future Research 

Although the technical advances proposed in this doctoral dissertation successfully 

address four technical challenges in OBMC, there are still several research topics 

that should be explored, further investigations undertaken, and developments 

required to achieve a complete OBMC. Specific suggestions for future research are 

listed as follows. 

 

Suggestion 1: A Systematic Way to Identify the Sources and Magnitude of 

Measurement Errors 

Development of a systematic way to identify the sources and magnitude of 

measurement errors is a significant research need. While it is confirmed that the 

proposed uncertainty characterization that considers measurement errors is a 



154 

 

promising method, its application can only be realized after the sources and 

magnitude of measurement errors are recognized. Future work should focus on 

recognition of the sources and magnitude of measurement errors that arise from 

designing to conducting the experiments. Additionally, a systematic way to integrate 

the experimental observations from different experiment conditions is needed. 

 

Suggestion 2: Advanced Uncertainty Characterization Using Bayesian 

Approaches and Bound Information 

From the result of Case Study 1, the estimated statistical parameters of the 

probability distribution of observed system responses show large variations even 

with large numbers (e.g., 50 observations in Figure 6-2) of experimental 

observations. This dissertation presents two possible future works using Bayesian 

approaches and bound information. First, the Bayesian approach estimates the 

statistical parameters’ statistical parameters of the probability distribution of the 

quantity in interest. Thereby, the variations in the statistical parameters of the 

probability distribution of the system responses can be quantified using Bayesian 

methods, which can be helpful for understanding the variations in the uncertainties 

(Park et al. 2010) (Zhang et al. 2011). Second, providing bound information, such as 

upper and lower limits of the quantity in interest, can decrease the large variation of 

estimations (Kang et al. 2016) (Kang et al. 2018). In addition, though these two 

future works, the optimum number or minimum number of experimental 

observations can be provided for accurate characterization of uncertainties in the 

quantity of interest. 



155 

 

Suggestion 3: Sequential/Trust-Region Based Surrogate Modeling Methods 

For now, the second sequence of the proposed SOUP method uses direct Monte Carlo 

simulation (MCS) for the uncertainty propagation (UP) process. In reality, 

implementing direct MCS, requires a significant number of computations, such as 

one million, to an already computationally expensive computational model is 

impractical. Even for the first sequence of SOUP, (M - 1) × N + 1 (N is the number 

of input variables and M is the number of integration points along each random 

variable) number of computations for the univariate integration can be a 

computational burden. In this case, a surrogate modeling technique must be 

employed to substitute for the expensive computational model (Hill and Hunter 1966) 

(Montgomery 2008) (Kang et al. 2010) (Roussouly et al. 2013) (Myers et al. 2016). 

Thus, building an accurate surrogate model becomes an important issue. (Due to the 

effectiveness of the first sequence of the proposed SOUP, the optimization domain 

for the second sequence can be diminished.) Future work will thus include attempts 

to provide a breakthrough to enhance the accuracy of surrogate modeling (e.g., a 

sequential method (Du and Chen 2002) (van Beers and Kleijnen 2008) (Li et al. 2010) 

(Gorissen et al. 2010) (Yuan and Ng 2013) (Atamturktur et al. 2013), trust-region 

method (Giunta and Eldred 2000) (Zhou et al. 2007), deep learning (Goodfellow et 

al. 2016), or others). 

 

 

 



156 

 

Suggestion 4: Development of a New Validation Method to Address 

Limitations of the Area Metric and Proposed Probability of 

Coincidence 

Even though the area metric with hypothesis testing is the most-used method in the 

current V&V field, there has also been attempts to develop other validation methods, 

for example, validation metrics based on the comparison of probability density 

functions (Rebba and Mahadevan 2008) (Xiong et al. 2009) (Harmel et al. 2010) 

(Kokkolaras et al. 2013) (Mullins et al. 2016), degree of overlap (Harmel et al. 2010), 

and validation methods based on the interval (Chen et al. 2004) (Buranathiti et al. 

2006) (Ghanem et al. 2008) (Halder and Bhattacharya 2011). However, these other 

methods are limited in their ability to be used in practical applications. For example, 

a large number of experimental observation are required for their use. In the end, it 

can be said that a validation method that satisfies all desired characteristics presented 

in this dissertation has not yet been developed and, thus, future research efforts are 

needed. 
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국문 초록 

 

최적화 기반 모델 보정을 위한 순차적 

최적화 및 불확실성 확산 기법 
 

이 규 석 

기계항공공학부 기계공학과 

공과대학 

서울대학교 

 

높은 신뢰도를 만족하는 전산 모델을 구축하는 것은 오랜 기간 

엔지니어들의 꿈이었다. 전산 모델을 통한 높은 신뢰도의 예측 및 

해석을 위해선 정확한 입력 변수 값이 필요하다. 하지만, 미지 입력 

변수의 존재는 전산 모델을 이용한 예측 및 해석의 신뢰도를 저하하는 

대표적인 이유 중 하나이다. 모델 보정이란, 전산 모델의 미지 입력 

변수의 값을 추정하는 과정을 뜻하며, 궁극적으로 정확한 미지 입력 

변수 값의 추정을 통한 전산 모델의 신뢰도 향상을 목표로 한다. 높은 

신뢰도의 전산 모델을 구축하기 위한 많은 관심과 함께, 모델 보정 기법 

개발을 위한 많은 연구들이 진행되었으며, 대표적인 방법이 최적화 기반 

모델 보정이다.  
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올바른 최적화 기반 모델 보정을 위해선 다양한 종류의 불확실성 

요인들에 대한 고려, 동시에 효율적이고 정확한 모델 보정 방법 개발이 

필요하다. 본 논문은 최적화 기반 모델 보정을 이용한 통계적 모델 보정 

기법 개발을 위하여 다음 네 가지의 기술적인 문제를 해결하고자 한다. 

연구주제 1: 측정 오류를 고려한 실험 데이터의 불확실성 모델링, 2: 

최적화 기반 모델 보정의 볼록 최적화 문제 확인을 위한 민감도 정보 

유도 및 민감도 정보를 이용한 강건 최적화 기반 모델 보정, 3: 정확하고 

효율적인 순차적 통계 기반 최적 설계 루프 구성, 4: 최적화 기반 모델 

보정 결과에 대한 직관적이고 통계적인 검증 방법 개발 

연구주제 1: 모델 보정은 전산 모델을 이용한 해석 값과 실험 

값으로부터 얻은 두 확률 분포 일치도의 최대화(혹은 불일치도의 

최소화)를 통해 미지 입력 변수 값을 추정한다. 정확한 모델 보정을 

위해선 실험 측정 값의 불확실성을 적절히 묘사하는 확률 분포가 

필요하다. 하지만, 실험 중에 발생하는 시스템 측정 오류와 랜덤 측정 

오류에 의해 실험 값의 불확실성이 부정확하게 모델링 될 수 있다. 

따라서, 첫번째 연구 주제는 최대 우도 추정 방법을 이용하여, 실험 

측정 시 발생하는 측정 오류들을 고려한 실험 데이터의 불확실성 

모델링을 목표로 한다. 

연구주제 2: 최적화 기반 모델 보정은 효율적인 최적화 

알고리즘으로 주로 구배 기반 최적화 알고리즘(Gradient-based 

optimization algorithm)을 사용한다. 하지만, 지금까지 개발된 보정 

척도(Calibration metric)를 이용하고, 구배 기반 최적화 알고리즘을 

통해 최적화 기반 모델 보정 결과, 부정확하고 불안정한 보정 결과를 

보여왔다. 따라서, 두번째 연구 주제는 1) 위 부정확하고 불안정한 보정 
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결과에 대한 이유를 분석하고, 2) 유도된 민감도 정보를 이용하여 

안정적인 최적화 기반 모델 보정 기법을 제안한다. 

연구주제 3: 최적화 기반 모델 보정은 통계적인 방법으로 미지 입력 

변수의 값을 추정하기 위하여 통계 기반 최적 설계(Optimization under 

uncertainty)를 사용한다. 통계 기반 최적 설계는 확률 

분석(Probabilistic analysis)을 포함한 최적화 방법이다. 최적화 기반 

모델 보정을 위해서 확률 분석은 해석 값의 확률 분포를 얻기 위한 

불확실성 확산(Uncertainty propagation)을 담당한다. 하지만, 확률 

분석은 많은 양의 계산을 필요하므로 최적화 과정과 동시에 진행될 때, 

효율적인 최적화 루프를 구성하는 것이 필요하다. 따라서, 세번째 

연구는 최적화 기반 모델 보정의 효율성을 높이기 위하여 순차적 최적화 

기반 모델 보정 기법을 제안한다. 제안된 순차적 최적화 기반 모델 

보정은 두 개의 순차적 최적화 루프로 구성되어 있으며, 첫번째 루프는 

효율성을, 두번째 루프는 정확성을 목표로 한다. 제안된 방법을 순차적 

최적화 및 불확실성 확산(Sequential optimization and uncertainty 

propagation: SOUP)이라 한다. 

연구주제 4: 모델 보정의 마지막 과정으로, 모델 검증 과정은 보정 

된 결과가 유효한 결과인지 확인한다. 검증은 정량적이고 통계적인 

방법으로 수행되어야 한다. 네번째 연구주제는 새로운 검증 척도인 확률 

일치도(Probability of coincidence: POC)를 제안한다. 확률 일치도는 

전산 모델로부터 얻은 해석 결과와 실험으로부터 얻은 측정 결과의 

확률적인 일치도를 계산한다. 
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주요어:  최적화 기반 모델 보정 
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