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This paper proposes an automated interpretable deep learning framework. The 

proposed method consists of two steps. First step is to optimize the neural network 

automatically by defining the neural architecture hyper-parameters with pre-trained 

model. By using pre-trained model and Bayesian optimization based neural architecture 

search, we can take advantages of the two methodologies. Second step is to make the 

existing deep learning model interpretable. The second step is divided into explaining 

the reason for the prediction of the individual data and estimating how confident 

prediction is. First step is a method to give analytical power in the time-frequency 

domain, which is mainly user for fault diagnosis of mechanical system. Second step is 

that predictive uncertainty is estimated through deep ensemble methods. Proposed 

method is validated under noisy environment and different load cases using ball bearing 

data. In addition, proposed method can be easily applied to the various domain. 
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Chapter 1. Introduction 

 

 

1.1 Motivation 

Prognostics and Health Management (PHM) is a study aimed at minimizing 

economic losses by securing the reliability and safety of many industrial components. 

In order to ensure the stability of industrial components, PHM uses rule-based, 

physics-based, data-driven, and hybrid approaches according to the number of data 

and domain knowledge. 

 

 
Figure 1-1. Standard PHM Approaches 

PHM performs fault diagnosis and prognosis using various information such as 

sensors and physical model of industrial component. This method allows the user to 

know the status of small components of a large system and plays a secondary role in 

the administrator's health state decision. However, data-driven approaches are widely 
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used because complex industrial systems have a difficult understanding of physical 

behavior. In this paper, we focused on data-driven approaches. In addition, empirical 

data is needed to predict health conditions such as Remaining Useful Life (RUL) of 

industrial components. However, as there is no data available to perform 

generalizations over changes in lifespan, we likewise focused on fault diagnosis in 

this paper, PHM. However, if the data is sufficient, the proposed methodology is 

equally applicable. 

Therefore, typical data-driven based PHM frameworks typically proceed in the 

order of data acquisition, signal processing, feature extraction, feature selection, and 

fault diagnosis. Until the emergence of deep learning, many studies were performed 

to increase the performance of PHM by performing various signal processing, feature 

extraction, and feature selection in stages. The disadvantage, however, is that this 

approach depends on the domain knowledge and intuition of the engineer working 

with the industrial component. For example, effective and optimal feature 

engineering to express kinetic energy, data statistics, and waveforms as time domain 

features has been studied for the journal bearing rotor system case. That is, the PHM 

framework has a system dependent problem because the feature engineering has to 

be newly performed every time the application changes. To solve this problem, we 

need a framework that can apply consistent algorithms regardless of industrial 

components. The methodology that solves this problem is deep learning. Unlike 

conventional approaches, deep learning framework is an end-to-end based 

methodology that performs fault diagnosis using only given data. Therefore, the 

system dependency problem, which is a problem of the conventional methodology, 

is solved, and there is an advantage that a consistent methodology is applicable to all 

industrial components. In addition, the existing methodology has the disadvantage 
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that each step of feature engineering does not directly affect the performance of 

troubleshooting. However, since deep learning autonomously performs feature 

learning to maximize the accuracy of troubleshooting, the performance of 

troubleshooting is very reliable and robust compared to the existing methodology. 

Through this methodology, we can see that we have achieved very high accuracy 

through Deep Learning in Large Scale Visual Recognition Challenge (ILSVRC) 

2017 as shown below. Since then, as various Neural Architectures have been 

developed, it can be seen that the performance of human recognition is higher than 

5%. However, deep learning, a new framework for layering, does not have its 

advantages. 

 

 

Figure 1-2. Disadvantage of Deep Learning 

 

1.2 Scope of Research 

This thesis proposes automated interpretable deep learning framework. The 

research scope of the proposed method is as below. 
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1) Since deep learning is a black box model that users cannot interpret, there is 

a disadvantage that you have to manually select or search the model 

composition and learning method. Paradoxically, the problem was that deep 

learning was used to eliminate existing domain knowledge and system 

dependencies, but a new hyper-parameter dependency was introduced to 

learn deep learning, resulting in a hyper-parameter dependency problem. In 

other words, the user can be independent of the algorithm by solving this 

hyper-parameter dependency problem. However, because hyperparameters 

are dependent on data and models, there is no golden rule in the selection of 

hyperparameters, and optimization must always be performed. The proposed 

method is robust against the parameter variations and unmodeled dynamics. 

2) Training hyper-parameter, model hyper-parameter Optimization requires a 

lot of hyper-parameters, so the search space is very large. In addition, deep 

learning must be learned to find hyper-parameters that are optimized for the 

search space, and scratch learning must be performed. 

3) There is a problem that deep learning is more difficult to interpret than the 

existing methodology. In the case of Logistic Regression, a neural network 

with the most representative layer among the existing methodologies, both 

the global interpretability, which is interpreted according to the size and the 

sign of weight, and the local interpretability, which is interpreted according 

to how activated the given data is obtained, are obtained. Can be. However, 

the disadvantage is that this interpretation power is lost when two layers 

become two. Therefore, Deep Learning has a problem called Black Box 

because it has good performance but cannot be interpreted. In particular, the 

PHM must identify the cause of the fault diagnosis as well as perform fault 
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diagnosis of the industrial component. This is because not only can there be 

huge economic losses in case of a diagnosis, but there can also be human 

losses. Therefore, interpretation power is essential for effective decision 

support for users. 

 

1.3 Thesis Layout 

The reminder of this paper is organized as follows: A brief introduction to Deep 

Learning, Automated Machine Learning (AutoML) and interpretability are described 

in Section 2. The proposed automated interpretable deep learning is introduced in 

Section 3. Different loading condition and noisy environment experiments are 

conducted to evaluate out method against some other common deep learning-based 

model. After this, discussion about the results and interpretability of this experiments 

is presented in Section 4. We conclude this research and present the future work in 

Section 5.
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Chapter 2.  Literature Review 

 

 

2.1 Overview of Deep Learning 
Since deep learning has been developed, variant deep neural networks have been 

developed, and have been utilized in various domains such as various domains, for 

example, computer vision, natural language processing and speech recognition [1]. 

This is because deep neural networks can universally approximate all functions using 

only given data. Deep learning is widely used in the PHM domain, and utilizes many 

data types such as vibration signals and physical state images. In particular, the 

Convolutional Neural Network (CNN) is mainly used in the PHM field because it 

mainly uses signals and images. This section will briefly introduce the Deep Neural 

Network and Convolutional Neural Network. 

 

2.1.1 Overview of Deep Neural Network 
 Deep neural networks (DNN), also called Multi Layer Perceptrons (MLP), 

feedforward neural networks, or deep feedforward networks, are deep learning 

models. The goal of a deep neural network is to approximate any function 𝑓∗. Deep 

neural network can approximate regression task and classification task. For example, 

regression task maps 𝑦 = 𝑓𝜃(𝑥) to a continuous value 𝑦 and classification 𝑦 =

𝑓𝜃(𝑥) to a discrete value also called labels. And, according to the Generalized Linear 

Model, the loss function and activation function are determined. Classification tasks 

typically use sigmoid activation and softmax activation functions, cross entropy loss, 

and regression tasks typically use linear activation function and mean square error 

loss. 
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Figure 2-1. Scheme of Deep Neural Network 

Deep neural networks are basic structures that form the basis of convolutional neural 

networks and recurrent neural networks, and are very powerful universal 

approximators. Deep neural networks are also graph structures, which are directed 

acyclic graphs of dense layers. For example, in the figure below, 𝑓 consists of first 

layer 𝑓(1) , second layer 𝑓(2) , and third layer 𝑓(3) , and 𝑓(𝑥) =

𝑓(3)(𝑓(2)(𝑓(1)(𝑥))) where dense layer is directly connected. Thus, when an input is 

given, to output the output, the middle layer's output is automatically trained, so it is 

called a hidden layer because we do not get the desired output. The deeper the layer 

is, the more you can approximate any function, but the disadvantage is more 

parameters, and more room for overfitting, depending on the curse of the dimension. 

In addition to the depth of the layers, it is important to map the functions to the widths 

of the dimensions of each layer. Finally, each layer requires an activation function 

for non-linear mapping. Depth is determined by how many layers are determined, 
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width is determined by how many nodes are determined, and the activation function 

of the layer is then complicated deep neural network based function approximator is 

composed. Finally, the back-propagation algorithm makes it easy to compute 

gradients of analytically all weights and biases. 

 

2.1.2 Overview of Convolutional Neural Network 
 Convolutional Neural Network (CNN), also known as Convolutional Networks, is 

a neural network optimized to handle grid-like topologies. For example, it is a 

structure that works well for both 2-D grid image of pixels and 3-D grid data of 

voxels like spectrogram as well as time-series based sensor data which is 1-D grid in 

PHM domain. Already, it works well for various fields and domains, and it is a 

structure that is widely used in PHM field. 

 

2.1.2.1.  Convolutional Layer 

 Convolutional Neural Network is composed of neural network used in 

Convolutional Layer, Pooling Layer and Deep Neural Network. The convolutional 

layer is the same principle mathematically as the convolution operation used mainly 

in signal processing. However, since we are learning a convolution filter that maps 

the input data well, even if we use the cross correlation operation without flipping 

the kernel instead of the convolution operation, it performs the same function 

mathematically. To perform. In many, deep learning frameworks, the convolutional 

layer is based on cross correlation operations. 

 

𝑺(𝒊, 𝒋) = (𝑲 ∗ 𝑰)(𝒊, 𝒋) =∑∑𝑰(𝒊 +𝒎, 𝒋 + 𝒏)𝑲(𝒎, 𝒏) (2-2) 
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In order to map a given input to an output through a convolution operation, we 

perform a convolution operation on all (i, j) position-independently using the 

parameter-sharing feature, and learn the filter to be highly activated pattern matching. 

You can set the size and number of convolution filters, as well as the size of the 

padding. 

 

Figure 2-3. Processing of Convolution Operation 

Input shape is 𝒏𝒉 × 𝒏𝒘, padding size is 𝒑𝒉 × 𝒑𝒘, convolution kernel size is 𝒌𝒉 × 𝒌𝒘, then 

output shape is (𝒏𝒉 − 𝒌𝒉 + 𝒑𝒉 + 𝟏) × (𝒏𝒘 − 𝒌𝒘 + 𝒑𝒘 + 𝟏). 

 

Figure 2-4. Processing of Stride Operation 

Generally, default value of stride size is 1. However, sometimes, for down sampling 
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to save the computational efficiency and higher receptive field. This figures cross-

correlation with strides of (𝟑 × 𝟐) for height and width. Input shape is 𝒏𝒉 × 𝒏𝒘, 

padding size is 𝒑𝒉 × 𝒑𝒘, convolution kernel size is 𝒌𝒉 × 𝒌𝒘, stride size is 𝒔𝒉 × 𝒔𝒘, 

then output shape is |(𝒏𝒉 − 𝒌𝒉 + 𝒑𝒉 + 𝟏)/𝒔𝒉| × |(𝒏𝒘 − 𝒌𝒘 + 𝒑𝒘 + 𝟏)/𝒔𝒘| . 

Padding and stride can be used to adjust the shape of data dimension effectively. 

Since these hyper-parameters of convolutional layer directly affect performance, 

choosing a hyper-parameter is very important. 

 

2.1.2.2. Pooling Layer  

 Pooling layer reduces spatial dimensions of hidden representation and aggregate the 

sensitive spatial information. Since invariant representation learning is possible for 

these Pooling layers translations, slightly shifted input images have the same hidden 

activation. The pooling layer includes a max pooling layer and an average pooling 

layer. Max pooling brings highly activated features by moving the pooling window. 

For example, when stride size is 1, as shown in the figure above, 𝒎𝒂𝒙(𝟎, 𝟏, 𝟑, 𝟒) =

𝟒, and the same is done for the remaining pooling operations. Average pooling is avg 

𝒂𝒗𝒈(𝟎, 𝟏, 𝟑, 𝟒) = 𝟐 similar to the Max pooling operation, and the rest is similar. In 

general, max pooling, which brings highly activated feature maps, is mainly used, 

and effectively reduces resolution, so that overfitting can be avoided, so the 

convolutional layer and pooling are used alternately. Unlike the convolutional layer, 

the pooling layer is a discrete operation because there is no learnable parameter, and 

the number of parameters does not increase, but the disadvantage is that the spatial 

information loss is large. This problem, especially in generative adversarial networks 

that need to generate a clear image, has solved this problem by trying to improve 

image clarity using stride convolution even if the number of parameters increases. 
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Max pooling is most commonly used for classification tasks, such as the fault 

diagnosis task of PHM. 

 

 

2.2 Types of Convolutional Neural Network 

Convolutional Neural Network is composed of Convolutional layer, Pooling layer, 

and dense layer. The figure and notation shown above are LeNet5 notation, and 

LeNet is a convolutional network originally developed by Yann Lecun and 

developed to recognize handwritten digits. This model is the methodology adopted 

for ATM machines, and still some ATM machines are driven by this methodology. 

A convolutional network consists of a feature extraction part and a part that performs 

a task. The feature extraction part repeatedly accumulates convolution blocks 

consisting of convolutional layers and pooling, and performs hierarchical feature 

learning from low level features such as edges and colors to high level features such 

as faces, depending on the depth of the layer. However, due to the deep neural 

network, there is a problem that the learning is difficult due to the vanishing gradient 

problem. 

 

Figure 2-5. LeNet Types Figures and Notation 
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Convolutional networks cannot be used due to vanishing gradient problems, and 

methodologies such as classical feature-based support vector machines have been 

widely used. The 2010, 2011 winning models of the Large Scale Visual Recognition 

Challenge (ILSVRC) are conventional model-based methodologies rather than 

convolutional neural networks. However, since AlexNet, where the 2012 ILSVRC 

model solved the vanishing gradient problem using the Rectified Linear Unit (ReLU), 

deep learning has been widely used in image recognition, as well as speech 

recognition and PHM. 

 

Figure 2-6. ILSVRC performance graph 

 

2.3 Neural Architecture Search 

Neural Architecture Search is an area of AutoML, which is about automating 

machine learning. When it comes to solving problems with machine learning, it aims 
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to automate the process, and hyperparameter search is a typical case. Since deep 

learning has been in place, the need for a way to automatically find network 

structures, rather than simply optimizing hyperparameters, has grown. This is the 

latest Neural Architecture Search (NAS) [2]. AutoML, including NAS, is an 

optimization problem [3], and generally has validation accuracy and loss as an 

objective function, and validation accuracy is non-differential, so the network is end-

to-end and the results are checked repeatedly. As a result, huge computational costs 

are required.  

 

Figure 2-7. Scheme of Automated Machine Learning 

When performing the existing optimization, many algorithms are used in Neural 

Architecture Search method, and various methodologies such as reinforcement 

learning, evolutionary algorithm, Bayesian optimization, and gradient descent 

method are used [3,4,5].Most methodologies define network generators, and network 

generators, also called generators, sample child networks to predict performance 

[6,7]. In addition, the sampled network is trained to have higher performance by 

learning the sampled child network. Using the neural architecture search 

methodology, manual search can be used to eliminate unnecessary user intervention. 

In addition, research continues to show that higher performance is achieved than 
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conventional methods. However, the problem with this methodology is that there is 

not much room for improvement if the given data is not diverse, by optimizing the 

neural network. It is also considered very inefficient because it starts with scratches 

and optimizes the neural network. This methodology is not well used in schemes 

such as online learning where continuous data is obtained, but it is mainly used when 

ILSVRC requires some high performance. Therefore, effective Neural Architecture 

Search is essential [8,9,10]. 

 

2.4 Transfer Learning 

 Transfer Learning is information transfer from the source domain to the target 

domain in order to perform effective learning. Due to the development of internet 

technology, it is easy to collect big data such as over 1 million natural images like 

ImageNet. Therefore, even if the target domain we want to learn is different from the 

source domain, it is very important to utilize the knowledge of the source domain. 

There are various methods of transfer learning, but recently, as the deep learning 

technology that autonomously learns the characteristics of big data using big data has 

become popular, parameter transfer learning technology that can easily use source 

domain knowledge has been widely used. Since the convolutional neural network 

performs general feature learning in the source domain, this technique extracts high 

level features from the raw input image with the fixed parameters. And the model 

connects the fully connected layer to perform the task. If the target domain is similar 

to the source domain, performance is maximized, so other tasks such as image 

detection and segmentation can be used efficiently. When the source domain is 

different from the target domain, domain adaptation techniques are often used. 

Prediction of fault classes using our target domain, the spectral domain image, is very 
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different from the source domain, but it is like starting with a relatively good initial 

point. In addition, since there is no need to learn convolutional neural networks for 

feature learning, the trained parameters are dramatically reduced. Therefore, the 

framework of the target task can be performed relatively quickly with good 

performance without falling into the curse of dimension. Various networks can be 

used as a pretrained network.  

 

 
Figure 2-8. Scheme of Transfer Learning 

 

2.5 Interpretability 

 Deep learning is generally considered a black-box model. However, many fields 

use deep learning, and a lot of interpretability research is being done to find the 

physical meaning. In general, interpretability includes (1) global interpretability, (2) 

local interpretability, and (3) uncertainty estimation [11]. (1) The global 

interpretability method describes how the model predicts overall. In general, the 

weight of a feature indicates its feature importance. A method like LASSO performs 

feature selection based on feature importance. However, due to problems such as 
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multiple collinearity or correlation, weight values can be obtained differently from 

physical understanding. To solve this problem, it has to go through additional 

processing such as removing highly correlated features. It is also easy to enforce 

monotonicity on the relationship between input features and outputs, to prevent 

common sense and deviations, and to explain the overall operation of the model. 

Recently, research has been continued to add monotonic conditions to nonlinear deep 

neural networks. (2) Local interpretability is an interpretation method in which the 

model explains the reason for the prediction for individual data points. Among local 

interpretability methods, there are largely local surrogate based method, 

counterfactual explanation, and gradient-based explanation methodology. The local 

surrogate methodology creates a locally approximated linear model for an 

interpretable model-agnostic explanation. Counterfactual explanation is a way of 

interpreting how results vary by hypothesis, presenting virtual or real data points. 

Finally, the Gradient-based explanation methodology. Class Activation Map (CAM) 

[15] was analyzed using linearity between global average pooling and output. 

However, to solve the limitation that only models using global average pooling are 

applicable, Grad-CAM (Gradient-weighted Class Activation Map) [16] has been 

proposed. This visualization technique is a class-discriminative technique and can 

only be applied to image classification tasks. This methodology is a methodology 

that can analyze various tasks without any modification to the network and without 

any performance degradation. 
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Figure 2-9. Disadvantage of Gradient-based Local Interpretability Method 

However, as the figure below shows, the feature map is reduced in dimension, 

resulting in lower resolution. Therefore, a new local interpretability method is needed. 

Finally, we use the confidence score of the model to perform uncertainty estimation. 

For example and support vector machines, the farther they are from the decision 

boundary, the more confident they are. In the case of ensemble methods, the predicted 

results of each model are high confident and low confident if not. In the case of deep 

neural networks, the probability is output, so it can be determined based on entropy. 

Recently, it is common to estimate predictive uncertainty using model uncertainty 

such as dropout and batch normalization of deep learning model. 

 

Figure 2-10. Scheme of Interpretability 
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Chapter 3. Proposed Automated Interpretable Deep 

Learning (AutoIDL) Framework  

The proposed Automated Interpretable Deep Learning (AutoIDL) Framework has 

the following process. First, after changing to spectrogram, a domain that users can 

easily interpret, in the second step, we design the search space in consideration of 

transfer learning, and in the third step, perform neural architecture search based on 

Bayesian optimization. Finally, the process of giving analysis power to the optimized 

model. 

3.1 Preprocessing 

Convolutional neural networks are performing fault diagnosis using 1-D vibration. 

However, since the length of the data is longer compared to the image, a wider 

receptive field is needed. In addition, noise is distributed over a wide frequency range, 

requiring deeper, larger kernels and larger stride sizes to find key features for fault 

diagnosis [12,13]. 

 

 

Figure 3-1. Augmentation of Time series data 

In addition, deep learning models require augmentation techniques because they 

require a lot of data. In the computer vision domain, the data is augmented by various 

image transformation techniques such as flipping, cropping, and scaling under 
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human-recognized conditions even if the deformation is applied. In general, by 

performing augmentation, general feature representation learning can be performed 

to avoid overfitting and increase generalization performance. In the PHM domain, 

since a long 1-D vibration signal is given in the fault diagnosis, generalization of the 

phase is required. Augmentation is performed using random cropping with a length 

of 2048 and a shift size of 1 for a given long time sequence. The test step was 

performed so that there was no overlap in the test step. Although this method is a 

simple augmentation method, it is known as a method to effectively avoid overfitting. 

 

 

Figure 3-2. Scheme of Overall Augmentation Process 

 

In the next step, white gaussian noise is added. By adding noise, a robust algorithm 

can be built. In Section 4, various levels of noise are added depending on the 

experimental environment. The next step is to perform a spectrogram 2-D image 

transformation that is easy for the user to interpret and is already used in 

troubleshooting. By utilizing image transformation, not only can you effectively use 

the deep learning techniques used in traditional computer vision, but you can also 

use models that have already been trained in feature representation, such as transfer 

learning in other domains. 
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3.2 Automated Neural Architecture Construction 

Neural Architecture Search, which finds the optimal neural network among 

automated machine learning, is continuously researched. However, because it is an 

inefficient way to learn from scratch, we propose a methodology to use it as a pre-

trained model of transfer learning [18]. However, there are many problems with the 

proposed method. First, because there are a variety of models in the pretrained 

model, you need to choose which model to choose. In addition, the size of the model 

must be chosen depending on the complexity of the problem. Second, there is a 

drawback that the statistics of the data used in the pretrained model differ from the 

statistics of the PHM domain that we want to solve. In addition, there is a problem 

of increasing the channel of the input data redundantly. Finally, the signal data is a 

very important hyperparameter as the resize coefficient of the dimension of the input 

data is also recently studied in Efficient-Net [19]. 

 

 

Figure 3-3. Search Space of Proposed Method 

 

Therefore, to solve the above problem, we propose the First Layer Optimization with 

Transfer Learning (FLOTL). First, we define a search space to find which pretrained 

model is optimal. Here, we chose a model with Global Average Pooling (GAP) like 
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ResNet. The reason is that because GAP can be approximated with a linear model, it 

can not only utilize the interpretability technology like the existing Class Activation 

Map [16], but also can be used with the proposed methodology. Second, optimize 

the hyperparameters of the first layer, filter size, stride size and number of channels. 

Finally, we optimize the hyperparameter image resize coefficient and number of 

channels associated with the input data. Through the proposed method, the neural 

network can be optimized by using the feature representation learning part of the 

pretrained model, and the GAP and dense layer are given as constraints, which avoids 

overfitting and is an interpretable methodology. 

 

3.3 Interpretability 

In order to give high resolution to the black box deep learning model, we propose a 

new methodology. This framework focuses on local interpretability and uncertainty 

estimation techniques. First, the local interpretability method is widely used as a 

gradient-based explanation method such as Grad-CAM. Due to the nature of the 

convolutional neural network, resolution has to be reduced. Although there is a way 

to make the resolution of the feature map constant, the overfitting problem cannot be 

avoided, and the proposed framework uses a pre-trained model of the transfer 

learning technique. In addition, the Grad-CAM [17] methodology is a localization-

based methodology, which is an algorithm that determines where it is at first, and 

thus is difficult to interpret precisely. In order to solve this problem, we propose the 

Frequency Domain Occlusion based Interpretability (FDO) methodology which 

calculates the importance of the frequency band by using the frequency masking as 

shown in the figure below. 𝑝(𝑥; 𝜃) − 𝑝(𝑥𝑜𝑐𝑐𝑙𝑢𝑠𝑖𝑜𝑛; 𝜃) means frequency feature 

importance, occlusion moves with 1 pixel iteratively, and a new image with 
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resolution like spectrogram can be obtained. The methodology for obtaining the 

prediction difference of the spectral domain is called Time Domain Occlusion based 

Interpretability (TDO). The proposed methodology indicates that the band is 

important if the difference between the probability values is large and that the band 

is not important if the difference between the probability values is small. 

 

Figure 3-4. Scheme of Time Domain Occlusion based Interpretability (TDO) 

 

Second, we estimate the predicted uncertainty by using the uncertainty of the 

model. The most widely used Bayesian deep learning model is more computation is 

required because it is accompanied by other learning processes such as variational 

inference. Also, since the performance is not higher than that of the general neural 

network, the methodology using the general neural network has been continuously 

studied. In particular, deep ensemble-based predictive uncertainty estimation is very 

simple and the uncertainty estimation performance is excellent. However, there is a 

disadvantage that it is very time consuming because the model must be trained 

independently. To solve this problem, using the model obtained while performing 

Bayesian optimization, predictive uncertainty is estimated using the ensemble 

technique 𝑝(𝑦|𝑥) =
1

𝑀
∑ 𝑓(𝑦|𝑥; 𝜃)𝑀
𝑚=1  . This method can reduce the computation 
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cost by M times compared to the time methodology, and the performance is similar 

to the existing model. Also, when certain data is input, it meets low bias and low 

variance, and when uncertain data is input, it meets high variance. 

 

 

 



24 

 

Chapter 4. Experiment Results 

 

 

The chapter 4 deals with experiment results of the proposed method to estimate 

the efficiency, performance and the robustness. 

4.1 Data Description 

 To verify the proposed algorithm, we used Case Western Reserve University 

(CWRU) bearing dataset with sampling rate of 12000Hz. As shown in the table 

below, there are normal, ball fault, inner race fault and outer race fault. Since there 

are 10 classes, the softmax activation function is used, and the length of the raw 

signal of each data is 2048. For each class, 900 training samples points uses 

augmentation technique with random cropping and test set has 75 non-overlapping 

test sample points among the data that are not used in training set. Epoch was trained 

using 20 and learning rate was 3e-4, based on the model with the highest validation 

accuracy among epochs. 

 

 

Figure 4-1. Case Western Reserve University (CWRU) Bearing Dataset 



25 

 

Table 1. Description of Bearing Dataset 
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4.2 Different Load Cases 

 We verified that the proposed method works well for other Load Cases. In order to 

perform validation on the load, for example, training is performed using the data of 

Load 1, validation is performed using the data of Load 0, the model having the 

highest validation accuracy is selected, and another load is performed. Perform a test 

to make sure it works for you. Fast Fourier Transform (FFT), the most widely used 

method using existing features, obtains 1024 Fourier coefficients, MLP consists of 

1024, 1000, 10 nodes, and DNN consists of 1024, 1000, 1000, 10 Use the model to 

perform a diagnosis. In addition, in order to compare accurate performance, it 

repeated five times and averaged the result. In the case of 1D-CNN, the training was 

performed similarly to the existing widely used models, and 2D-CNN used the 

ResNet-50 model after performing spectrogram image transformation on the raw 

signal [14]. Much less data was used than previously used data. Therefore, the FFT-

based methodology does not work well for different loads because of the high 

probability of overfitting over a narrow frequency range. Recently, deep learning 

models using deep learning have different results depending on the case of 1D-CNN 

and 2D-CNN, and the average of accuracy is very similar [15]. When we use the 

pretrained model, we can see that the performance increases drastically. To analyze 

this, we performed the feature visualization as shown below.  
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Figure 4-2. Result of Different Load Cases 

 

 When visualizing raw signals using PCA, it can be seen that they are clustered in 

the same area that is difficult to classify. However, when spectrogram is used, it can 

be seen that the relationship according to load can be found to some extent. In other 

words, the method using the spectrogram is an appropriate method, and when the 

feature is extracted and visualized using the pretrained model, the pretrained model 

is classified so that it can be classified without learning the dense layer performing 

the classification task. It can be very helpful. 

 Finally, when the pretrained model and the fist layer optimization were performed 

at the same time, it was confirmed that the performance of fault diagnosis increased 

a little more, and the performance was estimated to be improved because the 

problems caused by the existing pretrained model were solved. 
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Figure 4-3. Feature Visualization using PCA and t-SNE 

 

  



29 

 

4.3 Noisy Environment Cases 

In a real environment, it can be exposed to various noise environments, so we 

verified that it works well for noisy environment. To perform the validation, we 

added 0dB of white gaussian noise to the training set. In addition, as a validation set, 

a model was obtained using a model having high validation accuracy by utilizing 

data of a time step not used in the training set. Finally, the test set confirmed that it 

works well with varying levels of white gaussian noise from 10dB to -4dB. As shown 

in the figure below, the FFT-based method adds 0dB of white gaussian noise to the 

training set, so it works well at 0dB but does not work well for other noise levels 

away from 0dB. However, we found that the methodology using the pretrained model 

works well for various noise levels. 

 

 

Figure 4-4. Result of Noisy Environment Cases 

 

4.4 Interpretability 

To verify the proposed FDO methodology, we compared the two models obtained 
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from the case study. The first model is a 2D-ResNet model with approximately 84% 

accuracy for -4dB white gaussian noise. Using the FDO methodology, we can see 

that the probability difference is very large for some frequency ranges. In other words, 

it can be seen that the model is overfitting over a narrow frequency range. However, 

even when the proposed model is analyzed using FDO, not only the probability 

difference is large due to the frequency masking, but also the fault energy of the 

bearing is in the wide frequency range. In addition, since there is no big probability 

difference for TDOs, we can see that the proposed occlusion-based analysis methods, 

FDO and TDO are suitable. 

 

 
Figure 4-5. Analysis of Interpretability between Two Models using FDO 
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Chapter 5. Conclusion and Future Work 

 

 

5.1  Conclusion 

 

This paper proposes a new Automated Interpretable Deep Learning Framework 

(AutoIDL) to solve the fault diagnosis problem and manual search to find the neural 

architecture and hyper parameter. AutoIDL has three main features, to find optimal 

first convolutional layer kernel and stride for domain adaptation with input data 

augmentation and propose a new time and frequency domain interpretability 

technique and easily achieve the state-of-the-art performance with transfer learning 

based pretrained model in public CWRU bearing dataset. Results in Section 4 show 

that proposed AutoIDL is noisy robust without denoising technique when other 

method suffers from degradation under noisy environment conditions. And, only 

pretrained model achieved better performance than previous 1-D CNN and 2-D CNN. 

So, pretrained model is helpful when fault diagnosis is conducted in PHM domain 

from different domain. And, first layer optimization with transfer learning is helpful 

to minimize distance between ImageNet source domain and our target domain. In 

addition, Time Frequency Domain based Interpretability (TDO) is used to investigate 

the mechanism of black box deep learning model. And, proposed method shows that 

highest performance without domain adaptation technique compared with previous 

method for domain adaptation. So, proposed method shows the very simple and 

robust model.  
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5.2  Future Work 

 

In future work, we apply the domain adaptation technique with Automated Deep 

Learning. In this research, we don’t apply domain adaptation technique such as batch 

normalization statistics and domain adversarial neural network. This technique is 

helpful such as different loading case and noisy environment case. 

.  
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 국문 초록 

 

본 논문에서는 해석 가능한 자동 딥러닝 프레임워크를 제안한다. 

제안하는 방법은 총 두 단계로 이루어져 있다. 첫 번째 단계는 사전 

학습된 신경망을 고려하여, 신경망 구조의 핵심 하이퍼 파라미터를 탐색 

공간으로 정의하여 자동으로 신경망을 최적화하는 단계이다. 사전 

학습된 모델과 베이지안 최적화 기법을 이용하여, 정의된 탐색 공간을 

최적화함으로써 두 방법론의 장점만을 취하여 강건한 딥러닝 모델을 

얻을 수 있다. 두 번째 단계는 해석 불가능한 기존 딥러닝 모델을 해석 

가능 하도록 하는 단계이다. 이 단계는 다시, 개별 데이터의 예측의 

이유를 설명하는 단계와 예측에 대해 얼마나 확신할 수 있는지에 대해서 

추정하는 단계로 나뉜다. 첫 번째로, 기계 시스템의 고장 진단에 주로 

활용되는 시간-주파수 영역에서 해석력을 부여하는 방법을 

제안하였는데, 특정한 시간 혹은 주파수 마스킹 기법에 따라 엔트로피 

변화량을 통해서 중요도를 추정할 수 있다. 두 번째는, 베이지안 최적화 

기법을 통해 샘플링된 신경망을 이용하여 앙상블 기반 예측 불확실성을 

추정할 수 있다. 제안하는 방법은 볼 베어링 데이터를 활용하여, 다양한 

노이즈와 다양한 하중에 대해서 검증되었다. 뿐만 아니라, 고장 진단 

이외의 분야에도 다양한 도메인에 적용이 용이할 것으로 보인다. 
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