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Abstract In this paper we investigate the performance of
probability estimation methods for reliability analysis. The
probability estimation methods typically construct the prob-
ability density function (PDF) of a system response using
estimated statistical moments, and then perform reliability
analysis based on the approximate PDF. In recent years,
a number of probability estimation methods have been
proposed, such as the Pearson system, saddlepoint approx-
imation, Maximum Entropy Principle (MEP), and Johnson
system. However, no general guideline to suggest a most
appropriate probability estimation method has yet been pro-
posed. In this study, we carry out a comparative study of the
four probability estimation methods so as to derive the gen-
eral guidelines. Several comparison metrics are proposed to
quantify the accuracy in the PDF approximation, cumulative
density function (CDF) approximation and tail probability
estimations (or reliability analysis). This comparative study
gives an insightful guidance for selecting the most appro-
priate probability estimation method for reliability analysis.
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tested with one mathematical and two engineering exam-
ples, each of which considers eight different combinations
of the system response characteristics in terms of response
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1 Introduction

In the past few decades, uncertainty propagation and reli-
ability analysis have been widely recognized as of great
importance in engineering product development (Du and
Chen 2004; Youn et al. 2005; Xie et al. 2007; McDonald and
Mahadevan 2008). Hence, tremendous research advances
have been made in quantifying the uncertainty of a sys-
tem response originating from various uncertainty sources
(e.g., material properties, loads, geometric tolerances) and
analyzing the engineering reliability. In general, existing
reliability analysis methods can be grouped into the fol-
lowing four categories: (1) the sampling-based methods
such as the direct or smart Monte Carlo simulation (MCS)
(Rubinstein 1981; Fu and Moses 1988), (2) the MPP-based
methods such as the first- or second-order reliability method
(FORM/SORM) (Hasofer and Lind 1974; Tvedt 1984);
(3) the stochastic response surface methods such as the
stochastic spectral method (Ghanem and Spanos 1991; Xiu
and Karniadakis 2003) and stochastic collocation method
(Smolyak 1963; Xiong et al. 2010), and (4) the numeri-
cal integration-based methods. Among the four categories
of numerical and simulation methods, we are specifically
interested in the last one in which the numerical integration
is first employed to compute statistical moments, and then



34 Z. Xi et al.

the probability estimation method is used to approximate
the probability density functions (PDFs), probabilities and,
more specifically, reliabilities of system responses based on
the computed moments. Many methods have been proposed
to estimate the statistical moments, such as the general-
ized method of moments (Hall 2005), high-dimensional
model representation (Rabitz et al. 1999; Rabitz and Alis
1999), Dimension Reduction (DR) (Rahman and Xu 2004;
Xu and Rahman 2004), and Eigenvector DR (EDR) (Youn
et al. 2008; Youn and Xi 2009). The merits and draw-
backs of these methods have also been thoroughly studied.
However, the approaches for approximating the PDF of
the system response from the statistical moments have not
been thoroughly investigated. There is lack of a comparative
study to reveal the drawbacks and merits of the probability
estimation methods for reliability analysis.

It was well known how to fit parametric probability
distribution functions (e.g., PDFs) to the first two statisti-
cal moments (the mean and variance). However, it is not
straightforward how to construct the probability distribu-
tion functions when skewness (the 3rd statistical moments)
and kurtosis (the 4th statistical moments) are additionally
available. Pearson first attempted to develop a family of
probability distribution types to fit the observed data with
the first four arbitrary statistical moments, known as the
Pearson system (Pearson 1901, 1916). Afterwards Johnson
proposed the Johnson system (Johnson 1949; Johnson et al.
1994) to fit the observed data. The Johnson system involves
a transformation of the raw variable into a standard normal
variable (Johnson et al. 1994). The saddlepoint approxima-
tion (Daniels 1954) was introduced to statistics for approx-
imation of a PDF. In a strictly mathematical viewpoint, the
saddlepoint approximation is used to approximate the con-
tour integral in the Fourier inversion theorem in order to
recover the density or distribution function from the char-
acteristic function (Huzurbazar 1999). In 1957 E.T. Jaynes
proposed a rule to assign numerical values to probabilities
by maximizing an information entropy subject to the con-
straints of the information, known as the maximum entropy
principle (MEP) (Jaynes 1957).

In recent years, these methods have been employed
to approximate the PDF, probabilities, and reliabilities of
system responses from the known statistical information
(Farnum 1997; Chen and Kamburowska 2001; Soize 2001;
Huang and Du 2006; Straeten and Beck 2008; Youn and Xi
2009). However, no general guidelines to suggest a most
appropriate probability estimation method have yet been
developed. In this study, we carry out a comparative study of
the four probability estimation methods so that the general
guidelines can be extracted. Several comparison metrics are
proposed to quantify the accuracy in the probability density
function (PDF) approximation, cumulative density func-
tion (CDF) approximation and tail probability estimations

(or reliability analysis). This comparative study gives the
general guidelines for selecting the most appropriate prob-
ability estimation method for reliability analysis. The four
probability estimation methods are extensively tested with
one mathematical and two engineering examples, each of
which considers eight different combinations of the system
response characteristics in terms of response boundness,
skewness, and kurtosis.

The rest of the paper is organized as follows. Section 2
presents a brief review of these probability estimation meth-
ods. In Section 3, four comparison metrics are proposed to
quantify the accuracy of the probability estimation methods.
An extensive comparative study is carried out in Section 4
to reveal the relative merits and drawbacks of these meth-
ods. The capability of approximating a bimodal PDF is also
discussed. The comparison results are briefly summarized
in Section 5.

2 Review of probability estimation methods

This section briefly reviews the four commonly used prob-
ability estimation methods, namely the Pearson system,
saddlepoint approximation, Maximum Entropy Principle
(MEP), and Johnson system.

2.1 Pearson system

Pearson system (Pearson 1901, 1916) can be used to con-
struct the PDF of a random response y based on its first four
central moments (mean, standard deviation, skewness and
kurtosis). Detailed expressions of the PDF (p(y)) can be
achieved by solving a differential equation as

1

p(y)

dp(y)

dy
= − a + y

c0 + c1 y + c2 y2
(1)

where a, c0, c1 and c2 are the four coefficients determined
by the first four moments of the random response y and
expressed as

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

c0 = (
4β2 − 3β2

1

)(
10β2 − 12β2

1 − 18
)−1

μ2

c1 = β1(β2 + 3)
(
10β2 − 12β2

1 − 18
)−1√

μ2

c2 = (
2β2 − 3β2

1 − 6
)(

10β2 − 12β2
1 − 18

)−1

(2)

where β1 is the skewness, β2 is the kurtosis, and μ2 is
the variance. The mean value is always treated as zero in
the Pearson System since it can be easily shifted to the
true mean value once the differential equation is solved.
Basically, the differential equation can be solved based on
different criteria of the three coefficients c0, c1, and c2 as
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Table 1 PDFs of Pearson
system Normal Criteria c1 = c2 = 0

PDF p(y) = K exp
[ − (y + a)2/(2c0)

]
, where y ∈ (−∞,∞)

Type I and II Criteria c2
1 − 4c0c2 > 0 and roots (a1, a2) of c0 + c1 y + c2 y2 = 0 satisfy a1 < 0 < a2

PDF p(y) = K (y − a1)
m1 (a2 − y)m2 ,

where m1 = a+a1
c2(a2−a1)

, m2 = a+a2
c2(a1−a2)

, y ∈ [a1, a2]
Type III Criteria c2 = 0, c1 �= 0

PDF p(y) = K (c0 + c1 y)m exp
(−y

c1

)
, where m = c−1

1

(
c0c−1

1 − a
)

If c1 > 0, y ∈ [−c0/c1,∞); If c1 < 0, y ∈ (∞, c0/c1]
Type IV Criteria c2

1 − 4c0c2 < 0

PDF p(y) = K [C0 + c2(y + C1)
2]−(2c2)−1

exp
[
− a−C1√

c2C0
tan−1 y+C1√

C0/c2

]

where C0 = c0 − c2
1c−1

2 /4, C1 = c1c−1
2 /2, y ∈ (−∞,∞)

Type V Criteria c2
1 = 4c0c2

PDF p(y) = K (y + C2)
−1/c2 exp

[
a−C2

c2(y+C2)

]
, where C2 = c1/(2c2)

If (a − C2)/c2 < 0, y ∈ [−C2,∞); If (a − C2)/c2 > 0, y ∈ (∞, C2]
Type VI Criteria roots (a1, a2) of c0 + c1 y + c2 y2 = 0 are real and of the same sign

PDF If a1 < a2 < 0, p(y) = K (y − a1)
m1 (y − a2)

m2 where y ∈ [a2,∞)

If a1 > a2 > 0, p(y) = K (a1 − y)m1 (a2 − y)m2 where y ∈ (∞, a2]
Type VII Criteria c1 = 0, c0 > 0, c2 > 0

PDF p(y) = K (c0 + c2 y2)−(2c2)−1
, where y ∈ (−∞,∞)

shown in Table 1. The coefficient K in Table 1 is numeri-
cally calculated by satisfying the property that the integral
of the PDF over the integration domain equals one.

In general, the PDF can be successfully constructed
based on the first four moments of the random response.
However, the Pearson system can fail to construct the PDF,
especially when the statistical moments in the Pearson curve
fall into the region that several distribution types merge,
as shown in Fig. 1. The solid dots stand for the locations
having an instability problem while constructing the PDF.

Fig. 1 Pearson curve (x-axis is the square of skewness, β2
1 , and y-axis

is the kurtosis, β2)

The numerical instability may occur while computing the
coefficient K of a specific distribution type. In the EDR
method (Youn et al. 2008; Youn and Xi 2009), a stabilized
Pearson system was proposed to avoid the instability by
generating two hyper-PDFs with slightly adjusted kurtosis
values. These two hyper-PDFs were finally used to approx-
imate the PDF with the original statistical moments. In this
paper, the stabilized Pearson system is employed for the
comparison study.

2.2 Saddlepoint approximation

For a PDF p(y), the moment generation function is
defined as

M(t) =
∫ +∞

∞
ety p(y)dy (3)

The density function p(y) can be obtained through the
inverse Fourier transform (Daniels 1954) as

p(y) = 1

2π

∫ +∞

−∞
M(i t)e−i t ydt

= 1

2π

∫ +∞

−∞
eK (i t)−i t ydt (4)

where K (t) is the Cumulant Generating Function (CGF)
and K (t) = ln[M(t)]. By replacing it with τ , the PDF p(y)

can be rewritten as

p(y) = 1

2π i

∫ +i∞

−i∞
eK (τ )−τ ydτ (5)
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We then apply the Taylor series expansion to the exponent
function f (τ ) = K (τ ) − τ y at the saddlepoint τs where
f ′(τs) = 0 and obtain an approximation of f (τ ) as

f (τ ) ≈ f (τs) + (τ − τs)
2

2
f ′′(τs)

= K (τs) − τs y + (τ − τs)
2

2
K ′′(τs) (6)

Substituting (6) into (5) gives the saddlepoint approximation
of the PDF p(y) as

p(y) ≈
[

1

2π K ′′(τs)

]1/2

exp
[
K (τs) − τs y

]
(7)

It has been proved that the expansion at the saddlepoint
is a proper asymptotic expansion with the steepest descent
method (Daniels 1954). An impressive accuracy of the sad-
dlepoint approximation was observed from previous works
(Goutis and Casella 1999; Huzurbazar 1999) under the con-
dition that the CGF of the response y is exactly known.
However, it is impossible to obtain the exact CGF of the
system response y in general. Instead the CGF can be
approximated by a few statistical moments as

KY (t) =
N∑

j=1

κ j
t j

j ! (8)

where κ j is the j th cumulant and the first four cumulants
can be expressed in terms of the central moments as
⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

κ1 = μ

κ2 = μ2

κ3 = μ3

κ4 = μ4 − 3μ2
2

(9)

where μ is the mean of the system response y and μn is the
nth central moment, defined as

μn =
∫ +∞

−∞
(y − μ)n p(y)dy (10)

It is noted that, in addition to using statistical moments, it
is also possible to use the first-order Taylor expansion of
the performance function at the most likelihood point to
estimate the CGFs of the performance function (Du and
Sudjianto 2004). For the purpose of consistency and thus
fairness in this comparative study, the CGF is approximated
using the first four statistical moments in this paper.

2.3 Maximum entropy principle (MEP)

In 1957 E.T. Jaynes proposed a rule to assign numerical
values to probabilities in circumstances where certain par-
tial information is available. Today this rule, known as the

maximum entropy principle (MEP) (Jaynes 1957), has been
used in many fields. The PDF of the system response y
can be approximated by maximizing the entropy subject to
the known information such as the statistical moments. The
problem can be formulated as

Maximize f = −
∫ b2

b1

p(y) log p(y)dy

Subject to p(y) ≥ 0,

∫ b2

b1

p(y)dy = 1,

∫ b2

b1

y j p(y)dy = μ′
j (11)

where u′
j is the j th known raw moment of system response,

and b1 and b2 are the lower and upper bounds of the system
response y, respectively.

The optimization problem has the solution of the follow-
ing form

p(y) = exp

[

−λ0 −
∑N

j=1
λ j y j

]

, y ∈ [a, b] (12)

where λj is the Lagrange multiplier and N is the total num-
ber of known raw moments. The Lagrange multipliers can
be obtained by solving a set of nonlinear equations defined
in (11). Although this method is straightforward, it is rela-
tively difficult to find the optimum numerical solution when
more than four nonlinear equations are involved. A more
efficient method is suggested by introducing a potential
function (Mead and Papanicolaou 1984) defined as

Y = λ0 +
N∑

j=1

μ′
jλj

= ln

⎡

⎣

∫ b2

b1

exp

⎛

⎝−
N∑

j=1

λ j y j

⎞

⎠ dy

⎤

⎦ +
N∑

j=1

μ′
jλ j (13)

The stationary points of (13) satisfy the equality constraints
defined in (11) and they can be solved efficiently due to the
convexity and positive definiteness of the Hessian matrix
of the potential function. One numerical algorithm that can
be employed to find the stationary points is the so-called
iterative Newton algorithm, of which the formulation at the
kth iteration can be expressed as

λ[k+1] = λ[k] − (H−1)[k][μμμ′ − 〈μμμ〉[k]] (14)

where λ[k] is the vector consisting of Q Lagrange multi-
pliers at the kth iteration; μμμ′ is the vector consisting of
known raw moments; 〈μμμ〉[k] is the vector of calculated raw
moments with the kth Lagrange multiplier; and H is the
Hessian matrix.
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2.4 Johnson system

Johnson system (Johnson 1949; Johnson et al. 1994) was
proposed to fit a set of data using a mathematical transfor-
mation function. The system contains three families of dis-
tributions: lognormal (SL), bounded (SB), and unbounded
(SU) distributions. Johnson proposed the following transfor-
mation functions for converting them into standard normal
distributions as

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎩

z =γ +δ ln

(
y−υ

λ

)

(y ≥υ) for SL

z =γ +δ ln

(
y−υ

λ+υ−y

)

(υ ≤ y ≤υ+λ) for SB

z =γ +δ sinh−1
(

y−υ

λ

)

(−∞< y <+∞) for SU

(15)

where υ and λ are the location and scale parameters, respec-
tively; γ and δ are the shape parameters; δ > 0, λ >

0, −∞ < γ < +∞, and −∞ < υ < +∞. For the sake
of completeness, an identity transformation for the normal
distribution is defined as

z = γ + δ

(
y − υ

λ

)

(−∞ < y < +∞) for SN (16)

In using the Johnson system, the first step is to determine
the distribution family that should be used. With the known
skewness and kurtosis of the system response, the distribu-
tion family can be directly decided from the Johnson curve
(Johnson 1949). The PDF of the system response can then
be formulated, depending on the determined distribution
family, as

p(y) =

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

δ

(2π)1/2

1

y − υ
exp

{

−1

2

[

γ + δ ln

(
y − υ

λ

)]2
}

(y ≥ υ) for SL

δ

(2π)1/2

λ

(y − υ) (λ + υ − y)
exp

{

−1

2

[

γ + δ ln

(
y − υ

λ + υ − y

)]2
}

(υ ≤ y ≤ υ + λ) for SB

δ

(2π)1/2

1

λ

√
(

y − υ

λ

)2

+ 1

exp

{

−1

2

[

γ + δ sinh−1
(

y − υ

λ

)]2
}

(−∞ < y < +∞) for SU

δ

(2π)1/2

1

λ
exp

{

−1

2

[

γ + δ
y − υ

λ

]2
}

(−∞ < y < +∞) for SN

(17)

The unknown distribution parameters can be estimated
using any of the four estimation methods, namely moment
matching, percentile matching, least square estimation and
minimum L p norm estimation (DeBrota et al. 1988). To
achieve consistency and thus fairness in this comparative
study, we employed the moment matching method with
the first four statistical moments which can typically be
obtained with efficient numerical integration for reliability
analysis.

2.5 Summary of probability estimation methods

Characteristics and limitations of four probability estima-
tion methods are elaborated as following based on the above
review. Both the Pearson and Johnson systems cover the
entire (β1, β2) plane with multiple PDF formulations. Since

each combination of skewness and kurtosis corresponds to
a specific distribution in the systems, we would expect that
the Pearson and Johnson systems consist of a wide vari-
ety of distribution types. However, they could encounter
difficulties in approximating an unbounded bimodal PDF
although the bounded family in Johnson system is capable
of fitting a bounded bimodal PDF with a restricted shape.
The saddlepoint approximation is able to approximate PDFs
of system outputs using more than four statistical moments.
However, this method suffers from the following two draw-
backs: (1) numerical instability could be encountered in
certain cases (e.g., with a negative cumulant κ4); and (2) the
inherent exponential form, while ensuring the smoothness
in the approximate PDF, could lead to the impossibility to
accurately estimate a PDF with a non-exponential behavior.
Similar to the saddlepoint approximation, the MEP method
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is capable of using more than four statistical moments to
increase the accuracy in representing a bimodal or multi-
mode PDF. However, the inherent exponential form taken
by the MEP method may limit its capability to accurately
represent a PDF with a non-exponential behavior. In the
subsequent sections, some of these relative merits and draw-
backs will be verified using the predefined comparison
metrics with numerical and engineering examples.

3 Comparison of probability estimation methods

In this section, four comparison metrics ζ , namely, the
PDF-based metric ζ1, CDF-based metrics ζ2 and ζ3, and
reliability accuracy metric ζ4, are proposed to quantitatively
assess the performance of the probability estimation meth-
ods. The PDF-based metric ζ1 is the cross entropy (Kullback
and Leibler 1951), while the CDF-based metrics ζ2 and ζ3

are the U-pooling (Ferson et al. 2008; Xiong et al. 2008) and
area metric, respectively. It is possible that a given prob-
ability estimation method may perform poorly under one
comparison metric while outperforming many other meth-
ods under the other comparison metrics. Thus the unique
characteristics of each comparison metric will be discussed
to extract general guidelines for choosing appropriate meth-
ods for specific engineering applications. We note that,
in the numerical integration-based methods, the estima-
tion of statistical moments using the numerical integration
(the 1st step) requires the evaluation of system responses
and might be computationally expensive while, upon the
completion of the moment estimation, the approximation
of response PDFs employing any of the four probability
estimation methods (the 2nd step) can be done in a very
efficient manner. Typically, the CPU time for this approxi-
mation is less than 1 s because the computation is conducted
through the evaluation of explicit mathematical PDF func-
tions. Therefore, we intend not to investigate the efficiency
of these four methods in this comparative study.

3.1 PDF-based metric: cross entropy ζ1

The cross entropy (Kullback and Leibler 1951), also called
Kullback–Leibler (KL) distance, was proposed to measure
the similarity between a true PDF and an estimated PDF.
The smaller the expected cross entropy, the higher degree of
similarity is the approximate PDF to the true PDF. Let p(y)

and p̂(y) denote the true and approximate PDFs, respec-
tively, with regard to a random system response variable y.
The cross entropy or KL distance is defined as

ζ1(p, p̂) =
∫

p(y) · ln

[
p(y)

p̂(y)

]

dy (18)

Based on the concept of Shannon’s entropy, (18) computes
the difference in the expected information between two
distributions as

ζ1(p, p̂) = E p
[
ln(p)

] − E p
[
ln( p̂)

]
(19)

where the random system response y is omitted for clarity.
It should be noted that ζ1 is not a physical distance between
p and p̂ in the common sense, since the KL distance is
not associative in general, i.e., ζ1( p̂, p) �= ζ1(p, p̂). Nev-
ertheless, ζ1 is an information-theoretic distance measure
between two different distributions.

3.2 CDF-based metrics: U-pooling ζ2 and area metric ζ3

The U-pooling (Ferson et al. 2008; Xiong et al. 2008) value
is defined as the area difference between the actual and
approximate CDF in the normalized space as shown in
Fig. 2. The smaller the shaded area, the higher the over-
all accuracy of the approximate CDF. The U-pooling value
is calculated as

ζ2(P̂, P) =
∫ 1

0

∣
∣
∣P̂(u) − P(u)

∣
∣
∣ du (20)

where P̂(u) and P(u) are the approximate CDF and actual
CDF, respectively.

Similar to the U-pooling, the area metric also measures
the area between the approximate and true CDFs and can be
expressed as (Ferson et al. 2008)

ζ3(P̂, P) =
∫ ∞

−∞

∣
∣
∣P̂(y) − P(y)

∣
∣
∣ dy (21)

However, the integration domain in the area metric is in the
y space in contrast to the normalized space in the U-pooling.

Fig. 2 Illustration of the U-pooling value
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Due to the same intrinsic characteristic (area measurement),
only the U-pooling ζ2 will be utilized as a comparison crite-
rion in this study. In contrast to the cross entropy ζ1, which
measures the similarity between the approximate and true
PDFs, the U-pooling ζ2 and area metric ζ3 measure the area
difference between the approximate and true CDFs.

3.3 Reliability accuracy metric ζ4

While the above three comparison metrics assess the overall
qualities of the PDF or CDF approximations, the accuracy
of reliability estimation, as an important aspect in reliability
analysis, measures the accuracy of pointwise CDF approx-
imations and should also be considered as a comparison
metric. Given a limit state value yC , the reliability can be
defined as

R(p|yC ) =
∫ yC

−∞
p(y)dy = P(yC ) (22)

The reliability accuracy ζ4 is defined as the absolute
difference between the estimated and true reliability

ζ4( p̂, p|yC ) = ∣
∣R( p̂|yC ) − R(p|yC )

∣
∣ (23)

The integration of the reliability accuracy in the normalized
space is the U-pooling value.

3.4 Other comparison metrics

We note that, in addition to the comparison metrics detailed
above, there are also several other metrics to compare the
similarity of two PDFs in the literature. In what follows, we
will briefly review two of them, namely the Kolmogorov–
Smirnov test and the Bhattacharyya distance.

The Kolmogorov–Smirnov test uses the maximum ver-
tical difference between two cumulative distribution func-
tions (CDFs) as the statistic to compare the equality of two
CDFs. This statistic is equal to the maximum value in the
reliability accuracy metric ζ4. The Bhattacharyya distance
can be defined as

D =
∫ √

p(y) p̂(y)dy (24)

where p and p̂ are the true and approximate PDFs, respec-
tively. D ranges from 0 to 1 where the value “1” stands
for two identical PDFs. Both the cross entropy metric ζ1

and Bhattacharya distance can be used to measure the sim-
ilarity of two PDFs. Because of the log operator in cross

entropy metric ζ1, the former is more sensitive than the latter
in identifying the error in the bound definition of the
approximate PDF.

3.5 Summary of comparison metrics

The proposed comparison metrics offer different perspec-
tives on the extent to which a probability estimation method
can accurately represent a response PDF. In what follows,
we intend to present three remarks regarding the differences
and connections between these metrics. Firstly, as men-
tioned before, the PDF- and CDF-based metrics (i.e., cross
entropy ζ1, U-pooling ζ2 and area metric ζ 3) measure
the overall qualities of the PDF or CDF approximations,
while the reliability accuracy metric ζ4 measures the accu-
racy of pointwise CDF approximations, or reliability. If
we integrate the pointwise reliability accuracy metric ζ4

in the normalized and original spaces, we then obtain the
U-pooling ζ2 and area metric ζ3, respectively. Secondly,
although both the cross entropy ζ1 and any CDF-based met-
ric ζ2 or ζ3 reflect the overall accuracy in the probability
estimation, the former is strongly associated with the accu-
racy in the reliability estimation over the tail region of a
response PDF whereas the latter, as the integration of the
reliability prediction error over the entire domain, typically
stands for that over the entire region. This remark will later
be verified in the case study. Lastly, among these metrics,
only the reliability accuracy metric ζ4 is directly associated
with reliability analysis while the others are not. However,
the very motivation for using the PDF- and CDF-metrics
lies in the fact that the reliability accuracy metric ζ4 falls
short in the way of achieving a comprehensive assessment
on the accuracy of a probability estimation method, pre-
cisely because it only gives an integration error at a specific
point, typically near the tail region.

4 Case study

A number of examples are tested below to compare the per-
formance of the probability estimation methods introduced
in Section 2. Section 4.1 presents design principles and
a brief overview of case studies. Detailed descriptions of
examples along with test results are given in Sections 4.2
and 4.3 for unimodal and bimodal PDFs, respectively.
Section 4.4 provides a discussion on the test results.

4.1 Design of case studies

We intend to investigate the performance of the represen-
tative probability estimation methods under various PDF
settings in a number of examples. For that purpose, we
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first employ a two-level design of experiment to derive eight
cases with different PDF characteristics for a unimodal PDF,
the most encountered one in reliability analysis. Then, we
study several mathematical and engineering examples for
each case with a unimodal PDF and for a bimodal PDF.

4.1.1 PDF characteristics of system response

The PDF of a system response can be classified in terms
of three properties: (1) bounded, (2) skewed, and (3)
kurtosis.

1. Bounded property: The PDF of a system response
can be unbounded, one or two-side bounded. Indeed,
the bounded property is often found in many PDFs.
For example, both the Pearson and Johnson systems
clearly define the distribution types with bounded and
unbounded properties, whereas the bounded property is
not defined in the saddlepoint approximation and MEP
method. Hence, this study considers both bounded and
unbounded cases.

2. Skewed property: Skewness is a measure of lack of
symmetry. The normal distribution has a skewness of
zero. An asymmetric behavior of the PDF is clearly
observed when the absolute skewness value is larger
than 0.5. Hence, the value of 0.5 is used to distinguish
the low and high skewness level in this study.

3. Kurtosis property: Kurtosis is a measure of whether the
PDF is peaked or flat relative to a normal distribution
which has a kurtosis value of 3. That is, a PDF with
high kurtosis tends to have a distinct peak near the mean
and decline rapidly. A PDF with low kurtosis tends to
have a flat top near the mean rather than a sharp peak. A
uniform distribution would be the extreme case. In this
study, low and high kurtosis is defined with the kurtosis
value of 3.

Since a probability estimation method represents the
probability density function (PDF) of a response based
on its statistical moments that are affected by the above
PDF characteristics (e.g., bounded, highly skewed), we
expect that the estimation accuracy would highly depend on
the PDF characteristics. Therefore, we devise a two-level
design of experiment to investigate how the above factors
affect the accuracy of probability estimation. Specifically,
eight cases need to be studied as shown in Table 2. We
note, however, that, in numerical integration-based relia-
bility analysis methods, the relationship between the statis-
tical inputs (x) and response (y) only directly affects the
accuracy in moment estimation (the first step) rather than
that in probability estimation (the second step). Therefore,
we intend not to investigate the effect of this functional
relationship in this comparative study.

Table 2 Eight cases from two-level design of experiment

Case Bound Skewness Kurtosis

1 Unbounded Low Low

2 Bounded Low Low

3 Unbounded High Low

4 Bounded High Low

5 Unbounded Low High

6 Bounded Low High

7 Unbounded High High

8 Bounded High High

4.1.2 Overview of case studies

Five examples are employed to compare the performance
of the representative probability estimation methods and to
extract general guidelines for selecting the most appropri-
ate probability estimation method for reliability analysis.
Table 3 summarizes these examples of which the first three
are used for unimodal PDFs and the rest are used for
bimodal PDFs. For examples 1, 2 and 3, PDFs derived from
MCSs with 1,000,000 samples are treated as true PDFs. For
example 4, we do not need to compute the true PDF since
it is already given. For example 5, 20,000 MCS samples are
used to construct the true PDF. Since we aim at compar-
ing the accuracy of the probability estimation methods in
approximating the PDF of a system response with its statis-
tical moments, we intend to minimize the errors in statistical
moments, thereby minimizing their effects on the compari-
son results. To this end, the statistical moments used for all
the probability estimation methods are obtained from MCS
with a sufficiently large sample size. As aforementioned in
Section 3, the computation is very fast for the four prob-
ability estimation methods under study and, therefore, we
intend not to compare the efficiency of these four methods
in the case studies.

Table 3 Five examples for comparative studies

PDF type Example index System response Case

Unimodal Example 1 Y = x1 + x2 + x3 + x4 + x5 Eight cases

Example 2 Maximum stress in an Eight cases

I-beam

Example 3 First buckling mode in Eight cases

a plate

Bimodal Example 4 Response with a predefined One case

bimodal PDF

Example 5 Power loss of a V6 One case

gasoline engine
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4.2 Case studies for unimodal PDF

4.2.1 Description of examples

Three examples are employed for a unimodal PDF associ-
ated with each case in Table 2. For all the three examples,
the distributions of input random parameters are appropri-
ately assigned to make the output response meet the criteria
of each case shown in Table 2. The first example is a simple
addition function defined as

Y = x1 + x2 + x3 + x4 + x5 (25)

where xi can be assigned to arbitrary distributions. The sec-
ond example is an I-beam problem as shown in Fig. 3 where
the maximum stress can be expressed as

σmax = Fx(L − x)h

2L I
(26)

where

I = wh3 − (w − t2)(h − 2t1)3

12
(27)

The third example is a buckling problem. As shown in
Fig. 4, the buckling problem is considered with three shape
design variable: the height (h = 500 + x1) and width
(w = 500+x2) of the plate and the diameter (d = 100+x3)

of the middle hole. A morphing technique in the Hyper-
Works 8.0 software package is used to deal with the shape
variables (h, w and d) in the FEA model. The plate is
modeled using plane stress quad4 elements, consisting of
1,681 nodes, 1,571 elements, and 9,798 DOF. A unit load
is applied along the top edge of the plate, while the bot-
tom edge of the plate remains fixed in all six direction. The
plate is made of Aluminum 6061, where E = 67.6 GPa
and ν = 0.3.

4.2.2 Results and remarks

This subsection presents the probability estimation results,
based on which brief remarks are drawn regarding the

Fig. 3 Loading condition and structure of an I-beam

Fig. 4 Plate FE model

performance of the probability estimation methods for all
eight cases.

Case 1 (unbounded, low skewness and low kurtosis)

Given the distribution types and parameters shown in
Table 12 in Appendix, the responses of the three examples
meet the criteria of case 1. The cross entropy (ζ1), U-
pooling (ζ2), and reliability accuracy (ζ4) results are shown
in Table 4 and Fig. 5, respectively. The bold items in Table 4
refer to the minimum cross entropy (ζ1) or U-pooling value
(ζ2) produced by the probability estimation methods.

Johnson system presents the best overall CDF quality for
all the three examples. However, it gives larger errors in
reliability estimation than the Pearson and MEP for both
high (>0.99) and low (<0.01) reliability levels as shown

Table 4 Cross entropy and U-pooling comparison of case 1

Example Moments Methods ζ1 ζ2

1 μ = 9.7570 Pearson 3.58E-04 5.08E-04

σ = 1.5417 Saddlepoint – –

β1 = 0.0417 MEP 4.40E-04 4.96E-04

β2 = 2.8871 Johnson 8.81E-04 2.34E-04

2 μ = 182,716 Pearson 3.24E-02 5.41E-03

σ = 27,072 Saddlepoint – –

β1 = 0.3887 MEP 5.90E-03 3.43E-03

β2 = 2.7114 Johnson 4.88E-02 3.31E-03

3 μ = 3.3503 Pearson 4.45E-03 2.61E-03

σ = 0.0024 Saddlepoint – –

β1 = 0.0026 MEP 4.78E-03 2.57E-03

β2 = 2.9079 Johnson 1.47E-02 2.36E-03
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Fig. 5 Reliability accuracy (ζ4)
of case 1

(a) Example 1 

(b) Example 2 

(c) Example 3 

in Fig. 5. Based on the skewness and kurtosis of the system
response, the bounded distribution (SB) is decided from the
Johnson curve (Johnson 1949) to model all three response
distributions. Hence, if either a lower or upper bound is not
properly defined, a relatively large error at the tail region is
expected in the Johnson system.

Similar to the Johnson system, type I distribution is deter-
mined in the Pearson curve (Pearson 1916) based on the
skewness and kurtosis of the system response and lower
and upper bounds are defined. The three examples indicate
that the Pearson system preserves better bound definition
than the Johnson system since smaller reliability estimation
errors are observed for both high (>0.99) and low (<0.01)
reliability levels as shown in Fig. 5.

Unlike the Johnson and Pearson system, the MEP method
does not have pre-defined lower and upper bounds. Hence,
in the numerical implementation, it is applicable to employ
a wide range, e.g., μ±12σ , where μ and σ are the response
mean and standard deviation, respectively. Besides, the PDF
from the MEP method is basically in the form of an expo-
nential function which tends to behave smoothly in tail
regions. These two may be the reasons that the MEP method
produces accurate reliability estimations in tail regions as
shown in Fig. 5.

The saddlepoint approximation fails to construct the PDF
and CDF due to numerical instability in this case. This can
be attributed to the small kurtosis value (β2 < 3) which
results in a negative cumulants κ4. Hence, it is very likely
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that the 2nd derivative of the Cumulant Generating Function
(CGF) at the saddlepoint ts is less than zero, causing failures
in the PDF and CDF constructions in (7).

Case 2 (bounded, low skewness and low kurtosis)

Given the distribution types and parameters shown in
Table 13 in Appendix, the responses of three examples meet
the criteria of case 2. The cross entropy (ζ1) and U-pooling
(ζ2) comparison results are shown in Table 5. The reliability
accuracy (ζ4) results are not shown in this case because they
are very similar as in case 1. The Johnson system shows
very good accuracy in terms of the overall CDF approxima-
tion. The Pearson system preserves better bound definition
than the Johnson system. It is also the main reason that
the Pearson system shows better overall CDF quality than
the Johnson system in the 1st example. The MEP method
performs the best in all aspects in the 2nd example where
the skewness (β1 = 0.4755) is relatively high. Again, the
saddlepoint approximation fails to construct the PDF and
CDF due to the numerical instability problem explained
in case 1.

Remarks on case 1 and case 2

As a summary for case 1 and case 2, the following facts were
observed: (1) the Johnson and Pearson systems may produce
inaccurate bound prediction of a PDF with a relatively steep
tail region (high skewness), resulting in relatively large reli-
ability errors; (2) the MEP method generally outperforms
the other methods in all aspects for a PDF with relatively
high skewness; (3) the Pearson system typically produces
better reliability accuracy than the Johnson system for the
high (>0.99) and low (<0.01) reliability levels; (4) the

Table 5 Cross entropy and U-pooling comparison of case 2

Example Moments Methods ζ1 ζ2

1 μ = 3.9275 Pearson 1.23E-03 5.13E-04

σ = 1.0970 Saddlepoint – –

β1 = −0.0028 MEP 1.25E-03 1.99E-03

β2 = 2.4348 Johnson 1.13E-03 6.06E-04

2 μ = 165,752 Pearson 2.20E-02 5.71E-03

σ = 35,384 Saddlepoint – –

β1 = 0.4755 MEP 1.37E-03 1.76E-03

β2 = 2.9206 Johnson 5.10E-03 3.07E-03

3 μ = 3.3421 Pearson 9.37E-04 1.00E-03

σ = 0.0027 Saddlepoint – –

β1 = 0.0310 MEP 1.38E-03 1.51E-03

β2 = 2.4757 Johnson 1.25E-03 5.36E-04

Fig. 6 PDF with high skewness and low kurtosis

Johnson system generally produces better reliability accu-
racy than the other methods at all reliability levels except
the high (>0.99) and low (<0.01) levels; and (5) the sad-
dlepoint approximation fails to construct the PDF and CDF
due to the numerical instability.

Remarks on case 3 and case 4

It is difficult to build a response PDF to meet the criteria
of case 3 and case 4. To meet the criteria of high skewness
and low kurtosis, the PDF should have the form as shown in
Fig. 6. Although it may be possible to have a system random
input with such property, i.e. skewed triangular distribution
in some engineering application, it is not likely that the sys-
tem response would keep the same form after uncertainty
propagation. Besides, this type of distribution is close to the
impossible PDF region in the Pearson and Johnson system
and has a very small probability of occurrence. Due to the
above reasons, case 3 and case 4 are not studied.

Table 6 Cross entropy and U-pooling comparison of case 5

Example Moments Methods ζ1 ζ2

1 μ = 5.3114 Pearson 1.52E-03 1.64E-03

σ = 3.6903 Saddlepoint 5.64E-02 7.32E-03

β1 = −0.0178 MEP 1.12E-03 2.31E-03

β2 = 4.1201 Johnson 9.72E-04 6.69E-04

2 μ = 165,592 Pearson 1.12E-03 6.17E-04

σ = 19,878 Saddlepoint 3.88E-02 3.29E-03

β1 = 0.4573 MEP 1.35E-03 1.40E-03

β2 = 3.6591 Johnson 1.03E-03 5.73E-04

3 μ = 3.3480 Pearson 7.60E-03 1.27E-02

σ = 0.0102 Saddlepoint 8.34E-02 1.21E-02

β1 = −0.1775 MEP 1.46E-02 1.69E-02

β2 = 4.6057 Johnson 4.69E-03 4.42E-03
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Case 5 (unbounded, low skewness and high kurtosis)

Given the distribution types and parameters shown in
Table 14 in Appendix, the responses of three examples meet
the criteria of case 5. The cross-entropy (ζ1), U-pooling (ζ2),
and reliability accuracy (ζ4) results are shown in Table 6
and Fig. 7, respectively. The Johnson system shows the best
overall PDF and CDF quality for all three examples. The
Pearson system shows better accuracy than the Johnson sys-
tem in reliability estimations for the high (>0.99) and low
(<0.01) reliability levels in all three examples as shown in
Fig. 7. It indicates that the Pearson system still preserves
better bound definition than the Johnson system in this case.
Although the saddlepoint approximation presents inaccurate

overall PDF and CDF approximation, it has the best reli-
ability accuracy at the left tail region of the 3rd example
as shown in Fig. 7c. It is noticed that the 3rd example has
the longest left tail among all three examples due to the
properties of the skewness and kurtosis. The saddlepoint
approximation presents the best reliability accuracy at the
long tail region. The MEP method does not outperform the
other methods in terms of both overall PDF and CDF quality
and reliability accuracy at tail regions.

Case 6 (bounded, low skewness and high kurtosis)

Given the distribution types and parameters shown in
Table 15 in Appendix, the responses of three examples meet

Fig. 7 Reliability accuracy (ζ4)
of case 5

(a) Example 1 

(b) Example 2 

(c) Example 3 



Comparative study of probability estimation methods 45

Table 7 Cross entropy and U-pooling comparison of case 6

Example Moments Methods ζ1 ζ2

1 μ = 2.2301 Pearson 2.82E-02 2.19E-02

σ = 0.1946 Saddlepoint 1.03E-01 1.79E-02

β1 = −0.3711 MEP 4.56E-02 2.79E-02

β2 = 4.7417 Johnson 1.69E-02 6.51E-03

2 μ = 168,945 Pearson 7.60E-04 9.15E-04

σ = 33,429 Saddlepoint 2.55E-02 2.98E-03

β1 = 0.4594 MEP 7.97E-04 1.14E-03

β2 = 3.4032 Johnson 8.45E-04 4.90E-04

3 μ = 3.3513 Pearson 1.28E-03 2.93E-03

σ = 0.0006 Saddlepoint 4.37E-02 2.37E-03

β1 = −0.2066 MEP 3.46E-03 5.75E-03

β2 = 3.6638 Johnson 1.32E-03 9.65E-04

the criteria of case 6. The cross-entropy (ζ1) and U-pooling
(ζ2) comparison results are shown in Table 7. The reliability
accuracy (ζ4) results are not shown in this case because they
are very similar as in case 5. The Johnson system shows
the best overall CDF quality for all three examples. The
Pearson system presents better accuracy in reliability esti-
mation than the Johnson system for both high (>0.99) and
low (<0.01) reliability levels. The same as in case 5, the
saddlepoint approximation shows the best reliability accu-
racy in the long tail region in the 1st example. Again, the
MEP method does not show advantages over other methods
in this case.

Remarks on case 5 and case 6

As a summary for case 5 and case 6, the following facts were
observed: (1) unbounded distribution types are employed
for both the Pearson and Johnson systems, regardless of the
bound property; (2) the Johnson system shows the best over-
all CDF quality for all six examples; (3) the Pearson system
produces better reliability accuracy than the Johnson system
for the high (>0.99) and low (<0.01) reliability levels; and
(4) the saddlepoint approximation shows the best reliabil-
ity accuracy in a long tail region where the kurtosis value is
typically larger than 4 in a skewed PDF.

Case 7 (unbounded, high skewness and high kurtosis)

Given the distribution types and parameters as shown in
Table 16 in Appendix, the responses of three examples meet
the criteria of case 7. The cross-entropy (ζ1), U-pooling (ζ2),
and reliability accuracy (ζ4) results are shown in Table 8
and Fig. 8, respectively. The Johnson system shows the best
overall CDF quality for all three examples. It also shows
very good reliability accuracy in the tail region. The Pearson

Table 8 Cross entropy and U-pooling comparison of case 7

Example Moments Methods ζ1 ζ2

1 μ = 19.9800 Pearson 1.36E-01 1.29E-02

σ = 8.5225 Saddlepoint 2.16E-01 3.56E-02

β1 = 1.6336 MEP 8.51E-02 1.75E-02

β2 = 7.6582 Johnson 4.36E-03 3.78E-03

2 μ = 189,591 Pearson 7.80E-04 1.10E-03

σ = 35,342 Saddlepoint 6.97E-02 9.50E-03

β1 = 0.7341 MEP 1.05E-03 3.25E-03

β2 = 4.0098 Johnson 9.28E-04 9.76E-04

3 μ = 3.3376 Pearson 2.82E-04 5.56E-04

σ = 0.0045 Saddlepoint 9.10E-02 1.17E-02

β1 = −0.8785 MEP 7.41E-03 3.70E-03

β2 = 4.4598 Johnson 2.32E-04 4.72E-04

system presents comparable accuracy with the Johnson sys-
tem except when the PDF is too much skewed as shown in
the 1st example in Fig. 8. The MEP method and saddlepoint
approximation do not present advantages over the Johnson
and Pearson system in this case.

Case 8 (bounded, high skewness and high kurtosis)

Given the distribution types and parameters shown in
Table 17 in Appendix, the responses of three examples meet
the criteria of case 8. The cross entropy (ζ1) and U-pooling
(ζ2) comparison results are shown in Table 9. The reliabil-
ity accuracy (ζ4) results are not shown in this case because
they are very similar as in case 7. Again, the Johnson system
shows the best overall CDF quality for all three examples.
Similar to case 7, it also shows very good reliability accu-
racy in the tail region. Hence, it is recommended to use the
Johnson system for reliability estimation in case 8.

Remarks on case 7 and case 8

As a summary for case 7 and case 8, the following facts
were observed: (1) the unbounded and bounded PDFs are
employed in the Johnson and Pearson systems for the prob-
ability estimations, respectively, regardless of the bound
property; (2) the Pearson system shows relatively large
reliability errors when the PDF is highly skewed; (3) the
Johnson system shows the best overall CDF quality for
all six examples and also presents very good reliability
accuracy in the tail regions.

4.3 Case studies for bimodal PDF

The multi-modal response PDF, especially the bimodal PDF,
can also be observed in many engineering applications.
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Fig. 8 Reliability accuracy (ζ4)
of case 7

(a) Example 1 

(b) Example 2 

(c) Example 3 

Table 9 Cross entropy and U-pooling comparison of case 8

Example Moments Methods ζ1 ζ2

1 μ = 2.5131 Pearson 5.84E-01 5.87E-02

σ = 0.1872 Saddlepoint 2.62E-01 2.84E-02

β1 = −1.8446 MEP 1.71E-01 4.24E-02

β2 = 8.2679 Johnson 3.33E-02 1.34E-02

2 μ = 184,821 Pearson 8.25E-04 1.11E-03

σ = 39,965 Saddlepoint 4.46E-02 4.92E-03

β1 = 0.6179 MEP 8.17E-04 6.74E-04

β2 = 3.7742 Johnson 1.17E-03 6.05E-04

3 μ = 3.3507 Pearson 3.05E-03 3.71E-03

σ = 0.0008 Saddlepoint 4.09E-02 4.41E-03

β1 = −0.5383 MEP 3.16E-03 3.81E-03

β2 = 3.7229 Johnson 1.06E-03 8.85E-04

In this section, the accuracy of the bimodal probability
estimation using the four methods is studied.

4.3.1 Description of examples

Two examples are employed to create the bimodal PDF. The
first is a mathematical example to create a bimodal PDF by
mixing two normal PDFs as

fX (x) = W fX1(x1) + (1 − W ) fX2(x2) (28)

where X1 ∼ Normal(0, 1), X2 ∼ Normal(3, 1), and the
weight factor W is set as 0.4.

The second example is a V6 gasoline engine prob-
lem (Chan et al. 2004). The V6 gasoline engine can be
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Table 10 Input parameters for V6 gasoline engine problem

Input parameters Type Mean Std. dev.

Ring surface roughness, [μm] Normal 4.000 1.000

Liner surface roughness, [μm] Normal 6.199 1.000

Liner Young’s modulus, [GPa] Normal 0.800 0.040

Liner hardness, [BHV] Normal 2.400 0.120

decomposed into a subsystem that represents the piston-
ring/cyliner-liner subassembly of a single cylinder. The
ring/liner subassembly simulation computes the power loss
due to friction, oil consumption, blow-by, and liner wear
rate. In the simulation, four random parameters were con-
sidered and listed in Table 10. MCS with 20,000 samples
was employed to run the simulations at the current design.
As shown in see Fig. 9b, the response PDF exhibits a
bimodal behavior.

4.3.2 Results and remarks

The cross-entropy (ζ1), U-pooling (ζ2), and reliability accu-
racy (ζ4) results are shown in Table 11 and Fig. 10, respec-
tively. The MEP method shows the best accuracy for the
1st example. Although the MEP method cannot accurately
reproduce the two modes of the PDF, it provides the best
approximation among all the methods as shown in Fig. 9a.
The Pearson and Johnson system produce relatively large
cross-entropy (ζ1) value because of incorrect representation
of the PDF at both tail regions. The saddlepoint approx-
imation fails to generate the PDF due to the numerical
instability.

In the 2nd example, the Johnson system shows the best
overall CDF quality according to the U-pooling (ζ2) value.
However, it has the largest cross-entropy (ζ1) value due to

Table 11 Cross entropy and U-pooling comparison of bimodal PDFs

Example Moments Methods ζ1 ζ2

1 μ = 1.8000 Pearson 1.06E-00 1.57E-02

σ = 1.7781 Saddlepoint – –

β1 = −0.2276 MEP 6.34E-03 9.05E-03

β2 = 2.1421 Johnson 9.05E-00 1.38E-02

2 μ = 0.3936 Pearson 2.99E-02 1.75E-02

σ = 0.0314 Saddlepoint – –

β1 = −0.6024 MEP 4.52E-02 2.20E-02

β2 = 3.0761 Johnson 1.27E+01 1.45E-02

inaccurate approximation of the PDF as shown in Fig. 9b.
As a result, the Johnson system produces relatively large
reliability errors in both tail regions as shown in Fig. 10b.
Both the Pearson system and MEP method cannot repro-
duce the two-modes of the PDF as shown in Fig. 9b. The
saddlepoint approximation fails to generate the PDF due to
the numerical instability.

It is expected that more moments are required for the
bimodal probability estimation. Theoretically, only the
MEP method and saddlepoint approximation do not have
any limitation on the number of statistical moments. There-
fore, it may be feasible to use these two methods for
the bimodal probability estimation by employing more sta-
tistical moments. Due to the numerical instability of the
saddlepoint approximation for these two examples, only the
MEP method was employed for this study.

It is clearly shown in Fig. 11 that the approximation
accuracy is improved when more statistical moments are
employed in the MEP method. Hence, the MEP method is
able to better represent the bimodal PDF with more statisti-
cal moments. However, it would be a difficult task to obtain
the high-order moments with sufficient accuracy in reality.

(a) PDF comparison of example 1 (b) PDF comparison of example 2 

Fig. 9 Bimodal PDF comparison
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Fig. 10 Reliability accuracy
(ζ4) of the bimodal PDF

(a) Example 1 

(b) Example 2 

This dilemma limits the feasibility of employing the prob-
ability estimation methods for reliability analysis when the
system response has a multi-modal PDF.

4.4 Discussions

Figure 12 summarizes the probability estimation accuracy
based on the U-pooling (see Fig. 12a) and cross entropy
(see Fig. 12) under different settings of skewness and kur-
tosis considered in the case studies in Section 4.2. Each
point represents the probability estimation method with the
best accuracy under a specific setting of skewness and kur-

tosis. The limit curve separates the possible region (above
the curve) in the Pearson and Johnson systems from the
impossible region (below the curve).

Regarding the probability estimation accuracy based on
the U-pooling (see Fig. 12a), three important remarks can
be derived from the results. First of all, it is observed
that the Johnson system presents the best accuracy in most
case studies. Note that the U-pooling metric, as a measure
of the area difference between the true and approximate
CDFs, reflects the overall accuracy of a probability esti-
mation method in the reliability estimation. The superb
performance of the Johnson system in cases 1 and 2 can
be attributed to the use of the logit-normal distribution.

(a) PDF comparison of example 1 (b) PDF comparison of example 2 

Fig. 11 Bimodal PDF comparison using the MEP method



Comparative study of probability estimation methods 49

Fig. 12 The best accuracy for
U-pooling and cross entropy

More specifically, although both the logit-normal distribu-
tion employed by the Johnson system and type I (beta)
distribution by the Pearson system can reproduce a wide
variety of distribution shapes with different parameter set-
tings, the former was reported to be richer and possess
higher flexibility than the later (Aitchison and Begg 1976).
Thus, the Johnson system gives higher probability estima-
tion accuracy than the Pearson system. Secondly, the John-
son and Pearson systems could yield relatively low accuracy
for problems with high skewness (e.g., the 2nd example
in cases 1 and 2) due to inaccurate bound definitions. In
such cases, the MEP method delivers comparable or even
better accuracy since it can capture the bound accurately.
Thirdly, we observe that, for the 2nd example in cases 5 and
6 with low kurtosis, the Johnson and Pearson systems pro-
vide approximate response distributions that exhibit close
agreement with each other (see Example 2 in Tables 6 and
7 and Fig. 7). This agreement becomes poorer as the kurto-
sis becomes higher, as can be seen from Examples 1 and 3
in Tables 6 and 7 and Fig. 7. This observation is consistent
with that in the previous study (Johnson et al. 1994). We
can make similar observation in cases 7 and 8 where both
skewness and kurtosis are relatively high.

Regarding the probability estimation accuracy based on
the cross entropy (see Fig. 12b), we observe that the proba-
bility estimation methods with the best U-pooling accuracy
do not necessarily yield the best cross entropy accuracy.
Note that the cross entropy measures the similarity between
the true and approximate PDFs while the U-pooling mea-
sures the area difference between the true and approximate
CDFs in the normalized space. We can distinguish these two
comparison metrics using the results of the 2nd example
in Section 4.3.2. As shown in Fig. 9b, the Johnson system
gives an approximate PDF with the smallest similarity to the
true one and thus has the largest cross entropy of 12.7 (see
Table 11). However, the Johnson system surprisingly pro-
duces the best U-pooling accuracy. These results, though

counterintuitive, suggest that the cross entropy is strongly
associated with the accuracy in the reliability estimation
over the tail region of a response PDF whereas the U-
pooling, as the integration of the reliability prediction error
over the entire reliability domain [0, 1], typically stands for
that over the entire region.

5 Conclusion

In this work, a comparative study on four probability esti-
mation methods was carried out to study their advantages
and limitations for reliability analysis. The results from this
comparative study give an insightful guidance for selecting
the most appropriate probability estimation method for reli-
ability analysis. Three general findings and limitations of
this study are summarized as follows:

• Accuracy of the probability estimation: It is observed
that none of the methods consistently shows the best
accuracy. However, their relative merits are revealed
through the extensive case studies. In most examples,
the Johnson system shows better accuracy than the
other methods in terms of the overall CDF quality. The
Pearson system presents better accuracy for the high
and low reliability levels than the Johnson system in
case 1, case 2, case 5, and case 6. The MEP method
is expected to produce better accuracy than the other
methods for the high and low reliability levels when the
skewness is relatively high in case 1 and case 2. The
saddlepoint approximation shows better accuracy in a
long tail region than the other methods in case 5 and
case 6.

• Stability of the probability estimation: The stability is
another important concern for reliability analysis. The
stabilized Pearson system and MEP method are demon-
strated to be very stable for the PDF construction. The
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numerical instability issue of the saddlepoint approx-
imation is observed when dealing with the negative
value of K ′′

Y (ts). It is most likely to occur when the
kurtosis value is less than 3 and the CGF is approxi-
mated from the first four statistical moments. Although
the Johnson system presents high accuracy for the over-
all CDF approximation, the numerical instability is
observed in searching for the optimal solution using
the moment matching approach. Inappropriate initial
values may lead to unconverged solutions for the four
unknown parameters in the Johnson system.

• Capability of the bimodal probability estimation: All
of the four probability estimation methods are capable
of estimating the system reliability with high accuracy
if the system response has a unimodal PDF. How-
ever, the accuracy will deteriorate significantly in cases
when the system response has a bimodal or multi-mode
PDF. Although it is possible to increase the accuracy
using the MEP method by employing more statistical
moments, it may not be a practically attractive approach
due to the difficulty in estimating high-order statistical
moments with sufficient accuracy.

• Limitations of this study: The comparative study
focuses on a specific category of reliability analy-
sis method, that is, the numerical integration-based
method, where the numerical integration is first
employed to compute statistical moments, and then the
probability estimation method is used to approximate
the probability density functions (PDFs), probabilities
and, more specifically, reliabilities of system responses
based on the computed moments. Two error sources
exist in this category of method: (1) errors in estimating
four statistical moments and (2) error in approximat-
ing the response PDF or CDF based on the four true
moments. This paper only considers the 2nd error
source by using accurate statistical moments from the
MCS with a large number of random samples. Fur-
thermore, with some special combinations of random
variables, PDFs of system responses may exhibit rarely
observed characteristics (e.g., more than two modes,
extremely high skewness and kurtosis) that are beyond
the case studies discussed in the paper. These situations
are not considered in the paper.

Future works under consideration include: the employ-
ment of an ensemble of probability estimation methods for
better reliability prediction, and possible ways to resolve the
numerical instability in the saddlepoint approximation and
Johnson system.
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Appendix

Table 12 Random input properties of three examples in case 1

Example Variables Dist. type Para. #1 Para. #2

1 x1 Normal 3 1

x2 Gamma 3 0.3

x3 Uniform 2 4

x4 Lognormal 0.3 0.1

x5 Uniform 0 3

2 P Normal 6,070 200

L Normal 120 6

a Normal 65 5

h Normal 2.3 0.02

w Uniform 2.7415 3.1915

t1 Uniform 0.0976 0.1824

t2 Uniform 0.1976 0.3224

3 x1 Normal 0.7 0.2

x2 Normal 0.3 0.1

x3 Uniform 0 1

Table 13 Random input properties of three examples in case 2

Example Variables Dist. type Para. #1 Para. #2

1 x1 Beta 2 4

x2 Beta 2 1

x3 Beta 3 4

x4 Uniform −1 2

x5 Uniform 1 3

2 P Uniform 5,470 6,670

L Uniform 102 138

a Uniform 50 80

h Uniform 2.24 2.36

w Uniform 2.7415 3.1915

t1 Uniform 0.0976 0.2224

t2 Uniform 0.1976 0.3224

3 x1 Beta 3 30

x2 Beta 3 3

x3 Beta 3 1
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Table 14 Random input properties of three examples in case 5

Example Variables Dist. type Para. #1 Para. #2

1 x1 Normal 0 1

x2 Beta 2 1

x3 Exponential 2 –

x4 Extreme 1 1

x5 Gamma 4 2

2 P Normal 6,070 200

L Normal 120 6

a Normal 65 5

h Normal 2.3 0.02

w Normal 2.9665 0.075

t1 Normal 0.16 0.0208

t2 Normal 0.26 0.0208

3 x1 Lognormal 0.01 0.6

x2 Weibull 1 1.5

x3 Normal 0 0.2

Table 15 Random input properties of three examples in case 6

Example Variables Dist. type Para. #1 Para. #2

1 x1 Beta 4 0.1

x2 Beta 4 0.5

x3 Beta 0.3 5

x4 Beta 0.5 8

x5 Uniform 0.2 0.3

2 P Uniform 5,470 6,670

L Uniform 102 138

a Uniform 50 80

h Uniform 2.24 2.36

w Uniform 2.7415 3.1915

t1 Beta 16 100

t2 Beta 100 160

3 x1 Beta 3 30

x2 Beta 3 50

x3 Beta 3 80

Table 16 Random input properties of three examples in case 7

Example Variables Dist. type Para. #1 Para. #2

1 x1 Normal 3 1

x2 Exponential 8 –

x3 Extreme value 6 2

x4 Lognormal 0.3 0.2

x5 Weibull 3 5

2 P Normal 6,070 200

L Normal 120 6

a Normal 65 5

h Uniform 2.24 2.36

w Uniform 2.7415 3.1915

t1 Beta 16 100

t2 Beta 50 160

3 x1 Normal 0.3 0.1

x2 Lognormal 0.01 0.3

x3 Beta 3 5

Table 17 Random input properties of three examples in case 8

Example Variables Dist. type Para. #1 Para. #2

1 x1 Beta 2 0.1

x2 Beta 2 0.1

x3 Beta 0.3 10

x4 Beta 0.3 10

x5 Uniform 0.5 0.6

2 P Uniform 5,470 6,670

L Uniform 102 138

a Uniform 50 80

h Uniform 2.24 2.36

w Uniform 2.7415 3.1915

t1 Beta 16 100

t2 Beta 52 160

3 x1 Beta 3 30

x2 Beta 3 30

x3 Beta 3 60
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