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a b s t r a c t

State-of-charge (SOC) and capacity estimation plays an essential role in many battery-powered applica-
tions, such as electric vehicle (EV) and hybrid electric vehicle (HEV). However, commonly used joint/dual
extended Kalman filter (EKF) suffers from the lack of accuracy in the capacity estimation since (i) the cell
voltage is the only measurable data for the SOC and capacity estimation and updates and (ii) the capacity
is very weakly linked to the cell voltage. The lack of accuracy in the capacity estimation may further
reduce the accuracy in the SOC estimation due to the strong dependency of the SOC on the capacity. Fur-
thermore, although the capacity is a slowly time-varying quantity that indicates cell state-of-health
(SOH), the capacity estimation is generally performed on the same time-scale as the quickly time-varying
SOC, resulting in high computational complexity. To resolve these difficulties, this paper proposes a mul-
tiscale framework with EKF for SOC and capacity estimation. The proposed framework comprises two
ideas: (i) a multiscale framework to estimate SOC and capacity that exhibit time-scale separation and
(ii) a state projection scheme for accurate and stable capacity estimation. Simulation results with syn-
thetic data based on a valid cell dynamic model suggest that the proposed framework, as a hybrid of cou-
lomb counting and adaptive filtering techniques, achieves higher accuracy and efficiency than joint/dual
EKF. Results of the cycle test on Lithium-ion prismatic cells further verify the effectiveness of our
framework.

� 2011 Elsevier Ltd. All rights reserved.
1. Introduction

As a battery cell ages, the cell capacity and resistance directly
limit the pack performance through capacity and power fade,
respectively [1]. These two degradation parameters are often used
to quantify the cell state of health (SOH). Thus, it is important to
accurately estimate these parameters to monitoring the present
battery SOH and to predict the remaining useful life (RUL). Recent
literature reports various approaches to estimate the SOH with a
focus on the capacity estimation. Joint/dual extended Kalman filter
(EKF) [1] and unscented Kalman filter [2] with an enhanced self-
correcting model were proposed to simultaneously estimate the
SOC, capacity and resistance. To improve the performance of
joint/dual estimation, adaptive measurement noise models of the
Kalman filter were recently developed to separate the sequence
of SOC and capacity estimation [3]. A physics-based single particle
model was used to simulate the life cycling data of Li-ion cells and
to study the physics of capacity fade [4,5]. More recently, new
ll rights reserved.

+82 2 880 8302.
techniques for SOH estimation were developed based on a
coulomb counting technique with dynamic re-calibration of the
cell capacity [6] and the approximate entropies of cell terminal
voltage and current [7]. In the PHM society, a Bayesian framework
combining the relevance vector machine (RVM) and particle filter
was proposed for prognostics (i.e., RUL prediction) of Li-ion battery
cells [8]. More recently, the particle filter with an empirical circuit
model was used to predict the remaining useful lives for individual
discharge cycles as well as for cycle life [9].

Among these techniques, the joint/dual estimation technique
is capable of real-time SOC and capacity estimation with noisy
voltage and current measurements. Although it provides highly
accurate SOC estimation, it suffers from the lack of accuracy in
the capacity estimation since (i) the cell voltage is the only mea-
surable data for the measurement-updates in the SOC and capac-
ity estimation and (ii) the capacity is very weakly linked to the
cell voltage. Due to the strong correlation between the SOC and
capacity, inaccurate capacity estimation may further lead to
inaccurate SOC estimation and vice versa. Furthermore, although
the capacity is a slowly time-varying quantity that indicates cell
state-of-health (SOH), the capacity estimation is generally per-
formed on the same time-scale as the quickly time-varying
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mailto:bdyoun@snu.ac.kr
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SOC, resulting in high computational complexity. To resolve
these difficulties, this paper proposes a multiscale framework
with EKF for SOC and capacity estimation. The proposed frame-
work comprises two ideas: (i) a multiscale framework to esti-
mate SOC and capacity that exhibit time-scale separation and
(ii) a state projection scheme for accurate and stable capacity
estimation.

We have successfully implemented the proposed framework
on a Li-ion polymer battery (LiPB) cell with simulation and on a
Li-ion prismatic battery cell with testing. Since the proposed
framework can employ any cell dynamic model that appropriately
represents cell dynamics, this framework is expected to work for
other cell chemistries and physical configurations as well where
the only difference lies in the cell dynamic model. Besides, we
can also apply the proposed framework to a standby battery,
which temporarily supplies electrical power (non-zero current)
in the event of a power outage, by limiting the effective execution
period to a time when a power outage occurs. This strategy en-
ables the updating of SOC and capacity when the standby battery
is in use. When the standby battery is not in use, the battery is
either under the condition of float charge or no charge. Under
the condition of float charge, a standby battery is continuously
connected to a constant-voltage supply that maintains the battery
in a fully charged condition. Under the condition of no charge, a
standby battery suffers from reversible and irreversible capacity
losses due to undesirable chemical actions during the self dis-
charge. The self discharge rate highly depends on both the cell
chemistry and the ambient temperature. A lithium-ion (Li-ion)
battery cell typically has a much lower self discharge rate (2–3%
per month at the room temperature) compared to those of nickel
cadmium (15–20% per month at the room temperature) and nick-
el metal hydride (30% per month at the room temperature) bat-
tery cells. Thus, the capacity loss of a Li-ion battery cell due to
the self discharge is very small at the room temperature and,
more importantly, most of the capacity loss is reversible (i.e.,
the loss can be regenerated by charging the cell). The reversible
capacity loss can be equivalently treated as the SOC reduction,
which can be readily estimated based on the relationship between
the open circuit voltage (OCV) and SOC. Furthermore, the proposal
framework is also applicable under the condition of energy regen-
eration in an EV/HEV. Under this condition, the regenerative brak-
ing system employs the traction motor as a generator which
transfers a portion of the vehicle’s kinetic energy to electric en-
ergy in order to recharge the battery pack. Since the battery pack
undergoes charging cycles (positive charge currents) during the
regeneration, the cell SOC and capacity can be readily estimated
with the multiscale framework based on the cell current and volt-
age measurements, just like the case with urban dynamometer
drive schedule (UDDS) discharging cycles to be detailed in the
simulation and experimental studies. It is also noted that the mul-
tiscale framework is generic since it can be used to achieve
highly-confident health prognostics for any engineered system
with multiple time-scales.

This paper is organized as follows. Section 2 describes the dis-
crete-time state-space model of an engineered system with multi-
ple time-scales. Section 3 reviews the numerical formulation and
implementation of the dual EKF method. Section 4 presents the
proposed multiscale framework with EKF and introduces the state
projection scheme. In the these sections, we intend to present a
generic description in the sense that it is applicable to any engi-
neered system with multiple time-scales as well as provide a clear
demonstration by mapping important terms to those in the battery
system. The proposed ideas are applied to the battery system to
estimate SOC and capacity in Section 6. Section 6 contains simula-
tion and experimental results of this application. The paper is con-
cluded in Section 7.
2. System description

To make the discussion more concrete, we will use discrete-
time state-space models with multiple time-scales. Without loss
of generality, we assume the system has two time-scales: the
macro and micro time-scales. System quantities on the macro
time-scale tend to vary slowly over time while system quantities
on the micro time-scale exhibit fast variation over time. The former
are referred to as the model parameters of the system while the
latter are called the states of the system. We then begin by defining
the nonlinear state-space model considered in this work as

Transition : xk;lþ1 ¼ Fðxk;l;uk;l; hkÞ þwk;l; hkþ1 ¼ hk þ rk;

Measurement : yk;l ¼ Gðxk;l;uk;l; hkÞ þ vk;l
ð1Þ

where xk,l is the vector of system states at the time tk,l = tk,0 + l�T, for
1 6 l 6 L, with T being a fixed time step between two adjacent mea-
surement points, and k and l being the indices of macro and micro
time-scales, respectively; hk is the vector of system model parame-
ters at the time tk,0; uk,l is the vector of observed exogenous inputs;
yk,l is the vector of system observations (or measurements); wk,l and
rk are the vectors of process noise for states and model parameters,
respectively; vk,l is the vectors of measurement noise; F(�,�,�) and
G(�,�,�) are the state transition and measurement functions, respec-
tively. Note that L represents the level of time-scale separation
and that xk,0 = xk�1,L. With the system defined, we aim at estimating
both the system states x and model parameters h from the noisy
observations y.

Let us take the battery system as an example. In the battery sys-
tem, the system state x refers to the SOC, which changes very rap-
idly and may transverse the entire range 100–0% within minutes.
Here we use an italic, non-bold letter x to indicate that the system
state in the battery system is a scalar rather than a vector, and the
same notational rule applies to all other functions and variables.
The system model parameter h represents the cell capacity which
tends to vary very slowly and typically decreases 1.0% or less in a
month with regular use. The state transition equation F(�,�,�) models
the variation of SOC over time while the cell dynamic model G(�,�,�)
relates the measured cell terminal voltage y with the unmeasured
state (SOC) and model parameter (capacity) and the measured
exogenous input u. Given the system’s state-space model in Eq.
(1) and knowledge of the measured input/output signals (cell cur-
rent/cell terminal voltage), we are interested in estimating the
unmeasured state (SOC) and model parameter (capacity) in real-
time and in a dynamic environment. The subsequent sections are
dedicated to describing an existing technique and our proposed
technique for doing so.
3. Review of dual extended Kalman filter method

The dual extended Kalman filter (EKF) method is a commonly
used technique to simultaneously estimate the states and model
parameters [12]. The essence of the dual EKF method is to combine
the state and weight EKFs with the state EKF estimating the system
states and the weight EKF estimating the system model parame-
ters. In the algorithm, two EKFs are run concurrently and, at every
time step when observations are available, the state EKF estimates
the states using the current model parameter estimates from the
weight EKF while the weight EKF estimates the model parameters
using the current state estimates from the state EKF. This section
gives a brief review of the dual EKF method. Section 3.1 presents
the numerical formulation of the dual EKF method and the numer-
ical implementation of the recursive derivative computation is de-
scribed in Section 3.2.



Table 1
Algorithm of dual extended Kalman filter [13].

Initialization

ĥ0;0 ¼ E h0;0½ �;Rh0;0 ¼ E ðh0;0 � ĥ0;0Þðh0;0 � ĥ0;0ÞT
h i

;

x̂0;0 ¼ E x̂0;0½ �;Rx0;0 ¼ E ðx0;0 � x̂0;0Þðx0;0 � x̂0;0ÞT
h i

:

(2)

For k 2 {1, . . .,1}, l {l, . . .,L}, compute
Time-update equations for the weight filter

ĥ�k;l ¼ ĥk;l�1; R�hk;l
¼ Rhk;l�1

þ Rrk;l�1
:

(3)

Time-update equations for the state filter

x̂�k;l ¼ Fðx̂k;l�1;uk;l�1; ĥ
�
k;lÞ;

R�xk;l
¼ Ak;l�1Rxk;l�1

AT
xk;l�1
þ Rwk;l�1

:
(4)

Measurement-update equations for the state filter

Kx
k;l ¼ R�xk;l

ðCx
k;lÞ

T½Cx
k;lR

�
xk;l
ðCx

k;lÞ
T þ Rvk;l

��1
: (5)

x̂k;l ¼ x̂�k;l þ Kx
k;l½yk;l � Gðx̂�k;l;uk;l; ĥ

�
k;lÞ�;

Rxk;l
¼ ðI� Kx

k;lC
x
k;lÞR�xk;l

:
(6)

Measurement-update equations for the weight filter

Kh
k;l ¼ R�hk;l

ðCh
k;lÞ

T½Ch
k;lR

�
hk;l
ðCh

k;lÞ
T þ Rnk;l

��1
: (7)

ĥk;l ¼ ĥ�k;l þ Kh
k;l½yk;l � Gðx̂�k;l;uk;l; ĥ

�
k;lÞ�;

Rhk;l
¼ ðI� Kh

k;lC
h
k;lÞR�hk;l

: (8)

where

Ak;l�1 ¼
@Fðx;uk;l�1; ĥ�k;lÞ

@x

�����
x¼x̂k;l�1

; Cx
k;l ¼

@Gðx;uk;l; ĥ�k;lÞ
@x

�����
x¼x̂�

k;l

;

Ch
k;l ¼

dGðx̂�k;l;uk;l; hÞ
dh

�����
h¼ĥ�

k;l

:

(9)
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3.1. Numerical formulation: dual estimation

The algorithm of the dual EKF for the system described in Eq. (1)
is summarized in Table 1. Since the dual EKF does not take into ac-
count the time-scale separation, hk is estimated on the micro time-
scale. To reflect this, we use the notations hk,l and rk,l to replace hk

and rk, respectively. Also note that, to be consistent with the sys-
tem description in Eq. (1), we use two time indices k and l to pres-
ent the dual EKF algorithm and this presentation is equivalent to a
simpler version in [13] with only one time index l.

The algorithm is initialized by setting the model parameters h
and states x to the best guesses based on the prior information.
The covariance matrices Rh and Rx of estimation errors are also ini-
tialized based on the prior information. At each measurement time
step, the time- and measurement-updates are performed in the fol-
lowing two EKFs: weight EKF and state EKF.

3.1.1. Weight EKF (parameter estimation)
The weight EKF first executes the time-update, where prior

parameter estimates ĥ�k;l and their error covariance R�hk;l
are com-

puted with Eq. (3). Due to the addition of unpredictable process
noise rk,l in Eq. (1), the uncertainties R�hk;l

in the parameter esti-
mates always increase. Following the time-update step, the esti-
mated measurements are then computed by

ŷk;l ¼ Gðx̂�k;l;uk;l; ĥ
�
k;lÞ ð10Þ

The above predicted measurements are compared with the real
measurements yk,l to obtain prediction errors which state the nov-
elty or the new information that the measurements yk,l brought to
the filter relative to the parameters hk,l. The prediction errors are
used to adapt the current parameter estimates and obtain posteriori
parameter estimates ĥk;l using Eq. (8). Due to the addition of one set
of measurements, the error uncertainties are reduced as can be seen
in Eq. (8). This process is referred to as the measurement-update.

In the battery system, the measured terminal quantities are the
cell terminal voltage y and current u. Since the capacity affects the
SOC transition which further affects the cell terminal voltage, the
cell terminal voltage measurement y can be used to adapt the
capacity by following the steps detailed above.

3.1.2. State EKF (state estimation)
The state EKF essentially follows the same manner as the

weight EKF. One difference lies in the fact that the time-update
in the state EKF employs the state transition function F(�,�,�) as
shown in Eq. (4). Similar to the weight EKF, the measurement-up-
date in the state EKF also uses the differences between the pre-
dicted measurements in Eq. (10) and the real measurements to
adapt the states xk,l. As shown in Eq. (6), the posteriori state esti-
mates are obtained by correcting the priori state estimates with
the prediction errors multiplied by gain factors.

When applied to the battery system, the state EKF aims at esti-
mating the SOC x based on the measured cell terminal voltage y
and current u. Since the SOC directly affects the cell terminal
voltage through the cell dynamic model G(�,�,�), the cell terminal
voltage measurement, as the model output, can be used to back-
estimate the SOC, as one model input, by following the steps
detailed above.

3.2. Numerical Implementation: recursive derivative computation

The dual EKF method, which adapts the states and parameters
using two concurrently running EKFs, has a recursive architecture
associated with the computation of Ch

k;l in the weight filter. The
computation of Ch

k;l involves a total derivative of the measurement
function with respect to the parameters h as
Ch

k;l ¼
dG x̂�k;l;uk;l; h
� �

dh

������
h¼ĥ�

k;l

: ð11Þ

This computation requires a recursive routine similar to a real-time
recursive learning [14]. Decomposing the total derivative into par-
tial derivatives and propagating the states back in time results in
the following recursive equations

dGðx̂�k;l;uk;l; hÞ
dh

¼
@Gðx̂�k;l;uk;l; hÞ

@h
þ
@Gðx̂�k;l;uk;l; hÞ

@x̂�k;l

dx̂�k;l
dh

; ð12Þ

dx̂�k;l
dh
¼ @Fðx̂k;l�1;uk;l�1; hÞ

@h
þ @Fðx̂k;l�1;uk;l�1; hÞ

@x̂k;l�1

dx̂k;l�1

dh
; ð13Þ

dx̂k;l�1

dh
¼

dx̂�k;l�1

dh
� Kx

k;l�1

dGðx̂�k;l�1;uk;l�1; hÞ
dh

þ
@Kx

k;l�1

@h
½yk;l�1

� Gðx̂�k;l�1;uk;l�1; hÞ�: ð14Þ

The last term in Eq. (14) can be set to zero with the assumption that
Kx

k;l is not dependant on h. Indeed, since Kx
k;l is often very weakly

dependent on h, the extra computational effort to consider this
dependence is not worth the improvement in performance.



Table 2
Algorithm of a multiscale framework with extended Kalman filter.

Initialization

h0 ¼ E½h0�; Rhk;l
¼ E½ðh0 � ĥ0Þðh0 � ĥ0ÞT�;

T
(15)
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Therefore, we drop the last term in Eq. (14) in this study. Then the
three total derivatives can be computed in a recursive manner with
initial values set as zeros. It noted that the partial derivatives of the
transition and measurement functions with respect to the states x
and parameters h can be easily computed with the explicitly given
function forms.
x̂0;0 ¼ E½x0;0�; Rxk;l
¼ E½ðx0;0 � x̂0;0Þðx0;0 � x̂0;0Þ �:

For k 2 {1, . . .,1}, compute
Time-update equations for the macro EKF

ĥ�k ¼ ĥk�1; R�hk
¼ Rhk�1

þ Rrk�1
:

(16)

State projection equation for the macro EKF

~xk�1;L ¼ F0!Lðx̂k�1;0;uk�1;0:L�1; ĥ
�
k Þ: (17)

Measurement-update equations for the macro EKF

Kh

k ¼ R�hk
ðCh

kÞ
T½Ch

kR
�
hk
ðCh

kÞ
T þ Rnk

��1
:

(18)

ĥk ¼ ĥ�k þ Kh

k½x̂k�1;L � ~xk�1;L�;
Rhk
¼ ðI� Kh

kCh
kÞR�hk

:
(19)

For l 2 {1, . . .,L}, compute
Time-update equations for the micro EKF

x̂�k;l ¼ Fðx̂k;l�1;uk;l�1; ĥk�1Þ;
R�xk;l
¼ Ak;l�1Rxk;l�1

AT
k;l�1 þ Rwk;l�1

:

(20)

Measurement-update equations for the micro EKF

Kh
k ¼ R�hk

ðCh
kÞ

T½Ch
kR
�
hk
ðCh

kÞ
T þ Rnk

��1
: (21)

x̂k;l ¼ x̂�k;l þ Kx
k;l½yk;l � Gðx̂�k;l;uk;l; ĥk�1Þ�;

Rxk;l
¼ ðI� Kx

k;lC
x
k;lÞR�xk;l

:
(22)

where

Ak;l�1 ¼
@Fðx;uk;l�1; ĥk�1Þ

@x

�����
x¼x̂k;l�1

;

Cx
k;l ¼

@Gðx;uk;l; ĥk�1Þ
@x

�����
x¼x̂�

k;l

;

Ch
k ¼

dF0!Lðx̂k�1;0;uk�1;0:L�1; hÞ
dh

����
h¼ĥ�

k

:

(23)
4. A multiscale framework with extended Kalman filter

As discussed in Section 3, the dual EKF method estimates both
the states and parameters on the same time-scale. However, for
systems that exhibit the time-scale separation, it is natural and
desirable to adapt the slowly time-varying parameters on the
macro time-scale while keeping the estimation of the fast time-
varying states on the micro time-scale. This multiscale framework
is expected to reduce the computational effort and provide more
stable estimates of model parameters. This section is dedicated
to the discussion of this framework and is organized in a similar
manner as Section 3: Section 4.1 presents the numerical formula-
tion of the multiscale framework with EKF and the numerical
implementation of the recursive derivative computation in the
multiscale framework is described in Section 4.2.

4.1. Numerical formulation: multiscale estimation

As opposed to the dual estimation, we intend to derive a multi-
scale estimation which allows for a time-scale separation in the
state and parameter estimation. More specifically, we aim at esti-
mating the slowly time-varying model parameters on the macro
time-scale and, at the same time, intend to keep the estimation
of fast time-varying states on the micro time-scale to utilize all
the measurements. The algorithm of the multiscale framework
for the system described in Eq. (1) is summarized in Table 2. Note
that, in contrast to the dual EKF algorithms in Table 1, we only use
the macro time-scale index k to present the macro EKF since the
parameter estimation is performed only every macro time step.

The algorithm is initialized by setting the model parameters h
and states x to the best guesses based on the prior information.
The covariance matrices Rh and Rx of estimation errors are also ini-
tialized based on the prior information. The main algorithm essen-
tially consists of the so-called micro and macro EKFs running on
the micro and macro time-scales, respectively. Note that, the micro
time-scale here refers to the time-scale on which system states ex-
hibit fast variation while the macro time-scale refers to the one on
which system model parameters tend to vary slowly. For example,
in the battery system, the SOC, as a system state, changes every
second, which suggests the micro time-scale to be approximately
one second. In contrast, the cell capacity, as a system model
parameter, typically decreases 1.0% or less in a month with regular
use, resulting in the macro time-scale being approximately 1 day
or so. The time- and measurement-updates performed in the
macro EKF and micro EKF are detailed as follows.

4.1.1. Macro EKF (parameter estimation)
At every macro time step, the macro EKF executes the time-up-

date where prior parameter estimates ĥ�k and their error covariance
R�hk

are computed with Eq. (16). The addition of unpredictable pro-
cess noise rk increases the uncertainties R�hk

in the parameter esti-
mates. After the time-update step, the state projection is
conducted to project the state estimates from the micro EKF through
the macro time step, expressed as the state projection function
F0?L(�,�,�) in Eq. (17). We note that F0?L(�,�,�) can be expressed as a
nested form of the state transition function F(�,�,�) in Eq. (1) and that
the computational effort involved in computing F0?L(�,�,�) is negligi-
ble compared to the time- and measurement-updates conducted in L
micro time steps. In the measurement-update step, the macro EKF
computes the difference between the projected states and the esti-
mated states from the micro EKF and uses the difference to obtain
posterior parameter estimates, which is detailed in Eq. (19).

Compared with the weight EKF, the macro EKF possesses two
distinctive characteristics: (i) the time- and measurement-updates
are performed over the macro time-scale (L�T) instead of the micro
time-scale (T), leading to the possibility to greatly reduce the com-
putational complexity; and (ii) the macro EKF uses the state esti-
mates from the micro EKF for the measurement-update, enabled
by the state projection in Eq. (17), and the resulting parameter esti-
mation becomes decoupled with the state estimation where the
real measurements in Eq. (1) are used for the measurement-
update. The first characteristic could magnify the effect of the
parameters on the states, i.e., that the parameters could affect



 

Time update EKFX
xk,l

– = xk,l-1 + ηi·T·ik,l-1/Ck-1
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+
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–
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Ck-1
+
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Measurement 
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~
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(SOC)
Micro EKF

Macro EKF
(Capacity)

Fig. 1. Flowchart of a multiscale framework with EKF for battery SOC and capacity estimation.
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the states projected on the macro time-scale (L�T) more signifi-
cantly than those projected on the micro time-scale (T). The second
characteristic helps distinguish the effects of the two unknowns
(states and parameters) on the only measurements. In the subse-
quent section, these characteristics will be further explained and
verified when we apply the algorithm to the battery system.

4.1.2. Micro EKF (state estimation)
The micro EKF bears a strong resemblance to the state EKF in

the dual EKF. The only difference is that, for the state transition,
the micro EKF uses the capacity estimate from the previous macro
time step (see Eq. (20)) while the state EKF employs that the pre-
vious micro time step (see Eq. (4)). It is important to note that, at
the start of every macro time step, i.e., at the time tk�1,0, the micro
EKF sends the state estimate to the macro EKF which then projects
it through the macro time step according to the state projection
equation in Eq. (17). Upon the completion of the state projection
at the end of every macro time step, i.e., at the time tk�1,L, the micro
EKF sends another state estimate to the macro EKF which then
compares it with the projected estimate and uses the difference
to adapt the parameter estimate in the measurement-update step
detailed in Eq. (19).

4.2. Numerical implementation: recursive derivative computation

In the multiscale framework, the computation of Ch

k in the
macro EKF involves a total derivative of the state projection func-
tion with respect to the parameters h as

Ch

k ¼
dF0!Lðx̂k�1;0;uk�1;0:L�1; hÞ

dh

����
h¼ĥ�

k

: ð24Þ

Similar to the total derivative in Eq. (11), this computation also re-
quires a recursive routine. Decomposing the total derivative into
partial derivatives, we then obtain the following equation

dF0!Lðx̂k�1;0;uk�1;0:L�1; hÞ
dh

¼ @F0!Lðx̂k�1;0;uk�1;0:L�1; hÞ
@h

þ @F0!Lðx̂k�1;0;uk�1;0:L�1; hÞ
@x̂k�1;0

� dx̂k�1;0

dh
: ð25Þ

The total derivative in the last term can be obtained by using the
recursive equations Eqs. (12)–(14). The partial derivatives of the
state projection function with respect to the states x and parame-
ters h can be easily computed with the explicitly given function
forms.

5. Application to Li-ion battery system

In this section, we use the proposed framework to estimate the
SOC and capacity in a Li-ion battery system. When applied to the
battery system, the multiscale framework can be treated as a hy-
brid of coulomb counting and adaptive filtering techniques and
comprises two new ideas: (i) a multiscale framework to estimate
SOC and capacity that exhibit time-scale separation and (ii) a state
projection scheme for accurate and stable capacity estimation. Sec-
tion 5.1 presents the discrete-time cell dynamic model used in this
study. Section 5.2 presents the multiscale estimation of SOC and
capacity in the battery system.

5.1. Discrete-time cell dynamic model

In order to execute the time-update in the micro and macro
EKFs, we need a state transition model that propagate the SOC for-
ward in time. In order to execute the measurement-update in the
micro-EKF, we need a ‘‘discrete-time cell dynamic model’’ that re-
lates the SOC to the cell voltage. Here we employ the enhanced
self-correcting (ESC) model which considers the effects of OCV,
internal resistance, voltage time constants and hysteresis [1]. The
effects of voltage time constants and hysteresis in the ESC model
can be expressed as [1]

fk;lþ1

hk;lþ1

� �
¼

diagðaÞ 0
0 uðik;lþ1Þ

� �
fk;l

hk;l

� �

þ
1 0
0 1�uðik;lþ1Þ

� �
ik;l

Mðx; _xÞ

� �
;

uðik;lþ1Þ ¼ exp � gi � ik;l � c � T
Ck

����
����

� �
:

ð26Þ

where x is the SOC, f the filter state, h the hysteresis voltage, a the
vector of filter pole locations, c the hysteresis rate constant, i the
current, M(�,�) maximum hysteresis, gi the coulombic efficiency, T
the length of measurement interval, C the nominal capacity. The
coulombic efficiency of a battery cell is defined as the ratio of the
amount of charge that is stored in the cell during charging com-
pared to the amount that can be extracted from the cell during dis-
charging. We then obtain the state transition and measurement
equations as

xk;lþ1 ¼ Fðxk;l; ik;l;CkÞ ¼ xk;l þ
gi � T � ik;l

Ck
;

yk;lþ1 ¼ Gðxk;l; ik;l;CkÞ ¼ OCVðzkÞ � ik;l � Rþ hk;lþ1 þ S � fk;lþ1:

ð27Þ

where OCV is the open circuit voltage, yk the predicted cell terminal
voltage, R the cell resistance, S a vector of constants that blend the
time constant states together in the output.

5.2. Multiscale estimation of SOC and capacity

We then begin to introduce the multiscale framework with EKF
for the Li-ion battery system by drawing a flowchart in Fig. 1,
where T is a fixed time step between two adjacent measurement
points, xk,l is the SOC estimate at the time tk,l = tk,0 + l�T., for 1 6 l 6 L
(k and l are the indices of macro and micro time-scales,



Fig. 2. Procedures of capacity estimation in macro EKF.
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respectively), y and i are the cell voltage measurement and the cell
current measurement (equivalent to u used before), respectively,
and C is the cell capacity estimate (equivalent to h used before).

The framework consists of two EKFs running in parallel: the top
one (micro EKF) adapting the SOC in the micro time-scale and the
bottom one (macro EKF) adapting the capacity in the macro time-
scale. The micro EKF sends the SOC estimate to the macro EKF and
receives the capacity estimate from the macro EKF. In what fol-
lows, we intend to elaborate on the macro EKF, the key technical
component of the multiscale framework, which consists of the fol-
lowing recursively executed procedures (see Fig. 2):

Step 1: At the macro time step k, the capacity transition step,
also referred to as the time-update step, computes the expected
capacity and its variance based on the updated estimates at the
time step k � 1, expressed as

C�k ¼ Cþk�1; R�Ck
¼ RþCk�1

þ Rrk�1
: ð28Þ

For a stable system, the capacity variance term RþCk�1
tends to de-

crease over time with the measurement-update (see Step 3 in
Fig. 2). However, the process noise term Rrk�1

always increases
the uncertainty of the capacity estimate. To clearly illustrate
the proposed idea, we intend to classify the capacity estimates
into three cases (see Fig. 2): a larger estimate CðLÞk�1, an accurate
estimate CðNÞk�1, and a smaller estimate CðSÞk�1.
Step 2: Based on the capacity estimate C�k , the state projection
scheme projects the SOC through the macro time step,
expressed as a state projection equation derived from Eqs.
(17) and (27).

xk;L ¼ xk;0 þ
g � T
C�k
�
XL�1

j¼0

ik;j: ð29Þ

As can be seen in Fig. 2, the projected SOCs exhibit large devia-
tions from their true values (obtained from the micro EKF),
which suggests a magnified effect of the capacity on the SOC.
Step 3: Following the state projection step, the difference
between the projected SOC and the estimated SOC by the micro
EKF is used to update the capacity estimate, known as the mea-
surement-update. It is noted that the measurement-update
requires accurate SOC estimates which can be obtained from
the micro EKF. The updated capacity estimate equals the pre-
dicted capacity estimate in Step 1 plus a correction factor,
expressed as
Cþk ¼ C�k þ KC

k ½x̂k;L � ~xk;L�; RþCk
¼ ð1� KC

k CC
k ÞR

�
Ck
: ð30Þ

where the Kalman gain KC
k and the total derivative CC

k can be
estimated using Eqs. (18) and (23), respectively.
5.3. Remarks on mutiscale framework

We note that the proposed framework decouples the SOC and
capacity estimation in terms of both the measurement and time-
scale, with an aim to avoid the concurrent SOC and capacity esti-
mation relying on the only measurement (cell terminal voltage)
in the dual EKF [1]. In fact, the very motivation of this work lies
in the fact that the coupled estimation in the dual EKF falls short
in the way of achieving stable capacity estimation, precisely be-
cause it is difficult to distinguish the effects of two states (SOC
and capacity) on the only measurement (cell terminal voltage),
especially in the case of the micro time-scale where the capacity
only has a very small influence on the SOC. Regarding the measure-
ment decoupling, the multiscale framework uses the cell terminal
voltage exclusively as the measurement to adapt the SOC (micro
EKF) which in turn serves as the measurement to adapt the capac-
ity (macro EKF). Regarding the time-scale decoupling, the state
projection using the coulomb counting in Eq. (29) significantly
magnifies the effect of the capacity on the SOC, i.e., that the capac-
ity affects the SOC projected on the macro time-scale (L�T) more
significantly than that projected on the micro time-scale (T). The
larger influence of the capacity on the SOC leads to the possibility
of more stable capacity estimation, and that is precisely the main
technical characteristic that distinguishes our approach from the
dual EKF.
6. Simulation and experimental results

The verification of the proposed multiscale framework was
accomplished by conducting an extensive urban dynamometer
drive schedule (UDDS) test. This section reports the results of
this test. In Section 6.1, the synthetic data using a valid dynamic
model of a high power Li-ion polymer battery (LiPB) cell are
used to verify the effectiveness of the multiscale framework.
The UDDS test results of a Li-ion prismatic cell are reported in
Section 6.2.

6.1. SOC and capacity estimation with synthetic data of high power cell

6.1.1. Synthetic data generation
In order to evaluate the performance of our proposed approach,

we generated the synthetic data (T = 1 s) using an ESC model of a
prototype LiPB cell with a nominal capacity of 7.5 Ah [11]. The
root-mean-square (RMS) modeling error compared to cell tests
was reported to be less than 10 mV [10]. A sequence of 15 urban
dynamometer driving schedule (UDDS) cycles (see Fig. 3a), sepa-
rated by 30 A constant current discharge and 5 min rest, result in
the spread of SOC over the 100–4% range (see Fig. 3b). To account
for the measurement error, the current and voltage data were con-
taminated by zero mean Gaussian noise with standard deviations
200 mA and 10 mV, respectively.

6.1.2. Capacity estimation results
To test the performance of the dual EKF and the multiscale

framework with EKF, we intentionally offset the initial capacity va-
lue (7.0 Ah) from the true value (7.5 Ah). To minimize the effect of
randomness in measurement noise, we repeated this simulation
process ten times to obtain ten simulation data sets. The results
of capacity estimations on five data sets by these two methods
are summarized in Fig. 3c and d, respectively, from which three
important observations can be made. First of all, both methods
produced converged capacity estimates with similar convergence
rates. Since a UDDS cycle covers 7.45 miles [1] and the conver-
gence of the capacity estimate takes about six such cycles (see
Fig. 3c and d), the capacity estimate converges within 50miles.
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Fig. 3. Synthetic data and results of capacity estimation. (a) Plots the rate profile for one UDDS cycle and (b) plots the SOC profile; (c and d) plot the results of capacity
estimation by dual EKF and multiscale framework with EKF, respectively.

Table 3
Comparison results of computation efficiency with ten synthetic data sets.

Method Computational time (s) Improvement (%)

DualEKF 2.210 –
Mutiscale Framework with EKF 1.456 34.145
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Assuming the capacity degradation of an HEV cell over its lifecycle
(e.g., 160,000 miles) being less than 20%, we can estimate the time
constant (or rate parameter) of the capacity degradation to be in
the order of 50,000 miles and thus the required time constant of
the capacity filter to be in the order of 10,000 miles (i.e., the capac-
ity filter is five times faster than the capacity degradation). Here,
the convergence of the capacity estimate within 50 miles indicates
that the time constant should be much less than 50 miles (i.e., only
1/200 of required time constant). Therefore, the convergence by
both methods is much faster than required. We note that, with
high quality control in cell manufacturing, the initial capacity in
real applications would be much closer to the true value than the
two extreme cases (much larger and much smaller than the true
value) considered here, resulting in a much shorter convergence
time. Indeed, the convergence rate can be adjusted by varying
the process and measurement noise covariances which, respec-
tively, represent the process uncertainty resulting from the model
inaccuracy and the measurement uncertainty resulting from exter-
nal disturbance that corrupts the measurement data. Secondly, in
general, the dual EKF yielded inaccurate and noisy capacity estima-
tion (see Fig. 3c) while the multiscale framework (L = 100) with
EKF produced more accurate and stable capacity estimation (see
Fig. 3d). This can be attributed to the fact that the state projection
in Eq. (29) magnifies the effect of the capacity on the SOC as well as
removes to some extent the measurement noise. The average RMS
errors after convergence (at t = 200mins) on the 10 data sets were
computed as 0.048 Ah (relative error 0.640%) and 0.033 Ah (rela-
tive error 0.440%) for the dual EKF and the multiscale framework
with EKF, respectively. Thirdly, it is observed that, although the
multiscale framework with EKF produced stable capacity estima-
tion, the estimate still exhibits small fluctuation over time. It is fair
to say, however, that this small noise does not really affect the
practical use of this estimate.

6.1.3. Computational efficiency
In the previous subsection, we have demonstrated that the pro-

posed multiscale framework yielded higher accuracy than the dual
EKF. In this subsection, we compare the two methods in terms of
computational efficiency. To minimize the effect of randomness
in measurement noise, we employed the ten synthetic data sets
with each being executed ten times. Our computations were car-
ried out on a processor Intel Core i5 760 CPU 2.8 GHz and 4 GByte
RAM. The codes for both methods were self-devised hand-opti-
mized MATLAB codes running in Matlab environment (MATLAB
Version 7.11.0.584, The MathWorks, Inc., Natick, MA, USA). To
make our comparison of general use to other engineering systems,
we ruled out the computational time required to execute the ESC
model in this study. In fact, the measurement functions of two
engineered systems may exhibit a large difference in the level of
computational complexity, resulting in different amounts of com-
putational time. Thus, we intend to minimize the effect of sys-
tem-to-system variation and focus on the general functions in an
EKF by assuming a negligibly small amount of time for the execu-
tion of the system-specific measurement function (ESC model). Ta-
ble 3 summarizes the mean computational times. It is observed
that the multiscale framework with EKF requires a smaller amount
of computational time of 1.456 s for the sequence of 15 UDDS cy-
cles, a 34.145% reduction over the dual EKF whose computational
time is 2.210 s. Note that the percent of improvement is less than
50.000%. This can be attributed to the following two reasons: (i)
from the standpoint of computations on the micro time-scale, it
is noted that, in addition to the time- and measurement-update
computations for SOC estimation, both methods also require the
recursive derivative computation which, to some extent, reduces
their efficiency gap; and (ii) from the standpoint of computations
on the macro time-scale, although the macro-EKF is executed only
upon the completion of L = 100 executions of the micro-EFK, it still
requires a certain amount of time to compute the time- and
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Fig. 4. SOC profile and one cycle rate profile for UDDS cycle test. (a) Plots the rate profile for one UDDS cycle and (b) plots the SOC profile for 12 UDDS cycles.

Fig. 5. Experiment setup – UDDS test system.
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measurement-updates for capacity estimation. In spite of these
points, it is fair to say, however, that the proposed method achieves
considerable improvement over the dual EKF in terms of computa-
tional efficiency. This improvement is critical to alleviating the
computational burden imposed on the hardware and thus enhanc-
ing the feasibility of applications.

6.2. SOC and capacity estimation with UDDS cycle test of a prismatic
cell

6.2.1. Description of test procedure
In addition to the numerical study using synthetic data, we also

conducted the UDDS cycle test to verify the effectiveness of the
multiscale framework. The cells used in the test are Li-ion pris-
matic cells with a nominal capacity of 1.5 Ah. Since the cell cannot
withstand the high current pulse on a typical HEV cell, the UDDS
profile (see Fig. 3a) was scaled down to within the rate range of
±2 C. The scaled UDDS cycle was replicated two times to obtain
the final UDDS cycle used in this test (see Fig. 4a). It is noted that,
in a battery system, we often use C or C-rate to measure the rate at
which a cell is charged or discharged relative to its full capacity. For
the Li-ion prismatic cell with the capacity of 1.5 Ah, a discharge
current with a 1 C rate (1.5 A) will discharge the full cell capacity
in 1 h. Here, 2 C or a 2 C rate (3.0 A) defines the upper and lower
bounds (±3.0 A) of the scaled UDDS profile (see Fig. 4a). The cycle
test is composed of 12 UDDS cycles, separated by 1C constant cur-
rent discharge for 6 min and 30 min rest. This test profile resulted
in the spread of SOC over the 100–4% range. The SOC profile for 12
UDDS cycles is plotted in Fig. 4b, where the cell experiences an SOC
increase by about 3% during each UDDS cycle, and an SOC decrease
by about 10% due to the 1C discharge between cycles. The dis-
charge setting (1C for 6 min) was designed in order to excite the
entire SOC range (100–4%) for the UDDS cycle test as well as to
practice the UDDS cycle test at many different SOC levels separated
by a small gap (about 7%).

We set up a UDDS test system (see Fig. 5) which comprises of an
Arbin BT2000 cycle tester with a data acquisition device, an Espec
SH-241 temperature chamber at 25 �C and a test jig as a connector
holder for prismatic cells. Five prismatic cells were placed in the
temperature chamber and held by the test jig throughout the test.

6.2.2. Training of ESC cell model
The current and voltage measurements of one cell (cell 1) were

used to train the ESC model [1] while the other four cells (cells 2–5)
were treated as the testing cells. We followed the procedures de-
scribed in [15] to obtain the open circuit voltage (OCV) curve.
Through numerical optimization, optimum ESC model parameters
were obtained which minimize the root mean squared (RMS) error
of the cell terminal voltage. The numerical optimization was per-
formed using with a sequential quadratic programming (SQP)
method. In this study, we employed a nominal capacity of 1.5 Ah,
a measurement interval of T � 1s with ‘‘�’’ indicating small mea-
surement-to-measurement fluctuation, and four filter states
nf = 4. The voltage modeling results for one UDDS cycle are shown
in 0a, where a good agreement can be observed between the mod-
eled and measured cell terminal voltage. The RMS error of voltage
modeling for 12 UDDS cycles was 13.3 mV.

6.2.3. SOC and capacity estimation results
The SOC estimation results for the training cell for all 12 UDDS

cycles, the 3rd UDDS cycle and the 7th UDDS cycle are shown in
Fig. 6b–d, respectively, where the initial SOC is set to be smaller
(90%) than the true SOC (100%) and the multiscale framework
(L = 1200) still produced converged SOC estimate. Table 4 summa-
rizes the SOC estimation errors under four different settings of the
initial SOC and capacity. Here, the RMS and maximum errors take
into account the initial offset in the case of an incorrect initial SOC
and are formulated as

eRMS ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

nm

X
k;j

ðx̂k;l � xk;lÞ2
s

; eMax ¼max
k;j
jx̂k;l � xk;lj: ð31Þ

where nm is the number of measurements and reads 74,484 (about
1250 min) in this study; and xk,l is the true SOC at the time tk,l. In



Fig. 6. Voltage modeling results and SOC estimation results for UDDS cycle test. (a) Plots modeled and measured cell terminal voltage for one UDDS cycle; (b–d) plot the
estimated and true SOCs for all 12 UDDS cycles, the 3rd UDDS cycle and the 7th UDDS cycle, respectively.

Table 4
SOC estimation results under different settings of initial SOC and capacity.

Initial SOC Initial capacity SOC errors Cell1 Cell 2 Cell 3 Cell 4 Cell 5

Correct (100%) Correct (1.5 Ah) RMS (%) 1.02 1.34 0.81 1.05 0.75
Max (%) 2.19 2.37 1.82 2.79 1.91

Incorrect (1.0 Ah) RMS (%) 1.31 1.59 1.10 1.39 1.14
Max (%) 4.84 4.84 4.84 4.85 4.84

Correct (1.5 Ah) RMS (%) 1.91 2.07 1.84 2.03 1.8
Max (%) 10.00 10.00 10.00 10.00 10.00

Incorrect (90%) Incorrect (1.0 Ah) RMS (%) 2.65 2.77 2.59 2.76 2.58
Max (%) 14.74 14.75 14.74 14.76 14.75
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this study, we computed the true SOCs based on the coulomb
counting technique. We attempted to achieve an accurate approxi-
mation to the true SOCs through the following ways: (i) we first
fully charge a battery cell with a constant-current (0.1 A constant
current up to 4.2 V) constant-voltage (4.2 V constant voltage down
to 0.01 A) strategy to ensure an accurate initial SOC (100%); (ii) we
measure the cell current with the Arbin current sensors whose high
measurement accuracy leads to a sufficiently small error in the cur-
rent accumulation over a relatively short test duration (around
20 h).

Three important observations can be made from the results.
First of all, it is observed that the RMS SOC estimation errors pro-
duced by the multiscale framework are less than 3.00%, regardless
of initial values of the SOC and capacity. Secondly, under both ini-
tial SOC settings, the SOC estimation errors with incorrect initial
capacity (1.0 Ah) are consistently larger than those with correct
initial capacity (1.5 Ahs). These results suggest that the SOC is
strongly dependant on the capacity and that the lack of accuracy
in the capacity estimation may reduce the accuracy in the SOC esti-
mation. It is thus important to produce accurate capacity estima-
tion not only to provide insights into the cell SOH but also to
enable accurate SOC estimation. Thirdly, under both initial capacity
settings, the SOC estimation with incorrect initial SOC (90%) con-
sistently shows larger errors than that with correct initial SOC
(100%). Clearly, the larger SOC errors under incorrect initial SOC
(90%) can be attributed to the larger errors before the convergence
of SOC estimation (at the initial stage). After the convergence, the
SOC errors under different initial SOCs become almost the same.
We note that the RMS SOC estimation errors with incorrect initial
SOC (90%) are still less than 3.00% since the multiscale framework
produced converged SOC estimate for both cases.

Regarding the capacity estimation, both methods with initial
values smaller than the true value (see Fig. 7a and c) and larger
than the real value (see Fig. 7b and d) for all the five cells achieves
convergence to the true capacity within an error range of around
5%. Compared with the capacity estimation (see Fig. 7a and b) by
the multiscale framework, the capacity estimation (see 0c and
0d) by the dual EKF contains larger noise. The poorer accuracy pro-
duced by the dual EKF (consisting of an SOC EKF and a capacity
EKF) can be attributed to the measurement and time-scale cou-
pling in the SOC and capacity estimation. Regarding the measure-
ment coupling, the dual EKF uses the cell terminal voltage as the
measurement to adapt both the SOC and capacity. When the volt-
age modeling contains relatively large errors, the capacity estima-
tion can be largely compromised by the measurement update (in
the capacity EKF) which only aims at minimizing the difference be-
tween the modeled and measured voltages. In other words, the
measurement update may give an incorrect capacity estimate to
counteract the voltage modeling error. In this experimental study,
the relatively large voltage modeling errors directly affect the



Fig. 7. Capacity estimation results for UDDS cycle test. (a and b) Plot capacity estimation results by the multiscale framework with the initial values smaller than and larger
than the true value, respectively; (c and d) plots capacity estimation results by the dual EKF with the initial values smaller than and larger than the true value, respectively.

Fig. 8. Capacity estimation results after convergence (by setting initial capacity as real value). (a and b) Plot capacity estimation results by the multiscale framework and by
the dual EKF, respectively.
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accuracy in the capacity estimation by the dual EKF. Regarding the
time-scale coupling, the dual EKF estimates both the SOC and
capacity on the micro time-scale, which makes the capacity esti-
mation vulnerable to the local voltage modeling error (on the mi-
cro time-scale). This vulnerability further leads to noisy capacity
estimation. In contrast, the multiscale framework decouples the
SOC and capacity estimation in terms of both the measurement
and time-scale and avoids the concurrent SOC and capacity estima-
tion relying on the only measurement (cell terminal voltage). The
decoupling enables accurate capacity estimation in spite of SOC
estimation error. To quantify the accuracy of both methods, we
computed average RMS errors after convergence (at t = 200min
and 1000 min for smaller and larger initials, respectively). For the
smaller initial, the average RMS errors produced by the dual EKF
and the multiscale framework are 0.108 Ah (relative error
7.227%) and 0.063 Ah (relative error 4.200%), respectively. For the
larger initial, the errors are 0.049 Ah (relative error 3.233%) and
0.023 Ah (relative error 1.533%). Finally, we note that, since the
12 UDDS cycle test on one cell can be treated as one unique cycle
test, we do not expect large deviation from the current results
(based on the small difference between capacity estimation results
on different cells in 0) if we conduct another 12 UDDS cycle test.
To investigate the long-term behavior of capacity estimation
after convergence, we set the initial capacity value as the real value
and executed the two methods over the 12 UDDS cycles for all the
five cells. It is noted that this is virtually equivalent to adding an-
other 12 UDDS cycles (after convergence of capacity estimates)
for the cases of smaller and larger initial capacities (see Fig. 7).
As can be seen in Fig. 8a and b, both methods produced capacity
estimates around the real value. Again, the capacity estimation
(see Fig. 8a) by the multiscale framework contains smaller noise
than that (see Fig. 8b) by the dual EKF. To quantify the accuracy
of both methods, we computed average RMS errors over the entire
time domain. The errors produced by the dual EKF and the multi-
scale framework read 0.099 Ah (relative error 6.573%) and
0.059 Ah (relative error 3.931%), respectively.

In addition to the accuracy comparison, we also compared the
two methods in terms of computational efficiency. To minimize
the effect of randomness, we executed both methods ten times
with the test data obtained from each of the five cells. The mean
computational time is summarized in Table 5, where we observe
that the multiscale framework consumed less computational time
than the dual EKF and the improvement ratio shows good consis-
tency to what we observe in the synthetic data (see Table 3).



Table 5
Comparison results of computation efficiency with UDDS test data.

Method Computational time (s) Improvement (%)

DualEKF 5.813 –
Mutiscale Framework with EKF 3.711 36.163
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7. Conclusion

The multiscale framework with EKF is proposed for efficient and
accurate state and parameter estimation for engineered systems
that exhibit time-scale separation. The proposed framework was
applied to the Li-ion battery system for SOC and capacity estima-
tion. When applied to the battery system, the multiscale frame-
work can be treated as a hybrid of coulomb counting and
adaptive filtering techniques. Our contribution to battery SOC
and capacity estimation lies in the construction of a multiscale
computational scheme that decouples the SOC and capacity esti-
mation from two perspectives, namely the measurement and
time-scale. The resulting decoupled estimation greatly reduces
the computational time involved in obtaining the SOC and capacity
estimates, while enhancing the accuracy in the capacity estima-
tion. It is noted that the higher efficiency makes the proposed
methodology more suitable for onboard estimation devices that re-
quire computationally efficient estimation techniques. Experi-
ments with the synthetic data and UDDS cycle test verify that
the proposed framework achieves more accurate and efficient
capacity estimation than the dual EKF, suggesting that the pro-
posed framework is a promising methodology for the battery
prognostics.

In this work, we place our focus on SOC and capacity estimation
at the cell level. Since battery packs in EVs/HEVs often contain
thousands of cells, it is thus of significant importance to extend
the proposed framework from a cell level to a pack level in order
to make it practically useful. One possible way to accomplish this
extension is to replicate the multiscale framework M times to com-
pute cell SOCs and capacities in a pack consisting of M cells con-
nected in series, parallel, or a mixed mode. Clearly, this will
work, as long as we have (1) well-trained cell dynamic model for
individual cells and (2) the voltage measurements of each parallel
pathway and the current measurements of each series pathway.
However, a simple replication results in 2M EKFs (e.g., 100 cells
need 200 EKFs) which require a prohibitively large amount of com-
putational efforts. Thus, it will be very interesting to investigate
how we can utilize the strong correlation between SOCs and capac-
ities of all interconnected cells in a battery pack in order to signif-
icantly reduce the computational efforts for real-time estimation at
the pack level. Other future works under contemplation include
the investigation the effect of the level of time-scale separation
on the accuracy, the verification of the practical feasibility of the
multiscale framework by burning it into integrated circuit (IC)
chips in battery management systems (BMSs) and conducting
extensive verification tests, and the extension of the proposed
method to the state of life (SOL) prediction with lifetime cell aging
test.
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