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A Generalized Complementary
Intersection Method (GCIM) for
System Reliability Analysis
This paper presents a Generalized Complementary Intersection Method (GCIM) that can
predict system reliability for series, parallel, and mixed systems. The GCIM is an exten-
sion of the original study, referred to as the Complementary Intersection Method (CIM).
The CIM was developed to assess system reliability for series systems. The contribution
of this paper is to generalize the original CIM so that it can be used for system reliability
analysis regardless of system structures (series, parallel, and mixed system). First, we
derive a closed-form system reliability formula for a parallel system through its transfor-
mation into a series system using De Morgan’s law. Second, a unified system reliability
analysis framework is proposed for mixed systems by defining a new System Structure
matrix (SS-matrix) and employing the Binary Decision Diagram (BDD) technique. The
SS-matrix is used to present any system structure in a comprehensive matrix form. Then
the BDD technique together with the SS-matrix automates the process to identify system’s
mutually exclusive path sets, of which each path set is a series system. As a result, system
reliability with any system structure can be decomposed into the probabilities of the
mutually exclusive path sets. Five engineering examples are used to demonstrate that
the proposed GCIM can assess system reliability regardless of the system structures.
[DOI: 10.1115/1.4004198]

1 Introduction

Considerable advances have been made in the field of reliability
analysis [1–4] and Reliability-Based Design Optimization
(RBDO) [5–9] for engineered system analysis and design under
uncertainty. In order to ensure high reliability of complex engi-
neered systems against deterioration or natural and man-made
hazards, it is essential to have an efficient and accurate method for
estimating the probability of system failure regardless of different
system configurations. Although tremendous advances have been
made in component reliability analysis and design optimization,
the research in system reliability analysis has been stagnant due to
the complicated nature of the multiple system failure modes and
their interactions, as well as the costly computational expense of
system reliability evaluation. Since system reliability prediction is
of great importance in civil, aerospace, mechanical, and electrical
engineering fields, its technical development will have an immedi-
ate and major impact on engineered system designs.

Due to the difficulties, most system reliability analysis methods
provide the bounds of system reliability. Ditlevsen and Bjerager
proposed the most widely used second-order system reliability
bounds method, which gives much tighter bounds compared with
the first-order bounds for both series and parallel systems [10].
Other equivalent forms of the bounds of Ditlevsen and Bjerager
were given by Thoft-Christensen and Murotsu [11], Karamchan-
dani [12], Xiao and Mahadevan [13], and Ramachandran [14].
Song and Der Kiureghian formulated system reliability to a Linear
Programming (LP) problem, referred to as the LP bounds method
[15] and latterly the matrix-based system reliability method [16].
The LP bounds method is able to calculate the optimal bounds for
system reliability based on available reliability information. How-
ever, it is extremely sensitive to accuracy of the available reliabil-
ity information, which is the probabilities for the first-, second-, or

higher-order joint safety events. To assure high accuracy of the
LP bounds method for system reliability prediction, the probabil-
ities must be given very accurately. Besides the system reliability
bound methods, one of the most popular approaches is the multi-
modal Adaptive Importance Sampling method, which is found sat-
isfactory for the system reliability analysis of large structures
[17,18]. The integration of surrogate model techniques with
Monte Carlo Simulation (MCS) can be an alternative approach to
system reliability prediction as well [19]. This approach, which
can construct the surrogate models for multiple limit-state func-
tions to represent a joint failure region, is quite practical but accu-
racy of the approach depends on fidelity of the surrogate models.
It is normally expensive to build accurate surrogate models. Most
recently, Youn and Wang [20] introduced a novel concept of the
complementary intersection event and proposed the Complemen-
tary Intersection Method (CIM) for series system reliability analy-
sis. The CIM provides not only a unique formula for system
reliability but also an effective numerical method to evaluate the
system reliability with high efficiency and accuracy. The CIM
decomposes the probabilities of high-order joint failure events
into probabilities of complementary intersection events. For large
scale systems, a CI-matrix was proposed to store the probabilities
of component safety and complementary intersection events.
Then, series system reliability can be efficiently evaluated by
advanced reliability methods, such as dimension reduction method
and stochastic collocation method. However, the application of
the CIM has been limited to a series system only.

This paper presents a Generalized CIM (GCIM) framework,
which enables the use of the original CIM for system reliability
analysis with any system structures (series, parallel, and mixed
systems). The SS-matrix is proposed to characterize any system
structure in a comprehensive manner and the Binary Decision
Diagram (BDD) technique is employed to identify system’s mutu-
ally exclusive path sets using the SS-matrix, of which each path
set is a series system. As a result, system reliability with any sys-
tem structure can be decomposed into the probabilities of the
mutually exclusive path sets, which can be evaluated using vari-
ous numerical methods for reliability analysis. Five examples are
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used to demonstrate that the proposed GCIM can assess system
reliability regardless of the system structures. Section 2 reviews
the CIM and CI-matrix. Section 3 presents the GCIM for system
reliability analysis for series, parallel, and mixed systems. The
proposed method is demonstrated with five case studies in Sec. 4.
Section 5 concludes this paper.

2 Complementary Intersection Method (CIM)

This section reviews the Complementary Intersection Method
(CIM) [20].

2.1 CI Event and Probability Decomposition Theorem. Here
we review the definition of CI event and the probability decompo-
sition theorem.

Definition. Complementary Intersection (CI) Event: Let an Nth-
order CI event denote E12,…,N � {X|G1G2� � �GN� 0}, where the
component safety (or first-order CI) event is defined as
Ei¼ {X|Gi� 0, i¼ 1, 2,…,N}. The defined Nth-order CI event is
actually composed of N distinct intersections of component events
Ei and their complements �Ej in total where i, j¼ 1,…, N and i= j.
For example, for the second-order CI event Eij, it is composed of
two distinct intersection events, E1

�E2 and �E1E2. These two events
are the intersections of E1 (or E2) and the complementary event of
E2 (or E1).

THEOREM. Decomposition of the Probability of an Nth-Order
Joint Safety Event. With the definition of the CI event, the proba-
bility of an Nth-order joint safety event can be decomposed into
the probabilities of the component safety events and the CI events
as
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The detailed derivation of Eq. (1) can be found in Ref. [20]. It is
noted that each CI event has its own limit state function, which
enables the use of any reliability analysis methods. In general,
higher-order CI events are expected to be highly nonlinear. Con-
sidering the tradeoff between computational efficiency and accu-
racy, this paper uses the probabilities of the first- and second-order
CI events in Eq. (1) for system reliability analysis. However,
more terms in Eq. (1) can be employed as advanced reliability
analysis methods are developed in the future.

Based on the definition of the CI event, the second-order CI event
can be denoted as Eij: {X | GiGj� 0}. The CI event can be further

expressed as Eij¼ �EiEj [ Ei
�Ej where the component failure events

are defined as �Ei¼ {X | Gi> 0}, �Ej¼ {X | Gj> 0}. The CI event Eij

is thus composed of two events: Ei
�Ej¼ {X | Gi� 0 \ Gj> 0} and

�EiEj¼ {X | Gi> 0 \ Gj� 0}. Since the events, �EiEj and Ei
�Ej, are

disjoint, the probability of the CI event Eij can be expressed as

PðEijÞ � PðXjGiGj � 0Þ
¼ PðXjGi > 0 \ Gj � 0Þ þ PðXjGi � 0 \ Gj > 0Þ
¼ Pð �EiEjÞ þ PðEi

�EjÞ (2)

Based on the probability theory, the probability of the second-
order joint safety event Ei \ Ej can be expressed as

PðEiEjÞ ¼ PðEiÞ � PðEi
�EjÞ

¼ PðEjÞ � Pð �EiEjÞ (3)

From Eqs. (2) and (3), the probabilities of the second-order joint
safety and failure events can be decomposed as

PðEiEjÞ ¼
1

2
PðEiÞ þ PðEjÞ � PðEijÞ
� �

(4)

PðEiEjÞ ¼ 1� 1

2
PðEiÞ þ PðEjÞ þ PðEijÞ
� �

(5)

2.2 CI-Matrix. For large-scale systems, the CI events can be
conveniently written in the CI-matrix. For instance, if the system
includes m components in total, the CI-matrix is defined as

CI ¼

PðE1Þ PðE12Þ PðE13Þ � � � PðE1mÞ
� PðE2Þ PðE23Þ � � � PðE2mÞ
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In the upper triangular CI-matrix, the diagonal elements corre-
spond to the component reliabilities (or probabilities of the first-
order CI events) and the element on the ith row and jth column
corresponds to the probability of the second-order CI event Eij if
j< i. The probabilities of the second-order joint safety and failure
events in Eqs. (4) and (5) can be evaluated with the probabilities
of all component safety and complementary intersection events
found from the CI-matrix. The CI-matrix thus facilitates the eval-
uation of system reliability. The probability of the complementary
intersection events can be computed using any reliability analysis
method, such as the MCS, First-Order Reliability Method
(FORM), Second-Order Reliability Method (SORM), Eigenvector
Dimension Reduction (EDR) method, Stochastic Expansion (SE)
methods, and so on.

3 Generalized Complementary Intersection Method

for System Reliability Analysis

Here we attempt to generalize the original CIM for system reli-
ability analysis with any system structure (series, parallel, and
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mixed systems). Section 3.1 will briefly review the CIM for series
system reliability analysis from Ref. [20]. The proposed GCIM
for parallel and mixed system reliability analysis are developed in
Secs. 3.2 and 3.3, respectively. Section 3.4 provides the GCIM
framework for system reliability analysis.

3.1 System Reliability Analysis for Series Systems. Although
the second-order system reliability bounds method or the LP
bounds method can generally give fairly narrow system reliability
bounds, they cannot provide system reliability uniquely. The
authors proposed the explicit formula for series system reliability
assessment. This original CIM can provide an alternative way of
assessing system reliability.

Considering a structural serial system with m components, the
probability of system failure can be expressed as

Pfs ¼ P [
m

i¼1

�Ei

� �
(7)

where Pfs represents the probability of system failure and �Ei

denotes the failure event of the ith component. Based on the well-
known Boolean bounds in Eq. (8), the first-order system reliability
bound is given in Eq. (9),
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However, these methods provide wide bounds of system reliabil-
ity. Thus, the second-order bounds method proposed by Ditlevsen
and Bjerager [21] in Eq. (10) is widely used because it gives quite
narrow bounds of system reliability,
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where E1 is the event having the largest probability of failure.
Since the probabilities of all events are non-negative, the fol-

lowing inequalities must be satisfied as

max
i
ðPðEiÞÞ �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiXm
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� �2s

�
Xm
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Based on Eqs. (10) and (11), the probability of system failure (Pfs)
of a serial system failure can be simplified to a unique explicit for-
mula as

Pfs ffi P E1
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It is proven in Ref. [20] that this approximate probability lies in
the second-order bounds in Eq. (10). From Eq. (12), serial system
reliability can be assessed as (1-the probability of system failure)
and formulated as

Rs series ¼ PðE1E2 � � �Em�1EmÞ

ffi P E1ð Þ �
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where Ah i �
A if A > 0

0 if A � 0



(13)

Note that the terms inside the brackets, �h i, should be ignored if
they are less than zero and Rs should be set to zero if the approxi-
mated one given by Eq. (13) is less than zero. Equation (13)
provides an explicit and unique formula for system reliability
assessment based on the second-order reliability bounds shown in
Eq. (10) and an inequality Eq. (11). The CI-matrix facilitates the
evaluation of system reliability for large-scale systems with multi-
ple failure events. The probability of the CI events can be com-
puted using any reliability analysis method, such as MCS, FORM,
SORM, EDR method, or SE methods.

3.2 System Reliability Analysis for Parallel Systems. A
parallel system reliability formula can be obtained based on the
formula of series system reliability by using De Morgan’s law.
According to De Morgan’s law, the probability of parallel system
failure can be expressed as

P
\m
i¼1

�Ei

 !
¼ 1� P

\m
i¼1

�Ei

 !
¼ 1� P

[m
i¼1

Ei

 !
(14)

where Ei is the ith component failure event.
Equation (14) relates the probability of parallel system failure

with the probability of series system safety (reliability). If we treat
Ei as the ith component failure event in a series system, the right-
hand side of Eq. (14) is then the series system reliability. Based
on this relationship, the probability of parallel system failure can
be obtained from Eq. (13) by treating the safe events in the series
system as the failure events in the parallel system as

P ðfailure of a parallel systemÞ

ffi PðE1Þ �
Xm
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PðEiÞ �
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(15)

Finally, parallel system reliability can be obtained from Eq. (15)
by one minus the probability of system failure as

Rs parallel ffi PðE1Þ þ
Xm

i¼2

PðEiÞ �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiXi�1
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P EiEj

� �� �2vuut* +
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(16)

3.3 Mixed System Reliability Analysis. A mixed system
may have various system structures. There is no unique system
reliability formula available for a mixed system. This study devel-
ops a generic procedure for mixed system reliability analysis with
an aim to produce a unique system reliability formula. The devel-
oped procedure is introduced in the following with an arbitrary
mixed system structure. Considering a mixed system with N com-
ponents, the following procedure can be proceeded to carry out
system reliability analysis.

Step I—Constructing a System Structure Matrix. An SS-matrix,
a 3-by-M, is proposed in this study to characterize any system
structural configuration (components and their connections) in a
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matrix form. The SS-matrix contains the information about the
constituting components and their connection. The first row of the
matrix contains component numbers, while the second and third
rows correspond to the starting and end nodes of the components.
Generally, the total number of columns of an SS-matrix, M, is
equal to the total number of system components, N. In the case of
complicated system structures, one component may repeatedly
appear in between different sets of nodes and, consequently, M
could be larger than N, e.g., a 2-out-of-3 system.

Let us consider an example of a mixed system consisting of
four components, as shown in Fig. 1. The SS-matrix for the sys-
tem can be constructed as a 3� 4 matrix, as shown in Fig. 1. The
first column of the system structure matrix, [1,1,2]T, indicates that
the first component connects nodes 1 and 2.

Step II—Finding Mutually Exclusive System Path Sets. Based
on the SS-matrix, the Binary Decision Diagram (BDD) technique
[22,23] can be employed to find the mutually exclusive system
path sets, of which each path set is a series system. In probability
theory, two events are said to be mutually exclusive if they cannot
occur at the same time or, in other words, the occurrence of any
one of them automatically implies the nonoccurrence of the other.
Here, system path sets are said to be mutually exclusive if any
two of them are mutually exclusive. We note that, without the SS-
matrix, it is not easy for the BDD technique to automate the
process to identify the mutually exclusive path sets. Detailed in-
formation regarding the fundamentals and implementation details
of the BDD can be found in the Appendix. The mixed system
shown in Fig. 1 can be decomposed into the two mutually exclu-
sive path sets using the BDD, which is shown in Fig. 2. Although
the path sets E1

�E2E3E4 and E1E3E4 represent the same path that
goes through from the left terminal 1 to the right terminal 4 in
Fig. 1, the former belongs to the mutually exclusive path sets in
Fig. 2 while the latter does not. This is due to the fact that the path
sets E1E3E4 and E1E2 are not mutually exclusive. We also note,
however, that we could still construct another group of mutually
exclusively path sets, {E1E3E4, E1E2

�E3}, which contains the path
set E1E3E4 as a member. This is due to the fact that a mixed sys-
tem may have multiple BDDs with different configurations
depending on the ordering of nodes in BDDs and these BDDs
result in several groups of mutually exclusive path sets, among
which the one with the smallest number of path sets is desirable.
Another point deserving of notice is that the mixed system consid-
ered here consists of only two mutually exclusive path sets. In
cases of more than two mutually exclusive path sets, any two path

sets are mutually exclusive. This suggests that the system path
sets can equivalently be said to be pairwise mutually exclusive.

Step III—Evaluating All Mutually Exclusive Path Sets and Sys-
tem Reliability. Due to the property of the mutual exclusiveness,
the mixed system reliability, Rs_mixed, is the sum of the probabil-
ities of all paths as

Rs mixed ¼ P
[Np

i¼1

Pathi

 !
¼
XNp

i¼1

P Pathið Þ (17)

where Pathi is the ith mutually exclusive path set obtained by the
BDD and Np is the total number of mutually exclusive path sets.
For the system in Fig. 1, the system reliability can be calculated
as

Rs mixed ¼ P
[2
i¼1

Pathi

 !
¼
X2

i¼1

P Pathið Þ

¼ P E1E2ð Þ þ P E1
�E2E3E4ð Þ (18)

where the probability of each individual path set can be calculated
using the series system reliability formula given by Eq. (13).

3.4 GCIM Framework for System Reliability
Analysis. While a series system or a parallel system can be
viewed as a special case of a mixed system, the proposed gener-
alized CIM framework with the SS-matrix and BDD can perform
system reliability analysis with any system structures (series,
parallel, and mixed). Figure 3 shows a generalized CIM frame-
work for system reliability. As shown in Fig. 3, the first step of
the CIM framework is to prepare the system input information,
such as system performances (or limit state functions), their rela-
tion (or system structure), and random input variables associated
with the system. Subsequently, the GCIM requires the four-step
process for the system reliability analysis, (1) constructing the
SS-matrix, (2) evaluating the CI-matrix using advanced proba-
bility analysis methods as introduced in Sec. 2, (3) identifying
mutually exclusive path sets using the BDD with the SS-matrix,

Fig. 1 Example to show the conversion of a system block dia-
gram to SS-matrix

Fig. 2 BDD diagram and the mutually exclusive path sets

Fig. 3 GCIM framework for system reliability analysis
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and (4) evaluating the probabilities of all path sets. After com-
pleting the four-step process, the GCIM can provide various out-
puts, such as component reliabilities, probabilities of any joint
failure event, probabilities of path sets, and the system reliabil-
ity. This GCIM framework can be generic because it can assess
system reliability for any system structure (series, parallel, and
mixed systems) using advanced reliability methods.

4 Case Studies

In the following, we present five case studies for a series sys-
tem, a parallel system, and three mixed systems, respectively, to
demonstrate the efficiency and accuracy of the proposed GCIM
for system reliability analysis. For each case study, the general-
ized CIM framework is demonstrated in a wide range of system
reliability levels and compared with MCS. For series and parallel
systems, the results of the generalized CIM framework are also
compared with First-Order Bound (FOB) and Second-Order
Bound (SOB) methods. The main objective of the case studies is
to demonstrate the theoretical accuracy of the proposed general-
ized CIM framework for system reliability analysis. So in the five
examples we focus on a mathematical error produced by a system
reliability formula rather than a numerical error by a numerical
method. In order to eliminate the numerical error in system reli-
ability analysis, MCS with a large sample size was used to evalu-
ate the CI-matrix as shown in each case study.

4.1 Example 1. An Internal Combustion Engine Series
System. The following internal combustion engine case study
is used to demonstrate the application of the generalized CIM
for series system reliability analysis. Five random variables are
considered in this example: the cylinder bore b, compression
ratio cr, exhaust valve diameter dE, intake valve diameter dI,
and the revolutions per minute (rpm) at peak power, x. All
the random variables are assumed to follow normal distribu-
tion with statistical information shown in Table 1. More
detailed information of this example can be found in Ref.
[24]. From a thermodynamic viewpoint, nine component safety
events are defined as follows:

E1¼ 1:2Ncb�400� 0f g min: bore wall thicknessð Þ

E2¼ 8V= 200pNcð Þ½ 	0:5�b� 0
n o

max: engine heightð Þ

E3¼ dIþdE�0:82b� 0f g ðvalve geometry and structureÞ
E4¼ 0:83dI�dE� 0f g min: value diameter ratioð Þ
E5¼ dE�0:89dI � 0f g max: value diameter ratioð Þ
E6¼ 9:428�10�5 4V= pNcð Þ½ 	 x=d2

I

� �
�0:6Cs� 0

� �
max:Mech=Indexð Þ

E7¼ 0:045bþ cr�13:2� 0f g knock� limit compression ratioð Þ
E8¼ x�6:5� 0f g max: torque converter rpmð Þ
E9¼ 230:5Qgtw�3:6�106� 0

� �
max: fuel economyð Þ (19)

where

gtw ¼ 0:85951 1� c�0:33
r

� �
� Sv;V ¼ 1:859� 106 mm3

Q ¼ 43; 958 kJ=kg;Cs ¼ 0:44; and Nc ¼ 4

In this study, system reliability analyses are performed at the eight
different design points as listed in Table 2. These design points
are the reliability-based optimum designs with eight different tar-
get component reliability levels from 80% to 99.9%. In the RBDO
problem, the objective is to maximize the power output per unit
displacement of an internal combustion engine while meeting
nine specific fuel economy and packaging constraints detailed in
Eq. (19). Detailed information of the objective function can be
found in Ref. [24]. The results of system reliability analysis at
these design points are summarized in Table 3 and also graphi-
cally shown in Fig. 4. From the results, it is found that the first-
order bounds method gives too wide bounds to be of practical use.
On the contrary, the second-order bounds method gives tighter
bounds. It is expected based on the results that the GCIM can pre-
dict system reliabilities accurately at various reliability levels and
the estimation errors tend to be lower at high system reliability

Table 1 Statistical information of input random variables for
combustion engine

Random
variable

Mean Standard
deviation

Distribution
type

b (mm) — 0.40 Normal
cr (mm) — 0.15 Normal
dE (mm) — 0.15 Normal
dI — 0.05 Normal
x, (� 10�3) — 0.25 Normal

Table 2 Eight different design points for system reliability
analysis

Designs points

Mean values for random variables

b cr dE dI x

1 82.1025 35.8039 30.3274 9.3397 5.2827
2 82.3987 36.1754 30.4835 9.3684 5.5983
3 82.5511 36.3630 30.5676 9.3811 5.7550
4 82.6770 36.5187 30.6334 9.3920 5.8901
5 82.8234 36.7006 30.7121 9.4049 5.9498
6 82.8750 36.7655 30.7407 9.4096 5.9754
7 82.9204 36.8222 30.7657 9.4137 5.9772
8 82.9977 36.9197 30.8084 9.4204 5.9795

Table 3 Results of system reliability analysis with MCS, FOB using MCS, SOB using MCS, and GCIM using MCS (N 5 1 3 106)

Analysis method

System reliability level at each design

1 2 3 4 5 6 7 8

FOB Upper 0.9989 0.9899 0.9745 0.9495 0.8984 0.8742 0.8490 0.7988
Lower 0.9949 0.9506 0.8744 0.7432 0.5367 0.4318 0.3410 0.1513

SOB Upper 0.9949 0.9520 0.8822 0.7741 0.6224 0.5554 0.4987 0.3967
Lower 0.9949 0.9517 0.8798 0.7653 0.5929 0.5190 0.4418 0.3049

GCIM 0.9949 0.9518 0.8805 0.7674 0.6026 0.5312 0.4612 0.3371
MCS 0.9949 0.9520 0.8820 0.7731 0.6179 0.5476 0.4871 0.3748

GCIM error 0.0000 0.0002 0.0015 0.0057 0.0153 0.0164 0.0259 0.0377
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levels (e.g., greater than 0.95), which are often encountered in en-
gineering practices, than those at low system reliability levels.

This case study considers the first- and second-order CI events.
The CIM produces numerical error because of the ignorance of
the probabilities of the third- or higher-order CI events. The
effects of the third- or higher-order CI events tend to increase as
the system reliability decreases, simply because the probabilities
of joint events (joint failure events or CI events) are usually bigger
at low reliability level than at high reliability level. This is also
true for the reliability bound methods. As can be observed from
Table 3 and Fig. 4, the lower the system reliability, the larger the
CIM estimation error and the wider the bounds produced by FOB
and SOB. Thus for series systems, the CIM produces smaller nu-
merical error at a high system reliability level than that at a lower
level. This is valid only for series systems. When only probabil-
ities of the first- and the second-order joint events are used for sys-
tem reliability analysis, the GCIM will provide comparable results
with the average of SOBs. However, compared with SOBs, the
GCIM not only provides system reliability analysis formula with
probabilities of any order joint events, but also provide a way of
evaluating the probabilities of high order joint events as a function
of the probabilities of CI events and probabilities of high order
joint events as shown in Eq. (1).

4.2 Example 2. A Ten Brittle Bar Parallel System. The fol-
lowing ten-bar system example is used to demonstrate the effec-
tiveness of the GCIM framework for parallel systems. As shown
in Fig. 5, ten brittle bars are connected in parallel to sustain a load
applied at one end. This case study is modified from the example
employed in Ref. [25]. Ten bars are all brittle with different

fracture strain limits efi, 1� i� 10, which are sorted in an ascend-
ing order. If the exerted strain e is between the (i–1)th and ith frac-
ture strain limits, i.e., ef(i–1)� e< efi, bar components with fracture
strains below efi will fail, and the allowable load is then the sum of
the strength of components with fracture strains equal to or above
efi. Therefore, the strain level corresponding to the overall maxi-
mum allowable load is among the ten fracture strain limits. As the
overall maximum allowable load, the system strength RT can be
formulated in the following:

RT ¼ max
e

X10

j¼1

RjðeÞ
( )

¼ max
1�i�10

X10

j¼i

RjðefiÞ
( )

¼ max
X10

j¼1

Rjðef 1Þ;
X10

j¼2

Rjðef 2Þ ;… ;R10ðef 10Þ
( )

(20)

For example, if the exerted strain e is equal to the fracture strain
ef2, the first brittle bar fails due to the fracture and no longer con-
tributes to the overall system strength. Thus, the system strength
RT at this fracture strain is the sum of strength of the other nine
brittle bars. The brittle bar system fails to sustain the load F only
if the system strength at any of the ten fracture strains is smaller
than the load F. This is a parallel system with ten components,
corresponding to the ten fracture strains. The component safety
events can be expressed in terms of several random variables,

Gi ¼ F�
X10

j¼i

RjðefiÞ ¼ F�
X10

j¼i

ðEjAjÞ � efi; 1 � i � 10 (21)

where Rj represents the allowable load that can be sustained by
the jth brittle bar, Aj the cross-section area of the jth brittle bar,
and Ej the Young’s modulus of the jth brittle bar.

Random variables and their random properties are summarized
in Table 4. Ten different system reliability levels are used for
comparison with ten different loading conditions (F). These load-
ing points are used to validate the GCIM method at different reli-
ability levels. Table 5 summarizes the results of system reliability
analyses which are illustrated in Fig. 6. It can be seen that the
first-order bounds are too wide to be of practical use, whereas the
second-order bounds method gives tighter system reliability

Fig. 4 Results of system reliability analysis at eight different
reliability levels

Fig. 5 Ten brittle bar parallel system: (a) system structure
model; (b) brittle material behavior in a parallel system

Table 4 Statistical information of input random variables for
the ten bar system

Random variable Mean Standard deviation Distribution type

E1–E10 (GPa) 200.0 10.0 Gumbel
A1 (mm2) 100.0 5.0 Lognormal
A2 (mm2) 120.0 5.0 Lognormal
A3 (mm2) 140.0 5.0 Lognormal
A4 (mm2) 140.0 10.0 Lognormal
A5 (mm2) 140.0 10.0 Lognormal
A6 (mm2) 150.0 10.0 Lognormal
A7 (mm2) 150.0 15.0 Lognormal
A8 (mm2) 150.0 15.0 Lognormal
A9 (mm2) 200.0 15.0 Lognormal
A10 (mm2) 300.0 25.0 Lognormal
ef1 0.0010 0.0002 Uniform
ef2 0.0012 0.0003 Uniform
ef3 0.0018 0.0004 Uniform
ef4 0.0025 0.0005 Uniform
ef5 0.0027 0.0006 Uniform
ef6 0.0030 0.0007 Uniform
ef7 0.0033 0.0008 Uniform
ef8 0.0036 0.0009 Uniform
ef9 0.0040 0.0010 Uniform
ef10 0.0050 0.0011 Uniform
F (kN) — 30.0 Normal
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bounds compared with the first-order bounds method. It is
expected based on the results that the GCIM method can produce
accurate system reliability estimates at a wide variety of reliability
levels and that this high accuracy can be maintained at high
reliability levels, which are often encountered in engineering prac-
tices. Similar to the first case study, only the first- and second-
order CI events were considered and the error for the GCIM
comes from the effects of the third- or higher-order CI events.
However, for a parallel system these effects tend to decrease as
the system reliability decreases; thus the error at a low system reli-
ability level is smaller than that at a higher system reliability level,
as observed from Fig. 6.

4.3 Example 3. A Mathematical Mixed System Example. This
mathematical example is used to demonstrate the application of
the generalized CIM for system reliability analysis of a mixed sys-
tem. Two random variables X1 and X2, which follow normal distri-
butions with standard deviation of 0.5, are considered in this
example. Five component safety events, E1 to E5, are defined as

E1 ¼ 1� X2
1X2=15 � 0

� �
E2 ¼ 1� X1 þ X2 � 5ð Þ2=30� X1 � X2 � 12ð Þ2=50 � 0

n o
E3 ¼ 1� 45= X2

1 þ 8X2 þ 5
� �

� 0
� �

E4 ¼ 20= X1 � X2 þ 1ð Þ2þ5X2 þ 1
h i

� 1 � 0
n o

E5 ¼ 4 cos pX1=6ð Þ sin pX2=8ð Þ � 1 � 0f g (22)

The above-presented component safety events constitute a
mixed system with the corresponding reliability block diagram
and SS-matrix shown in Fig. 7. The BDD diagram can then be
derived as shown in Fig. 8, which indicates the following mutually
exclusive system path sets as

Table 5 Results of system reliability analysis with MCS, FOB using MCS, SOB using MCS, and GCIM using MCS (N 5 1 3 106)

Analysis method

System reliability level at each design

1 2 3 4 5 6 7 8 9 10

FOB Upper 0.4133 0.5639 0.7331 0.9216 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000
Lower 0.1594 0.2054 0.2507 0.2974 0.3444 0.4395 0.4865 0.5334 0.5803 0.9705

SOB Upper 0.3537 0.467 0.5854 0.7065 0.8293 1.0000 1.0000 1.0000 1.0000 1.0000
Lower 0.3192 0.4062 0.4849 0.5507 0.6068 0.6917 0.7161 0.7459 0.7897 0.9943

GCIM 0.3417 0.4456 0.5490 0.6482 0.7388 0.8714 0.9017 0.9069 0.9051 0.9943
MCS 0.3301 0.4272 0.5226 0.6131 0.6961 0.8314 0.8813 0.9192 0.9476 0.9998

GCIM error 0.0116 0.0184 0.0264 0.0351 0.0427 0.0400 0.0204 0.0123 0.0425 0.0055

Fig. 6 Results of system reliability analysis at ten different reli-
ability levels

Fig. 7 System block diagram and SS-matrix for example 3 Fig. 8 BDD diagram for example 3

Table 6 Results of different system reliability analysis methods: GCIM and MCS (N 5 1 3 106)

Analysis method

System reliability at each point

1 2 3 4 5 6 7 8 9 10

X1 2.5151 2.0847 5.0506 4.7959 4.6556 3.0842 1.5647 4.2499 3.2640 3.4877
X2 4.3171 3.5262 1.6407 1.7620 1.7078 2.6952 0.0159 0.5421 1.0281 0.7726
GCIM 0.3579 0.4619 0.5760 0.6710 0.7676 0.8598 0.9319 0.9625 0.9951 0.9987
MCS 0.3548 0.4607 0.5750 0.6708 0.7675 0.8598 0.9319 0.9625 0.9951 0.9987
GCIM error 0.0031 0.0012 0.0010 0.0001 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000
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Path set ¼ E1E3E4; �E1E2E3E4; E1E3
�E4E5; �E1E2E3

�E4E5f g

System reliability analysis is carried out using the GCIM and
MCS at ten different sets of mean values of X1 and X2 as shown in
Table 6. These inputs lead to ten different system reliability lev-
els. The comparison in Table 6 suggests that the GCIM provides
fairly accurate results for the mixed system problem. The small
difference is due to the errors in the CIM approximations to the
path sets that are mainly introduced by ignorance of the probabil-
ities of third- and higher-order joint failure events.

4.4 Example 4. A Cantilever Beam-Bar Mixed System. The
following cantilever beam-bar system [15] is employed in this
study to demonstrate the effectiveness of the GCIM framework
for mixed system reliability analysis. The system is considered as
an ideally elastic-plastic cantilever beam supported by an ideally
rigid-brittle bar, with a load applied at the midpoint of the beam,
as shown in Fig. 9. There are three failure modes and five inde-
pendent failure events �E1� �E5. These three failure modes are
formed by different combinations of failure events.

� First failure mode—the fracture of the brittle bar (event �E1)
occurs, and subsequently the formation of a hinge at the fixed
point of the beam (event �E2).
� Second failure mode—the formation of a hinge at the fixed

point of the beam (event �E3) followed by the formation of
another hinge at the midpoint of the beam (event �E4).
� Third failure mode—the formation of a hinge at the fixed

point of the beam (event �E3) followed by the fracture of the
brittle bar (event �E5).

The five safety events can be expressed as

E1 ¼ X;Tj5X=16� T � 0f g
E2 ¼ X;L;MjLX �M � 0f g
E3 ¼ X;L;Mj3LX=8�M � 0f g
E4 ¼ X;L;MjLX=3�M � 0f g
E5 ¼ X;L;M;TjLX �M � 2LT � 0f g (23)

Considering these three failure modes, the system success event
can be obtained as

ES ¼ E1 [ E2ð Þ \ E3 [ E4 \ E5ð Þf g (24)

The statistical information of the random input variables is given
in Table 7. Ten different system reliability levels are used for
comparison with ten different loading conditions (X).

The reliability block diagram along with the SS-matrix is
shown in Fig. 10. Based on this SS-matrix, the BDD diagram can
be constructed as shown in Fig. 11.

The BDD indicates the following mutually exclusive system
path sets as

Path set ¼ E1E3; �E1E2E3; E1
�E3E4E5; �E1E2

�E3E4E5f g

The system reliability analysis is carried out using the GCIM with
ten different loading conditions (ten different ux values for the X)

Fig. 9 A cantilever beam-bar system

Table 7 Statistical information of input random variables

Random variable Mean Standard deviation Distribution type

L 5.0 0.05 Normal
T 1000 300 Normal
M 150 30 Normal
X ux 20 Normal

Fig. 10 System block diagram and SS-matrix for the cantilever
beam-bar example

Fig. 11 BDD diagram for the cantilever beam-bar example

Table 8 Results of different system reliability analysis methods: GCIM and MCS (N 5 1 3 106)

Analysis method

System reliability at each point

1 2 3 4 5 6 7 8 9 10

ux 100 90 85 80 70 60 50 40 20 10
GCIM 0.3546 0.4981 0.5724 0.6444 0.7708 0.8666 0.9308 0.9681 0.9954 0.9995
MCS 0.3548 0.4982 0.5725 0.6445 0.7708 0.8667 0.9309 0.9681 0.9954 0.9995
GCIM error 0.0002 0.0001 0.0001 0.0001 0.0000 0.0001 0.0001 0.0000 0.0000 0.0000
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as shown in Table 8. The MCS is used for a benchmark solution
and the results are also summarized in Table 8. We expect based
on the results that the GCIM can give accurate system reliability
estimates for mixed systems at various reliability levels.

4.5 Example 5. A Power Transformer Joint Mixed System
Problem. Power transformers are among the most expensive
elements of high-voltage power systems [26]. The power trans-
former vibration induced by the magnetic field loading will
cause the windings support joint loosening or the fatigue fail-
ures, which will gradually increase the vibration amplitude of
the winding and eventually damage the core [27]. In this case
study the proposed GCIM has been applied for the system reli-
ability analysis of the power transformer winding support joints.
We considered four failure modes, which are the fatigue failures
at the four winding support joints. A power transformer simula-
tion model was built using the finite element analysis tool ANSYS

10 (see Fig. 12). Figure 13 shows the details of the winding bolt
joint, which assembles the windings of the power transformer
with the bottom fixture. The transformer is fixed at the bottom
and the vibration load is applied to the magnetic core with the
frequency of 120 Hz. This case study employed ten random vari-
ables, as listed in Table 9, which include the geometric toleran-
ces and material properties.

This winding support system with the four joints was treated as
a 3-out-of-4 system as shown in Fig. 14, which means that the sys-
tem becomes safe only if at least three out of the four support
joints survive. The CI-matrix for this case study was
evaluated using the MCS (with 1000 samples), as shown in
Fig. 15. Figure 16 shows the system reliability block diagram and
Table 10 displays the SS-matrix for this transformer joint system.

The mutually exclusive path sets can be determined using the
BBD (see Fig. 17) as

Path set ¼ E1E2E3; �E1E2E3E4; E1
�E2E3E4; E1E2

�E3E4f g

These path sets are mutually exclusive with the series system
structure, as discussed in Sec. 3.3. As shown in Table 11, the

Fig. 12 A power transformer finite element model (without
covering wall)

Table 9 Random property of input variables for the power transformer example

Random variable Physical meaning Mean Standard deviation Distribution type

X1 Wall thickness 3 0.06 Normal
X2 Angular width of support joints 15 0.3 Normal
X3 Height of support joints 6 0.12 Normal
X4 Young’s modulus of support joint 2� 1012 4� 1010 Normal
X5 Young’s modulus of loosening joints 2� 1010 4� 108 Normal
X6 Young’s modulus of winding 1.28� 1012 3� 1010 Normal
X7 Poisson ratio of joints 0.27 0.0054 Normal
X8 Poisson ratio of winding 0.34 0.0068 Normal
X9 Density of joints 7.85 0.157 Normal
X10 Density of windings 8.96 0.179 Normal

Fig. 14 3-out-of-4 system with support joints

Fig. 13 Winding support bolt joint: (a) side view, (b) bottom
view

Fig. 15 CI-matrix for the power transformer example
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reliabilities for these mutually exclusive path sets can be obtained
and the system reliability for this transformer joint system can be
estimated using Eq. (17). Based on the results, the GCIM is
expected to accurately assess system reliabilities of large-scale
engineered systems. This case study demonstrates the feasibility
and capability of the GCIM for system reliability analysis with
any system structure.

5 Conclusion

This paper presents the Generalized Complementary Intersection
Method (GCIM) for system reliability analysis. The GCIM general-
izes the original CIM so that it can be used for system reliability
analysis regardless of system structures (series, parallel, and mixed
system). This generalization leverages two ideas: (i) transforming a
parallel system to the equivalent series system using De Morgan’s
law to derive a closed-form system reliability formula; (ii) defining
a new System Structure matrix (SS-matrix) and employing the Bi-
nary Decision Diagram (BDD) technique to develop a unified sys-
tem reliability analysis framework for mixed systems. This unified
framework automatically decomposes a mixed system (represented
by a system block diagram) into multiple disjoint series systems
(not independent but mutually exclusive), which allows one to
apply the original CIM to these series systems and obtain a unique
estimate of system reliability, and that is precisely the main contri-
bution of our paper, brought by way of a BDD-based algorithm for
computing mutually exclusive path sets. Indeed, the basic idea
behind this generalization is to add another computational layer in
the original CIM structure and to reformulate the problem in a way
that allows for the use of the original CIM. Such a reformulation is
an extension of our original work, with the advantage that it greatly
expands the application domain and achieves a unique solution of
system reliability regardless of system structures (series, parallel,
and mixed systems). The five case studies (with one for series sys-
tem, one for parallel system, and three for mixed system) were used
to demonstrate that the proposed GCIM can assess system reliabil-
ity accurately regardless of the system structures. It was compared
with the first- and second-order bound methods and the MCS in the
first two case studies (series and parallel systems) and, subse-
quently, the MCS only in the last three case studies (mixed sys-
tems). As observed through the case studies, the GCIM offers the
generic system reliability analysis framework and thus shows a
great potential to enhance our capability and understanding of sys-
tem reliability analysis.
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Nomenclature
Ei ¼ safe event (or first-order complementary intersection

event) of ith system component
Eij ¼ complementary intersection event for ith and jth system

components
EiEj ¼ joint event of ith and jth system components

Pf ¼ probability of failure
U ¼ standard Gaussian cumulative distribution function

P(Ei) ¼ probability of event Ei

fx(x) ¼ probability density function
pfs ¼ probability of system failure
Gi ¼ function of the ith constraint
b ¼ reliability index

Fig. 16 System reliability block diagram for the power trans-
former example

Fig. 17 BDD diagram for the power transformer example

Table 10 System Structure matrix for the power transformer
case study

Component No. 1 1 1 2 2 2 3 3 3 4 4

Starting node 1 1 1 1 2 3 4 5 6 7 8
End node 2 3 4 5 6 7 8 9 10 10 10

Table 11 Results of GCIM for power transformer case study comparing with MCS (10,000 samples)

Analysis method

Reliability of path set (series system)

System reliabilityE1E2E3
�E1E2E3E4 E1

�E2E3E4 E1E2
�E3E4

GCIM 0.761 0.000 0.000 0.002 0.763
MCS 0.7611 0.0018 0.0000 0.0000 0.7629
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Appendix A

Appendix A provides a brief overview of the BDD technique,
including the fundamentals and implementation details.

A.1 Fundamentals of BDD. A BDD was first introduced by
Lee [22], and further studied by Akers [23] and Randal [28], who
contributed to make this technique widely known. More recently,
it has been widely used to solve a fault tree model for reliability
analysis [29–32]. The Binary Decision Diagram (BDD) is a
directed acyclic graph which consists of logic paths starting from
a root vertex and terminating at a state 1 vertex (system success)
or a state 0 vertex (system failure). Derived based on Shannon
decomposition [33], the BDD encodes the success and failure log-
ics of a system by decomposing it into a number of mutually
exclusive path and cut sets.

In Figs. 1 and 2, an example system block diagram represented
by a system structure matrix (SS-matrix) is converted to a BDD
which encodes the reliability logic of this system. As can be seen,
the BDD is basically a special rooted tree, composed of two types
of vertices: (i) a terminal vertex has an attribute value 0 or 1 corre-
sponding to the final state of the system; and (ii) a nonterminal
vertex has an attribute corresponding to a component safety event

in the system block diagram. Each path is traced along the left
child branch (component fails) marked by a dashed line and right
child branch (component succeeds) marked by a solid line. The
ordering of all vertices in an ordered BDD ensures that different
variables appear in the same order on all paths from the root ver-
tex. In Fig. 1, the ordering of vertices reads E1<E2<E3<E4. It
is important to note that the ordering scheme can significantly
affect the number of nodes in the BDD. Thus, it is of great impor-
tance to select an ordering scheme that minimizes the size of the
BDD and hence the number of resultant path sets, particularly for
large complex systems.

In general, the correspondence between a Boolean function
f(E1,…, Em) representing system success and failure logics and its
BDD can be defined in a recursive way as follows: (1) for terminal
vertex, f takes constants 0 (system failure) and 1 (system success),
respectively; (2) for nonterminal vertex Ei, f takes an if-then-else
(ite) format based on Shannon decomposition, expressed as

f ¼ ite Ei; fi;0; fi;1

� �
¼ �Eifi;0 þ Eifi;1 (A1)

where the Boolean functions fi,0 and fi,1 are represented by the left
and right child branches of Ei, respectively, and take the following
forms:

Fig. 18 Pseudocode for constructing BDD and computing mutually exclusive
path set
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fi;0 � f E1;…;Ei ¼ 0;…;Emð Þ
fi;1 � f E1;…;Ei ¼ 1;…;Emð Þ (A2)

Here, we can clearly observe two disjointed branches, which is
one of the key features of a BDD.

A.2 Constructing BDD and Computing Mutually Exclu-
sive Path Set from SS-Matrix. A path set, or a combination of
component safety or failure events resulting in system success,
corresponds to a BDD path that terminates at a state 1 terminal
vertex. For example, the path marked with a dotted line ellipse in
Fig. 2 corresponds to a path set E1E2. Following another BDD
path terminating at a state 1 terminal vertex gives another path set
E1E2E3E4. Since the BDD encodes the logic function of the sys-
tem success in a disjoint form, the path sets obtained from the
BDD are mutually exclusively. A widely used algorithm for con-
structing a BDD and deriving minimal cut sets from the BDD was
developed by Rauzy [29]. In this study, we have developed an
algorithm for building a BDD and computing minimum path sets
from a SS-matrix. The algorithm starts from the decomposition of
root vertex and evolves throughout all vertexes until the terminal
vertex. The pseudocode for the developed algorithm is shown in
Fig. 18.

A.3 BBD and Mutually Exclusive Path Set Example Using
the Pseudocode. The following example uses the system shown
in Fig. 2 to demonstrate the developed algorithm for constructing

the BDD and computing the mutually exclusive path set. Follow-
ing the algorithm, the mutually exclusive path set for this example
can be obtained with two disjoint paths, as the detailed process
shown in Fig. 19. The probability of occurrence of the system suc-
cess event, or system reliability RS, can be computed as the sum
of the probabilities of these mutually exclusive path sets,
expressed as

Rs ¼ P Path1 þ Path2ð Þ ¼ P Path1ð Þ þ P Path2ð Þ
¼ P E1E2ð Þ þ P E1

�E2E3E4ð Þ (A3)
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