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A probabilistic detectability-based
sensor network design method for
system health monitoring and
prognostics

Pingfeng Wang1, Byeng D Youn2, Chao Hu3, Jong Moon Ha2

and Byungchul Jeon2

Abstract
Significant technological advances in sensing promote the use of large sensor networks to monitor engineered systems,
identify damages, and quantify damage levels. Prognostics and health management technique has been developed and
applied for a variety of safety-critical engineered systems, given the critical needs of system health state awareness. The
prognostics and health management performance highly relies on real-time sensory signals that convey system health–
relevant information. Designing an optimal sensor network with high detectability of system health state is thus of great
importance to the prognostics and health management performance. This article proposes a generic sensor network
design framework using a detectability measure while accounting for uncertainties in material properties and geometric
tolerances. Our contributions in this article are threefold: (1) the definition of a detectability measure to quantify the
diagnostic/prognostic performance of a given sensor network, (2) the development of detectability analysis based on
physics-based simulation and health state classification, and (3) the formulation of a generic sensor network design opti-
mization problem as a mixed integer nonlinear programming. We employ the genetic algorithms to solve the sensor net-
work design optimization problem. The merit of the proposed methodology is demonstrated with a power transformer
system, which suffers from core and winding joint loosening due to consistent vibration.

Keywords
structural health monitoring, optimization, embedded intelligence

Introduction

Significant technological advances in sensing and com-
munication promote the use of large sensor networks
(SNs) to monitor engineered systems, identify damages,
and quantify damage levels. Prognostics and health
management (PHM) techniques take full advantage of
these advances and strive to enhance the safety and
prolong the service lives of engineered systems through
the means of in situ data acquisition, data feature
extraction, and health diagnostics/prognostics to
appropriately assess their health conditions and predict
remaining useful lives (RULs). Through years of
research efforts, PHM systems based on different types
of sensors such as fiber optics, piezoelectric elements,
and microelectromechanical system (MEMS) sensors
have been developed for a wide variety of potential
applications ranging from the civil, mechanical, and
aerospace industries to automotive industry (Giurgiutiu
et al., 2011; Li et al., 2004; Liu et al., 2012; Lonkar and

Chang, 2013; Qiu et al., 2011). Despite the worldwide
attention and significant advances in maturing the tech-
nologies for practical implementation, four primary
challenges still remain in PHM: (1) sensing technologies
to enhance sensitivity, repeatability, robustness, and
reduce power consumptions of sensors; (2) communica-
tion techniques that allow connecting sensors with
wired or wireless technology; (3) damage feature extrac-
tion research that focuses on the selection of damage
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features that are usually tied to methods for sensor sig-
nal processing; and (4) damage pattern recognition and
prognosis methods that enable recognizing the damage
state of the engineered system and the severity of this
damage (Chang and Markmiller, 2006). Although the
literature in the structural health monitoring has
employed different methods such as damage probabil-
ity density plots (Flynn et al., 2011; Zhao et al., 2007)
to quantify the structural damages based on particular
sensor outputs, it is clear that successful accomplish-
ment of a system health diagnostics/prognostics mis-
sion relies extremely on an effectively designed SNs, as
stated in the first challenge. Thus, one of the most
important tasks in PHM system is the development of a
generic SN design framework that takes into consider-
ation different system failure mechanisms, sensor char-
acteristics, as well as a variety of uncertainties involved.

Most of the research activities for SN design in the
past decade targeted on maximizing the coverage and
minimizing the power consumption of SNs (Buczak
et al., 2001; Chakrabarty et al., 2002) for various appli-
cations that require the data acquisition. Research on
the optimal sensor allocation has been driven by the
need of optimizing large SNs for efficient monitoring
activities. Several methods have been developed to
enhance the detection efficiency and minimize the
uncertainty in decision-making based on data acquired
from the SNs. In the work by Field and Grigoriu
(2006), the optimum SN identified by the number of
sensors, location, and the range of sensors is deter-
mined based on methods from decision theory to
enhance the tracking and identification of vehicles for
the purpose of surveillance, in which the uncertainties
related to the assumptions made regarding traffic com-
position and possible vehicle trajectories are considered
for the SN design. Guratzsch and Mahadevan (2006)
also defined the optimum SN for system health moni-
toring under uncertainties as the sensor placement opti-
mization (SPO) problem that can maximize the
probability of damage detection, where uncertainties
related to structure simulation using finite element
(FE) models and other are modeled as Gaussian ran-
dom field variables. Furthermore, Li et al. (2006) intro-
duced the concept of the modal participation factor
from structural dynamics as an extension of the mode
shape summation plot to obtain a vector of sensor pla-
cement indices based on the weighted components of
the mode shape matrix corresponding to the sensor
positions. However, the presented work is based on the
widely used norm-based sensor placement method
where uncertainty nature of structures has not been
explored. Ntotsios et al. (2006) presented an approach
to address the stochastic nature of the sensor measure-
ments by introducing the information entropy to mea-
sure the performance of a sensor configuration and
employing asymptotic estimates to justify the selection
of optimal sensor configurations based on nominal

structural modes so that the time history details of
measurement data could be ignored. Azarbayejani et
al. (2008) employed an artificial neural network
approach to identify the optimum sensor placement for
a bridge case study. The sensor allocation problem is
handled within the context of uncertainty and informa-
tion entropy. A Bayesian method is used to quantify
damage in the structure based on the change in modal
information and the information entropy is then used
to compute a scalar measure of uncertainty in the struc-
tural damage features. A heuristic sequential sensor
placement algorithm is then used to predict the optimal
sensor configuration. Flynn and Todd (2010) also
employed a Bayesian method for optimal sensor place-
ment with active sensing using guided ultrasonic waves,
in which a global optimality criterion is derived so that
the optimal configuration problem can be established as
an optimization problem to minimize the expected total
presence of either type I or type II error during the
damage detection process. Works by Ntotsios et al.
(2006), Udwadia (1994), and Heredia-Zavoni and
Esteva (1998) showed the importance of addressing the
issue of uncertainty in handling the optimal sensor con-
figuration. Other researchers (Kirkegaard and Brincker,
1994; Papadimitriou et al., 2000) also reported the use
of the information entropy and information functions
such as the Fisher information to formulate the objec-
tive function for optimal sensor allocations. The afore-
mentioned approaches showed the significance of
considering uncertainties introduced by sensor units,
engineered systems, as well as the operation conditions
in the SN design problem and presented unique meth-
ods to deal with uncertainties in the damage detection.
However, most of these methods were developed for the
problem of distributing a finite set of sensors to detect a
specific type of system damage, and their applications
are tied to and largely restricted by the type of failure
mechanisms under consideration.

Given the significance of an SN for the PHM and
years of research efforts, the design of SNs nonetheless
becomes tied to the system damage feature of choice,
and the development of a generic design methodology
is still a hurdle to overcome. Thus, this article presents
a probabilistic framework for the SN design optimiza-
tion for system health monitoring and prognostics, in
which several technical contributions have been made.
First, detectability is defined as a unified quantitative
measure of SN performance in a probabilistic form.
This detectability measure is unique in that it indicates
the SN performance on accurate detection of system
health states while considering uncertainty in manufac-
turing and operation processes; second, a detectability
analysis method is developed based on the computer
simulation and health state classification. Third, the SN
design optimization is formulated as a mixed integer
nonlinear programming (MINLP) problem based on
the defined detectability measure, and the genetic
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algorithms (GAs) are used as an optimizer in this study.
The developed SN design methodology will be demon-
strated with a power transformer case study. The rest
of this article is organized in the following way. Section
‘‘Detectability-based SN design framework’’ will pres-
ent the proposed SN design optimization framework,
while section ‘‘SN design against power transformer
mechanical joint failure’’ will present the results of the
power transformer case study. The conclusion of the
work will be given in section ‘‘Conclusion.’’

Detectability-based SN design framework

This section presents the detectability-based SN design
framework for system health monitoring and prognos-
tics. The first subsection defines a detectability measure
in a probabilistic manner that indicates the diagnostic/
prognostic performance of a given SN while accounting
for uncertainty in manufacturing and operation pro-
cesses. Subsequently, the detectability analysis and its
procedure will be presented. Finally, the detectability-
based SN design optimization framework is discussed.

Detectability measure of an SN

Due to uncertainty in manufacturing and system opera-
tion processes, the physical behaviors (e.g. vibrational
responses) of an engineered system that can be captured
by SNs are heavily random. Thus, the SN performance
on accurate detection of system health states must be
defined in a probabilistic manner. In the proposed SN
design framework, a set of health states must be first
classified based on historical failure data and/or expert
knowledge, for example, a rolling bearing’s health state
can be defined as normal, nick, scratches, more nicks,
and failure (Zhang et al., 2005). The correct detection
rate of each health state will then be defined as one of
the SN performance measures for the purpose of health
diagnostics and prognostics. This correct detection rate
can be formulated as a conditional probability that an
SN can detect the same health state as that at which the
system is operated. On the contrary, the incorrect detec-
tion rate can be formulated as a conditional probability
that an SN provides incorrect health state information.
These correct and incorrect detection rates can consti-
tute the probability-of-detection (PoD) matrix for a
given SN design, from which the SN detectability can
be derived.

PoD matrix. A general form of the PoD matrix for a
given SN with a number of health states (i.e. HSi,
i = 1, 2, ., NHS) is shown in Table 1, where one ele-
ment Pij is defined as the conditional probability that
the system is detected to be operated at HSj by the SN
given that the system is operated at HSi. Clearly, Pij

represents the probabilistic relationship between the
true system health state and the health state detected
by the SNs. Mathematically, it is expressed as

Pij =Pr(Detected asHSjjSystembeing atHSi) ð1Þ

By the definition, the ith diagonal term in the PoD
matrix represents a conditional probability of correct
detection for the ith health state.

Detectability measure. Based on the PoD matrix, the
detectability of the ith system health state HSi is
defined as

Di =Pii =Pr(Detected asHSijSystem is atHSi) ð2Þ

The above definition provides a probabilistic measure
for the diagnostic/prognostic performance of an SN
while considering uncertainty in manufacturing and
system operation processes. The diagonal terms in the
PoD matrix, which represent the probabilities of cor-
rect detection for predefined health states, will deter-
mine the overall SN detection performance. With the
predefined detectability requirements, these diagonal
terms in the PoD matrix will then constitute NHS num-
ber detectability constraints in the SN design process.
Since these detectability constraints involve the compu-
tation of multiple conditional probabilities, an efficient
and accurate methodology for detectability analysis
must be developed.

Detectability analysis

This section presents a detectability analysis method
based on computer simulation and system health state
classification. Sensory signals indicate different system
health states (e.g. healthy or failure) through the differ-
ences of system physical responses captured by an SN.
Thus, a valid simulation model that can precisely pre-
dict the overall trend of the physical responses of the
system is required for detectability analysis.
Verification and validation (V&V) is a primary means
of assessing the accuracy of simulation models and is
of great importance for SN design based on computer
simulation (Guratzsch and Mahadevan, 2006).
Thorough discussion of V&V is beyond the scope of
this study, and more information can be found from
Youn et al. (2011), ASME (2006), Oberkampf et al.
(2004), and Babuska and Oden (2004). In this study,
we assume that all numerical models used in this article
are valid and can provide accurate simulation results
compared with actual systems. In the rest of this sub-
section, a mathematical example will be used first to
derive valuable information of detectability evaluation,
and the detectability analysis method will then be
presented.

Wang et al. 3
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A mathematical example. Suppose that only one sensor
will be used for damage detection. It is assumed that
the sensor output from a system with the healthy condi-
tion (Health State 1, HS1) follows a normal distribution
as N (0, 0.52). The sensor output from the system with a
minor damage (Health State 2, HS2) can be character-
ized as N (1, 0.82), whereas the sensor output from the
system with a major damage follows a normal distribu-
tion as N (5, 12). In what follows, we will find out the
detectability values for all three defined health states
based on the available information.

To calculate the detectability value for each health
state, it is necessary to classify any given set of testing
sensory data into one of the three health states. This
can be accomplished simply by defining a normalized
distance, the z-score for this example, between the test-
ing data and the sensor output distribution for each
health state. The normalized distance measures the diver-
gence of the testing data from the sensor output distribu-
tion of each health state, and consequently, the testing
data should be classified into the health state which has
the smallest normalized distance. For any two health
states, there could exist one neutral point that leads to
an equal normalized distance to two neighboring health
states. In this example, the neutral point X1–2 between
two health states, HS1 andHS2, can be calculated as

X1�2 � 0

0:5
=

1� X1�2

0:8
ð3Þ

which provides X1–2 = 0.3846. Similarly, the neutral
point X2–3 between HS2 and HS3 can be calculated as

X2�3 � 1

0:8
=

5� X2�3

1
ð4Þ

which provides X2–3 = 2.7778. Figure 1 shows the sen-
sor output distributions for three health states and the
neural points that separate these health states.

Based on the detectability definition in equation (1)
and the neutral points calculated in equations (3) and
(4), the detectability values for this mathematical exam-
ple can be evaluated as

D1 =P11 = Pr (Detected asHS1jSystem is atHS1)

= Pr X �X1�2jX;N (0, 0:52)
� �

= 0:7791

ð5Þ

D2 =P22 = Pr (Detected asHS2jSystem is atHS2)

= Pr X1�2�X �X2�3jX;N (1, 0:82)
� �

= 0:7660

ð6Þ

D3 =P33 = Pr (Detected asHS3jSystem is atHS3)

= Pr X � X2�3jX;N (5, 12)
� �

=0:9869

ð7Þ

From the analytical evaluation of the detectability in
the mathematical example above, it is clear that classifi-
cation of the health states and statistical distributions
of sensor outputs are crucial for the SN detectability
analysis. However, in most engineering applications, an
SN is composed of multiple sensors and required to
deal with much more than three different health states.
Consequently, the analytical analysis of SN detectabil-
ity through the calculation of neutral points between
health states becomes practically impossible. Besides,
the statistical distributions of sensors’ outputs for all
different health states as assumed in the mathematical
example are usually not available. Instead, a finite set
of sensory data will be used as training data set to char-
acterize the uncertainties of sensor output for each sys-
tem health state. Thus, more sophisticated health state
classification tools (Sohn et al., 2003) such as linear dis-
criminant analysis (Mosavi et al., 2012), support vector

Table 1. Probability of detection (PoD) matrix.

Probability Detected health state

1 2 . NHS

True health state 1 P11 P12 . P1NHS

2 P21 P22 . P2NHS

. . . . .
NHS PNHS1 PNHS2 . PNHSNHS

PoD: probability of detection.

Figure 1. Sensor outputs and neutral points between health
states.
HS: health state.
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machine (Kim et al., 2013), and Mahalanobis distance
(MD) (Nguyen et al., 2014; Niu et al., 2011), which
should be able to classify any given set of multi-
dimensional testing data into one of multiple different
health states based on a finite set of training data, are
needed for the SN detectability analysis. In this study,
the MD classifier that can be effectively used for this
classification purpose is employed.

MD classifier for HS classification. The MD provides a
powerful method of measuring how similar one set of
testing data is with another predefined set of training
data and can be very useful for identifying which prede-
fined health state is the most similar one to the system
health state represented by the testing data. For the
purpose of health state classification, the MD classifier
quantitatively measures the similarity between a given
testing sensory data set and the training data set for the
ith system health state through the MD, expressed as

MDi =(X �Mi)
T S
�1
(X �Mi) ð8Þ

where X is the given testing sensory data set to be classi-
fied,Mi is the vector of mean values of the training data
set for the health state HSi, and

P
is the covariance

matrix of the training data set for HSi. The testing sen-
sory data set will be classified by the classifier into a
predefined system health state that gives the smallest
MD value, or in other words the highest similarity. The
following mathematical example demonstrates the sys-
tem health state classification using the MD classifier.
The s value used in this mathematical example is 0.5.

In this example, two sensors are used and three sys-
tem health states including one healthy state, HS1, and

two faulty states, HS2 and HS3, are predefined. There
are 10 sets of sensory data for each health state as the
training data sets (i.e. n = 10), as shown in Table 2. To
demonstrate the MD classifier for health state classifi-
cation, five sets of testing data, as shown in the first two
columns of Table 3, need to be classified into one of the
three predefined health states. Using the MD classifier,
the MD values for each testing data set can be calcu-
lated with the training data sets shown in Table 2 using
equation (8). The MD values together with the classi-
fied system health state for each sensory data set are
also shown in Table 3.

Based on the above procedure, the PoD matrix as
defined in Table 1 can be evaluated. Suppose that there
are totally Ti sets of testing data from the health state
HSi, and within which Tij sets are classified into the
health state HSj by the MD classifier, where i, j = 1, 2,
., NHS, the element Pij in the PoD matrix can be
approximately calculated based on the definition as

Tij =
70 3 2

5 70 0

32 0 43

0
@

1
A ð9Þ

Pij’
Tij

Ti

ð10Þ

Pij =
0:93 0:04 0:03

0:07 0:93 0

0:43 0 0:57

0
@

1
A ð11Þ

Since any set of testing data from the health state
HSi will definitely be classified into one of the prede-
fined NHS health states, the following equation regard-
ing Pij can be obtained

XNHS

j= 1

Pij = 1 ð12Þ

XNHS

j= 1

Pij = 0:93+ 0:04+ 0:03= 1 ð13Þ

The above equation (12) suggests that the summation
of each row in the PoD matrix will always equal to 0.

Table 2. Training data sets for three health states.

HS Sensor 1 Sensor 2

HS1 s*rand (1, n) 2 1.4 s*rand (1, n)
HS2 s*rand (1, n) 2 3 s*rand (1, n) + 0.7
HS3 s*rand (1, n) s*rand (1, n) 2 0.5

MD: Mahalanobis distance; HS: health state.

Table 3. System health state classification using MD classifier.

Sensory data MD Classified state

S1 S2 HS1 HS2 HS3

21.66 0.13 0.39 10.44 15.76 HS1

22.26 0.89 5.72 2.53 33.60 HS2

20.96 0.95 4.25 19.88 8.90 HS1

22.48 20.31 6.27 6.08 34.94 HS1

0.09 21.64 18.75 77.73 9.34 HS3

MD: Mahalanobis distance; HS: health state.
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Similarly, the detectability, diagonal terms in the PoD
matrix, for the health state HSi can be obtained as

Di =Pii’
Tii

Ti

ð14Þ

Di =( 0:93 0:93 0:57 ) ð15Þ

Procedure of detectability analysis. The overall procedure
of the detectability analysis is summarized in Table 4.
As mentioned in the preceding discussion, the defini-
tion of the system health states enables the performance
evaluation of a candidate SN and should be treated as
a crucial step for the SN design. Through defining mul-
tiple system health states, SNs can be designed to tackle
multiple failure mechanisms and modes for engineered
systems. After defining the health states, collecting
training and testing data sets for all health states is the
next step, which can be accomplished through valid
computer simulation models, such as finite element
analysis (FEA) or structural dynamic analysis. The size
of the training and testing data sets will determine the
accuracy of the detectability evaluation using the pro-
posed MD classifier. With the training and testing data
sets available, the detectability for each predefined
health state for a given SN design can be evaluated in
the same way as we did in the previous example.

SN design optimization

Appropriate selection of sensing devices, such as fiber
optic sensors, piezoelectric sensors, MEMS sensors,
accelerometers, or acoustic sensors, is determined by
the sensor’s specifications, such as full-scale dynamic
range, sensitivity, noise floor, and analog-to-digital con-
verter resolution. Thus, the design variables involved in
the proposed SN design framework are the decision
variables for the selection of sensing devices, numbers
of selected sensing devices, their locations, and the
parameters for controlling the sensing process, such as
sampling frequency, sampling period, and power con-
figuration. The design constraints are detectability
requirements considering uncertainty presented in man-
ufacturing and system operation processes. With all

factors considered above, the SN design optimization
problem can be formulated as

Minimize C(XT,XN)

subject to Di(XT,XN,XLoc,Xs) � Dt
i

(i= 1, 2, . . . ,NHS)

ð16Þ

where C is the cost involved and it is calculated as the
product of the number of sensors and the sum of sensor
material and installation costs, XT is a vector of the
binary decision variables for the selection of the types
of sensing devices, XN is a vector consisting of numbers
of each selected type of sensing devices, XLoc is a three-
dimensional (3D) vector of the location of each sensing
device, and Xs is a vector of sensing control parameters;
NHS is the total number of predefined health states for
the engineered system. Di is the detectability of the SN
for the ith predefined health state, which is a function
of the design variables XT, XN, XLoc, and Xs, whereas
Dt

i is the target SN detectability for the ith predefined
health state. It is noted that the formulation of the SN
design optimization problem bears a resemblance to
that of the reliability-based design optimization prob-
lem (Youn et al., 2006; Youn and Xi, 2008) with the
exception that the former uses the detectability as the
constraint and the latter uses the reliability as the
constraint.

The SN design optimization problem in equation
(16) contains discrete decision variables for the selec-
tion of sensing devices, integer variables for the number
of selected sensing devices, as well as continuous vari-
ables for the sensor locations. Thus, it is formulated as
an MINLP problem (Adjiman et al., 2000), and heuris-
tic algorithms such as GAs can be used as the optimizer
for the optimization purpose. In this study, the GA is
employed for the example problem that will be detailed
in the subsequent section. More alternative algorithms
for solving the MINLP problem can be found in
Adjiman et al. (2000) and Wei and Realff (2004).

Figure 2 shows the flowchart of the SN design opti-
mization process. As shown in this figure, the process
starts from an initial SN design and goes into the design
optimization subroutine (the right-hand side gray box),
which will carry out the SN cost analysis, call the

Table 4. Procedure for detectability analysis.

Step 1 Definition of health states—to define the system health states based on experts’ knowledge or historical data
Step 2 Sensory data acquisition—to collect training and testing data sets for each predefined system health state for a

given SN design
Step 3 Extract a subset of training and testing data, for a given SN design, from the data sets collected in Step 2, in which

only the data from sensors in the given SN design will be remained
Step 4 Health classification—to perform classification using the MD classifier defined by equation (8) for the extracted

subset of the training and testing data
Step 5 Detectability calculation—to calculate the detectability measure for all health states using equation (14)

SN: sensor network; MD: Mahalanobis distance.
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performance analysis subroutine (the left-hand side
gray box) to evaluate the performance of the SN at the
current design, and execute the optimizer to generate
the new SN design if the optimality condition is not
met. In the performance analysis subroutine, the detect-
ability analysis as discussed in the previous section will
be carried out. Before solving the optimization prob-
lem, valid system simulation models have to be built,
and computer simulations have to be accomplished so
that the training and testing data sets for each prede-
fined health state are available.

SN design against power transformer
mechanical joint failure

Power transformers are among the most expensive ele-
ments of high-voltage power systems. Health monitor-
ing of power transformers enables the transition from
traditional schedule-based maintenance to condition-
based maintenance, resulting in significant reductions
in operation and maintenance costs (Leibfried, 1998).
Due to the difficulties of direct measurement inside the
transformer, the data that are most often used for both
diagnosis and prognosis of the transformers are
obtained through indirect measurements (Rivera et al.,
2000). For example, temperature measurements were
first accomplished at accessible points, and modeling
the gradient information can then be used to induce the
temperature peaks in some areas; electric parameters
and analysis of moisture content of the cooling oil are
often performed for the diagnosis and condition-based
maintenance of transformers, with frequency response
analysis of electric characteristics being common (Allan
et al., 1992); the vibrations of the magnetic core and
the windings could characterize transitory overloads
and permanent failures before any irreparable damage
occurs. This case study aims at designing an optimum

SN on the front wall surface of a power transformer.
The measurements of the transformer vibration
responses induced by the magnetic field loading enable
the detection of mechanical failures of winding support
joints inside the transformer.

Description of the case study

In this study, the winding support joint loosening is
considered as the failure mode, the detection of which
will be realized by collecting the vibration signal,
induced by the magnetic field loading with a fixed fre-
quency on the power transformer core, using the opti-
mally designed SN at the external surface of the
transformer. The FE model of a power transformer
was created in ANSYS 10 as shown in Figure 3, where
one exterior wall is concealed to make the interior
structure visible. Figure 4 shows 12 simplified winding
support joints with 4 for each winding. The transfor-
mer is fixed at the bottom surface, and a vibration load
with the frequency of 120 Hz is applied to the transfor-
mer core. The joint loosening was realized by reducing
the stiffness of the joint itself. Different combinations
of the loosening joints will be treated as different health

Ini�al Design

Probabilis�c 
Performance Analysis

Op�mizer

Structure Simulation
Optimum ?

New SN 
Designs

Op�mum 
SN Design

Performance Analysis

Data Feature 
Extrac�on/Selec�on

State Classifica�on

Detectability
Analysis

Cost Analysis

Design Opt.

Simulated 
Sensory 
Signals

Computer Simula�on

Figure 2. Flowchart of detectability-based SN design for
system health monitoring and prognostics.
SN: sensor network.

Figure 3. A power transformer FE model (without the
covering wall).
FE: finite element.

Figure 4. Winding support joints and their numberings.
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states of the power transformer which will be detailed
in the next subsection.

The uncertainties in this case study are modeled as
random parameters with corresponding statistical dis-
tributions listed in Table 5, which includes the material
properties, such as Young’s modulus, densities, and
Poisson’s ratios, for support joints and windings, as
well other parts in the power transformer system.
Besides, the geometry parameters are also considered
as random variables. In this study, the random vari-
ables are considered to be normally distributed. It is
worth noting that the material properties and geo-
metric tolerances could be distributed in different ways
other than just normal. However, it is expected that the
effect of the non-normally distributed random variables
on the SN design result could be minimal. For prob-
abilistic design with uncertainties involving different
types of distributions, the readers are directed to Youn
et al. (2003), Wang and Wang (2013), and Youn and
Wang (2007). These uncertainties will be propagated
into the structural vibration responses and will be
accounted for when designing an optimum SN.

Health states and simulations

For the purpose of demonstrating the proposed SN
design methodology, nine representative health states
(see Table 6) were selected from all possible combina-
tions of 12 winding support joint failures. Among these
nine selected health states, HS1 denotes the healthy
condition without any loosening joint, whereas HS2–
HS9 are health states with either one or two loosening
joints. According to the statistical properties of random
parameters in Table 5, 200 sets of random samples were
generated and the simulations for each of nine health
states were carried out. For example, for the simulation

of HS1, a power transformer model with no loosing
joints was simulated 200 times based on the generated
random samples, while a power transformer model
with joint 1 loosening (a much lower Young’s modulus,
X5, is assigned to joint 1) was simulated 200 times for
HS2. The vibration amplitudes for all the FE nodes on
the outer wall surfaces were saved as the simulation
results for each health state. Among the 200 simulated
data sets for each health state, 100 sets were used as the
training data set and the others were used as the testing
data set that was used to evaluate the SN detectability.
The stress contour of the healthy state power transfor-
mer at the nominal values of the random parameters
from the structural simulation is shown in Figure 5,
whereas the vibration response of the covering wall is
shown in Figure 6. The vibration amplitude of each
node on the surface of the covering wall was used as
the simulated output of one sensor (accelerometer).

As mentioned in the previous section, this case study
problem is formulated as designing the SN on the sur-
face of the covering wall of the power transformer to
minimize the cost of the SN while satisfying the detect-
ability constraints for each health state, that is, the
detectability should be greater than a target detectabil-
ity of 0.95. The design variables in this case study
include the following: (1) the total number of acceler-
ometers, (2) the locations of the accelerometers, and (3)
the sensing orientation (X or Z) of each accelerometer.

Results and discussion

Following the flowchart shown in Figure 2 and the
detectability analysis procedure listed in Table 4, the
SN design problem in this case study was solved using
the GA. Figure 7 shows the detectability for each of
nine health states at the optimum SN design while

Table 5. Random property of the power transformer.

Random variable Physical meaning Randomness (cm, g, degree)

X1 Wall thickness N (3, 0.062)
X2 Angular width of support joints N (15, 0.32)
X3 Height of support joints N (6, 0.122)
X4 Young’s modulus of support joint N (2e12, 4e102)
X5 Young’s modulus of loosening joints N (2e10, 4e82)
X6 Young’s modulus of winding N (1.28e12, 3e102)
X7 Poisson’s ratio of joints N (0.27, 0.00542)
X8 Poisson’s ratio of winding N (0.34, 0.00682)
X9 Density of joints N (7.85, 0.1572)
X10 Density of windings N (8.96, 0.1792)

Table 6. Definition of system health states.

Health state 1 2 3 4 5 6 7 8 9
Loosening joints – 1 2 3 1, 2 1, 3 1, 5 1, 9 1, 11
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stepwisely increasing the number of the sensors. With
the target detectability being 0.95, we obtained the opti-
mum SN design on the outer wall surface
(140 cm 3 90 cm) with totally nine sensors, as shown
in Table 7 and Figure 8.

The results of this case study suggest that the pro-
posed SN design framework could be used to tackle the
SN design problems for complicated engineering sys-
tems with multiple system health states considering sys-
tem input uncertainties. Several important remarks
regarding the results of the case study are presented as
follows.

Remark 1. In this study, the MD has been used as a
method for the detectability evaluation. It is worth not-
ing that there are different metrics, such as the
Kullback–Leibler divergence (Perez-Cruz, 2008) and
others, that could be used to identify the similarity
between the training data and the testing data. It would
be very interesting to explore different metrics in future
continuous study of this work.

Figure 5. Stress contour of the winding supports for the
healthy state power transformer.

Figure 6. Vibration displacement contour of the covering wall
for the healthy state power transformer.

Figure 7. Minimum detectability at optimum design versus
total number of sensors.
HS: health state.

Table 7. Optimum SN design for power transform case study.

Sensor index Location (cm) Direction

x z

1 256.4 0.0 Z
2 67.2 234.4 X
3 22.6 230.0 Z
4 49.7 234.4 X
5 257.9 30.0 X
6 230.6 15.3 X
7 27.5 30.0 X
8 39.3 35.2 X
9 59.1 0.0 X

SN: sensor network.

Figure 8. Optimal design of the distributed SN for power
transformer case study.
SN: sensor network.

Wang et al. 9

 at Seoul National University on October 13, 2014jim.sagepub.comDownloaded from 

http://jim.sagepub.com/


Remark 2. The GA was implemented for the design opti-
mization and repeatedly executed for 10,000 times.
Although, for most of times, the optimization converged
to the optimal design, the convergence to local minima
was also observed. Improvement of the computational
robustness will help improve the performance of the
proposed SN design methodology. Thus, it would be
interesting to investigate other optimization algorithms
(e.g. the particle swarm optimization (del Valle et al.,
2008)) to make the SN design process more robust.

Remark 3. Due the computational time, only 100 sam-
ples were simulated for each health state, resulting in
two decimal digits of precision in the detectability esti-
mates. In order to obtain results with higher precision,
we need more samples from the computer simulation.

Remark 4. We also note that to make the designed SN
more reliable, we can integrate the redundancy of sen-
sors to the proposed framework simply by treating it as
an additional set of design variables and the SN relia-
bility as an additional constraint.

Remark 5. The proposed approach intends to develop
an SN based on a set of predefined health states, and the
results thus depend on the quality of the information
used to define these health states. In practical applica-
tions, the discrete health states could be defined based on
different failure modes of interest for a target structural
system, whereby the information for the health state defi-
nition could come from risk analysis and/or failure mode
effect analysis (FMEA). Moreover, the information can
be acquired from structural simulation, field history,
and/or expert opinions. In the case when discrete health
states are not available, different levels of severity of
structural damages (such as magnitude of fatigue crack
lengths) could be used as a potential way to transform
the continuous health state to different discrete ones. In
this study, the information used for health state defini-
tion is assumed to be of high quality, although presented
with uncertainties, and future study could be conducted
to explore how the quality of information (such as inclu-
sion of sensing noise or opinion bias between different
experts) might impact the SN design results.

Remark 6. We acknowledge that a valid simulation
model with high predictive capability is essential to
deriving an effective SN design and that an invalid
computer model could possibly lead to a meaningless
design. In this case study, however, we have not pro-
vided an experimental justification of the model valid-
ity since the validation of a simulation is not the focal
point of this study. Indeed, our intent here is to set up
an engineering problem that provides some empirical
evidence as to the merits of our proposed methodology.

As has been discussed, our initial results in this case
study point to the effectiveness of our proposed
approach. We still note that to help circumvent poten-
tial problems associated with the model validity, we
plan on providing comprehensive experimental justifi-
cation of our design as our future study.

Conclusion

This article presented a probabilistic framework for SN
design optimization using a detectability measure while
accounting for uncertainty in manufacturing and sys-
tem operation processes. The proposed work consists
of three major technical contributions. First, we defined
a probabilistic detectability measure to quantify the
performance of a given SN on detecting the system
health states in a statistical manner. Second, based on
the computer simulation and health state classification,
we developed the detectability analysis method, where
the MD classifier was employed for the health state
classification. In case multiple health measures or com-
plicated configuration of the classification boundary
are engaged, a more advanced classification method,
that is, support vector machine, can be possibly used.
Third, we formulated the SN design framework as an
MINLP. The GA was used as the optimizer to solve
the SN design optimization problem. The power trans-
former case study demonstrated that the proposed SN
design framework is feasible to handle multiple system
health states considering input uncertainties involved
such as material properties and geometric tolerances.
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