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Abstract This paper presents an adaptive-sparse polyno-
mial chaos expansion (adaptive-sparse PCE) method for
performing engineering reliability analysis and design. The
proposed method combines three ideas: (i) an adaptive-
sparse scheme to build sparse PCE with the minimum
number of bivariate basis functions, (ii) a new projection
method using dimension reduction techniques to effectively
compute the expansion coefficients of system responses,
and (iii) an integration of copula to handle nonlinear cor-
relation of input random variables. The proposed method
thus has three positive features for reliability analysis and
design: (a) there is no need for response sensitivity analysis,
(b) it is highly efficient and accurate for reliability analysis
and its sensitivity analysis, and (c) it is capable of handling
a nonlinear correlation. In addition to the features, an error
decomposition scheme for the proposed method is presented
to help analyze error sources in probability analysis. Sev-
eral engineering problems are used to demonstrate the three
positive features of the adaptive-sparse PCE method.
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1 Introduction

Reliability analysis is an essential part of engineering prod-
uct and process development. Various methods have been
developed to assess engineering product reliability and pro-
cess quality while taking into account different variability
sources (e.g., material properties, loads, geometric tol-
erances). In order to formulate reliability analysis in a
mathematical framework, random variables are often used
to model variability sources in product and process devel-
opments. Reliability analysis can then be formulated as a
multi-dimensional integration over a safety domain as

R =
∫

�S
f (x)dx (1)

where R denotes the product reliability; f (x) denotes the
joint probability density function (PDF) of the vector of
random variables; x = (x1, x2, ..., xN )T models variabil-
ity sources such as material properties, loads, geometric
tolerances; the safety domain �S is defined by the limit-
state function as �S = {x : g(x) < 0}; g(x) is a product
performance function.

In practice, however, it is extremely difficult to per-
form the multi-dimensional numerical integration when
the number of random variables is relatively large. The
search for efficient computational procedures to estimate
reliability has resulted in a variety of numerical and sim-
ulation methods, such as the first- or second-order reli-
ability method (FORM/SORM) (Hasofer and Lind 1974;
Breitung 1984; Tvedt 1984; Youn and Choi 2004a; Wang
and Grandhi 1996), direct or smart Monte Carlo simulation
(MCS) (Rubinstein 1981; Fu and Moses 1988; Au and Beck
2001), the dimension reduction (DR) method (Rahman
and Xu 2004; Xu and Rahman 2004; Youn et al. 2007a),
and the stochastic spectral method (Ghanem and Spanos
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1991; Paffrath and Wever 2007, Wiener 1938; Xiu and
Karniadakis 2003).

Among the many reliability analysis methods, the first-
or second-order reliability method (FORM or SORM) is
most commonly used. The FORM/SORM uses the first- or
second-order Taylor expansion to approximate a limit-state
function at the most probable failure point (MPP) where the
limit-state function separates failure and safety regions of
a product (or process) response. Some major challenges of
the FORM/SORM are that (i) it is very expensive to build
the probability density function (PDF) of the response and
(ii) the product/process design can also be expensive when
employing a large number of the responses. Direct or smart
MCS provides an alternative means of multi-dimensional
integration (Rubinstein 1981; Fu and Moses 1988; Au and
Beck 2001). Although MCS produces accurate results for
reliability analysis, it demands a prohibitively large num-
ber of simulation runs. Thus, it is often used merely as a
benchmark in reliability analysis.

Recently, the dimension reduction (DR) method
(Rahman and Xu 2004; Xu and Rahman 2004) has been
proposed and has been shown to be a sensitivity-free
method for reliability analysis. This method uses an addi-
tive decomposition of a response that simplifies a single
multi-dimensional integration to multiple one-dimensional
integrations by the univariate DR (UDR) method (Rahman
and Xu 2004) or to multiple one- and two-dimensional
integrations by the bivariate DR (BDR) method (Xu and
Rahman 2004). Recently, the eigenvector dimension reduc-
tion (EDR) method (Youn et al. 2007a) has improved the
numerical efficiency and stability of the UDR method with
the ideas of eigenvector samples and stepwise moving least
squares method with no extra expense. Results of the DR-
family methods are given in the form of statistical moments.
To further predict the reliability or PDF of the response,
PDF-generation techniques must be involved, which could
slightly increase numerical error in reliability prediction.

The stochastic spectral method (Ghanem and Spanos
1991) is an emerging technique for reliability analysis of
complex engineering problems. This method uses a num-
ber of response samples and generates a stochastic response
surface approximation with multi-dimensional polynomials
over a sample space of random variables. Once the explicit
response surface is constructed, MCS is often used for reli-
ability analysis due to its convenience. The most popular
stochastic spectral method is the polynomial chaos expan-
sion (PCE) method. The original Hermite polynomial chaos
basis was proposed by Wiener (1938) for modeling stochas-
tic responses with Gaussian input random variables. Xiu and
Karniadakis (2003) extended the method under the Askey
polynomial scheme to non-Gaussian random variables (e.g.,
gamma, uniform, and beta), referred to as the generalized

PCE. The wavelet basis (Le Maitre et al. 2004) and multi-
element generalized PCE (Wan and Karniadakis 2006) were
developed to further extend the generalized PCE to use the
polynomial basis functions that are not globally smooth. For
the estimation of small failure probability, shifted and win-
dowed Hermite polynomial chaos were proposed to enhance
the accuracy of a response surface in the failure region
(Paffrath and Wever 2007). In recent papers (Sudret and
Der Kiureghian 2002; Choi et al. 2004a, b; Blatman and
Sudret 2008), researchers have applied this method to var-
ious engineering reliability problems. Although the PCE
method is considered to be accurate, the primary draw-
back of the PCE method is the curse of dimensionality,
which substantially increases the computational cost as the
number of random variables increases. To alleviate the dif-
ficulty, many adaptive algorithms were recently developed.
The authors in Wan and Karniadakis (2005) proposed an
adaptive multi-element generalized PCE, where an error
indicator based on the decay rate of local variance was used
for an h-adaptive refinement. Its collocation-based coun-
terpart, the multi-element probabilistic collocation method,
used the tensor product or sparse grid collocation (Smolyak
1963) in each random element (Foo et al. 2008). A more
recent version of the multi-element probabilistic collocation
method incorporates the ANOVA (Analysis-of-Variance)
decomposition to truncate the PCE at a certain dimension in
order to further enhance the computational efficiency (Foo
and Karniadakis 2010). In addition to the multi-element
PCE, a sparse polynomial chaos approximation was intro-
duced as an alternative to tensor product polynomial bases
(Todor and Schwab 2007) and a sparse stochastic colloca-
tion method based on this sparse basis was recently devel-
oped in Bieri and Schwab (2009). Although these adaptive
algorithms alleviate the curse of dimensionality to some
degree, more efforts are still needed to fully resolve this
difficulty. As demonstrated by Lee and Chen (2007), the
implementation of the PCE method becomes inconvenient
in engineering design practice since the PCE order cannot
be predetermined for black-box-type problems.

This paper thus presents an adaptive-sparse polynomial
chaos expansion (adaptive-sparse PCE) method for reliabil-
ity analysis and design of complex engineering systems. To
overcome the curse of dimensionality of the PCE method,
this research first proposes an adaptive-sparse expansion
scheme. This scheme automatically detects the most sig-
nificant bivariate terms and adaptively builds the sparse
PCE with the minimum number of bivariate basis functions.
Moreover, the adaptive-sparse scheme offers the additional
capability of automatically adjusting the PCE order to opti-
mize the accuracy of the stochastic response surface. To
make the proposed method computationally tractable for
engineering design, the projection technique used in the
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EDR method is employed to effectively compute the expan-
sion coefficients. Moreover, a copula theory is successfully
integrated to the proposed adaptive-sparse PCE method,
which enables the designer to handle nonlinear correlation
of input random variables.

Section 2 of this paper reviews the generalized PCE
method for the effective functional representation of
stochastic variability. Section 3 presents the adaptive-
sparse PCE method and introduces the error decomposition
scheme. The proposed ideas are demonstrated using several
case studies in Section 4. Section 5 concludes this paper.

2 Review of polynomial chaos expansion
(PCE) method

In the following sections, we will model the N -dimensional
real random variables x = (x1, x2, ..., xN )T in a complete
probability space (�, A, �), where � is a sample space,
A is a σ-algebra on �, and � is a probability measure
function �: A → [0, 1]. Then the probability density func-
tion (PDF) of the random variable xi defines a probability
mapping fi (xi ): �i → P

+, where the support �i is a one-
dimensional random space of xi . Under the assumption of
independence, the probabilistic characteristics of the ran-
dom variables x can be completely defined by the joint
PDF f (x) = f1(x1) · f2(x2) · · · fN (xN ) with the support
� = �1 ·�2 · · ·�N . Let g(x) denote a smooth, measurable
performance function on (�, A), which can be treated as a
one-to-one mapping between N -dimensional space and one-
dimensional space g: PN → P. In general, the performance
function g(x) cannot be analytically obtained, and the func-
tion evaluation of g for a given input x requires an expensive
computer simulation. Therefore, it is important to employ a
numerical method for reliability analysis that is capable of
producing accurate probabilistic characteristics of g(x) with
an acceptably small number of function evaluations.

Table 1 Type of random inputs and corresponding generalized poly-
nomial chaos basis

Random variable Polynomial chaos Support

Continuous Gaussian Hermite (−inf, +inf)

Gamma Generalized Laguerre [0,+inf)

(Exponential) (Laguerre)

Beta Jacobi [a,b]

Uniform Legendre [a,b]

Discrete Poisson Charlier {0,1,...}

Binomial Krawtchouk {0,1,...,N}

Negative binomial Meixner {0,1,...}

Hypergeometric Hahn {0,1,...,N}

2.1 Generalized PCE method

The original Hermite polynomial chaos, also termed as the
homogeneous chaos, was derived from the original the-
ory of Wiener (1938) for the spectral representation of any
second-order stochastic response in terms of Gaussian ran-
dom variables. To improve the expansion convergence rate,
Xiu and Karniadakis (2003) extended the method, under
the Askey polynomial scheme, to non-Gaussian random
variables (e.g., gamma, uniform, and beta). The types of ran-
dom variables and the corresponding orthogonal polynomial
families are listed in Table 1. In the finite dimensional ran-
dom space �, a second-order stochastic response g can be
expanded in a convergent series of generalized polynomial
chaos basis as

g(x)=c0ψ0 +
∞∑

i1=1

ci1ψ1
(
ζi1(x)

)

+
∞∑

i1=1

i1∑
i2=1

ci1i2ψ2
(
ζi1(x), ζi2(x)

)

+
∞∑

i1=1

i1∑
i2=1

i2∑
i3=1

ci1i2i3ψ3
(
ζi1(x), ζi2(x), ζi3(x)

)+· · ·

(2)

where ψn(ζi1(x), ζi2(x), ..., ζin (x)) denotes the n-dimensional
Askey-chaos of order n in terms of the random variables{
ζi1 , ζi2 , ..., ζin

}
. According to the Cameron-Martin theo-

rem (Cameron and Martin 1947), the polynomial chaos
expansion in (2) converges in the L2 sense.

For the purpose of notational convenience, (2) is often
rewritten as

g(x) =
∞∑

i=0

si�i (ζ(x)), ζ = {ζ1, ζ2, . . .} (3)

where there exists a one-to-one mapping between the poly-
nomial basis functions ψn and �i , and the PCE coefficients
si and ci1,...,ir .

The orthogonality of the Askey-chaos can be expressed
as

E
[
�i� j

] = δi j E
[
�2

i

]
(4)

where δi j is the Kronecker’s delta and E[·] is the expecta-
tion operator. Considering all N -dimensional polynomials
of degree not exceeding p gives the truncated PCE as
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follows (with P denoting the number of unknown PCE
coefficients):

g(x) =
P−1∑
i=0

si�i (ζ ), x = {x1, x2, . . . , xN } ,

ζ = {ζ1, ζ2, . . . ζN } (5)

In the above summation, the number of unknown PCE
coefficients P is

P =
(

N + p
p

)
= (N + p)!

N !p! (6)

2.2 Determination of PCE coefficients

In this study, the reliability analysis for the performance
function g under random inputs x is of our interest. Since
the uncertainty of a stochastic response g can be fully char-
acterized by the PCE coefficients in (3), an efficient and
accurate numerical procedure to compute the coefficients is
essential for reliability analysis.

Based on the orthogonality of the polynomial chaos, the
projection method (Le Maître et al. 2001, 2002) can be used
as a non-intrusive approach to compute the expansion coef-
ficients of a response. Pre-multiplying both sides of (3)
by � j (ζ ) and taking the expectation gives the following
equation

E
[
g(x)� j (ζ )

] = E

[ ∞∑
i=0

si�i (ζ )� j (ζ )

]
(7)

Due to the orthogonality of the polynomial chaos, (7) takes
the form

s j = E
[
g(x)� j (ζ )

]
E
[
�2

j (ζ )
] (8)

In this expression, the denominator can be readily obtained
in an analytical form, while the numerator may require
a multi-dimensional integration. This integration may be
accomplished by the full tensorization of one-dimensional
Gaussian quadrature (Le Maître et al. 2002), the crude MCS
(Field 2002), or the Smolyak sparse grid (Smolyak 1963;
Gerstner and Griebel 1998, 2003; Ma and Zabaras 2009).
The relative merits and disadvantages of these approaches
are discussed below:

Approach 1 The full tensorization of one-dimensional
Gaussian quadrature exhibits fast conver-
gence for smooth integrand. However, the

computational cost grows exponentially with
the dimension N : M = M N

1 , which is known
as the ‘‘curse of dimensionality’’. Here, M
denotes the total number of function evalu-
ations and M1 denotes the number of one-
dimensional quadrature points. To prevent
large integration errors, M1 should be at least
equal to the PCE order p.

Approach 2 The crude MCS is robust and has a conver-
gence rate that is independent of the dimen-
sion N asymptotically (Xiu 2009). However,
the convergence is very slow (as 1/

√
M).

Thus, accurate results require a large num-
ber of function evaluations which may incur
intolerable computational burden, especially
for complex engineered systems that are com-
putationally intensive.

Approach 3 The sparse grid collocation based on the
Smolyak algorithm (Smolyak 1963) offers an
alternative way for the multidimensional inte-
gration (Gerstner and Griebel 1998). Com-
pared with the fully tensorized quadrature, it
also achieves fast convergence for smooth
integrand but with much lower computa-
tional cost. Recently, adaptive algorithms
(Gerstner and Griebel 2003; Ma and Zabaras
2009) have been developed that further
reduce the computational cost. However, the
sparse grid collocation methods still cannot
fully resolve the difficulty induced by the
‘‘curse of dimensionality’’.

3 Adaptive-sparse polynomial chaos expansion
(PCE) method

As an attempt to address the challenges described in
Section 2.2, an adaptive-sparse polynomial chaos expan-
sion is introduced in this section. The proposed method
involves: (i) an adaptive-sparse scheme for the PCE method,
(ii) a decomposition-based projection method for efficiently
computing the expansion coefficients, (iii) an integration
of copula to handle nonlinear correlation of input ran-
dom variables. An error decomposition scheme is provided
as well.

3.1 Adaptive-sparse scheme

The aim of this section is to develop an adaptive-sparse
scheme for obtaining the minimum number of bivariate
terms. Due to the inherent characteristics of orthogonal poly-
nomials, we will use the PCE as the projection basis to make



Adaptive-sparse polynomial chaos expansion for reliability analysis and design of complex engineering systems 423

the adaptive-sparse scheme computationally efficient and
convergent. It is expected that the PCE model resulting from
the adaptive-sparse scheme will achieve an optimal compro-
mise between the UDR and BDR (more accurate than the
UDR and more efficient than the BDR).

This scheme mainly consists of two loops to determine:
(outer loop) the number (q) of the most significant bivari-
ate terms (denoted as a set B), and (inner loop) the optimal
expansion order p. The detailed procedures are listed as
follows:

Initialization

(a) Initialize p = 2, q = 0, B = Ø, and set the conver-
gence criteria ε1 and ε2 for the outer and inner loops,
respectively.

(b) Compute the values of the performance function g(x)
at the univariate sample points: g(μ), g

(
x (ik)

k , μk
)
, for

ik = 1, 2, ..., M1, k = 1, 2, ..., N , where the super-
script ik denotes the corresponding sample point for
xk , M1 the number of univariate sample points in each
dimension, and μk the mean vector of input random
variables excluding xk .

(c) With the function values obtained in step (b), con-
struct a 2nd order PCE by computing the coefficients
of univariate polynomial terms while setting the other
coefficients to zero. The method for computing the
PCE coefficients will be detailed in the subsequent
section.

Outer loop

(d) Compute the values of g(x) at the N (N − 1)/2 bivari-
ate sample points which correspond to N (N − 1)/2
pairs of variables: g

(
xt

k, xt
l , μ

k,l
)
, for k,l = 1, 2, ..., N ,

k < l, where μk,l denotes the mean vector of input
random variables excluding xk and xl . Based on the
function values, compute the error indicators for all
N (N − 1)/2 bivariate terms. Note that, for computing
the error indicators, we do not require all the bivariate
sample points that are used to compute the coefficients
for each bivariate term, but use only one sample point
for each bivariate term. An error indicator for test-
ing the bivariate interaction between kth and lth input
variables [xk , xl ] is defined as

ekl =
∣∣ĝ(u)

(
xt

k, xt
l , μ

k,l
)− g

(
xt

k, xt
l , μ

k,l
)∣∣

max
1≤i j ≤M1,1≤ j≤N

{
g
(

x
(i j )

j , μ j
)}

− min
1≤i j ≤M1,1≤ j≤N

{
g
(

x
(i j )

j , μ j
)} (9)

where ĝ(u)

(
x t

k, x t
l , μ

k,l
)

is the functional approxima-
tion at

(
x t

k, x t
l , μ

κ,l
)

by a response approximation
method using the function values at the univariate sam-
ple points. For the response approximation, we use
the stepwise moving least squares (SMLS) method of
which the details can be found in the author’s previ-
ous work (Youn et al. 2007a). In this study, we apply
x t

k = μk + 3σk and x t
l = μl + 3σl , where μk and μl

denote the means, and σk and σl denote the standard
deviations of xk and xl . The numerator in (9) can be
treated as the absolute univariate approximation error
induced by the bivariate interaction, while the denomi-
nator can be treated as a normalization factor. Since the
error indicator provides the relative ranking of bivari-
ate interactions rather than the absolute estimates, it
may not be necessary to employ multiple test sample
points for each bivariate term. A larger error indicator
implies a stronger interaction between a given pair of
variables. The pairs of variables with stronger interac-
tion are given a higher priority in the algorithm since
the inclusion of the pairs is likely to reduce a numerical
error more significantly in probability analysis.

(e) Add the bivariate term
[
xq+1

k , xq+1
l

]
with the (q +1)th

largest error indicator to the bivariate set: B = B ∪{[
xq+1

k , xq+1
l

]}
and increase the number of bivariate

terms: q = q + 1. Compute the function values of
g(x) at the bivariate sample points corresponding to
the bivariate term

[
xq+1

k , xq+1
l

]
.

(f) With the function values obtained in step (e), compute
the coefficients of bivariate polynomial terms in the
constructed PCE model. The method for computing
the PCE coefficients will be detailed in the subsequent
section.

Inner Loop

(g.1) If q = 1, we intend to determine the optimum
PCE order through a convergence analysis. For this
purpose, we need an error estimate to assess the
performance of the constructed pth order PCE (or
stochastic response surface) ĝp. We prefer an effi-
cient error estimate of which the evaluation only
requires the already obtained response values at the
sample points x(i), for 1 ≤ i ≤ M , where M is the
total number of sample points. In this study, we use
the coefficient of determination R2, which can be
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defined based on the residual sum of squares eRSS

and total sum of squares eT SS as

R2(ĝp
) = 1 − eRSS

(
ĝp
)

eT SS
(10)

where

eRSS
(
ĝp
) = 1

M

M∑
i=1

(
g
(
x(i))− ĝp

(
x(i)))2 (11)

and

eT SS = 1

M

M∑
i=1

(
g
(
x(i))− ḡ

)2; ḡ = 1

M

M∑
i=1

g
(
x(i))

(12)

We note that the cross-validation based errors
(Kohavi 1995), which have been widely used in the
machine learning technique to evaluate the model
performance, can also be used as error estimates and
deserve future studies.

(g.2) Increase the PCE order: p = p + 1.
(g.3) Repeat the steps (g.1) and (g.2) until R2 converges

to within a relative tolerance of ε2.

Postprocessor

(h) Compute the reliability value based on the constructed
PCE model. The numerical method for estimating the
reliability will be detailed in the subsequent section.

(i) Repeat the steps from (e) to (h) until the value of
reliability converges to within a relative tolerance
of ε1.

The completion of the adaptive-sparse algorithm entails
the optimal determination of the set B of bivariate terms and
the PCE order p. The resultant PCE model should guarantee
the most accurate and cost-effective fit among all bivariate
PCE models.

3.2 Decomposition-based projection method

This section presents a decomposition-based projection
method for efficiently computing the expansion coefficients
of an optimum set of uni- and bivariate polynomial terms.
The proposed method attempts to further reduce the compu-
tational cost of the projection method.

3.2.1 Uni- and bivariate dimension reduction

Let μi = denote the mean vector of input random variables
excluding xi , and let μi1,i2 denote the mean vector of input
random variables excluding xi1 and xi2 . Depending on the
levels of the decomposition, the uni- and bivariate decom-
posed responses (Xu and Rahman 2004) can be expressed
as, respectively,

g1(x) =
N∑

i=1

g
(
xi , μ

i )− (N − 1)g(μ) (13)

and

g2(x) =
∑

1≤i1<i2≤N

g
(
xi1 , xi2, μ

i1,i2
)

− (N − 2)

N∑
i=1

g
(
xi , μ

i )

+ (N − 1)(N − 2)

2
g(μ) (14)

It is important to note that the univariate decomposed
response g1 in (13) contains the univariate terms g(xi , μ

i )

of any order in the Taylor series expansion and, simi-
larly, the bivariate decomposed response g2 in (14) has all
bivariate terms in the Taylor series expansion. Thus, the
approximations in (13) and (14) should not be viewed as
first- or second-order Taylor series expansion nor do they
represent a limited degree of nonlinearity in g(x). In fact, the
residual error of a univariate approximation to a multidimen-
sional integration of a system response over a symmetric
domain contains only even-order terms of dimensions two
and higher since the integrations of odd-order terms become
zeros for a symmetric integration domain. This residual
error was reported to be far less than that of a second-order
Taylor expansion method for probability analysis (Rahman
and Xu 2004).

3.2.2 Formulation of decomposition-based
projection method

To compute the coefficient of any nth-order univariate poly-
nomial term Ψn(ζ k(x),..., ζ k(x)) in (2), which corresponds
to a univariate polynomial term � j (ζ k) in (3), the proposed
decomposition-based projection method uses the univariate
decomposed response in (13) (Xu and Rahman 2004). The
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expansion coefficients can be obtained by projecting the
univariate terms onto g(x) as

sk
j = E

[
g(x)� j (ζk)

]
E
[
�2

j (ζk)
]

∼=

N∑
i=1

E
[
g
(
xi , μ

i
)
� j (ζk)

]− (N − 1) g(μ)E
[
� j (ζk)

]

E
[
�2

j (ζk)
]

= E
[
g
(
xk, μ

k
)
� j (ζk)

]
E
[
�2

j (ζk)
] (15)

Similarly, the coefficient of any nth-order bivariate
polynomial term n(ζk(x), ..., ζl(x)) in (2), which corre-
sponds to a bivariate polynomial term � j (ζ k , ζ l) in (3),
can be computed using the decomposition-based projection
method. This method makes use of the bivariate decom-
posed response in (14) (Xu and Rahman 2004). The expan-
sion coefficients can be obtained by projecting the bivariate
terms onto g(x) as

sk,l
j = E

[
g(x)� j (ζk, ζl)

]
E
[
�2

j (ζk, ζl)
]

∼=

⎧⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎩

∑
1≤i1<i2≤N

E
[
g
(
xi1 , xi2 , μ

i1,i2
)
� j (ζk, ζl)

]

− (N − 2)

N∑
i=1

E
[
gi
(
xi , μ

i )� j (ζk, ζl)
]

+ (N − 1) (N − 2)

2
E
[
g(μ)� j (ζk, ζl)

]

⎫⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎭

E
[
�2

j (ζk, ζl)
]

= E
[
g
(
xk, xl , μ

k,l
)
� j (ζk, ζl)

]
E
[
�2

j (ζk, ζl)
] (16)

It is noted that (15) and (16) requires only one- and
two-dimensional integrations and are computationally more
efficient than performing the N -dimensional integration in
(8). Thus, the computational cost in calculating the coeff-
icient of any uni- or bivariate polynomial term is substan-
tially reduced by using the decomposition-based projection
method. Similarly, the decomposition-based projection can
be extended to compute the coefficients of tri- and higher-
variate polynomial terms. However, the coefficient of any
tri- or higher-variate polynomial term is treated as zero
in this study. This is because of the following two facts:
(i) for most engineering problems, considering the interac-
tion between two variables (i.e., the bivariate interaction)
is sufficient to yield very accurate statistical results (Xu
and Rahman 2004), and (ii) the calculations of tri- and

higher-variate polynomial coefficients require a substan-
tially larger amount of computational effort, which may
make the method computationally intolerable.

3.2.3 Numerical procedure of decomposition-based
projection method

The numerical integration is required to evaluate the one-
and two-dimensional integrations in (15) and (16). The most
straightforward and efficient way is to directly use the Gaus-
sian quadrature, where Gauss-Hermite, Gauss-Legendre,
and Gauss-Jacobi quadrature rules determine the integration
points and associated weights for a random variable follow-
ing Gaussian, Uniform, and Beta distributions, respectively.
However, a low-order Gaussian quadrature rule often leads
to large errors in computing the coefficients of high-order
PCE terms. To enhance the stability and accuracy of the
Gaussian quadrature, we first use the stepwise moving least
squares (SMLS) method (Youn et al. 2007a; Youn and Choi
2004b) to construct uni- and bivariate response approxima-
tions with the response values evaluated at the predefined
samples points, and then carry out the Gaussian quadrature
integrations with a large number of integration points (or a
high-order quadrature rule) from the approximate responses.
Note that the uni- and bivariate sample points used to con-
struct the response approximations should not be confused
with the integration points in the Gaussian quadrature. Thus,
even if the PCE order p is increased, the numbers of
uni- and bivariate sample points may not necessarily be
increased as long as the response approximations by the
SMLS are sufficiently accurate. More detailed information
regarding the SMLS and Gaussian quadrature for integra-
tions can be found in the author’s previous work (Youn et al.
2007a).

3.3 Copula for nonlinear correlation modeling

In many structural reliability analysis and design problems,
it is highly probable that the input random variables such
as material properties and fatigue properties are correlated
(Noh et al. 2008). In this case, the reliability analysis and
design require a joint CDF for the exact transformation of
the correlated random variables into uncorrelated standard
normal random variables. However, it requires an infinite
amount of data to acquire the true joint CDF. In contrast,
a copula only requires marginal CDFs and a dependence
structure to formulate an approximate joint CDF. Thus,
the selection of dependence structure and formulation of
the joint CDF can be done with a limited amount of data
(Noh et al. 2008).
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3.3.1 Introduction of copula

In statistics, a copula is defined by Roser (1999) as ‘‘a
function that joins or couples multivariate joint distribution
functions to their one-dimensional marginal distribution
functions’’, or ‘‘multivariate distribution functions whose
one-dimensional margins are uniform on the interval [0,1]’’.

Let F be an N -dimensional cumulative distribution func-
tion (CDF) with continuous marginal CDFs F1, F2, ..., FN .
Then according to Sklar’s theorem, there exists a unique
N -copula C such that

F(x1, x2, ..., xN ) = C(F1(x1), F2(x2), ..., FN (xN )) (17)

It then becomes clear that a copula formulates a joint
CDF with the support of separate marginal CDFs and a
dependence structure. The copula is capable of construct-
ing the joint CDF in real applications with different types of
marginal CDFs or dependence structures. Various general
types of dependence structures can be represented, cor-
responding to various copula families, such as Gaussian,
Clayton, Frank, and Gumbel. Let ui = Fi (xi ), i = 1, 2,...,
N , a N -dimensional Archimedean copula is defined as

C(u1, u2, · · · , uN |α) = −1
α

(
N∑

i=1

α(ui )

)
(18)

where α denotes a generator function with a correlation
parameter α and satisfies the following conditions:

α(1) = 0; lim
u→0

α(u) = ∞;
d

du
α(u) < 0; d2

du2
α(u) > 0 (19)

Let α(u) = uα − 1 and N = 2, then we formulate a
bivariate Clayton copula as

C(u1, u2|α) = (
u−α

1 + u−α
2 − 1

)−1/α
(20)

More detailed information on copula families can be found
in Roser (1999) and Noh et al. (2008).

3.3.2 Rosenblatt transformation

The Rosenblatt transformation has been used extensively for
mapping the correlated random variables onto the indepen-
dent standard normal variables (Rosenblatt 1952). The suc-
cessive conditioning procedures for a vector of correlated
random variables are defined as

z1 = ϕ−1 [F1(x1)]

z2 = ϕ−1 [F2(x2|x1)]

...

zN = ϕ−1 [FN (xN |x1, x2, · · · , xN−1)
]

(21)

where z1, z2, ..., zN denote the independent standard ran-
dom variables after the transformation, φ−1(·) denotes the
inverse CDF of a standard normal variable, Fi (xi |x1, x2, ...,

xi−1) denotes the CDF of xi conditioned on X1 = x1,
X2 = x2, ..., Xi−1 = xi−1, and can be expressed as

Fi (xi |x1, x2, · · · , xi−1) =
∫ xi
−∞ fi (x1, x2, · · · , xi−1, τ )dτ

fi−1(x1, x2, · · · , xi−1)

(22)

where fi (x1, x2, ..., xi ) denotes the marginal joint PDF of
x1, x2, ..., xi .

To use the Rosenblatt transformation for the purpose
of reliability analysis and design, the joint CDF of input
random variables should be available. However, it is very
difficult to obtain the joint CDF in real applications. In
contrast, a copula can easily formulate an approximate
joint CDF based on separate marginal CDFs and correla-
tion parameters, which can be practically obtained from
limited experimental data (Noh et al. 2008). The Rosenblatt
transformation for a bivariate copula is given as

z1 = ϕ−1[u1] = ϕ−1[F1(x1)
]

z2 = ϕ−1[C(u2|u1)
] = ϕ−1[C(F2(x2)|F1(x1)

)]
(23)

where

C(u2|u1) = P(U2 ≤ u2|U1 = u1)

= lim
�u1→0

C(u1 + �u1, u2) − C(u1, u2)

�u1

= ∂C(u1, u2)

∂u1
(24)

After the Rosenblatt transformation, the independent stan-
dard random variables are used as the Gaussian input
variables for the generalized PCE with Hermite polyno-
mial basis. A vehicle side-crash example in Section 5 will
illustrate the feasibility of the proposed method.

3.4 Reliability and sensitivity analysis

3.4.1 Reliability analysis

Once the uni- and bivariate PCE coefficients are calcu-
lated, an approximate function of the original implicit
performance function g is obtained as

ĝ(x) = g(μ) +
N∑

k=1

∑
j

sk
j � j (ζk(x))

+
N∑

k,l=1;k<l

∑
j

sk,l
j � j (ζk(x), ζl(x)) (25)
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The above expression can be viewed as an explicit mapping
ĝ: PN → P, which approximates the exact implicit mapping
g: PN → P. Thus, any probabilistic characteristics of g(x),
including statistical moments, reliability, and PDF, can be
easily estimated by performing MCS. For example, any r th
moment can be calculated as

mr ∼=
∫

ĝr (x) f (x)dx

= E
(
ĝr (x)

) = lim
ns→∞

1

ns

ns∑
k=1

ĝr (x(k)
)

(26)

where mr is the r th moment of the performance function g;
f (x) is the joint PDF; x(k) is the kth realization of x; and
ns is the sampling size. It is noted that, although MCS is
used to compute the moments due to its convenience, it is
not required since moments of a PCE can be analytically
obtained. Low-order moments (e.g., mean and variance)
have simple analytical forms while high-order moments, for
which orthogonality cannot be fully exploited, possess com-
plicated forms. For reliability calculation, let us define an
approximate safe domain for the performance function g as

�̂S = {
x : ĝ(x) < 0

}
(27)

Therefore, the reliability R can also be estimated by
performing MCS as

R ∼=
∫

I
�̂S (x) f (x)dx

= E
(
I
�̂S (x)

) = lim
ns→∞

1

ns

ns∑
k=1

I
�̂S

(
x(k)

)
(28)

where I [·] is an indicator function of safe or fail state
such that

I
�̂S

(
x(k)

) =
{

1, x(k) ∈ �̂S

0, x (k) ∈ �\�̂S
(29)

It should be noted that the MCS performed here is
inexpensive because it employs the explicit representation
function in (25).

3.4.2 Probabilistic sensitivity analysis

In reliability-based design optimization (RBDO), probabilis-
tic sensitivity analysis is required to identify the effect of
the change in the parameters of random variables upon the
change in reliability or moments. Since MCS is used for
evaluating the statistical properties (e.g., r th moment, relia-
bility) of a response in the adaptive-sparse PCE method, this

study computes the probabilistic sensitivity of the response
with respect to a random variable using a finite differ-
ence method (FDM). The FDM uses the original and per-
turbed values of moments or reliabilities to computes their
sensitivities.

The sensitivity of any r th moment and reliability with
respect to the j th element θ j (e.g., μ, or σ, etc.) in a vector
of deterministic distribution parameters θ is computed using
(30) and (31), respectively.

∂mr (θ)

∂θ j

∼= mr (θ j + �θ j ) − mr (θ j )

�θ j
(30)

∂ R(θ)

∂θ j

∼= R(θ j + �θ j ) − R(θ j )

�θ j
(31)

where mr (θ) is the r th moment of the constraint G (or
the cost function C); �θ j is the perturbed value of θ j . A
perturbation size of 0.1% is employed in this study. It is
noted that, for computing a perturbed moment or reliability,
an extra MCS based on the approximate response model
in (25) is used without extra computational cost. For the
extra MCS, the random number seeds for the original MCS
should be reused to reduce numerical noise and obtain a sta-
ble sensitivity estimate. As an alternative to the FDM, the
score function can also be used to compute the probabilistic
sensitivities (Rahman 2009) and we observed similar perfor-
mance. An accuracy study will be conducted in Section 5 to
demonstrate the effectiveness of the proposed method for
probabilistic sensitivity analysis.

3.5 Computational procedure

The overall computation procedure is shown in Fig. 1. If
nonlinear correlation exists between the random inputs x,
the copula is employed to model the joint PDF f (x) and
the Rosenblatt transformation to transform x to indepen-
dent standard normal variables z. The computations of PCE
coefficients sk

j in (15) require the response values (i.e., val-
ues of the performance function) at the univariate sample
points: g(μ), g

(
x (ik )

k , μk
)
, for ik = 1, 2, ..., M1, where

the superscript ik denotes the corresponding sample point
for xk and M1 the number of univariate sample points in
each dimension. The computations of PCE coefficients sk,l

j
in (16) require the response values at the bivariate sample

points: g
(
x

(ik,l )

k , x
(ik,l )

l , μk,l
)
, for ik,l = 1, 2, ..., M2, where

the superscript ik,l denotes the corresponding bivariate sam-
ple points for the bivariate term [xk , xl ], and M2 the number
of bivariate sample points for each bivariate term. Thus,
the total number of function evaluations for the adaptive-
sparse PCE with q bivariate terms is q(M2 − 1) + N (N −
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Fig. 1 Flowchart of the
adaptive-sparse algorithm

Read statistical inputs x with 
specified PDFs f(x)

Select polynomial chaos basis 
for independent variables ζ

Generate sample points 

Request and receive responses 
from simulations or experiments

Compute PCE coefficients

Computer model or 
experiment facility

Gaussian quadrature
with SMLS

Converged?
(adaptive-sparse 

scheme)

No

Evaluate statistical moments, 
reliability and/or PDF

Increase PCE order or
add bivariate term

Yes

Copula & Rosenblatt 
transformation

1)/2+(M1 −1)N +1. Below are several important remarks
regarding the properties of the adaptive-sparse PCE.

Remark 1 The N -variate, pth-order adaptive-sparse PCE is
a finite sum of uni- and bivariate polynomial terms up to the
pth order, with the coefficient of any tri- or higher-variate
polynomial term being zero. Thus, if the tri- and higher-
variate interactions are negligible, the adaptive-sparse PCE
gives an accurate approximation of the function g, with a
lower computational effort than the conventional PCE. Oth-
erwise, numerical error in the adaptive-sparse PCE may be
stacked up due to the tri- and higher-variate interactions.
More detailed error analysis will be given in the subsequent
section.

Remark 2 The uni- and bivaraite dimension reduction meth-
ods have been extensively studied for reliability analysis
and design by previous researchers (Rahman and Xu 2004;
Xu and Rahman 2004; Youn et al. 2007a; Rahman 2006,
2009; Lee et al. 2008). However, no attempt has been
made to optimize the number of the bivariate terms to be
considered for probability analysis. The common approach
either depends on the univariate dimension reduction (UDR)
(Rahman and Xu 2004; Youn et al. 2007a; Lee et al. 2008)
or makes comparison with its bivairate counterpart, bivari-
ate dimension reduction (BDR) (Xu and Rahman 2004;
Rahman 2006, 2009). The method developed here uses
the error indicator in (9) to adaptively add the bivariate
terms to the PCE model until a convergence criterion is
achieved. This adaptive process takes advantage of the
PCE as the projection basis. The inherent characteristics of
orthogonal polynomials make the adaptive process computa-
tionally efficient and convergent. Therefore, we argue that

the adaptive-sparse PCE achieves an optimal compromise
between the UDR and BDR (more accurate than the UDR
and more efficient than the BDR).

Remark 3 In addition to the Rosenblatt transformation,
alternative transformation techniques (Noh et al. 2009),
such as Nataf transformation, are also capable of trans-
forming Gaussian variables with nonlinear correlation to
independent Gaussian variables. In the current study, the
non-Gaussian variables with nonlinear correlation are all
transformed to independent Gaussian variables. However, it
may also be possible to transform the original random vari-
ables to independent non-Gaussian variables (e.g., gamma,
beta) with distribution types supported by the PCE. Thus,
the selections of an appropriate transformation technique
and associated procedure are worthy of future studies.

Remark 4 Through extensive testing with many mathe-
matical and engineering examples, we observed that the
parameter setting ε1 = 0.01 and ε2 = 0.001 achieves a
near-optimum compromise between the accuracy and effi-
ciency. Thus we intended to make this setting as a guideline
for implementing the algorithm in most engineering cases.
More conservative criteria may give higher accuracy but
require more computational effort. Thus, for a specific prob-
lem, the optimum ε1 and ε2 may vary depending on the
requirements on the accuracy and efficiency.

3.6 Error decomposition scheme

The proposed adaptive-sparse PCE method integrates the
adaptive-sparse scheme and the decomposition-based pro-
jection method with the PCE method. It is obvious that
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the approximation and numerical schemes produce associ-
ated errors in the proposed adaptive-sparse PCE method.
This study will therefore analyze the approximation and
numerical errors in the proposed method, which provides
insights into analyzing the accuracy behavior of the pro-
posed method and properly identifying its potential appli-
cations. There are three primary error sources: (i) a PCE
truncation error (εP ), (ii) an error due to a univariate
decomposition (εU ), (iii) an error due to a bivariate decom-
position (εB), and (iv) an aliasing error (εI ) which comes
from the aliasing error in computing the one- and two-
dimensional integrations in (15) and (16) due to the use
of two approximation schemes: the SMLS and Gaussian
quadrature integration. The total error is a mean-squares
error of the N -variate, pth-order adaptive-sparse PCE with
the set B of bivariate terms and can be decomposed as

ε2 =
∫

�

[
g(x) − wp (ζ(x))

]2
f (x)dx

≤
∫

�

[
g − wp

U B

]2
f (x)dx +

∫
�

[
wp

U B − wp
U

]2
f (x)dx

+
∫

�

[
wp

U − wp
I

]2
f (x)dx +

∫
�

[
wp

I − wp]2 f (x)dx

= ε2
P + ε2

B + ε2
U + ε2

I (32)

The detailed derivation of the four error terms in (32) can
be found in the Appendix. A numerical investigation of the
first three error terms is provided in Section 4.1.

4 Case studies

Seven mathematical and engineering examples are given in
this section to demonstrate the effectiveness of the adaptive-
sparse PCE method. The first example is a simple mathemat-
ical function, which was designed to verify the proposed
error decomposition scheme. The subsequent five exam-
ples were used for studying the computational accuracy and
efficiency of the proposed method for uncertainty quantifi-
cation and reliability analysis. For comparison purpose, we
also employ FORM as a classic reliability analysis method,
and the univariate DR (UDR) method (with the Pearson
PDF generation system) as a representative of the recently
developed moment-based reliability methods (Rahman and
Xu 2004; Xu and Rahman 2004; Youn et al. 2007a; Zhao
and Ono 2001; Lee and Kwak 2005). In the last example,
we carried out reliability-based robust design optimization
(RBRDO) for a lower control arm in a high mobility, mul-
tipurpose, wheeled vehicle (HMMWV). This case study
demonstrates the feasibility of the proposed method in
complex product or process design.

4.1 Mathematical example: verification of error
decomposition scheme

Consider a mathematical function,

g(x) =
N=5∑
k=1

(xk − 1)2 −
N=5∑
k=3

xr
k xr

k−1xr
k−2 (33)

where the five random variables are assumed to be statisti-
cally independent and uniformly distributed between 0 and
2. As shown in Section 3.6, the error of the adaptive-sparse
PCE method can be decomposed into four parts: εP is the
truncation error; εU and εB are the errors induced by the
uni- and bivariate decomposed responses in (15) and (16),
respectively; εI is the aliasing error. This study investigated
the first three error terms. Since the trivariate terms may pro-
duce the largest error in the proposed adaptive-sparse PCE
method, this example was thus designed to demonstrate an
error trend while varying the order (r) of the trivariate terms.
We evaluated the exact expansion coefficients using a tensor
product Gauss-Legendre quadrature technique (Le Maître
et al. 2002). For comparison purposes, a relative L2 error
norm is defined as Han and Kamber (2000)

η2 =
∫
�

[
g(x) − ĝ(x)

]2
f (x)dx∫

�
g(x)2 f (x)dx

= ε2

μ2
g + σ2

g
(34)

where η2 is the L2 error norm; μg is the mean value of
a response g; and σg is the standard deviation of g. This
relative L2 error norm was used to normalize the three mean-
square error terms

(
ε2

P , ε2
U , and ε2

B

)
in (32). To minimize

the aliasing error, we employed the true response and very
high order Gaussian quadrature to compute the expectations
in (15) and (16). Figure 2 shows the error decomposition
results with the PCE order p = 5. The three error norms

Fig. 2 Error decomposition results with the increase of the order of
trivariate terms
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show wide variations from around 0 to 0.4. This indicates
that the error of the proposed method strongly depends on
the order (r) of the trivariate terms. In cases where r is
relatively small (<1.4), the truncation error η2

P and uni-
variate decomposition error η2

U dominate, while the error
η2

B induced by the bivariate decomposition is negligible
because the tri- and higher-variate interactions affecting the
response g are very weak. As r increases, the truncation
error η2

P becomes no longer dominant, while the error η2
B

increases more rapidly than the others, and finally becomes
the most significant.

4.2 Franke’s bivariate test function: unimodal PDF
with an irregular shape

This example is found in Franke (1979) and is extensively
used for testing a response surface approximation. The
Franke bivariate test function is of the form:

g (x) = 3

4
exp

(
− (9x1 − 2)2

4
− (9x2 − 2)2

4

)

+ 3

4
exp

(
− (9x1 + 1)2

49
− (9x2 + 1)

10

)

+ 1

2
exp

(
− (9x1 − 7)2

4
− (9x2 − 3)2

4

)

− 1

4
exp

(
− (9x1 − 4)2 − (9x2 − 7)2

)
(35)

where the random variables are statistically independent and
normally distributed with the mean μ1 = μ2 = 0.4, each

of which has a 20% coefficient of variation. The response
surface has a bimodal characteristic, as shown in Fig. 3a.
Using the parameter settings M1 = 4 and M2 = 8, the
adaptive-sparse expansion scheme determines the optimal
PCE order (p = 9). Table 2 presents the adaptive-sparse
process of the adaptive-sparse PCE method. Here, a relative
error is defined as the absolute error of the estimated relia-
bility divided by the true reliability from MCS. No adaptive
procedure for selecting the bivariate terms is required since
there is only one bivariate term. The adaptive-sparse PCE
method used only 17 simulations to capture the response
bimodality and high nonlinearity in the PDF. Figure 3b
shows the true PDF by MCS and approximate PDFs by
the adaptive-sparse PCE and UDR. Compared to MCS, the
adaptive-sparse PCE method shows good accuracy and effi-
ciency, while the UDR is not capable of representing the
irregular shape of this PDF. The large error produced by
the UDR is mainly due to the following two reasons: (i)
errors in moment estimations propagate to errors in PDF
construction; and (ii) the first four moments are not suffi-
cient to accurately construct the PDF. To observe the overall
PDF and tail-end prediction for reliability analysis, both
the moments and probabilities are summarized in Table 3.
The limit-state function is defined as (g − c) where a limit-
state value c is set to provide different reliability levels. The
adaptive-sparse PCE method proved to be more accurate
than the other methods for this highly nonlinear problem.
Neither FORM nor SORM could provide accurate reliability
prediction because of the high nonlinearity.

In addition, the adaptive-sparse PCE method is advanta-
geous because it computes probabilistic sensitivity analysis
accurately with no extra cost. Table 3 presents the sensi-
tivities ∂ Ri/∂μ1 and ∂ Ri/∂μ2 for i = 1, 2, 3 by the
adaptive-sparse PCE method and MCS with the finite dif-
ference (FD) method. The result of the proposed method is
in good agreement with that of MCS.

Fig. 3 Response surface (a)
and PDF approximations (b) for
Franke’s function
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Table 2 Adaptive-sparse
process of the adaptive-sparse
PCE for Franke’s function (R1)

PCE order (p) No. of bivariate No. FE R2 Reliability Relative

terms (q) error (%)

Step 1 2 0 9 0.73642 0.9298 3.9463

Step 2 2 1 17 0.71477 0.9154 2.3365

Step 3 3 1 17 0.82359 0.9079 1.4980

Step 4 4 1 17 0.96271 0.9018 0.8161

Step 5 5 1 17 0.96482 0.9022 0.8608

Step 6 6 1 17 0.99266 0.9011 0.7378

Step 7 7 1 17 0.99701 0.9010 0.7267

Step 8 8 1 17 0.99179 0.9012 0.7490

Step 9 9 1 17 0.99094 0.9013 0.7602

4.3 Fortini’s clutch: very low and high reliability levels

This example is the Fortini’s clutch shown in Fig. 4. This
problem has been extensively used in the field of tolerance
design (Creveling 1997; Wu et al. 1998). As shown in Fig. 4,
the overrunning clutch is assembled by inserting a hub and
four rollers into the cage. The contact angle, y, between
the vertical line and the line connecting the centers of two
rollers and the hub, is expressed in terms of the independent
component variables, x1, x2, x3, and x4 as follows:

y(x) = arccos

(
x1 + 0.5(x2 + x3)

x4 − 0.5(x2 + x3)

)
(36)

The statistical information of the random variables is sum-
marized in Table 4. The limit-state function was defined as
(y −c) where c specifies a limit-state value. In the adaptive-
sparse PCE method, the numbers of univariate and bivariate

sample points are selected as follows: M1 = 2 and M2 = 8.
For a faster convergence, Jacobi and Hermite polynomial
bases were used for x1 and x4, respectively. The error indi-
cators are computed using (9) as follows: e12 = 0.0127,
e13 = 0.0127, e14 = 0.1183, e23 = 0.0186, e24 = 0.0157,
e34 = 0.0157. Using this information, Table 5 shows the
results of the proposed method along the adaptive-sparse
procedure where c = 5◦. The adaptive-sparse scheme was
converged with p = 4 and q = 3. Figure 5 illustrates
the PDF evolution along the adaptive-sparse scheme. The
PDF approximation was evidently improved from Step 1
to Step 4 by including the most significant bivariate term
[x1, x4] into the PCE model. On the other hand, only small
improvement was observed in the rest of the steps with
the inclusion of the less significant bivariate terms, such
as [x2, x3] and [x2, x4]. Table 6 summarizes the probability
analysis results of the adaptive-sparse PCE with comparison
with MCS, the 4th order PCE with full tensorized Gaussian

Table 3 Probability analysis
results for Franke’s function

aMCS with finite difference
(FD)

Adaptive-sparse MCS 4N + 1 UDR FORM SORM

PCE (p = 9)

Mean 0.5604 0.5637 0.5615 − −
Std. dev. 0.1737 0.1649 0.1619 − −
Skewness 0.8400 0.7701 0.1488 − −
Kurtosis 3.4826 3.3404 2.6452 − −
R1 0.9012 0.8945 0.9221 0.8598 0.8717

∂R1/∂μ1 1.5475 1.5825a − − −
∂R1/∂μ2 1.5125 1.5475 − − −
R2 0.8041 0.8027 0.7961 0.7576 0.7723

∂R2/∂μ1 2.3925 2.3650 − − −
∂R2/∂μ2 2.3550 2.3475 − − −
R3 0.6484 0.6570 0.5992 0.6101 0.6214

∂R3/∂μ1 3.1950 3.1387 − − −
∂R3/∂μ2 3.4575 3.2150 − − −
No. FE 17 1,000,000 9 21/15/9 25/19/13
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quadrature (M1 = 5), UDR, and FORM. Both the adaptive-
sparse PCE and 4th order PCE produced more accurate
results than the UDR and FORM at various reliability lev-
els, including very low reliabilities (i.e., around 10−3) and
very high reliabilities (i.e., around 1 − 10−3). Compared to
the PCE, the adaptive-sparse PCE shows better performance
with comparable accuracy and higher efficiency. The higher
efficiency can be attributed to the use of the adaptive-sparse
scheme to smartly select significant bivariate terms and
the decomposition-based projection scheme to efficiently
compute the PCE coefficients.

4.4 Burst margin of rotating disk: very low failure
probability

Consider an annular disk of inner radius Ri , and outer radius
Ro, as shown in Fig. 6. The disk rotates about its center
at a constant angular velocity w. Three material parame-
ters are the density δ, ultimate tensile strength Su , and
material utilization factor αu . This example has been con-
sidered by Penmetsa and Grandhi (2003). The burst margin

Table 4 Input random variables for the Fortini’s clutch example

Component Distri. type Mean Std. dev. Parameters for

(mm) (mm) non-normal

distributions

x1 Beta 55.29 0.0793 α1 = β1 = 5.0a

x2 Normal 22.86 0.0043 −
x3 Normal 22.86 0.0043 −
x4 Rayleigh 101.60 0.0793 σ4 = 0.1211b

a55.0269 ≤ x1 ≤ 55.5531; Jacobi polynomials
bx4 ≥ 55.5531; transformation to standard normal distribution

is defined as the margin of safety before an overstress con-
dition occurs because the stress on the part is too large for
the material to withstand. The failure is defined when the
burst margin Mb falls below the threshold value Mc =
0.37437. Thus, the performance function can be defined as
follows:

g(αu, Su, w, δ, Ro, Ri ) = Mc − Mb

= 0.37473 −
[

3(385.82)(Ro − Ri )αu Su

δ
[
ω 2π

60

]2 (
R3

o − R3
i

)
]1/2

(37)

Statistical information of the random variables is listed in
Table 7. In the adaptive-sparse PCE method, M1 = 4,
M2 = 8, and ε1 = ε2 = 0.01. Using these parameter set-
tings, the adaptive-sparse expansion scheme was converged
with p = 4 and q = 9, as shown in Table 8. The con-
vergence of the relative error of the failure probability is
plotted in Fig. 7, which clearly shows the overall decreas-
ing trend of the relative error with respect to q . The nine
bivariate terms considered are listed as follows: [x1, x4],
[x1, x3], [x2, x3], [x1, x5], [x2, x5], [x2, x4], [x2, x6], [x3,
x5], and [x1, x6], where x1, x2, x3, x4, x5 and x6 denote
αu , Su , w, δ, Ro and Ri , respectively. To investigate how a
choice of the convergence parameters ε1 and ε2 affects the
accuracy and efficiency of the adaptive-sparse PCE method,
we conducted a parametric study with a three-level facto-
rial design. In this study, each parameter was set at three
levels-low (0.001), medium (0.010) and high (0.100), result-
ing in nine different parameter settings. The PCE orders,
numbers of bivariate terms, reliability estimates and rela-
tive errors under these nine parameter settings are presented
in Table 9, where L, M and H denote the low, medium and
high levels, respectively. Three important remarks can be
derived from the results. First of all, it is observed that the
convergence parameter ε1 of the outer loop in the adaptive-
sparse scheme always has a significant effect on both the
efficiency and accuracy, regardless of the levels of the con-
vergence parameter ε2 of the inner loop. More conservative
criteria or smaller ε1 values are likely to give higher accu-
racy but require more computational effort. It indicates that
the optimum ε1 may vary depending on the requirements on
accuracy and efficiency. Secondly, the convergence param-
eter ε2 of the inner loop does not significantly affect the
accuracy. This observation is due to the fact that a very low
order p = 3 is sufficient to accurately model the uncertainty
in the performance function in this example. Indeed, an
increase of the PCE order does not incur the improvement
of accuracy as shown in Table 9. However, this observa-
tion cannot be generalized to other cases where a very high
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Table 5 Adaptive-sparse
process of the adaptive-sparse
PCE for the Fortini’s clutch
example

PCE order No. of bivariate No. FE R2 Reliability Relative error

(p) terms (q) (%)

Step 1 2 0 9 0.85268 0.000522 57.4919

Step 2 2 1 22 0.85863 0.001270 3.4202

Step 3 3 1 22 0.86631 0.001322 7.6547

Step 4 4 1 22 0.86687 0.001411 14.9023

Step 5 4 2 29 0.89659 0.001379 12.2964

Step 6 4 3 36 0.85649 0.001371 11.6450

Fig. 5 Evolution of PDF for the Fortini’s clutch example

Table 6 Probability analysis
results for the Fortini’s clutch
example

a100 function evaluations for
Pr(y < 5◦), 25 for Pr(y < 6◦),
10 for Pr(y < 7◦), 15 for Pr(y <

8◦), 25 for Pr(y < 9◦)

Adaptive-sparse MCS PCE (p = 4, 4N + 1 UDR FORM

PCE (p = 4) Gauss quad)

Mean (rad) 0.1219 0.1219 0.1219 0.1219 −
Std. dev. (rad) 0.0118 0.0117 0.0117 0.0116 −
Skewness −0.0514 −0.0511 −0.0563 0.0952 −
Kurtosis 2.8819 2.8805 2.8834 2.8775 −
Pr(y < 5◦) 0.001371 0.001228 0.001221 0.000486 0.002375

Pr(y < 6◦) 0.074769 0.073825 0.073761 0.066697 0.087707

Pr(y < 7◦) 0.503272 0.502903 0.503167 0.514469 0.520360

Pr(y < 8◦) 0.935685 0.936671 0.936288 0.933024 0.934922

Pr(y < 9◦) 0.999238 0.999233 0.999236 0.998696 0.999112

Pr(5◦ < y < 9◦) 0.997867 0.998005 0.998015 0.998210 0.996737

No. FE 36 1,000,000 625 17 (100/25/10/15/25)a
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Fig. 6 Rotating annular disk
subject to angular velocity

w

PCE order and thus a very small ε2 are required. Thirdly,
we observe a negligible effect of interaction between the
parameters ε1 and ε2 on the accuracy in reliability anal-
ysis. This observation can be attributed to the negligible
effect of the parameter ε2 on the accuracy as mentioned
in the second remark. However, for engineering problems
demanding a relatively high PCE order, we may observe
a strong interaction effect between the two parameters ε1

and ε2 due to possible cancellation of errors produced by
improper settings of these parameters. Table 10 summarizes
the probability analysis results using the adaptive-sparse
PCE, UDR, BDR (with the SMLS for response approxi-
mations and M1 = 4, M2 = 8), FORM and direct MCS.
Regarding the failure probability estimation, the proposed
adaptive-sparse PCE and BDR produced the most accurate
solutions. The UDR overestimated the failure probability by
43%, whereas FORM underestimated the failure probability
by 14%. In this problem, the UDR method outperforms the
others in terms of efficiency, while the adaptive-sparse PCE
method shows higher efficiency than the BDR and FORM.
These results suggest that the adaptive-sparse PCE method
achieves a good compromise between the UDR and BDR as
commented in Remark 2.

Table 7 Input random variables for the burst margin example

Random Distri. Mean Std. dev. Parameters for

inputs type non-normal

distributions

αu Weibull 0.9377 0.0459 λ1 = 25.508, k1 = 0.958a

Su , ksi Normal 220,000 5,000 −
w, rpm Normal 21,000 1,000 −
δ, lb/in3 Uniform 0.29 0.0058 a4 = 0.28, b4 = 0.30b

Ro, in Normal 24 0.5 −
Ri , in Normal 8 0.3 −
aTransformation to standard normal distribution
bLegendre polynomial

Table 8 Adaptive-sparse process of the adaptive-sparse PCE for the
burst margin example

PCE No. of No. R2 Failure Relative

order bivariate FE probability error

(p) terms (q) (%)

Step 1 2 0 25 0.92305 0.001376 32.308

Step 2 2 1 47 0.91807 0.001392 33.846

Step 3 3 1 47 0.98412 0.001600 53.846

Step 4 4 1 47 0.99006 0.001581 52.019

Step 5 4 2 54 0.99433 0.001352 30.000

Step 6∼10 − − − − − −
Step 11 4 8 96 0.99673 0.001110 6.731

Step 12 4 9 103 0.99654 0.001100 5.769

4.5 V6 gasoline engine power loss: bimodal PDF

This example is the V6 gasoline engine problem studied by
Liu et al. (2006) and Lee and Chen (2007). The performance
function considered in this example is the power loss due to
the friction between the piston ring and the cylinder liner, oil
consumption, blow-by, and liner wear rate. A ring/liner sub-
assembly simulation model was used to compute the power
loss. The simulation model has four input parameters, the
ring surface roughness x1, liner surface roughness x2, liner
Young’s modulus x3 and liner hardness x4. Of the total four
inputs, the first two, ring surface roughness x1 and liner sur-
face roughness x2, were treated as random inputs following
normal distributions with mean 4.0 and 6.119 μm, respec-
tively, and with unit variance. The other two inputs, liner
Young’s modulus x3 and liner hardness x4, were treated as
deterministic inputs fixed at 80 GPa and 240 BHV, respec-
tively. It has been shown in Lee and Chen (2007) that the

Fig. 7 Convergence of failure probability with respect to the number
of bivariate terms
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Table 9 Results of adaptive-sparse scheme and reliability analysis in
parametric study

ε1 ε2 p q Pr(g > 0) Rel. error No.

(%) FE

L (0.001) L (0.001) 7 15 0.001063 2.212 145

M (0.01) 4 15 0.001070 2.885 145

H (0.1) 3 14 0.001067 2.596 138

M (0.01) L (0.001) 7 9 0.001110 6.731 103

M (0.01) 4 9 0.001100 5.769 103

H (0.1) 3 9 0.001116 7.308 103

H (0.1) L (0.001) 7 4 0.001216 16.923 68

M (0.01) 4 4 0.001198 15.192 68

H (0.1) 3 3 0.001245 19.712 61

power loss has a bimodal PDF. To predict the bimodal PDF,
the adaptive-sparse PCE used M1 = 20 and M2 = 20. As
shown in Table 11, the adaptive-sparse expansion scheme
was converged with p = 25 and q = 1. Figure 8 shows
the PDF approximations by the 16th, 20th and 25th order
PCEs with full tensorized Gaussian quadrature (M1 = 17
for p = 16, M1 = 21 for p = 20, and M1 = 26 for
p = 25), UDR and adaptive-sparse PCE. Both the adaptive-
sparse PCE and 20th order PCE with Gaussian quadrature
produced accurate approximations for the left peak and tail
regions of the PDF. The 16th order PCE could not accu-
rately approximate this bimodal PDF (see Fig. 8a) while
the 25th order PCE gave the most accurate solution. As
shown in Fig. 8b, the UDR failed to represent the irregu-
lar shape of this PDF due to the same reasons explained in
Section 4.2. The comparison results in Table 12 suggest that
the adaptive-sparse PCE method is more accurate than the
UDR method, particularly for system responses with strong
bivariate interactions. The error in the probability estima-
tion by FORM is due to the nonlinearity of the power loss
function. The computational cost by the adaptive-sparse
PCE method is much lower than that by the conventional
PCE method with full tensorized Gaussian quadrature.

Table 10 Probability analysis results for burst margin example

Adaptive-sparse MCS 4N + 1 BDR FORM

PCE (p = 4) UDR

Mean 0.0787 0.0787 0.0787 0.0787 −
Std. dev. 0.0268 0.0268 0.0267 0.0268 −
Skewness 0.1619 0.1734 0.0830 0.1787 −
Kurtosis 3.1523 3.1403 3.1335 3.1514 −
Pr(g > 0) 0.00110 0.00104 0.00149 0.00107 0.00089

No. FE 103 1,000,000 25 145 131

Table 11 Adaptive-sparse process of the adaptive-sparse PCE for the
V6 engine example

PCE No. of No. R2 Reliability Relative

order bivariate FE error

(p) terms (q) (%)

Step 1 2 0 41 0.98842 0.00687 26.987

Step 2 2 1 61 0.98810 0.00717 32.532

Step 3 3 1 61 0.97922 0.00468 13.494

Step 4∼23 − − − − − −
Step 24 24 1 61 0.98197 0.00547 1.109

Step 25 25 1 61 0.98273 0.00547 1.109

4.6 Side-impact crash problem: nonlinear correlation

Vehicle side-impact responses (Youn et al. 2004) are con-
sidered for system performances with statistical nonlinear
correlation modeled by a copula theory (Roser 1999; Noh
et al. 2008). The properties of the design and random vari-
ables are shown in Table 13. This example considered the
velocity of a front door at B-pillar. The failure is defined
when the velocity exceeds the threshold value 15.7. Thus,
the system performance can be expressed as

g(x) = (
16.45 − 0.489x1x4 − 0.843x2x3 + 0.0432x5x6

− 0.0556x5x7 − 0.000786x2
7

)− 15.7 (38)

In the study, the random variables x6 and x7 with the maxi-
mum variation were assumed to have a statistical nonlinear
correlation described by a Clayton copula, as shown in
Fig. 9a. The rank correlation coefficient was used to quan-
tify the nonlinear correlation. In this case, we assumed
the rank correlation coefficient Kendall’s τ to be 0.75
and the corresponding copula parameter to be 6.0. As dis-
cussed in Section 3.3, the Rosenblatt transformation is
required to transform correlated input variables into uncor-
related standard normal variables. Using M1 = 4 and
M2 = 8, the adaptive-sparse expansion scheme was
converged with p = 3 and q = 2 and one of the
bivariate terms considered was [x6, x7], which were non-
linearly correlated. To illustrate the effect of statistical
nonlinear correlation on the system response, the PDFs
for both correlated and uncorrelated cases are shown in
Fig. 9b. It shows that the nonlinear correlation affects
the PDF of the system performance significantly and that
the adaptive-sparse PCE method accurately predicted the
peak and tail regions of the PDF. Quantitative results are
summarized in Table 14. To further study the effects of dif-
ferent correlation coefficients on the reliability estimation,
we plotted in Fig. 10 the reliabilities for increasing values
of Kendall’s τ . As shown in the figure, the correlation
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Fig. 8 PDF approximations by
the PCEs (a), adaptive-sparse
PCE and UDR (b) for the V6
engine example

Table 12 Probability analysis
results for the V6 engine
example

Adaptive-sparse MCS PCE (p = 20, 20N + 1 UDR FORM

PCE (p = 25) Gauss quad)

Mean (kW) 0.3935 0.3935 0.3934 0.3935 −
Std. dev. (kW) 0.0315 0.0310 0.0311 0.0314 −
Skewness −0.5527 −0.5883 −0.5735 −0.5393 −
Kurtosis 3.0249 3.0828 3.0599 3.0974 −
Pr(PL < 0.3) 0.0056 0.0054 0.0054 0.0048 0.0057

No. FE 61 100,000 441 41 15

Table 13 Input random
variables for the side impact
example

Random input Distri. type Mean Std. dev. Lower bound Upper bound Mode

x1 Beta 1.500 0.050 1.000 1.800 −
x2 Uniform − − 0.850 1.150 −
x3 Uniform − − 0.699 0.999 −
x4 Uniform − − 0.850 1.150 −
x5 Triangular − − 0.327 0.363 0.345

x6 Normal 0 10.000 − − −
x7 Normal 0 10.000 − − −

Fig. 9 Scatter plot of input
variables x6 and x7 (a), and PDF
results (b)
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Table 14 Probability analysis results for the side impact example
(τ = 0.75)

Adaptive-sparse PCE (p = 3) MCS

Mean −0.4766 −0.4813

Std. dev. 0.1408 0.1520

Skewness −1.7109 −1.7402

Kurtosis 10.2690 9.2106

Pr(g < 0) 0.9496 0.9437

No. FE 64 1,000,000

Fig. 10 Reliabilities for increasing values of Kendall’s τ

coefficients significantly affect the reliabilities and the
adaptive-sparse PCE maintains consistent accuracy within
±0.01 at all reliability levels.

4.7 Lower control A-arm: RBRDO against
a fatigue failure

Vehicle suspension systems experience intense loading con-
ditions throughout their service lives. Control arms act as

the backbone of the suspension system, through which the
majority of these loads are transmitted (Youn et al. 2007b).
Therefore, it is crucial that control arms be highly reliable
while its mass is minimized. The HMMWV lower control-
arm was modeled with plane stress elements using 54,666
nodes, 53,589 elements, and 327,961 DOFs, where all
welds were modeled using rigid beam elements. Hyper-
Works 8.0 was used for FE modeling and design parame-
terization. The loading and boundary conditions are shown
in Fig. 11a. The loading was applied at the ball-joint
(point D) in three directions, and the boundary conditions
were applied to simulate the bushing joints (points A and B)
and the joint with a shock absorber and spring assem-
ble (point C). This lower control-arm model was used for
RBRDO using the adaptive-sparse PCE method.

4.7.1 RBRDO formulation

From a worst-case scenario analysis, 91 constraints (G1

to G91) were defined in several critical regions using the
von Mises stress, as shown in Fig. 12. With 91 stress con-
straints, the RBRDO is formulated as

Minimize Q = μm + σm

Subject to Ri = Pr

(
Gi (x; d) = si (x; d)

sy
− 1 ≤ 0

)

≥ �
(
β t

i

) = Rt
i , i = 1, · · · , 91

dL ≤ d ≤ dU (39)

where, the objective function Q is the summation of the
mean μm and standard deviation σm of the mass; x is the
random vector; d = μ(x) is the design vector; si is the von
Mises stress of the i th constraint; sy is the yield stress and
was set to 60.9 ksi for any constraint; Rt

i is the target relia-
bility level and was set to 99.87% for any constraint, which
corresponds to a target reliability index β t

i = 3.0. The seven
design variables are the thicknesses of the seven major com-
ponents of the control arm, as shown in Fig. 11b. Three load
variables (not design variables) are considered as random

Fig. 11 Three random load
variables (a) and seven design
variables (b)
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Fig. 12 Ninety-one critical constraints of the lower control A-arm
model

Table 15 Random force variables for the lower control A-arm model

Random variable Distri. type Mean Std. dev.

FX Normal 1,900 95

FY Normal 95 4.75

FZ Normal 950 47.5

Table 16 Design variables for the lower control A-arm model

Design Distri. Lower Initial Upper Std.

variable type bound des. bound dev.

x1 Normal 0.100 0.120 0.500 0.006

x2 Normal 0.100 0.120 0.500 0.006

x3 Normal 0.100 0.180 0.500 0.009

x4 Normal 0.100 0.135 0.500 0.007

x5 Normal 0.150 0.250 0.500 0.013

x6 Normal 0.100 0.180 0.500 0.009

x7 Normal 0.100 0.135 0.500 0.007

noisy variables. The statistical information of these random
and design variables is summarized in Tables 15 and 16
respectively.

4.7.2 Optimization results

The adaptive-sparse PCE method with 4N + 1(= 41) FE
analyses was carried out to evaluate the quality function,
91 reliabilities, and their sensitivities at any design iter-
ation, without considering the bivariate polynomial basis
functions. The sensitivities of the quality function and reli-
abilities with respect to the seven design variable were
computed by using a finite difference method (FDM) at
each design Iteration. The perturbed values of the quality
function and reliabilities were estimated based on approx-
imate stochastic response surfaces (PCE) with perturbed
design variables, without requiring gradients of the origi-
nal mass or stress functions. A perturbation size of 0.1% is
employed in this study.

The design optimization problem was solved using
a gradient-based optimization technique (e.g., sequential
quadratic optimization). The histories of the design param-
eters, objective function, and reliabilities for significant
constraints G6, G80 and G87 are shown in Table 17. At the
initial design, the constraints G6 and G80 severely violated
the reliability requirement. After seven design iterations, the
optimum design was found where all the reliability require-
ments were satisfied. Overall, the adaptive-sparse PCE
method required 287 FE simulations for RBRDO. After
the optimization, the direct MCS with 5,000 random sam-
ples was employed to verify the reliability results at the
optimum design. The reliabilities of constraints G6, G80

and G87 were estimated by the MCS as 99.71%, 99.88%,
and 99.84%, respectively, and all the other constraints were
confirmed with 100% reliabilities. The stress contours at the

Table 17 Design history of the lower control A-arm model

Iter. Design variables R6 R80 R87 Obj.

x1 x2 x3 x4 x5 x6 x7

0 0.120 0.120 0.180 0.135 0.250 0.180 0.135 0.3235 0.0050 1.0000 31.473

1 0.100 0.142 0.150 0.164 0.150 0.500 0.100 0.9989 0.9970 0.9620 32.044

2 0.100 0.140 0.169 0.161 0.150 0.500 0.325 0.9988 0.9982 0.9998 32.875

3 0.100 0.140 0.160 0.162 0.150 0.500 0.336 0.9982 0.9986 0.9963 32.513

4 0.100 0.140 0.164 0.164 0.150 0.500 0.228 0.9988 0.9989 0.9991 32.763

5 0.100 0.140 0.162 0.164 0.150 0.500 0.224 0.9986 0.9984 0.9982 32.607

6 0.100 0.140 0.163 0.164 0.150 0.500 0.211 0.9985 0.9988 0.9991 32.697

7 0.100 0.140 0.164 0.164 0.150 0.500 0.210 0.9987 0.9989 0.9991 32.717

Opt 0.100 0.140 0.164 0.164 0.150 0.500 0.210 0.9987 0.9989 0.9991 32.717
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Fig. 13 Stress comparisons of
initial and optimum design:
a G6 at initial design, b G6 at
optimum design, c G80 at initial
design, d G80 at optimum
design

initial and optimum designs for constraints G6 and G80 are
shown in Fig. 13. It can be seen in both constraints that
the high stress areas are greatly reduced by the RBRDO
process.

5 Conclusion

The adaptive-sparse PCE method was proposed for effi-
cient structural reliability analysis involving high nonlinear-
ity or large dimension. The adaptive-sparse PCE method
combines four ideas and methods: (1) an adaptive-sparse
scheme to determine the number (q) of the most significant
bivariate terms and PCE order (p) in the PCE model; (2)
an efficient decomposition-based projection method using
the SMLS method; (3) the integration of the copula sys-
tem to handle nonlinear correlation of input random vari-
ables, and (4) the systematic error decomposition analysis
in the proposed method. It was found in many exam-
ples that the adaptive-sparse scheme and decomposition-
based projection method achieves greater accuracy and
efficiency than other probability/reliability methods, includ-
ing FORM/SORM and moment-based reliability methods.
This high accuracy can be attributed to the consideration of
significant bivariate response components and the accurate
integration scheme by the SMLS method. The adaptive-
sparse PCE method can also approximate a multi-modal
PDF as shown in Section 4.5. Moreover, the proposed
method is stable, unlike other probability/reliability meth-
ods, since it does not require a distribution generation

system. Future works will focus on the integration of the
adaptive-sparse PCE method with system reliability analy-
sis and design optimization.
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Appendix

The derivation of the error decomposition

Error source I: Truncation

ε2
P =

∫
�

[
g − wp

U B

]2
f (x)dx

=
∫

�

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣
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sk,l,m
j1, j2, j3
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2
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Error source II: Bivariate decomposition

ε2
B =

∫
�

[
wp

U B − wp
U

]2
f (x)dx

=
∫

�
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⎣ ∑
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Error source III: Univariate decomposition
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Error source IV: Aliasing error
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� j (ζk) +

∑
[xk ,xl ]∈B

∑
j1+ j2≤p

(
ŝk,l

j1, j2
− ˆ̂sk,l

j1, j2

)
� j1, j2(ζk, ζl)

⎤
⎦

2

f (x)dx

=
∫

�

⎡
⎢⎢⎢⎢⎢⎣

N∑
k=1

p∑
j=1

(
E − Ê

) [
g
(
xk, μ

k
)
� j (ζk)

]
E
[
�2

j (ζk)
] · � j (ζk)

+
∑

[xk ,xl ]∈B

∑
j1+ j2≤p

(
E − Ê

) [
g(xk, xl , μ

k,l) · � j1, j2(ζk, ζl)
]

E
[
�2

j1, j2
(ζk, ζl)

] · � j1, j2(ζk, ζl)

⎤
⎥⎥⎥⎥⎥⎦

2

f (x)dx

where Ê(·) denotes the approximate expectation by using
the SMLS and Gaussian quadrature integration.
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