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Abstract Recently, the research community in reliability
analysis has seen a strong surge of interest in the dimen-
sion decomposition approach, which typically decomposes
a multi-dimensional system response into a finite set of
low-order component functions for more efficient reliability
analysis. However, commonly used dimension decompo-
sition methods suffer from two limitations. Firstly, it is
often difficult or impractical to predetermine the decompo-
sition level to achieve sufficient accuracy. Secondly, without
an adaptive decomposition scheme, these methods may
unnecessarily assign sample points to unimportant compo-
nent functions. This paper presents an adaptive dimension
decomposition and reselection (ADDR) method to resolve
the difficulties of existing dimension decomposition meth-
ods for reliability analysis. The proposed method consists of
three major components: (i) an adaptive dimension decom-
position and reselection scheme to automatically detect the
potentially important component functions and adaptively
reselect the truly important ones, (ii) a test error indicator
to quantify the importance of potentially important com-
ponent functions for dimension reselection, and (iii) an
integration of the newly developed asymmetric dimension-
adaptive tensor-product (ADATP) method into the adaptive
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scheme to approximate the reselected component functions.
The merits of the proposed method for reliability analysis
are three-fold: (a) automatically detecting and adaptively
representing important component functions, (b) greatly
alleviating the curse of dimensionality, and (c) no need of
response sensitivities. Several mathematical and engineer-
ing high-dimensional problems are used to demonstrate the
effectiveness of the ADDR method.
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Nomenclature

ek kth unit vector
e+/−

k kth directional unit vector
i multi-index
g performance function
l interpolation level
M number of collocation points
N number of input random variables
x vector of input random variables
ADATP asymmetric dimension-adaptive tensor-product
BDR bivariate dimension reduction
DI directional index
DR dimension reduction
DSG directional sparse grid
FORM first order reliability method
MCS Monte Carlo simulation
MPP most probable point
PCE polynomial chaos expansion
PDF probability density function
SORM second order reliability method
UDR univariate dimension reduction
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1 Introduction

In the past few decades, tremendous research efforts have
been devoted to reliability analysis of an engineered system
during the design and development process. The reliability
analysis problem is concerned with determining the proba-
bility that the performance (e.g., fatigue, corrosion, fracture)
of an engineered system meets its marginal value while
taking into account various uncertainty sources (e.g., mate-
rial properties, loads, geometries). In order to formulate
reliability analysis in a mathematical framework, random
variables are often used to model uncertainty sources in
engineered systems. Reliability analysis can then be formu-
lated as a multi-dimensional integration of the probability
density function f (x) over a safety region

R =
∫

�S
f (x) dx (1)

where R denotes the reliability; x = (
x1, x2, . . . , x N

)T

denotes an N -dimensional random vector that models
uncertainty sources such as material properties, loads, geo-
metric tolerances; f (x) denotes the joint probability density
function (PDF) of the vector of random variables; the safety
domain �S is defined as �S = {x: g (x) < 0}; g(x) is a
system performance (or response) function.

In practice, however, it is extremely difficult to
perform the multi-dimensional numerical integration when
the number of random variables is relatively large. The
search for feasible computational procedures to estimate
the reliability has resulted in a variety of computational
statistical analysis methods such as the first- or second-
order reliability method (FORM/SORM) (Hasofer and Lind
1974; Breitung 1984; Tvedt 1984), direct or smart Monte
Carlo simulation (MCS) (Rubinstein 1981; Fu and Moses
1988; Au and Beck 1999; Hurtado 2007; Naess et al.
2009), stochastic spectral method (Ghanem and Spanos
1991; Wiener 1938; Xiu and Karniadakis 2002; Paffrath
and Wever 2007; Wan and Karniadakis 2006; Foo et al.
2008; Foo and Karniadakis 2010), stochastic colloca-
tion method (Smolyak 1963; Gerstner and Griebel 1998;
Barthelmann et al. 2000; Griebel 1998; Xiu and Hesthaven
2005; Xiu 2007; Nobile et al. 2008; Grestner and Griebel
2003; Klimke 2006; Ganapathysubramanian and Zabaras
2007; Ma and Zabaras 2009; Eldred and Burkardt 2009;
Eldred et al. 2008; Xiong et al. 2010; Hu and Youn 2011),
and dimension reduction (DR) method (Rabitz et al. 1999;
Rabitz and Alis 1999; Alis and Rabitz 2001; Li et al. 2001a,
b; Sobol 2003; Rahman and Xu 2004; Xu and Rahman
2004; Youn and Wang 2008; Youn et al. 2008).

Among many reliability analysis methods, the first- or
second-order reliability method (FORM (Hasofer and Lind
1974) or SORM (Breitung 1984; Tvedt 1984)) is most com-

monly used. The FORM/SORM uses the first- or second-
order Taylor expansion to approximate a limit-state function
at the most probable point (MPP) where the limit-state
function separates failure and safety regions of a system
response. Some major challenges of the FORM/SORM
include: (i) a high computational cost to build the probabil-
ity density function (PDF) of the response and (ii) sensitivity
requirement for reliability analysis.

The direct or smart MCS provides an alternative way
for multi-dimensional integration (Rubinstein 1981; Fu and
Moses 1988; Au and Beck 1999; Hurtado 2007; Naess et al.
2009). Although the direct MCS (Rubinstein 1981) pro-
duces accurate results for reliability analysis and allows
for relative ease in the implementation, it demands a pro-
hibitively large number of simulation runs. Thus, it is often
used for the purpose of a benchmarking in reliability anal-
ysis. To alleviate the computational burden of the direct
MCS, researchers have developed various smart MCS meth-
ods, such as the (adaptive) importance sampling methods
(Fu and Moses 1988; Au and Beck 1999; Hurtado 2007)
and the enhanced MCS method with an optimized extrapo-
lation (Naess et al. 2009). Despite the improved efficiency
than the direct MCS, these methods are still computationally
expensive.

The stochastic spectral method (Ghanem and Spanos
1991) is an emerging technique for reliability analysis of
complex engineering problems. This method uses a num-
ber of response samples and generates a stochastic response
surface approximation with multi-dimensional polynomials
over a random space. Therefore, this method can be broadly
classified as the stochastic response surface method. Once
the explicit response surface is constructed, MCS is often
used for reliability analysis due to its convenience. The most
popular stochastic spectral method is the polynomial chaos
expansion (PCE) method. The original Hermite polynomial
chaos basis was proposed by Wiener (1938) for modeling
stochastic responses with Gaussian input random variables.
Xiu and Karniadakis (2002) extended the method under the
Askey polynomial scheme to non-Gaussian random vari-
ables (e.g., Gamma, Uniform, and Beta). For the estimation
of a small failure probability, shifted and windowed Hermite
polynomial chaos were proposed to enhance the accuracy of
a response surface in the failure region (Paffrath and Wever
2007). Although the PCE method is considered to be accu-
rate, the primary drawback of the method is the curse of
dimensionality, which substantially increases the computa-
tional cost as the number of random variables increases. To
alleviate the difficulty, many adaptive algorithms (Wan and
Karniadakis 2006; Foo et al. 2008; Foo and Karniadakis
2010) were recently developed. Although these adaptive
algorithms alleviate the curse of dimensionality to some
degree, more research efforts are still needed to fully resolve
this difficulty.
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The stochastic collocation (SC) method is another
stochastic response surface technique that approximates a
multi-dimensional random function using function values
given at a set of collocation points. A comparison between
the SC and PCE methods for uncertainty quantification
(UQ) was discussed in Eldred and Burkardt (2009), where
the SC method was reported to consistently outperform the
PCE method. In the SC method, the great improvement in
reducing the curse of dimensionality in numerical integra-
tion was accomplished by Smolyak (1963), who introduced
the concept of the sparse grid. Since then, the sparse grid
has been applied to high dimensional integration (Gerstner
and Griebel 1998) and interpolation (Barthelmann et al.
2000), UQ in reliability analysis (Eldred and Burkardt 2009;
Xiong et al. 2010) and design (Eldred et al. 2008), and
PDEs with deterministic inputs (Griebel 1998) and random
inputs (Xiu and Hesthaven 2005; Xiu 2007; Nobile et al.
2008). Compared to a full grid, the sparse grid achieves
the same accuracy level for integration and interpolation but
with a much smaller number of collocation points. Recently,
the so called dimension-adaptive tensor-product (DATP)
quadrature method introduced the concept of the general-
ized sparse grid and considered the dimensional importance
indicated by an error estimator to adaptively refine the col-
location points for efficient multi-dimensional integration
(Grestner and Griebel 2003). Klimke (2006) further devel-
oped this work for hierarchical interpolation by using either
piecewise multi-linear basis functions or Lagrangian poly-
nomials. In this method, all the dimensions in the random
space are not considered as of equal importance and the
adaptive sampling scheme automatically detects the highly
nonlinear dimensions and adaptively refines the collocation
points in those dimensions. The DATP method showed a
promising application in stochastic natural convector prob-
lems (Ganapathysubramanian and Zabaras 2007). The fur-
ther improvement of the adaptive capability of the DATP
method was achieved in the most recent works, where the
authors in Ma and Zabaras (2009) developed an adaptive
sparse grid collocation method to resolve local discontinuity
with a successful application to natural convector prob-
lems and the authors in Hu and Youn (2011) developed an
asymmetric dimension-adaptive tensor-product (ADATP)
method to detect both dimensional and directional impor-
tance with a promising application to reliability analysis.
Although these methods are equipped with a strong adaptive
capability and greatly alleviate the curse of dimension-
ality, they still cannot achieve a satisfactory error decay
rate for high-dimensional problems with rapidly dimin-
ishing importance of component functions and/or equal
importance in each dimension (Ma and Zabaras 2009). In
particular, it was reported in Ma and Zabaras (2009) that,
in cases where the importance of each dimension weighs
equally, the adaptive sparse grid collocation method could

not provide good accuracy and satisfactory error decay rate
even for stochastic problems with moderate dimensionality
(N = 25).

These difficulties in dealing with high-dimensional prob-
lems have drawn tremendous research efforts devoted to
the development of the so-called dimension reduction (DR)
method (Rahman and Xu 2004; Xu and Rahman 2004,
2005; Youn and Wang 2008; Youn et al. 2008). This
method approximates a multi-dimensional response func-
tion as a hierarchical superposition of component functions
with increasing numbers of random variables ranging from
0 (i.e., the component function being a constant) to the total
number of random variables (i.e., the component function
being a multi-dimensional function).. Specialized versions
of this method include the univariate dimension reduc-
tion (UDR) method that simplifies one multi-dimensional
response function to multiple one-dimensional component
functions (Rahman and Xu 2004; Youn et al. 2008) and
the bivariate dimension reduction (BDR) method that sim-
plifies one multi-dimensional response function to multiple
one- and two-dimensional integrations (Xu and Rahman
2004, 2005). The eigenvector dimension reduction (EDR)
method (Youn et al. 2008) improves numerical efficiency
and stability of the UDR method with the ideas of eigen-
vector samples and stepwise moving least squares method.
To further predict the reliability or PDF of the response,
the DR method employs a PDF generation technique in the
case of integration (Xu and Rahman 2004) and the direct
MCS in the case of interpolation (Xu and Rahman 2005).
Out of the engineering design society, the DR method is
widely known as the high-dimensional model representation
(HDMR) method that was originally developed for efficient
multivariate model representation in chemical system mod-
eling (Rabitz et al. 1999; Rabitz and Alis 1999; Alis and
Rabitz 2001; Li et al. 2001a, b). If high-order variate inter-
actions in a system response are negligibly weak (i.e., high-
order interactions of random variables have negligible effect
on the system response), the HDMR method enables an
efficient yet accurate formulation of this response function
with the low-order component functions—usually second-
order or bivariate being sufficient. In fact, the responses of
most practical engineered systems are significantly affected
by only low-order interactions of the random input vari-
ables. Depending on the way to determine the compo-
nent functions, the HDMR method can be categorized into
two types: ANOVA-HDMR and Cut-HDMR (Rabitz et al.
1999). ANOVA-HDMR follows exactly the way of the
analysis of variance (ANOVA) and is useful for measur-
ing the contributions of the variance of each component
function to the output variance (Sobol 2003). However,
multi-dimensional integrations involved in ANOVA-HDMR
make this expansion computationally rather unattractive. On
the other hand, Cut-HDMR expansion exactly represents
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the response function in the hyperplane that passes through
a reference point in the input random space. This expan-
sion does not require multi-dimensional integrations and is
computationally much more efficient than ANOVA-HDMR.
We note, in fact, that the DR method is essentially Cut-
HDMR designated for the purpose of reliability analysis.
It is also noted that reliability analysis methods with the
name HDMR employ the moving least squares interpola-
tion to approximate component functions (Chowdhury et al.
2009; Rao and Chowdhury 2009).

Most recently, there has been an increase of interest in
fusing the stochastic collocation method and Cut-HDMR
(Foo and Karniadakis 2010; Griebel and Holtz 2010; Ma
and Zabaras 2010) with an aim to thoroughly resolve the
curse of dimensionality. This wave of interest originated
from Foo and Karniadakis (2010) where the authors first use
the Cut-HDMR to decompose a high-dimensional function
to a set of low-dimensional functions and then employ the
multi-element probabilistic collocation method to integrate
the resulting low-dimensional functions. Later, the authors
in Griebel and Holtz (2010) developed the first adaptive
version of Cut-HDMR, namely the dimension-wise integra-
tion method, coupled with sparse grid methods as numerical
solvers for the computation of high-dimensional integrals
and applied their developments to high-dimensional inte-
gration problems in finance. Following the work in Griebel
and Holtz (2010), the authors in Ma and Zabaras (2010)
developed an adaptive HDMR method which adaptively
decomposes the multi-dimensional stochastic response into
important low-order component functions and approximate
each component function with the adaptive sparse grid col-
location method. A new error indicator is defined as the
integral of the multiplication of the hierarchical surplus
and the basis interpolation function. This new definition
incorporates the probabilistic characteristics of the random
input variables and measures the lack of accuracy in the
integration rather than the interpolation. After constructing
the first-order (univariate) component functions and assign-
ing an importance weight to each component function,
the method proceeds by identifying potentially important
higher-order component functions based on the weights
of lower-order component functions and constructing each
component function (Ma and Zabaras 2010).

Compared to the direct use of a sparse grid collocation
method, the dimension-wise integration method (Griebel
and Holtz 2010) and the adaptive HDMR method (Ma and
Zabaras 2010) achieves a higher convergence rate by reg-
ulating the integration (for the former) and interpolation
process (for the latter) from low-order component functions
to high-order ones and constructing only potentially impor-
tant component functions. In the adaptive component func-
tion integration or interpolation, these methods selects the

component functions whose lower-order sub-functions have
been detected as important component functions. How-
ever, in many engineering problems, even though a set of
lower-order component functions or dimensions are impor-
tant, their higher-order combinatory component functions
may be unimportant. In such cases, the use of only lower-
order component functions already achieves sufficiently
high accuracy it is undesirable and wasteful to consider
these potentially important but actually unimportant compo-
nent functions. For this very reason, we present an adaptive
dimension decomposition and reselection (ADDR) method
for reliability analysis. The proposed method consists of
three major components: (i) an adaptive dimension decom-
position and reselection scheme to automatically detect the
potentially important component functions and adaptively
reselect the truly important ones, (ii) a component error
indicator to quantify the importance of potentially important
component functions for dimension reselection, and (iii) an
integration of the newly developed asymmetric dimension-
adaptive tensor-product (ADATP) method into the adaptive
scheme to build the resulting component functions. To
guide the adaptive sampling process toward accurate uncer-
tainty quantification rather than accurate interpolation, we
employed the definition of the error indicator in Ma and
Zabaras (2010) and extends the use of this definition to non-
uniform random inputs and higher-order basis interpolation
functions other than the piecewise linear spline.

This paper is organized as follows. Section 2 gives a brief
review on the stochastic collocation methods, including the
classical tensor-product grid and the adaptive tensor-product
grid or the ADATP method. Section 3 presents the adap-
tive dimension decomposition and reselection method. The
effectiveness of the proposed method is demonstrated using
several case studies in Section 4. Section 5 concludes this
paper.

2 Review of stochastic collocation methods

This section briefly reviews the stochastic collocation meth-
ods using the classical tensor-product grid and the adaptive
tensor-product grid or the ADATP method. We will closely
follow the description in Hu and Youn (2011) where more
detailed information can be found.

In what follows, we will model the N -dimensional real
random variables x = (

x1, x2, . . . , x N
)T

in a complete
probability space (�, A, P), where � is a sample space,
A is a σ -algebra on �, and P is a probability measure
function P : A → [0, 1]. Then the probability density func-
tion (PDF) of the random variable xi defines a probability
mapping fi

(
xi

) : �i → R
+, where the support �i is a
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one-dimensional random space of xi . Under the assumption
of statistical independence, the probabilistic characteristics
of the random variables x can then be completely defined by
the joint PDF f (x) = f1

(
x1

) · f2
(
x2

) · · · · · fN
(
x N

)
with

the support � = �1 · �2 · · · · · �N . If the assumption of
statistical independence does not hold, that is, the random
variables such as fatigue material properties (fatigue duc-
tility coefficient and exponent) are statistically dependent,
a copula (Roser 1999; Noh et al. 2008) can be employed
to select an appropriate dependence structure and formu-
late a joint CDF of the random variables based on available
input data, which then allows the use of the Rosenblatt
transformation (Rosenblatt 1952) to transform the depen-
dent random variables into independent standard normal
random variables. Since the construction of an interpola-
tion in the stochastic collocation method often requires a
specially bounded support � = [0, 1]N of the random vari-
ables x, we first truncate any unbounded one-dimensional
random space �i (e.g. in the case of a Gaussian random
variable) to a bounded one �∗

i = [ci , di ] that achieves
a nearly full coverage of �i and then map any truncated
one-dimensional support [ci , di ] to [0, 1], resulting in a
bounded hypercube � = [0, 1]N . Let g(x) denote a smooth,
measurable performance function on (�, A), which can be
treated as a one-to-one mapping between the transformed
N -dimensional random space and one-dimensional space
g : [0, 1]N → R. In general, the performance function g(x)
cannot be analytically obtained, and the function evaluation
of g for a given input x requires an expensive computer sim-
ulation. Therefore, it is important to employ a numerical
method for reliability analysis that is capable of produc-
ing accurate probabilistic characteristics of g(x) with an
acceptably small number of function evaluations.

2.1 Classical stochastic collocation: tensor-product grid

The stochastic collocation method basically approximates
the performance function g using N -dimensional interpo-
lating functions with performance function values at a finite
number of collocation points � = {

x j
∣∣ x j ∈ �, j = 1, . . . ,

MT }. Suppose that we can obtain the performance function
value g(x j ) at each collocation point x j . We then aim at
building an interpolation or surrogate model of the original
performance function g by using the linear combinations
of these function values g(x j ). We begin by construct-
ing the interpolation with the tensor-product grid, or the
tensor-product of one-dimensional interpolation formulas.

In the one-dimensional case (N = 1), we can construct
the following one-dimensional interpolation

Ui (g) =
mi∑
j=1

ai
j · g

(
xi

j

)
(2)

with a set of support nodes

Xi =
{

xi
j

∣∣∣ xi
j ∈ [0, 1] , j = 1, 2, . . . , mi

}
(3)

where i ∈ N is the interpolation level that determines
the number of support nodes and thus the interpolation
resolution along this dimension, ai

j ∈ C ([0, 1]) the j th

interpolation nodal basis functions, xi
j the j th support nodes

and mi the number of support nodes in the interpolation
level i . By following the descriptions in Xiu (2007), Klimke
(2006) and Ganapathysubramanian and Zabaras (2007), we
use the superscript i to denote the interpolation level dur-
ing the development of stochastic collocation methods. Two
widely used nodal basis functions are piecewise multi-linear
basis functions and Lagrange polynomials (Klimke 2006).

Applying a sequence of formulas in (2) on the orig-
inal performance function g in a nested form for all N
dimensions (Hu and Youn 2011), we can easily derive the
tensor-product of multiple one-dimensional interpolation
formulas as the following multi-dimensional interpolation
formula

(
Ui1 ⊗ · · · ⊗ UiN

)
(g) =

m1∑
j1=1

· · ·
m N∑

jN =1

(
ai1

j1
⊗ · · · ⊗ aiN

jN

)

· g
(

xi1
j1
, . . . , xiN

jN

)
(4)

where the superscript ik, k = 1, ..., N , denotes the inter-
polation level along the kth dimension, Uik are the inter-
polation functions with the interpolation level ik along the
kth dimension and the subscript jk, k = 1, ..., N , denotes
the index of a given support node in the kth dimension.
The number of function evaluations required by the tensor-
product formula reads

MT = m1 · m2 · · · m N (5)

which becomes intolerably large for high-dimensional prob-
lems. The search for more efficient sampling schemes than
the tensor-product grid has resulted in an adaptive tensor-
product method of which the fundamentals will be briefly
introduced in the subsequent section.

2.2 Asymmetric dimension-adaptive tensor-product
method

With an aim to incorporate an adaptive feature into the
tensor-product grid, the concept of the directional sparse
grid (DSG) was introduced which facilitated the devel-
opment of an adaptive tensor-product grid, namely the
asymmetric dimension-adaptive tensor-product (ADATP)
method (Hu and Youn 2011). This section briefly reviews
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the ADATP method to prepare for our further development
in the subsequent section.

2.2.1 Directional sparse grid (DSG)

For the construction of the directional sparse grid (DSG), a
conventional index i in the case of the univariate interpo-
lation is decomposed into positive and negative directional
index (DI) sets as (Hu and Youn 2011)

ID = {
i+, i−

}
(6)

where the positive DI i+ corresponds to the DSG which
belong to the index i and whose values are greater than
the value (0.5) of the center grid point, and the negative
DI i− corresponds to the DSG which belong to the index
iand whose values are smaller than 0.5. For the multivari-
ate case (N > 1), a tensor-product formula of DI sets for a
multi-index i can be obtained as

ID = ID
1 × · · · × ID

N (7)

where, ID
k = {

i+k , i−k
}
, 1 ≤ k ≤ N . Here, the forward

neighborhood of a multi-dimensional DI id ∈ID is defined
as the N indices

{
id + e+/−

k

}
, 1 ≤ k ≤ N , and the sign

of kth directional unit vector e+/−
k is the same with that of

the kth index element id
k

(
i+k or i−k

)
of id. It is noted that the

DI divides the conventional index space into the four quad-
rants. This division allows for an adaptive refinement of the
collocation points in these quadrants.

2.2.2 Hierarchical interpolation scheme using multivariate
hierarchical basis functions

For the adaptive interpolation, the hierarchical interpolation
scheme provides a more convenient way for error estimation
than the nodal interpolation scheme (Klimke 2006; Ma and
Zabaras 2009). If we apply a Smolyak sparse grid formula
(Smolyak 1963), we can obtain a multivariate hierarchical
interpolation formula, expressed as (Klimke 2006)

Aq,N (g)

= Aq−1,N (g) + �Aq,N (g)

= Aq−1,N (g) +
∑
|i|=q

∑
j

(
ai1

j1
⊗ · · · ⊗ aiN

jN

)
︸ ︷︷ ︸

ai
j

·
(

g
(

xi1
j1
, · · · , xiN

jN

)
− Aq−1,N (g)

(
xi1

j1
, · · · , xiN

jN

))
︸ ︷︷ ︸

wi
j

(8)

Here, i = (i1, . . . , iN ) is the multi-index denoting the inter-
polation levels along all N dimensions; j = ( j1, . . . , jN )

is the multi-index denoting the indices of support nodes in
all N dimensions; wi

j is defined as the vector of hierarchi-
cal surpluses, which indicates the interpolation error of a
previous interpolation at the node xi

j of the current interpo-
lation level i. Basically, Based on the Smolyak algorithm,
(8) builds the multi-dimensional hierarchical interpolation
by considering one-dimensional functions of interpolation
levels i1,...,iN under the constraint that the sum of these
interpolation levels lies within the range

[
q − N + 1, q

]
.

Figure 1 illustrates the comparison between the hierarchical
and nodal interpolations with the piecewise linear spline and
Clenshaw–Curtis grid (Klimke 2006). It can be observed
that, compared to the nodal interpolation, its hierarchical
counterpart builds an interpolation based on the interpola-
tion at a previous level and the interpolation at the current
level in a recursive level-by-level form. Furthermore, the
hierarchical surplus wi

j in the hierarchical interpolation,
which indicates the interpolation error of a previous inter-
polation at the node xi

j of the current interpolation level i ,
can be used as a natural candidate for error estimation and
control, since, for smooth performance functions, the hier-
archical surpluses approach zero as the interpolation level
goes to infinity.

2.2.3 Asymmetric dimension-adaptive tensor-product
(ADATP) interpolation

The ADATP interpolation proceeds by selecting all the
indices (DIs) whose relative error indicators are greater than
a predefined error threshold εC . The relative error indicator
used in the interpolation scheme is defined for a DI i as (Hu
and Youn 2011)

εr (i) = 1

(gmax − gmin) Mi

∑
j

∣∣∣wi
j

∣∣∣ (9)

where wi
j are the hierarchical surpluses of the collocation

points Xi = Xi1
� × · · · × XiN

� , with j = ( j1, . . . , jN ), jk =
1, . . . , mik

�, 1 ≤ k ≤ N , and Mi = mi1
� · mi2

� · · · · · miN
� .

1
3
1g x

3
2g x

3
3g x

3
4g x

3
5g x

3
1x 3

2x 3
3x 3

4x 3
5x

(a) 

2
1w

3
1w

3
2w

1
1w

2
2w

2
1x 3

1x 1
1x 3

2x 2
2x

(b) 

(   )
(   )

(   )
(   )

(   )

Fig. 1 Nodal (a) and hierarchical (b) interpolations in 1D with the
piecewise linear spline and Clenshaw–Curtis grid
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3 Adaptive dimension decomposition and reselection
method

As an attempt to enhance the adaptive feature of the ADATP
algorithm for high-dimensional problems, we develop an
adaptive dimensional decomposition algorithm with a
dimension reselection scheme to accurately represent the
underlying response function with, to date, the minimum
number of component functions. The component functions
are treated as sub-problems which are resolved with the
ADATP method.

3.1 Generalized dimension decomposition

In the classical ANOVA decomposition, an N -dimensional
real-valued smooth stochastic response can be decomposed
in a hierarchical and convergent manner as (Rabitz and Alis
1999; Xu and Rahman 2004)

g (x) = g0 +
N∑

i=1

gi (xi ) +
∑

1≤i1<i2≤N

gi1i2

(
xi1 , xi2

)

+ · · · +
∑

1≤i1<···<is≤N

gi1···iS

(
xi1, · · · , xis

)

+ · · · + g1···N (x1, · · · , xN ) (10)

Here, g0 is a constant acting as the zeroth-order compo-
nent function which represents the mean effect; gi (xi ) is
a univariate function acting as the first-order component
function which expresses the individual effect of xi on the
response g(x), gi1i2

(
xi1 , xi2

)
is a bivariate function acting

as the second-order component function which describes
the interactive effects of xi1 and xi2 on the response; the
higher order terms gives the interactive effects of increas-
ing numbers of input random variables acting together to
contribute to the response; and the last term accounts for
any residual dependence of all the input random variables
cooperatively locked together to affect the response. It is
noted that, for notational convenience, we use the nota-
tion xi instead of xi to denote the i th random variable for
i = 1, ..., N from this section. Once we suitably determine
all the important component functions, the resulting decom-
posed model can be used as a stochastic response surface
model to efficiently compute the response. Here, two key
issues are which component functions should be selected for
inclusion in the decomposed model and how to represent or
approximate these selected component functions, and this
is precisely what we attempt to resolve in the subsequent
sections.

If we define a set of dimensional indices u ⊆ D where
D := {1, . . . , N } denotes a set of all dimensional indices,

we can obtain a more compact notation of the generalized
dimension decomposition, expressed as (Griebel and Holtz
2010)

g (x) =
∑
u∈D

gu (xu) (11)

Here, gu denotes a |u|-dimensional component function
whose random dimensions correspond to the dimensional
indices belonging to u, where |u| is the number of indices
in the set u. For example, if we have u = {1, 2, 4}, then
gu = g124 (x1, x2, x4).

The component functions can be obtained by defining
an appropriate product measure and an error functional and
minimizing this error functional (Rabitz et al. 1999; Rabitz
and Alis 1999). An efficient way is to choose the measure
as the Dirac measure at a reference point μx, leading to the
Cut-HDMR decomposition as (Rabitz et al. 1999; Griebel
and Holtz 2010)

g (x) =
∑
u∈D

gC
u (xu) (12)

where the component functions are explicitly given as

gC
0 = g (μx) , gC

i = g (x)|x=μx\xi
− gC

0 ,

gC
i1i2

= g (x)|x=μx\
(
xi1 ,xi2

) − gC
i1

− gC
i2

− gC
0 , · · · (13)

Here, the notation x = μx\xi denotes the vector x with its
components other than xi being set equal to the correspond-
ing components of the reference vector μ. We can observe
that those component functions can be recursively derived
as (Rabitz et al. 1999)

gC
u (xu) = g (x)|x=μx\xu −

∑
v⊂u

gC
v (xv) (14)

and can also be more conveniently expressed as (Kuo et al.
2010)

gC
u (xu) =

∑
v⊆u

(−1)|u|−|v| g (x)|x=μx\xv (15)

where the notation x = μx\xu denotes the vector x with its
components other than those indices that belong to the set
u being set equal to the corresponding components of the
reference vector μ.

It was reported in Rabitz et al. (1999), Rabitz and Alis
(1999) and numerous reliability analysis papers that the
responses of most practical engineered systems are sig-
nificantly affected by only low-order interactions (usually
up to second-order) of the random input variables while
the high-order interactions of these variables are often
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very weak. In these systems, a few lower-order com-
ponent functions are sufficient to accurately capture the
response uncertainty. It is also worth noting that any com-
ponent function in the CUT-HDMR expansion accounts
for an infinite number of Taylor series terms containing
the same set of random variables as that component func-
tion. For example, the univariate decomposed component
function gC

i (xi ) in (12) contains the univariate terms with xi

of any order in the Taylor series expansion and so on. Thus,
the dimension decomposition of any order in (12) should not
be viewed as a Taylor series expansion of the same order nor
do they represent a limited degree of nonlinearity in g(x). In
fact, the dimension decomposition provides higher accuracy
a Taylor series expansion of the same or even higher order.
In particular, the residual error in a univariate approximation
to a multidimensional integration of a system response over
a symmetric domain was reported to be far less than that
of a second-order Taylor expansion method for probability
analysis (Xu and Rahman 2004).

Finally, to construct the dimension decomposition of
a response function, or the Cut-HDMR, we need to first
define a reference point μx = (

μx1 , μx2 , . . . , μxN

)
in the

input random space. Regarding this issue, the works by
Sobol (2003) suggested that it is optimum to define the
reference point as the mean values of the input random
variables. But we also note that, to make more collocation
points relevant to reliability analysis, we could interpolate
the limit-state function in the vicinity of the most prob-
able point (MPP) instead of the mean point of random
inputs. However, this MPP-based approach suffers from the
following two shortcomings: (i) the MPP search requires
the sensitivity information of the response function and
can be very expensive for high dimensional problems; and
(ii) for design problems that require both moment estima-
tion and reliability analysis such as reliability-based robust
design optimization (Youn et al. 2005, 2007; Lee et al.
2009), the collocation points that are used to approxi-
mate the response function over the truncated input domain
for uncertainty quantification (e.g., PDF and moment esti-
mation) cannot be reused for reliability analysis, result-
ing in an added cost for reliability analysis. In contrast
to the second aforementioned shortcoming of the MPP-
based approach, the non-MPP-based approach to approx-
imate the response function over the entire (truncated)
input domain allows for the derivation of any probabilis-
tic characteristics (e.g., statistical moments, reliability, and
PDF) based on the same set of collocation points and can
be used for design problems. Considering the aforemen-
tioned aspects, we intended to employ the proposed non-
MPP-based method with the mean point as the reference
point for reliability analysis which we expect to achieve a
much better efficiency with satisfactory accuracy in most
problems.

3.2 Component function approximation

Now we need to approximate the component functions
in the generalized dimension decomposition. A desirable
way is to construct an explicit function approximation to
the component functions that can be used as a stochastic
response surface model. This can be achieved by using the
ADATP method with the relative merits of dimensional and
directional adaptivity (Hu and Youn 2011).

Combining (12) and (15) gives us the following formula
for the generalized dimension decomposition as

g (x) =
∑
u∈D

∑
v⊆u

(−1)|u|−|v| g (x)|x=μx\xv (16)

The lower-order terms in the right-hand side of the above
equation can be treated as |v|-dimensional sub-problems
which can be solved by the ADATP method in the following
manner:

g (x) =
∑
u∈D

∑
v⊆u

(−1)|u|−|v| ∑
i∈Iv

∑
j

ai
j (xv) · wi

j (17)

where ai
j and wi

j are the hierarchical basis functions and hier-
archical surpluses for the DI i, respectively, and Iv denotes
the set of DIs obtained by the ADATP method for the dimen-
sion index set v. Note that the hierarchical basis functions
ai

j only contain random variables xv whose dimensions are
contained in the set v.

Since we are interested in quantifying the response uncer-
tainty, an appropriate error indicator associated with a DI
should reflect the contribution of that DI to the integration
rather than its potential to enhance the accuracy in the inter-
polation. A new error indicator is thus defined in this study
as the integral of the multiplication of the hierarchical sur-
plus and the basis interpolation function, as motivated by the
work in Ma and Zabaras (2010). This new definition, which
incorporates the probabilistic characteristics of the random
input variables, is defined for a DI i as

εr (i) = 1

gmax − gmin

∑
j

∫

�

ai
j (x) f (x) dx · wi

j (18)

where wi
j are the hierarchical surpluses of the collocation

points Xi = Xi1
� × · · · × XiN

� , with j = ( j1, . . . , jN ),

jk = 1, . . . , mik
�, 1 ≤ k ≤ N . It is noted that, for sim-

plicity, we use i = (i1, . . . , iN ) instead of id = (
id
1 , . . . , id

N

)
to denote a multi-dimensional DI and that the term “index”
in the description of the ADATP method refers to the DI.
Also note that, a DI may have a relatively large interpolation
error locally but may not significantly affect the response
globally. With the following definition,

Qi
j =

∫

�

ai
j (x) f (x) dx (19)
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we can rewrite (18) in a simpler form as

εr (i) = 1

gmax − gmin

∑
j

Qi
j · wi

j (20)

If the random input variables follow uniform distribu-
tion and the piecewise multi-linear spline is employed as
the hierarchical interpolation basis function, the 1D integral
can be analytically obtained as

Qi
j =

∫ 1

0
ai

j dx =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

1, if i = 1

1

4
, if i = 2

21−i , otherwise

(21)

For cases where we have non-uniform random inputs or
higher-order basis interpolation functions other than the
piecewise linear spline, the integral can be computed by
using the Gaussian quadrature technique. The M-node
quadrature formulae for computing the above integral can
be expressed as

Qi
j =

∫ 1

0
ai

j (x) f (x) dx =
M∑

k=1

wq
k ai

j

(
xi

k

)
(22)

where xi
k and wq

k are the location and weight of the kth
quadrature node, respectively. The selection of M depends
on the interpolation level i and, for a high interpolation
level i , a sufficiently large M should be used to achieve
good accuracy since the basis function ai

j vanishes to zero

in a very narrow neighborhood of xi
j which may not include

any quadrature point. Since the random variables are either

independent or have been transformed to independent ran-
dom variables, the multi-dimensional integral in (18) can
be obtained as the product of multiple one-dimensional
integrals.

3.3 Adaptive dimension decomposition and reselection
(ADDR) interpolation

Theoretically speaking, the important component functions
among all 2N ones in the generalized dimension decom-
position (see (12)) can be either known as a priori, based
on our prior knowledge on the performance function, or
detected as a posteriori, based on an adaptive algorithm.
However, in engineering practice, the prior information
regarding the performance function is rarely known. Thus,
we need to build the decomposition in an adaptive fashion
where important terms (or dimensions) are automatically
detected with the minimum computational cost. This section
is devoted to presenting our attempt to develop such an
adaptive scheme.

Our presentation will go along with a hypothetical ten-
dimensional example of which the ADDR interpolation is
graphically shown in Fig. 2. The adaptive process consists
of three iteratively executed steps: (i) evaluation of com-
ponent functions with the ADATP method, (ii) selection of
potentially important dimensions based on the dimensional
weights and (iii) reselection of important dimensions based
on the test error indicators. The detailed procedure of the
proposed ADDR interpolation is given in Table 1.

Evaluating important dimensions Initially, we construct
all the first-order component functions with the ADATP

Fig. 2 Adaptive process of
dimension decomposition and
reselection

1 2 3 4 5 6 7 8 9 10
Evaluating
important dimensions

Selected dimension Discarded dimension

1,4 1,8 2,4 2,81,2
Reselecting
important dimensions

1 2 3 4 5 6 7 8 9 10
Selecting
important dimensions

4,8

1,8 2,8 4,82,41,2

1,8 2,8 4,82,41,2

2,4,81,2,8

Admissible 
condition

p = 1

p = 2

p = 3

Evaluating
important dimensions

Reselecting
important dimensions

Selecting
important dimensions
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Table 1 Procedure of the
proposed ADDR interpolation STEP 1 Set the initial decomposition order p = 1; set the initial important dimension set S = Ø,

the initial constructed dimension set C = Ø and the initial selected dimension set R = Ø.

STEP 2 Construct the zeroth- and first-order component functions using the ADATP method with

the relative error threshold εC using (18); add the dimensional indices {1, 2,..., N} to

the set C; compute the dimensional weight of each first-order component function using (23)

and add those terms whose dimensional weights γ ≥ γC to the set S.

STEP 3 Set p = p + 1; construct the set R with those pth order dimensional indices passing the

admissibility test in (24). If R = Ø, go to STEP 7.

STEP 4 Select and remove a dimensional index u from R. If R = Ø, go to STEP 3. If the number

of the collocation points M exceeds the maximum number Mmax, go to STEP 7.

STEP 5 Compute its test error indicator ηu using (25). If ηu ≥ ηC, go to STEP 6; otherwise,

go to STEP 4.

STEP 6 Construct the component function for u using the ADATP method with the relative error

threshold εC using (18); add the dimensional indices u to the set C; compute the

dimensional weight of u using (23). If γu ≥ γC, add u to the set S. Go to STEP 4.

STEP 7 Construct an explicit interpolation ĝ of the performance function g.

method. Since we only deal with one-dimensional func-
tions, the computational cost only linearly increases with
the number of dimensions, resulting in a relatively small
amount of function evaluations. Upon the construction of
the one-dimensional functions, we then adaptively construct
important second- and higher-order component functions
that can be identified through the selection and reselection
steps detailed below.

Selecting important dimensions We adaptively construct
higher-order component functions by first selecting poten-
tially important component functions at the current decom-
position order. In order to quantify the contribution of each
component function (or each dimension) to the integra-
tion, we define a relative error indicator (or dimensional
weight) for a component function gC

u as the integral of that
component function, expressed as

γu = 1

gmax − gmin

∑
v⊆u

(−1)|u|−|v| ∑
i∈Iv

∑
j

Qi
j · wi

j (23)

This error indicator quantifies the contribution of the com-
ponent function gC

u to the response in a statistical sense. It
can be treated as the first-order sensitivity of the response
to that particular component function. The component func-
tions whose weights are larger than a predefined threshold
γC are identified as important dimensions. In the example
shown in Fig. 2, the important component functions are
those with the dimensions 1, 2, 4, and 8. These dimen-
sions are then put into an important dimension set S. Their
higher-order forward dimensions {1,2}, {1,4}, {1,8}, {2,4},
{2,8} and {4,8} are then selected as potentially important
dimensions for dimension reselection later. When select-
ing potentially important dimensions for a higher expansion

order, we need to conduct an admissibility test on all
the possible higher-order dimensions. For a higher-order
dimension with the index u, the admissibility test requires
that any subset of u belongs to the important dimension set
S, expressed as

u ∈ D and ∀v ⊂ u, v ∈ S (24)

This test is to ensure that the potentially important dimen-
sion u can be recursively computed with the already com-
puted dimensions in S by using (15). For the dimension
selection in the second-order decomposition, among the
possible forward dimensions {1,2,4}, {1,2,8}, {2,4,8}, only
the latter two {1,2,8}, {2,4,8} are selected while the first
one {1,2,4} is discarded. This is due to the fact that a subset
{1,4} in {1,2,4} does not belong to the important set S and
thus {1,2,4} does not pass the admissibility test.

Reselecting important dimensions In this step, we rese-
lect the truly important dimensions among the potentially
important ones obtained in the dimension selection step.
For this purpose, we define a test sample point xT

u for each
potentially important dimension to test the strength of inter-
action among the dimensions in u. This test sample point
takes the value 1.0 along any dimension in u and the value
0.5 along any other dimension. We then define a test error
indicator for u as

ηu = 1

gmax − gmin

∑
v⊆u

(−1)|u|−|v| g
(

xT
v

)∣∣∣
x=μx\xv

(25)

where xT
v is the test sample associated with the index v and

has been computed in a previous reselection step if v �= u.
According to (25), the test error indicator ηu can be viewed
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as a measurement of the interactive effects of the dimen-
sions u on the output at the corner point. Then we define the
truly important dimensions as those whose test error indi-
cators are larger than a predefined test error threshold ηC.
Thus, the amount of information that can be kept after res-
electing the truly important component functions depends
on the choice of the test error threshold ηC. With decreas-
ing ηC, more component functions become important and
therefore more terms (or information) will be included in
the ADDR. The logic behind the selection of the corner
point to compute ηu lies in the fact that this point can be
treated as the most probable point with possibly the largest
interaction. It follows that the integral of the component
function over the whole input domain should be most likely
less than its absolute point value at the corner point with
potentially stronger interaction than points in other regions.
Therefore, if the point value of the component function
at the corner point is smaller than a predefined test error
threshold ηC, we conjecture that the dimensional weight
in (23) should also be smaller than the threshold and this
component function should be disregarded. We note that,
even if the test error indicator of a component function is
larger than the threshold, its dimensional weight may still be
smaller than the threshold and, strictly speaking, we should
discard this component function. However, our reselection
scheme still selects this component function so as to achieve
conservativeness.

3.4 Uncertainty quantification (UQ) and reliability
analysis

Once the adaptive dimension decomposition and reselection
sampling procedure is completed, an approximate function
ĝ of the original performance function g can be obtained by
interpolation using hierarchical basis functions at colloca-
tion points. Thus, any probabilistic characteristics of g(x),
including statistical moments, reliability, and PDF, can be
easily estimated by performing MCS. For example, any r th
moment can be calculated as

βr ∼=
∫

ĝr (x) f (x)dx

= E
(
ĝr (x)

) = lim
ns→∞

1

ns

ns∑
j=1

ĝr (
x j

)
(26)

where βr is the r th moment of the performance function
g(x); f (x) is the joint PDFs; x j is the j th realization of x;
and ns is the sampling size. For reliability estimation, let
us define an approximate safe domain for the performance
function g as

�̂S = {
x : ĝ (x) < 0

}
(27)

Therefore, the reliability R can also be estimated by per-
forming MCS as

R ∼=
∫

I
�̂S (x) f (x)dx

= E
(
I
�̂S (x)

) = lim
ns→∞

1

ns

ns∑
j=1

I
�̂S

(
x j

)
(28)

where I [·] is an indicator function of safe or fail state
such that

I
�̂S

(
x j

) =
{

1, x j ∈ �̂S

0, x j ∈ �\�̂S (29)

It should be noted that the MCS performed here employs
the explicit interpolation ĝ instead of the original perfor-
mance function g and is thus inexpensive. We also note that
the way of approximating the response function over the
entire (truncated) input domain allows for the derivation of
any probabilistic characteristics (e.g., statistical moments,
reliability, and PDF) based on the same set of collocation
points and can be used for design problems that require
both moment estimation and reliability analysis such as
reliability-based robust design optimization (Youn et al.
2005, 2007; Lee et al. 2009). Lastly, it is worthy to note that,
since the proposed method essentially builds an approxi-
mate stochastic response surface (an explicit mathematical
function) for the performance function g, we can directly
apply the MCS with little additional computational cost to
obtain the full probabilistic characteristics (e.g., statistical
moments, reliability, and PDF) of g regardless of the distri-
bution types (e.g., normal, lognormal and Weibull) of the
input random variables. Specifically, we can first gener-
ate MCS samples for Gaussian and/or non-Gaussian input
random variables and then evaluate the performance func-
tion at these MCS sample points. As long as we obtain a
sufficiently accurate response surface, the estimated perfor-
mance function values at the randomly generated sample
points will be sufficiently accurate, leading to accurate
probability analysis results.

4 Case studies

This section demonstrates the effectiveness of the ADDR
method with five mathematical and engineering exam-
ples. The first three mathematical examples involve high-
dimensional response surfaces with considerable bivariate
interaction, trivariate interaction and anisotropic nonlinear-
ity, respectively. The subsequent two engineering exam-
ples were dedicated to high-dimensional reliability analysis
with an aim to investigate the computational accuracy and
efficiency of the proposed method for reliability analysis. To



434 C. Hu et al.

Fig. 3 Error decay pathways
(a) and PDF approximations (b)
of the ADDR, HDMR and
ADATP methods for example I

(a) (b) 

investigate the relative merits of the ADDR method, we con-
ducted comparative studies between the generalized dimen-
sion decomposition method (Xu and Rahman 2004) or the
high-dimensional model representation (HDMR) method
(Rabitz et al. 1999), the asymmetric dimension-adaptive
tensor-product method (ADATP) (Hu and Youn 2011), the
FORM/SORM (Hasofer and Lind 1974; Breitung 1984),
and the ADDR method, whenever possible. The compo-
nent functions in both the HDMR and ADDR methods were
computed with the ADATP method.

4.1 Mathematical example I: bivariate interaction

We first consider the following mathematical function with
several bivariate interaction terms

g (x) =
N∑

k=1

x2
k −

N/2∑
k=1

x4
2k−1x4

2k (30)

where the number of random variables N = 10, the ten
random variables were independently and uniformly dis-
tributed between 0 and 2. Since we intended to evaluate the
accuracy of the approximate stochastic response surfaces in
UQ, we defined a normalized L2 error as

εL2 =

√
ns∑
j=1

(
g

(
x j

) − ĝ
(
x j

))2

√
ns∑
j=1

(
g

(
x j

))2
(31)

where ns denotes the number of random samples gener-
ated based the input distributions and was set to 1,000,000
in this study. A relative error threshold εC = 0.01 was
used in the ADATP method which employed the piece-
wise multi-linear basis functions as the hierarchical basis
functions and the Clenshaw-Curtis grid as the grid type.
The error decay pathways and PDF approximations of the

ADDR, HDMR and ADATP methods are graphically shown
in Fig. 3. The error decay points of the ADDR method were
obtained by varying the error threshold γC; the error decay
pathway of the HDMR method was plotted by increasing
the decomposition order and varying the maximum num-
ber of collocation points Mmax; the points for the ADATP
method were obtained by varying the maximum number of
collocation points Mmax. It is noted that in this example
and all the subsequent examples, the test error threshold
ηC is set equal to γC, since both the test error indicator
ηu and the relative error indicator (or dimensional weight)
γu quantifies the importance of a component function in
the first-order forms. In Fig. 3a, the ADDR method shows
faster error decay than any of the HDMR and ADATP
methods. This can be attributed to the fact that the ADDR
method identified important bivariate component functions,
{1,2}, {3,4}, {5,6}, {7,8} and {9,10}, and only evalu-
ated those bivariate functions while discarding the others.
In contrast, the lack of adaptivity in the HDMR method led
to the consideration of all bivariate and even higher-order
component functions. Table 2 compares the accuracy and
efficiency of the ADDR method, the adaptive dimension
decomposition (ADD) method (Griebel and Holtz 2010;
Ma and Zabaras 2010) without dimension reselection and
the second-order HDMR method. We observe that the
ADDR method requires far less component functions and
thus less collocation points than the ADD and second-order
HDMR methods. It is noted that the ADD method produced

Table 2 Comparison of the ADDR, ADD and HDMR methods for
example I

Method No. component No. function εL2

functions evaluations

ADDR (γC = 0.01) 16 181 3.33E–4

ADD (γC = 0.01) 56 261 3.33E–4

HDMR (p = 2) 56 261 3.33E–4
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Fig. 4 Error decay pathways
(a) and PDF approximations (b)
of the ADDR, HDMR and
ADATP methods for example II

(a) (b) 

exactly the same response surface as that by the second-
order HDMR method. The results suggest that, without the
dimension reselection, the adaptive dimension decompo-
sition may unnecessarily consider unimportant high-order
component functions and may even lose the relative mer-
its over the HDMR method when component functions at
the same decomposition level are equally important, as is
the case in this example. Regarding the PDF approximation,
the proposed ADDR method again produced better perfor-
mance (see Fig. 3b), compared to the HDMR and ADATP
methods. This example verifies that, for a performance
function with only a part of low-order component functions
being significant, the ADDR method is advantageous over
the HDMR and ADATP methods.

4.2 Mathematical example II: trivariate interaction

Let us then consider the following mathematical function
with several trivariate interaction terms

g (x) =
N∑

k=1

x2
k −

(N−1)/3∑
k=1

x4
3k−2x4

3k−1x4
3k (32)

where the number of random variables N = 10, the ten
random variables were assumed to be statistically inde-
pendent and uniformly distributed between 0 and 1.5.
This nonlinear function contains three important trivari-
ate component functions {1,2,3}, {4,5,6}, {7,8,9}, among
all N !/(N − 3)!/3! = 120 trivariate component functions.
A relative error threshold εC = 0.01 and the piecewise
multi-linear basis functions were again used in the ADATP
method to directly conduct UQ and reliability analysis as
well as to construct component functions for the ADDR
and HDMR methods. The performance of these methods
in terms of the L2 error decay and PDF approximation is
compared in Fig. 4. The error decay points were obtained
in the same manner as the first example. In Fig. 4a, we
again observe that the ADDR method exhibits faster error

decay than any of the HDMR and ADATP methods. It is
noted that, for the ADDR and ADATP method, the error
decay becomes very sharp when the construction of bivari-
ate component functions has been completed and the con-
struction of the three important trivariate component func-
tions is in progress. Compared to the ADATP method, the
ADDR method detects and constructs the important trivari-
ate component functions in a much earlier stage due to the
dimension-wise regulation (initially starting from low-order
component functions and gradually increasing the decom-
position order) imposed by the HDMR. In contrast, the
HDMR method gives the slowest error decay rate due to the
lack of adaptivity in constructing bivariate and higher-order
component functions. Table 3 compares the performance
of the ADDR, ADD and third-order HDMR methods. For
the ADDR method, we require 23 component functions and
219 function evaluations to achieve an accurate integration.
In contrast, to achieve the same integration error, we need
far more component functions (and thus function evalua-
tions) for the ADD and third-order HDMR methods. The
results again suggest that the dimension reselection plays
an essential role in screening out the potentially important
but actually unimportant dimensions to derive the minimum
number of component functions. The PDF approximation
by the proposed ADDR method exhibits better accuracy
(see Fig. 4b) in the left tail region, compared to those by
the HDMR and ADATP methods, and comparable accuracy
to the HDMR method in the middle peak region (slightly

Table 3 Comparison of the ADDR, ADD and HDMR methods for
example II

Method No. component No. function εL2

functions evaluations

ADDR (γC = 0.01) 23 219 4.03E–4

ADD (γC = 0.01) 59 327 4.03E–4

HDMR (p = 3) 176 705 4.03E–4
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Fig. 5 Error decay pathways
(a) and PDF approximations (b)
of the ADDR, HDMR and
ADATP methods for
example III

(a) (b) 

better accuracy than the ADATP method). This example
further verifies that, for a performance function with only
a part of low-order component functions being significant,
the ADDR method yields better efficiency with comparable
accuracy to the HDMR and ADATP methods.

4.3 Mathematical example III: anisotropic nonlinearity

Consider the following mathematical function with anisot-
ropic nonlinearity

g (x) =
(

1 +
N∑

k=1

αk x2
k

)−1

(33)

where the number of random variables N = 10, the ten ran-
dom variables were assumed to be statistically independent
and uniformly distributed between −2

√
3 and 2

√
3 (i.e.,

with the means being 0 and standard deviations being 2),
and αk = 1

/
10k , for k = 1, 2, ..., 10. This example was

modified based on the one in Ma and Zabaras (2010). Since
the ratio of the smallest coefficient to the largest one is about
10−9, this mathematical function exhibits highly anisotropic
nonlinearity with only the first few dimensions being impor-
tant. The ADATP method used a relative error threshold
εC = 0.005 and the piecewise multi-linear basis functions.
The results in Fig. 5 suggest that, regarding the L2 error
decay (see Fig. 5a), the ADDR method performs better than
any of the HDMR and ADATP methods and, regarding
the PDF approximation (see Fig. 5b), the ADDR method
yielded an almost identical PDF approximation compared
to the HDMR method and a more accurate PDF approxi-
mation compared to the ADATP method but with much less
collocation points than both methods. Table 4 compares the
number of component functions as well as the number of
function evaluations used in the ADDR and second-order
HDMR method. It can be seen that the ADDR method built

much less component functions and thus required much less
function evaluations than the HDMR method. In fact, due to
the highly anisotropic weights (only the first three dimen-
sions are regarded as important), the ADDR method only
built a few important component functions at the second
decomposition order, i.e., {1,2}, {1,3} {2,3}, and only one
important component function {1,2,3} at the third decom-
position order. In contrast, the HDMR method evaluated all
the component functions at the second decomposition order
and is expected to evaluate all the component functions at
the third- and higher-orders. Overall speaking, the ADDR
method is capable of significantly enhancing the efficiency
of the HDMR method without any loss of accuracy for
cases where only a few low-order component functions are
sufficient to approximate the performance function with a
good accuracy, as shown in this example.

4.4 Ten-bar truss structure: linear elastic reliability

This example considers a linear-elastic, 10-bar truss struc-
ture (see Fig. 6) to demonstrate the accuracy and efficiency
of the proposed method for reliability analysis. The truss
structure is supported at nodes 5 and 6, and is subjected to
two vertical loads with the magnitudes 105 lb at nodes 2 and
4. The Young’s modulus of the truss material is assumed
to be 107 psi. The random variables are ten cross-sectional
areas [x1, x2, ..., x10] for each bar, which follow normal

Table 4 Comparison of the ADDR, ADD and HDMR methods for
example III

Method No. component No. function εL2

functions evaluations

ADDR (γC = 0.001) 15 213 4.26E–6

HDMR (p = 2) 56 401 4.95E–6
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Fig. 6 A ten-bar truss structure

distributions with means μ = 2.5 in2 and standard devia-
tions σ = 0.5 in2. We consider the maximum displacement
u2 at node 2 for reliability analysis. The performance
function is defined as (Wei and Rahman 2007)

g (x) = U2 (x1, x2, . . . , x10) − 18 (34)

The ADATP method which solve each component func-
tion selected by the ADDR method used a relative error
threshold εC = 0.005 and the cubic Lagrange splines as
the hierarchical interpolation basis functions. The Gaussian
Hermite quadrature was employed to compute the first-
order moment of any interpolation basis function accord-
ing to (22). Table 5 summarizes the uncertainty analysis
results of the ADDR method with comparison to the MCS,
FORM and SORM. To reflect the variation in the probabil-
ity estimate by MCS, we computed the error bounds with a
95 % confidence level. The error bound with a 100(1-α)%
confidence can be computed as (Law and Kelton 1982)

εS = z1−α/2

√
P (1 − P)

NS
(35)

where z1−α/2 is the 100(1−α/2)th percentile of the stan-
dard normal distribution, P is the probability estimate by
MCS and NS is the number of MCS samples. For a 95 %
confidence level, α = 0.05 and z1−α/2 = 1.96. As can be

Table 5 Reliability analysis results for the ten-bar truss example

Method Pr(g < 0) No. function

evaluations

ADDR (γC = 0.1) 0.864871 101

MCS 0.860221 (±0.000680a) 1,000,000

FORM 0.913755 55

SORM 0.871424 100

aError bounds computed with a 95 % confidence level

Table 6 Input random variables for the lower control A-arm example

Component Distri. type Mean (in) Std. dev. (in)

x1 Normal 0.157 0.006

x2 Normal 0.183 0.006

x3 Normal 0.178 0.009

x4 Normal 0.200 0.007

x5 Normal 0.312 0.013

x6 Normal 0.250 0.009

x7 Normal 0.200 0.007

x8 Normal 0.201 0.009

seen from Table 6, the ADATP method produced more accu-
rate reliability estimates than the FORM and SORM. This
is due to a more accurate performance function approxima-
tion by the ADDR method than by the FORM and SORM.
Regarding the efficiency, the ADDR method requires more
function evaluations than the FORM but comparable func-
tion evaluations to the SORM. The PDF approximations by
the MCS and the ADDR method are compared in Fig. 7,
where we observe a fairly good agreement between the two
approximations.

4.5 Lower control A-arm: nonlinear fatigue reliability

Vehicle suspension systems experience intense loading con-
ditions throughout their service lives. Control arms act as
the backbone of the suspension system, through which
the majority of these loads are transmitted (Youn et al.
2007). Therefore, it is crucial that the fatigue life of con-
trol arms be high enough to fulfill the design requirement.
A HMMWV lower control-arm was employed to conduct
fatigue reliability analysis using the ADDR method.

The simulation consists of three steps. Firstly, we mod-
eled the lower control-arm with plane stress elements using
54,666 nodes, 53,589 elements, and 327,961 DOFs, where

Fig. 7 PDF approximations for the ten-bar truss example
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Fig. 8 Stress contours for load
case 2 (a) and load case 8 (b)

(a) (b) 

all welds were modeled using rigid beam elements. Hyper-
Works 8.0 was used for finite element modeling and design
parameterization. Secondly, we used ANSYS 10.0 to con-
duct stress analyses for 14 load cases at four joints of the
A-arm: a ball joint, a spring-damper joint and front and rear
pivot bushing joints, respectively. The stress contours for
two loading cases are shown in Fig. 8. Lastly, we employed
the fe-safe 5.0 to carry out durability analyses based on the
dynamic stress results from ANSYS. A preliminary durabil-
ity analysis was executed in fe-safe to estimate the fatigue
life of the HMMWV A-Arm and to predict the critical
regions that experience a low fatigue life. For this prelim-
inary durability analysis, the fatigue life for crack initiation
was calculated using the equivalent von Mises stress-life
approach at all surface nodes of the mechanical compo-
nent (i.e., A-arm) in order to predict the critical regions.
More accurate durability analysis was then carried using
the strain-life method at the selected critical regions of the
A-arm that experience short life spans.

This study treated the thicknesses of the eight major com-
ponents of the control arm (see Fig. 9) as random input
variables. The statistical information of these random vari-
ables is summarized in Table 7. From a worst-case scenario
analysis, we identified one hotspot with the smallest fatigue
life at the rear pivot bushing joint and selected this hotspot
for fatigue reliability analysis. In this study, the fatigue reli-
ability is defined as R = Pr

(
L > Lt

)
, where Lt denotes

x3

x4

x5

x7

x6

x1

x2

Fig. 9 Seven thickness variables (x8 not shown)

the target fatigue life. Thus, the system performance func-
tion can be expressed as g = Lt − L , the computation of
which relies on the aforementioned finite element simula-
tion (ANSYS for stress analysis and fe-safe for durability
analysis).

The ADDR method used εC = 0.01 as the relative
error threshold and the cubic Lagrange splines as the hier-
archical interpolation basis functions for the component
function construction with the ADATP method. The fatigue
reliability at the selected hotspot was evaluated with the
ADDR method which allows for a stochastic response sur-
face approximation from a small number of deterministic
finite element and fatigue analyses through the construction
of an explicit hierarchical interpolation formula with respect
to the random inputs. Conducting the MCS on the explicit
interpolation formula gives the full probability information
(i.e., moments, reliability and PDF) of the fatigue life. For
benchmarking, we carried out a direct MCS with 1,000
random samples. The error decay pathway of the ADDR
method and the PDF approximations by the ADDR method
and MCS are shown in Fig. 10a and b, respectively. We can
observe fast error decay in Fig. 10a and a good agreement
between the PDF approximations by the ADDR method
and MCS in Fig. 10b. The uncertainty analysis results are

Table 7 Uncertainty analysis results for the lower control A-arm
example

ADDR MCS

Mean (blocks) 2.8819E+6 2.8866E+6

Std. dev. (blocks) 1.1318E+6 1.1612E+6

Skewness 8.8198E–1 1.2608E+0

Kurtosis 3.9938E+0 5.8083E+0

R = Pr
(
L > 2.5 × 106

)
0.579 0.573 (±0.031a)

R = Pr
(
L > 2.0 × 106

)
0.762 0.774 (±0.026a)

R = Pr
(
L > 1.5 × 106

)
0.921 0.930 (±0.016a)

R = Pr
(
L > 1.0 × 106

)
0.994 0.993 (±0.005a)

No. FE 45 1,000

aError bounds computed with a 95 % confidence level
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Fig. 10 Error decay pathway
(a) and PDF approximation (b)
of the ADDR method for the
lower control A-arm example

(a) (b) 

summarized in Table 7, where the ADDR method produced
good accuracy for low (between 0.50 and 0.60), moderate
(between 0.70 and 0.80), high (between 0.90 and 0.95) and
very high (above 0.99) reliability levels. At all four reliabil-
ity levels, the ADDR reliability estimates fall into the 95 %
confidence intervals of the corresponding MCS reliability
estimates.

5 Conclusion

This paper proposes an adaptive dimension decomposi-
tion and reselection (ADDR) method for efficient high-
dimensional reliability analysis involving high nonlinear-
ity. The contributions of the ADATP method are three-
fold, namely an adaptive dimension decomposition and
reselection scheme to automatically detect the potentially
important component functions and adaptively reselect the
truly important ones, a test error indicator to quantify the
importance of potentially important component functions
for dimension reselection, and an integration of the newly
developed asymmetric dimension-adaptive tensor-product
(ADATP) method into the adaptive scheme to build the
resulting component functions.

Results from high-dimensional mathematical and engi-
neering problems suggest that the proposed ADDR method
achieves better accuracy and efficiency than the HDMR and
ADATP methods for performance functions with only a part
of low-order component functions (up to the third-order)
being significant. We note that, the responses of most practi-
cal engineered systems belong to the aforementioned cases
with only low-order interactions of the random input vari-
ables being important, thus implying the potentially wide
application of the proposed method. Among the state-of-
the-art adaptive HDMR methods, the ADDR method, to
the best of our knowledge, builds the minimum number of
component functions for an accurate representation of the

performance function. This supreme performance can be
attributed to the adaptive dimension selection and reselec-
tion scheme to select potentially important dimensions and
reselect truly important dimensions with virtually no extra
cost.

However, we also note that, if a performance function
is greatly influenced by high-order interactions of random
input variables which are even stronger than lower-order
interactions, the HDMR method as well as the ADDR
method is no longer attractive. For the extremely case where
all 2N component functions must be used, we cannot gain
any benefit by decomposing the performance function in a
dimension-wise manner.
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