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a b s t r a c t

Reliability analysis plays an essential role in the development of structural systems. However, commonly
used reliability analysis methods suffer from either the curse of dimensionality or the lack of accuracy in
many structural problems. This paper presents an asymmetric dimension-adaptive tensor-product
(ADATP) method to resolve the difficulties of existing reliability analysis methods. The proposed method
leverages three ideas: (i) an asymmetric dimension-adaptive scheme to efficiently build the tensor-
product interpolation considering both directional and dimensional importance, (ii) a hierarchical inter-
polation scheme using either piecewise multi-linear basis functions or cubic Lagrange splines, (iii) a
hierarchical surplus as an error indicator to automatically detect the highly nonlinear regions in a random
space and adaptively refine the collocation points in these regions. The proposed method has three dis-
tinct features for reliability analysis: (a) automatically detecting and adaptively reproducing tri- and
higher-variate interactions, (b) greatly alleviating the curse of dimensionality, and (c) no need of response
sensitivities. Several mathematical and engineering problems involving high nonlinearity are used to
demonstrate the effectiveness of the ADATP method.

� 2011 Elsevier Ltd. All rights reserved.
1. Introduction

In the past few decades, reliability analysis has been widely rec-
ognized as of great importance in the development of structural
systems. Hence, various methods have been developed to assess
the structural reliability while taking into account various
uncertainty sources (e.g., material properties, loads, geometric
tolerances). In order to formulate reliability analysis in a mathe-
matical framework, random variables are often used to model
uncertainty sources in structural systems. Reliability analysis can
then be formulated as a multi-dimensional integration of a struc-
tural response function over a safety region

R ¼
Z

XS
f ðxÞdx ð1Þ

where R denotes the structural reliability; f(x) denotes the joint
probability density function (PDF) of the vector of random vari-
ables; x = (x1, x2, . . ., xN)T models uncertainty sources such as mate-
rial properties, loads, geometric tolerances; the safety domain OS is
defined by the limit-state function as OS = {x: g(x) < 0}; g(x) is a
structural performance function.

In practice, however, it is extremely difficult to perform the
multi-dimensional numerical integration when the number of ran-
dom variables is relatively large. The search for efficient computa-
tional procedures to estimate the reliability has resulted in a
ll rights reserved.
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variety of numerical and simulation methods such as the first- or
second-order reliability method (FORM/SORM) [1–3,11], direct or
smart Monte Carlo simulation (MCS) [7–10,37], dimension reduc-
tion (DR) method [5,6,16], stochastic spectral method
[4,12,14,15], and stochastic collocation method [18–31].

Among many reliability analysis methods, the first- or second-
order reliability method (FORM or SORM) is most commonly used.
The FORM/SORM uses the first- or second-order Taylor expansion
to approximate a limit-state function at the most probable failure
point (MPP) where the limit-state function separates failure and
safety regions of a product (or process) response. Some major chal-
lenges of the FORM/SORM include (i) it is very expensive to build
the probability density function (PDF) of the response and (ii)
structural design can be expensive when employing a large num-
ber of the responses.

The direct or smart MCS provides an alternative way for multi-
dimensional integration [7–10,37]. Although the direct MCS [7]
produces accurate results for reliability analysis and allows for rel-
ative ease in the implementation, it demands a prohibitively large
number of simulation runs. Thus, it is often used for the purpose of
a benchmarking in reliability analysis. To alleviate the computa-
tional burden of the direct MCS, researchers have developed vari-
ous smart MCS methods, such as the (adaptive) importance
sampling methods [8–10] and the enhanced MCS method with
an optimized extrapolation [37]. Despite the improved efficiency
than the direct MCS, these methods are still computationally
expensive.

http://dx.doi.org/10.1016/j.strusafe.2011.03.004
mailto:bdyoun@snu.ac.kr
http://dx.doi.org/10.1016/j.strusafe.2011.03.004
http://www.sciencedirect.com/science/journal/01674730
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Nomenclature

ek kth unit vector
eþ=�k kth directional unit vector
i multi-index
g performance function
l interpolation level
M number of collocation points
N number of input random variables
x vector of input random variables
ADATP asymmetric dimension-adaptive tensor-product
BDR bivariate dimension reduction

DI directional index
DR dimension reduction
DSG directional sparse grid
FORM first order reliability method
MCS Monte Carlo simulation
PCE polynomial chaos expansion
PDF probability density function
SORM second-order reliability method
UDR univariate dimension reduction
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Recently, the dimension reduction (DR) method [5,6] has been
proposed and is known to be a sensitivity free method for reliabil-
ity analysis. This method uses an additive decomposition of a re-
sponse that simplifies one multi-dimensional integration to
multiple one- or two-dimensional integrations. The eigenvector
dimension reduction (EDR) method [16] improves numerical effi-
ciency and stability of the univariate dimension reduction (UDR)
method with the ideas of eigenvector samples and stepwise mov-
ing least squares method with no extra expense. Results of the DR-
family methods are given in the form of statistical moments. To
further predict the reliability or PDF of the response, PDF genera-
tion techniques must be involved, which could increase numerical
error in reliability prediction. Furthermore, performance functions
with strong tri- and higher-variate interactions among random in-
puts require tri- and higher-variate dimension decompositions for
accurate reliability analysis [6]. In such cases, the computational
effort could become prohibitively large for high input dimensions,
thus making the decomposition strategy infeasible.

The stochastic spectral method [4] is an emerging technique for
reliability analysis of complex engineering problems. This method
uses a number of response samples and generates a stochastic re-
sponse surface approximation with multi-dimensional polynomi-
als over a random space. Once the explicit response surface is
constructed, MCS is often used for reliability analysis due to its
convenience. The most popular stochastic spectral method is the
polynomial chaos expansion (PCE) method. The original Hermite
polynomial chaos basis was proposed by Wiener [14] for modeling
stochastic responses with Gaussian input random variables. Xiu
and Karniadakis [15] extended the method under the Askey poly-
nomial scheme to non-Gaussian random variables (e.g., Gamma,
Uniform, and Beta). For the estimation of a small failure probabil-
ity, shifted and windowed Hermite polynomial chaos were pro-
posed to enhance the accuracy of a response surface in the
failure region [12]. Although the PCE method is considered to be
accurate, the primary drawback of the method is the curse of
dimensionality, which substantially increases the computational
cost as the number of random variables increases. As demonstrated
by Lee [17], the implementation of the PCE method becomes incon-
venient in structural design practice since the PCE order cannot be
predetermined for black-box-type problems.

The stochastic collocation (SC) method is another stochastic
expansion technique that approximates a multi-dimensional ran-
dom function using function values given at a set of collocation
points. A comparison between the SC and PCE methods for uncer-
tainty quantification (UQ) was discussed in [30], where the SC
method was reported to consistently outperform the PCE method.
In the SC method, the great improvement in reducing the curse of
dimensionality in numerical integration was accomplished by
Smolyak [18], who introduced the concept of the sparse grid. Since
then, the sparse grid has been applied to high dimensional integra-
tion [19] and interpolation [20], UQ in reliability analysis [30] and
design [31], and PDEs with deterministic inputs [21] and random
inputs [22–24]. Compared to a full grid, the sparse grid achieves
the same accuracy level for integration and interpolation but with
a much smaller number of collocation points. Recently, the so
called dimension-adaptive tensor-product (DATP) quadrature
method introduced the concept of the generalized sparse grid
and considered the dimensional importance indicated by an error
estimator to adaptively refine the collocation points for efficient
multi-dimensional integration [25]. Klimke [26] further developed
this work for hierarchical interpolation by using either piecewise
multi-linear basis functions or Lagrangian polynomials. In this
method, all the dimensions in the random space are not considered
as of equal importance and the adaptive sampling scheme auto-
matically detects the highly nonlinear dimensions and adaptively
refines the collocation points in those dimensions. In [29], a priori
and a posteriori procedures are included to update a weight vector
for different stochastic dimensions, which combines the advanta-
ges of conventional and dimensional-adaptive approaches. As
demonstrated in [27,28], the application of the dimension-adap-
tive tensor-product method in stochastic problems is promising.

Compared to the conventional sparse grid interpolation, the
generalized sparse grid interpolation (i.e., the dimension-adaptive
tensor-product interpolation) achieves a substantially higher con-
vergence rate by detecting important dimensions and placing more
collocation points in those dimensions. In the adaptive sampling,
the dimension-adaptive algorithm considers the dimensional
importance while treating the positive and negative axial direc-
tions in a multi-dimensional cube as of equal importance. In many
engineering applications, however, not only different dimensions
but also two opposite directions (positive and negative) within
one dimension often demonstrate a large difference in response
nonlinearity. In such cases, it is desirable to place more collocation
points in the direction with higher nonlinearity, and the dimen-
sion-adaptive algorithm may not be appropriate. To this end, this
paper presents an asymmetric dimension-adaptive tensor-product
(ADATP) method for structural reliability analysis. The proposed
method leverages three ideas: (i) an asymmetric dimension-
adaptive scheme to efficiently build the tensor-product interpola-
tion considering both directional and dimensional importance,
(ii) a hierarchical interpolation scheme using either piecewise
multi-linear basis functions or cubic Lagrange splines, (iii) a hierar-
chical surplus as an error indicator to automatically detect the
highly nonlinear regions in the random space and adaptively refine
the collocation points in these regions. To facilitate the incorpora-
tion of directional importance in the adaptive interpolation
scheme, the concepts of the directional sparse grid (DSG) and
direction index (DI) are, for the first time, proposed. Instead of
selecting the index with the largest error indicator and imposing
an admissibility test on each forward index, the ADATP method
precedes by selecting all the indices whose error indicators are
greater than a predefined error threshold. More still, a hierarchical
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interpolation scheme using cubic Lagrange splines is first proposed
to eliminate numerical instability of the high-order Lagrange inter-
polation and maintain the smoothness property of the polynomial
interpolation.

This paper is organized as follows. Section 2 reviews, under the
scheme of interpolation, the stochastic collocation methods,
including the conventional sparse grid method and dimensional-
adaptive tensor-product method. Section 3 presents the asymmet-
ric dimension-adaptive tensor-product method and introduces the
hierarchical implementation scheme. The proposed ideas are dem-
onstrated using several case studies in Section 4 and concluded in
Section 5.
2. Review of stochastic collocation methods

Great attention has been paid to the stochastic collocation
method for approximating a multi-dimensional random function
due to its strong mathematical foundation and ability to achieve
fast convergence for interpolation construction. This section re-
views the stochastic collocation methods using the tensor-product
grid, the conventional and generalized sparse grids, and the hierar-
chical interpolation scheme using multivariate hierarchical basis
functions.

In what follows, we will model the N-dimensional real random
variables x = (x1, x2, . . ., xN)T in a complete probability space (X, A,
P), where X is a sample space, A is a r-algebra on X, and P is a
probability measure function P: A? [0,1]. Then the probability
density function (PDF) of the random variable xi defines a
probability mapping fi(xi): Pi ? Rþ, where the support Pi is a
one-dimensional random space of xi. Under the assumption of
statistical independence, the probabilistic characteristics of the
random variables x can then be completely defined by the joint
PDF f(x) = f1(x1)�f2(x2)� � �fN(xN) with the support P = P1�P2� � �PN. If
the assumption of statistical independence does not hold, that
is, the random variables such as fatigue material properties (fati-
gue ductility coefficient and exponent) are statistically dependent,
a copula [38,39] can be employed to select an appropriate depen-
dence structure and formulate a joint CDF of the random variables
based on available input data, which then allows the use of the
Rosenblatt transformation [40] to transform the dependant
random variables into independent standard normal random vari-
ables. A numerical investigation on how to deal with dependant
random variables is provided in the subsequent case study sec-
tion. Since the construction of an interpolation in the stochastic
collocation method often requires a specially bounded support
C = [0,1]N of the random variables x, we first truncate any un-
bounded one-dimensional random space Pi (e.g. in the case of a
Gaussian random variable) to a bounded one C�i = [ci, di] that
achieves a nearly full coverage of Pi and then map any truncated
one-dimensional support [ci, di] to [0, 1], resulting in a bounded
hypercube C = [0, 1]N. Let g(x) denote a smooth, measurable
performance function on (X, A), which can be treated as a one-
to-one mapping between the transformed N-dimensional random
space and one-dimensional space g: [0, 1]N ? R. In general, the
performance function g(x) cannot be analytically obtained, and
the function evaluation of g for a given input x requires an expen-
sive computer simulation. Therefore, it is important to employ a
numerical method for reliability analysis that is capable of pro-
ducing accurate probabilistic characteristics of g(x) with an
acceptably small number of function evaluations.
2.1. Classical stochastic collocation: tensor-product grid

The stochastic collocation method basically approximates
the performance function g using N-dimensional interpolating
functions with performance function values at a finite number of
collocation points H = {xj|xj e C, j = 1, . . ., MT}. Suppose that we
can obtain the performance function value g(xj) at each collocation
point xj. We then aim at building an interpolation or surrogate
model of the original performance function g by using the linear
combinations of these function values g(xj). The sampling process
to construct this interpolation can be accomplished by using
the tensor-product grid, conventional sparse grid based on the
Smolyak algorithm [18], or generalized sparse grid based on the
dimension-adaptive tensor-product algorithm [25]. We begin by
constructing the interpolation with the tensor-product grid, or
the tensor-product of one-dimensional interpolation formulas.

In the one-dimensional case (N = 1), we can construct the fol-
lowing one-dimensional interpolation

UiðgÞ ¼
Xmi

j¼1

ai
j � gðxi

jÞ ð2Þ

with a set of support nodes

Xi ¼ fxi
jjxi

j 2 ½0;1�; j ¼ 1;2; . . . ;mig ð3Þ

where i e N is the interpolation level, ai
j e C([0,1]) the jth interpola-

tion nodal basis functions, xi
j the jth support nodes and mi the num-

ber of support nodes in the interpolation level i. Note that, by
following the descriptions in Refs. [23,26,27], we use the super-
script i to denote the interpolation level during the development
of stochastic collocation methods. Two widely used nodal basis
functions are piecewise multi-linear basis functions and Lagrange
polynomials. Here we will briefly describe the fundamentals of
piecewise multi-linear basis functions. To achieve faster error de-
cay, the Clenshaw–Curtis grid with equidistant nodes is often used
for piecewise multi-linear basis functions [26]. In the case of a uni-
variate interpolation (N = 1), the support nodes are defined as

mi ¼
1 if i ¼ 1
2i�1 þ 1; if i > 1

�

xi
j ¼

j�1
mi�1 for j ¼ 1; . . . ;mi if mi > 1

0:5 for j ¼ 1; . . . ;mi if mi ¼ 1

( ð4Þ

The resulting set of the points fulfill the nesting property
Xi � Xi+1 that is very useful for the hierarchical interpolation
scheme detailed later. Then the univariate piecewise multi-linear
basis functions, supported by the Clenshaw–Curtis grid, can be ex-
pressed as [26]

ai
j ¼ 1 for i ¼ 1

ai
j ¼

1� ðmi � 1Þ � jx� xi
jj; if jx� xi

jj < 1=ð1�miÞ
0; otherwise

(
ð5Þ

for i > 1. More detailed information on the one-dimensional inter-
polation can be found in [26].

Applying a sequence of formulas in Eq. (2) on the original per-
formance function g in a nested form for all N dimensions, we
can easily derive the tensor-product of multiple one-dimensional
interpolation formulas as the following multi-dimensional interpo-
lation formula

ðUi1 � � � � � UiN ÞðgÞ ¼
Xm1

j1¼1

� � �
XmN

jN¼1

ðai1
j1
� � � � � aiN

jN
Þ � g xi1

j1
; . . . ; xiN

jN

� �
ð6Þ

where the superscript ik, k = 1, . . ., N, denotes the interpolation level
along the kth dimension, Uik are the interpolation functions with the
interpolation level ik along the kth dimension and the subscript jk,
k = 1, . . ., N, denotes the index of a given support node in the kth
dimension. The number of function evaluations required by the ten-
sor-product formula reads

MT ¼ m1 �m2 � � � � �mN ð7Þ
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Suppose that we have the same number of collocation points in
each dimension, i.e., m1 = m2 = . . . = mN �m, the total number of
tensor-product collocation points is MT = mN. Even if we only have
three collocation points (m = 3) in each dimension, this number
(MT = 3N) still grows very quickly as the number of dimensions is in-
creased (e.g., MT = 310 	 6 
 104, for N = 10). Thus, we need more
efficient sampling schemes than the tensor-product grid to reduce
the amount of computational effort for the multi-dimensional inter-
polation. The search for such sampling schemes has resulted in
sparse grid methods of which the fundamentals will be briefly
introduced in subsequent sections.

2.2. Smolyak algorithm: conventional sparse grid

Compared to the classical tensor-product algorithm, the Smol-
yak algorithm achieves an order of magnitude reduction in the
number of collocation points while maintaining the approximation
quality of the interpolation by imposing an inequality constraint
on the summation of multi-dimensional indices [18]. This inequal-
ity leads to special linear combinations of tensor-product formulas
such that the interpolation error remains the same as for the ten-
sor-product algorithm.

The Smolyak formulas A(q, N) are special linear combinations of
tensor-product formulas. Using tensor-products of one-dimen-
sional interpolation functions, the Smolyak algorithm constructs
a sparse multi-dimensional interpolation, expressed as [20]

Aq;NðgÞ ¼
X

q�Nþ16jij6q

ð�1Þq�jij �
N � 1
q� jij

� �
� ðUi1 � � � � � UiN ÞðgÞ ð8Þ

where i = (i1, . . ., iN) is the multi-index, and |i| = i1 + . . . + iN. The
above formula indicates that the Smolyak algorithm builds the mul-
ti-dimensional interpolation by considering one-dimensional func-
tions of interpolation levels i1, . . ., iN under the constraint that the
sum of these interpolation levels lies within the range [q � N + 1,
q]. With the incremental interpolant, Di = Ui � Ui-1, U0 = 0, the Smol-
yak formulas can be equivalently written as [20]

Aq;NðgÞ ¼
X
jij6q

ðDi1 � � � � � DiN ÞðgÞ

¼ Aq�1;NðgÞ þ
X
jij¼q

ðDi1 � � � � � DiN ÞðgÞ ð9Þ

The above formulas suggest that the Smolyak algorithm im-
proves the interpolation by utilizing all the previous interpolation
formulas Aq�1,N and the current incremental interpolant with the
order q. If we select the sets of support nodes in a nested fashion
(i.e., Xi � Xi+1) to obtain recurring points (e.g., the Clenshaw–Curtis
grid) when extending the interpolation level from i to i + 1, we only
need to compute function values at the differential grids that are
unique to Xi+1, Xiþ1

D = Xi+1/Xi. In such cases, to build a sparse mul-
ti-dimensional interpolation with the order q, we only need to
compute function values at the nested sparse grid

Hq;N ¼
[
jij6q

ðXi1
D 
 � � � 
 XiN

D Þ ¼ Hq�1;N [ DHq;N

DHq;N ¼
[
jij¼q

ðXi1
D 
 � � � 
 XiN

D Þ
ð10Þ

where DHq,N denotes the grid points required to increase an inter-
polation order from q � 1 to q.

Although the Smolyak algorithm greatly reduces the number of
collocation points for the multi-dimensional interpolation com-
pared to the tensor-product algorithms, there is still possibility of
further reducing the number of function evaluations in cases where
the performance function exhibits different degrees of nonlinearity
in the stochastic dimensions. To achieve such a reduction, one
must adaptively detect the dimensions with higher degrees of non-
linearity and assign more collocation points to those dimensions.
This can be accomplished by using the dimension-adaptive ten-
sor-product algorithm, which is detailed in the next subsection.

2.3. Dimension-adaptive tensor-product algorithm: generalized sparse
grid

For a given interpolation level l, the conventional sparse grid re-
quires the index set Il,N = {i ||i| 6 l + N} to build the interpolation
A(l + N, N). If we loosen the admissibility condition on the index
set, we can construct the index set of the generalized sparse grid
[25]. An index set I is called admissible if for all i e I,

i� ek 2 I for 1 6 k 6 N; ik > 1 ð11Þ
Here, ek is the kth unit vector. This admissibility condition still

satisfies the telescopic property of the incremental interpolant
Di = Ui � Ui�1. Thus, we can take advantage of the previous interpo-
lation to construct a better interpolation by just sampling the dif-
ferential grids that are unique to the finer interpolation, as shown
in Eqs. (9) and (10). In each step of the algorithm, an error indicator
is assigned to each multi-index i. The multi-index it with the larg-
est estimated error is selected for an adaptive refinement, since
possibly a larger error reduction can achieved. The admissible indi-
ces in the forward neighborhood of it are added to the index set I.
The forward neighborhood of an index i can be defined as

IFðiÞ ¼ fiþ ek; 1 6 k 6 Ng ð12Þ

In each step, the newly added indices are called active indices
and grouped as an active index set IA, whereas those indices whose
forward neighborhood have been refined are called old indices and
grouped as an old index set IO. The overall index set I comprises of
the active and old index sets: I ¼ IA [ IO. For more details of the
dimension-adaptive algorithm, readers are referred to References
[25] and [26].

It is noted that, in the dimension-adaptive algorithm, the gener-
alized sparse grid construction allows for an adaptive detection of
the important dimensions and thus a more efficient refinement
compared to the conventional sparse grid interpolation [24,25].
However, in engineering practice, not only different dimensions
but also two opposite directions (positive and negative) within
one dimension often demonstrate a large difference in response
nonlinearity. In such cases, it is desirable to place more points in
the direction with higher nonlinearity, and the dimension-adaptive
algorithm may not be appropriate for this purpose.

2.4. Hierarchical interpolation scheme using multivariate hierarchical
basis functions

For the dimension-adaptive interpolation, the hierarchical
interpolation scheme provides a more convenient way for error
estimation than the nodal interpolation scheme [26]. Here, we
start with the derivation of hierarchical interpolation formulae in
the case of the univariate interpolation, which takes advantage of
the nested characteristic of grid points (i.e., Xi � Xi+1). Recall the
incremental interpolant in Section 2.2, Di = Ui � Ui�1. Based on
Eq. (2) and Ui�1(g) = Ui(Ui�1(g)), we can write [26]

DiðgÞ ¼ UiðgÞ � UiðUi�1ðgÞÞ

¼
X
xi

j
2Xi

ai
j � gðxi

jÞ �
X
xi

j
2Xi

ai
j � U

i�1ðgÞðxi
jÞ

¼
X
xi

j
2Xi

ai
j � ðgðxi

jÞ � Ui�1ðgÞðxi
jÞÞ ð13Þ

Since for all xj
i e Xi�1, g(xj

i) � Ui�1(g)(xi
j) = 0, and Eq. (13) can be

rewritten as

DiðgÞ ¼
X

xi
j
2Xi

D

ai
j � ðgðxi

jÞ � Ui�1ðgÞðxi
jÞÞ ð14Þ
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Since Xi � Xi+1, the number of grid points in Xi
D reads

mi
D ¼ mi �mi�1 ð15Þ

By denoting the jth element of Xi
D by xi

j, Eq. (14) can be rewritten
as

DiðgÞ ¼
Xmi

D

j¼1

ai
j � ðgðxi

jÞ � Ui�1ðgÞðxi
jÞÞ|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}

wi
j

ð16Þ

Here, wi
j is defined as the hierarchical surplus, which indicates

the interpolation error of a previous interpolation at the node xi
j

of the current interpolation level i. The bigger the hierarchical sur-
pluses, the larger the interpolation errors. For smooth performance
functions, the hierarchical surpluses approach zero as the interpo-
lation level goes to infinity. Therefore, the hierarchical surplus can
be used as a natural candidate for error estimation and control
[26]. Fig. 1 shows the comparison between the hierarchical and
nodal basis functions with piecewise linear spline and Clenshaw–
Curtis grid [26]. Fig. 2 illustrates the comparison between the
hierarchical and nodal interpolation. Based on the Smolyak
formula in Eq. (9), a multivariate hierarchical interpolation formula
can be obtained as [26]

Aq;NðgÞ ¼ Aq�1;NðgÞ þ DAq;NðgÞ

¼ Aq�1;NðgÞ þ
X
jij¼q

X
j


 ðai1
j1
� � � � � aiN

jN
Þ|fflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflffl}

ai
j

� ðgðxi1
j1
; � � � ; xiN

jN
Þ � Aq�1;NðgÞðxi1

j1
; � � � ; xiN

jN
ÞÞ|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}

wi
j

ð17Þ
Points = 17 Points = 17

Fig. 3. Conventional (a) and directional (b) index sets in 2D. Top row: index sets
including (1, 3) and (1+, 3+) denoted by �, (2, 2) and (2+, 2+) denoted by O, (4, 1) and
(4+, 1+) denoted by h. Bottom row: corresponding collocation points.
3. Asymmetric dimension-adaptive tensor-product method

As an attempt to enhance the adaptive feature of the dimen-
sion-adaptive algorithm, we, for the first time, introduce the con-
cept of the directional sparse grid (DSG) which allows for the
considerations of both directional and dimensional importance.
Furthermore, a hierarchical interpolation scheme using cubic
Lagrange splines is proposed for eliminating numerical inaccuracy
of the high-order Lagrange interpolation as well as maintaining the
smoothness property of the polynomial interpolation. The hierar-
chical ADATP interpolation and UQ and reliability analysis using
the proposed ADATP method will also be presented in subsequent
sections.

3.1. Directional sparse grid (DSG)

For the construction of the directional sparse grid (DSG), a con-
ventional index i in the case of the univariate interpolation is
decomposed into positive and negative directional index (DI) sets
as

ID ¼ fiþ; i�g ð18Þ

where the positive DI i+ corresponds to the DSG which belong to the
index i and whose values are greater than the value (0.5) of the cen-
ter grid point, and the negative DI i� corresponds to the DSG which
belong to the index i and whose values are smaller than 0.5. For the
multivariate case (N > 1), we obtain a tensor-product formula of DI
sets for a multi-index i as

ID ¼ ID
1 
 � � � 
 ID

N ð19Þ

where ID
k = {iþk , i�k }, 1 6 k 6 N. Here, the forward neighborhood of a

multi-dimensional DI id e ID is defined as the N indices {id + eþ=�k },
1 6 k 6 N, and the sign of kth directional unit vector eþ=�k is the
same with that of the kth index element id

k (iþk or i�k ) of id. If id
k is

equal to 1, i.e., the corresponding collocation point is located at
0.5, both the positive and negative directional unit vectors are em-
ployed to obtain the forward neighborhood in that dimension. Fig. 3
shows the conventional multi-index and the proposed DI for a 2D
interpolation with the same set of the collocation points. From this



Table 1
Procedure of the proposed ADATP interpolation.

STEP 1 Set an initial interpolation level l (q � N) = 0; set the initial old
index set IO = Ø and the initial active index set IA = {i}, where the
initial active DI i = (1, . . ., 1) is the center point (0.5, . . ., 0.5); set an
initial relative error indicator er(i) = 1

STEP 2 Select a trial index set IT (from IA) with the error indicator greater
than a relative error threshold value eC; move the active index set
IA to the old index set IO. If IT = Ø, go to STEP 7

STEP 3 Select and remove the trial index it with the largest error indicator
from IT; if none, go to STEP 6. If the number of the collocation
points M exceeds the maximum number Mmax, go to STEP 7

STEP 4 Generate the forward neighborhood IF of it and add IF to the active
index set IA

STEP 5 Compute the hierarchical surplus of each new added point based
on the collocation points in the old index set and compute the
error indicator of each active index. Go to STEP 3.

STEP 6 Set an interpolation level l = l + 1 and go to STEP 2
STEP 7 Construct an explicit interpolation ĝ of the performance function g
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figure, it is observed that the proposed DI divides the conventional
index space into the four quadrants. In subsequent sections, it will
be seen that this division allows for an adaptive refinement of the
collocation points in these quadrants. In general, it is noted that
the DI divides the conventional multi-index space into 2N N-hype-
roctants for more precise refinement.

3.2. Hierarchical interpolation scheme using cubic Lagrange splines

For the dimension-adaptive interpolation, the hierarchical
interpolation scheme provides a more convenient way for the error
estimation than the nodal interpolation scheme. In the case of sin-
gularities or discontinuities in the random space, the piecewise
multi-linear basis function provides a strong local support for the
adaptive algorithm. The detailed information regarding the selec-
tion of grid type and numerical scheme can be found in [26]. The
Clenshaw–Curtis grid with equidistant nodes is recommended for
piecewise multi-linear basis functions and is thus utilized in the
ADATP method. In the case of a smooth function, the polynomial
interpolation provides a faster error decay with increasing num-
bers of grid points than the piecewise multi-linear interpolation.
However, the high-order Lagrange interpolation may give an inac-
curate estimation of the performance function between collocation
points due to severe oscillation, especially when the grid points are
asymmetrically distributed with respect to the center point. To
avoid this numerical inaccuracy and take advantage of the polyno-
mial interpolation, a hierarchical interpolation scheme using cubic
Lagrange splines is proposed for the ADATP method.

3.3. Choice of sparse grid type

For the Lagrange interpolation, it is known that the Chebyshev–
Gauss–Lobatto grid is a good choice due to its Chebyshev-based
node distribution and its nesting characteristic [26]. However, this
type of grid may not be appropriate for local adaptivity without a
global support provided by Lagrange polynomials. In contrast, the
Clenshaw–Curtis grid with equidistant nodes is more suitable for
a local support provided by the cubic Lagrange spline function. In
addition, it possesses the nesting characteristic. Thus, we propose
to use the Clenshaw–Curtis grid as collocation points. In the case
of a univariate interpolation (N = 1), the support nodes are defined
in Eq. (4). As mentioned earlier, the resulting set of the points fulfill
the nesting property Xi � Xi+1, and therefore Hq�1,N � Hq,N.

3.4. Univariate nodal basis functions

The interpolation for smooth functions can be improved by
replacing piecewise multi-linear basis functions by cubic Lagrange
splines. The univariate nodal basis functions for cubic Lagrange
splines can be expressed as [32]

ai
j ¼ 1 for i ¼ 1

ai
j ¼

Qjþ2

l¼j�1
l–j

x�xi
l

xi
j
�xi

l
if x 2 ½xi

j; x
i
jþ1�; j ¼ 2; . . . ;mi � 2

Qjþ2

l¼jþ1

x�xi
l

xi
j
�xi

l
if x 2 ½xi

j; x
i
jþ1�; j ¼ 1

Qjþ1

l¼j�1
l–j

x�xi
l

xi
j
�xi

l
if x 2 ½xi

j; x
i
jþ1�; j ¼ mi � 1

0 otherwise

8>>>>>>>>>>>>><
>>>>>>>>>>>>>:

ð20Þ

for i > 1. In Eq. (20), the function value at endpoint xi
j, j = 1, mi, is not

given. Then the polynomial on the interval [xi
2, xi

3] is extended to the
interval [xi

1, xi
2] and the polynomial on the interval [xi

mi�2, xi
mi�1] to

the interval [xi
mi�1, xi

mi]. We observed that these extensions caused
negligible sacrifice of the interpolation accuracy on the intervals
[xi

1, xi
2] and [xi

mi�1, xi
mi].

3.5. Asymmetric dimension-adaptive tensor-product (ADATP)
interpolation

Based on the proposed concepts of the DI and DSG, the overall
procedure of the ADATP interpolation is briefly summarized in
Table 1. The relative error indicator used in the interpolation
scheme can be defined for a DI i (see Fig. 3b) as

erðiÞ ¼
1

ðgmax � gminÞMi

X
j

jwi
jj ð21Þ

where wi
j are the hierarchical surpluses of the collocation points

Xi ¼ Xi1
D 
 � � � 
 XiN

D , with j = (j1, . . ., jN), jk ¼ 1; . . . ;mik
D , 1 6 k 6 N,

and Mi ¼ mi1
D �m

i2
D � � � � �m

iN
D . It is noted that, for simplicity, we use

i = (i1, . . ., iN) instead of id = (id
1, . . ., id

N) to denote a multi-dimensional
DI and that the term ‘‘index’’ in the description of the ADATP meth-
od refers to the DI. The pseudo code for the ADATP algorithm is gi-
ven in the Appendix A. Under the proposed scheme of asymmetric
sampling, we expect that the error decay be at least as fast as that of
the dimension-adaptive tensor-product interpolation.

3.6. Uncertainty quantification (UQ) and reliability analysis

Once the asymmetric dimension-adaptive sampling procedure
is completed, an approximate function ĝ of the original perfor-
mance function g can be obtained by interpolation using hierarchi-
cal basis functions at collocation points. Thus, any probabilistic
characteristics of g(x), including statistical moments, reliability,
and PDF, can be easily estimated by performing MCS. For example,
any rth moment can be calculated as

br ffi
Z

ĝrðxÞf ðxÞdx ¼ EðĝrðxÞÞ ¼ lim
ns!1

1
ns

Xns

j¼1

ĝrðxjÞ ð22Þ

where br is the rth moment of the performance function g(x); f(x) is
the joint PDFs; xj is the jth realization of x; and ns is the sampling
size. For reliability estimation, let us define an approximate safe do-
main for the performance function g as

X̂S ¼ fx : ĝðxÞ < 0g ð23Þ

Therefore, the reliability R can also be estimated by performing
MCS as

R ffi
Z

IX̂S ðxÞf ðxÞdx ¼ EðIX̂S ðxÞÞ ¼ lim
ns!1

1
ns

Xns

j¼1

IX̂S ðxjÞ ð24Þ
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where I[�] is an indicator function of safe or fail state such that

IX̂S ðxjÞ ¼
1; xj 2 X̂S

0; xj 2 X n X̂S

(
ð25Þ

It should be noted that the MCS performed here employs the ex-
plicit interpolation ĝ instead of the original performance function g
and is thus inexpensive. We also note that the way of approximat-
ing the response function over the entire (truncated) input domain
allows for the derivation of any probabilistic characteristics (e.g.,
statistical moments, reliability, and PDF) based on the same set
of collocation points and can be used for design problems that re-
quire both moment estimation and reliability analysis such as reli-
ability-based robust design optimization [43–45].

3.7. Remarks

Several important remarks regarding the properties of the
ADATP method are listed as follows.

3.7.1. Remark 1 – potential benefits
In the proposed method, the DI divides the conventional multi-

index space into 2N N-hyperoctants, thus enabling asymmetric
refinements among these hyperoctants. Therefore, for a perfor-
mance function with unequal degrees of nonlinearity in 2N N-hype-
roctants, the ADATP method is expected to outperform the DATP
method in terms of efficiency.

3.7.2. Remark 2 – determination of an interpolation domain
It is noted that when the random space P is unbounded, e.g. in

the case of Gaussian random variables, we need to truncate it to a
bounded one C that achieves a nearly full coverage of the original
random space P. Without loss of generality, we consider the case
of N-dimensional independent standard Gaussian random vector
x, the probability that a realization of the original random space
P belongs to the truncated random space C� = [�k, k]N can be ex-
pressed as

PðC�jPÞ ¼
Z

IC� ðxÞf ðxÞdx ¼ lim
ns!1

1
ns

Xns

j¼1

IC� ðxjÞ

¼ ½UðkÞ �Uð�kÞ�N ð26Þ

In the current study, we used k = 3.5, which, for example, gives
P(C⁄|P) = 0.9954 for N = 10. We note that the truncation has a neg-
ative effect on the accuracy of reliability analysis, especially for
problems with small numbers of random variables (i.e., small N
in Eq. (26)) and low probabilities of failure, and that the truncated
interpolation domain for a specific problem should be carefully
determined based on the understanding of this problem. More con-
servative criteria may guarantee higher accuracy but creates a lar-
ger interpolation domain that requires more computational effort.
Since the goal in this work is to develop an asymmetric interpola-
tion scheme for uncertainty qualification and reliability analysis,
this paper does not address the issues regarding how a choice of
the interpolation domain affects numerical accuracy and efficiency
of reliability analysis and how to achieve an optimum k for a given
problem.

3.7.3. Remark 3 – discretion on an error threshold
We also note that the relative error threshold eC greatly affects

the convergence rate and accuracy of the asymmetric dimension-
adaptive sampling. A larger eC leads to faster error decay but re-
sults in a lower level of interpolation accuracy. A zero threshold,
as an extreme case, results in a conventional sparse grid construc-
tion. In the current study, we used eC = 0.10 for most engineering
cases. Under the hierarchical interpolation scheme, eC allows
a user to put a preference between the convergence rate and
accuracy.

4. Case studies

Six mathematical and engineering examples are given in this
section to demonstrate the effectiveness of the ADATP method.
The first two mathematical examples dealt with the response
surfaces with asymmetric nonlinearity, which were designed to
compare the performances of the ADATP and DATP methods for
interpolation. The third mathematical example and subsequent
three engineering examples were used for studying the computa-
tional accuracy and efficiency of the proposed method for UQ
and reliability analysis.

4.1. Mathematical example I: response surface with line singularity

Consider a mathematical function

gðxÞ ¼ 1
j0:25� x2

1 � x2
2j þ 0:1

ð27Þ

where the two random variables were assumed to be statistically
independent and uniformly distributed between 0 and 1. It is noted
that, for notational convenience, we use the notation xk instead of xk

to denote the kth random variable for k = 1, . . ., N in this section.
This modified function from [21] shows a line singularity in the
third quadrant of the square X = [0,1]2. We further defined the
interpolation error eI as

eI ¼ max
j¼1;...;ns

jgðxjÞ � ĝðxjÞj ð28Þ

where ns denotes the number of Monte Carlo samples for inter-
polation and was set to 1,000,000 in this example. A relative error
threshold eC = 0.10 was used in the ADATP method. Fig. 4 illustrates
the error decay and PDF approximations of the DATP and ADATP
methods, both of which, for comparison purpose, employed the
piecewise multi-linear basis functions e as the hierarchical basis
functions and the Clenshaw–Curtis grid as the grid type. It should
be noted that, since the ADATP and DATP methods employ differ-
ent schemes for generating new collocation points, the numbers
of collocation points achieved by both methods could be different.
However, a meaningful comparison can still be carried out by
observing a general trend of error decay. In Fig. 4a, the ADATP
method shows faster error decay and more accurate PDF approxi-
mation, compared to that of the DATP method. This is because the
ADATP method identified high nonlinearity in the third quadrant
and adaptively added collocation points to the quadrant region
(see the shaded region in Fig. 5a) while the DATP method treated
all quadrants as of equal importance and thus assigns points
equally to all quadrants (see Fig. 5b). This example verifies that,
for a performance function with unequal degrees of nonlinearity
in 2N N-hyperoctants, the ADATP method is more efficient than
the DATP method.

4.2. Mathematical example II: smooth response surface

Consider a mathematical function

gðxÞ ¼ sinhðpð1� x1ÞÞ sinðpx2Þ
sinhðpÞ ð29Þ

where the two random variables were assumed to be statisti-
cally independent and uniformly distributed between 0 and 1. This
smooth function from [21] demonstrates higher nonlinearity in the
second and third quadrants of the square [0,1]2. A relative error



Fig. 4. Error decay (a) and PDF approximations (b) of the DATP and ADATP methods for example I.

Fig. 5. Collocation points of the ADATP method (M = 68) (a) and the DATP method (M = 73) (b) for example I.

Fig. 6. Error decay (a) and PDF approximation (b) of the DATP and ADATP methods for example II.
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threshold eC = 0.10 was used in the ADATP method. Fig. 6 illustrates
the error decay and PDF approximation of the DATP and ADATP
methods, both of which employed the piecewise multi-linear basis
functions as the hierarchical basis functions and the Clenshaw–
Curtis grid as the grid type. The ADATP method required only 33
points to achieve the error level around 0.0203, while the DATP
method required 73 points to achieve approximately the same
error level. Besides, the ADATP method gives more accurate PDF
approximation, especially around the left bound. This is due to
the fact that the ADATP method identified high nonlinearity in



Fig. 7. Collocation points of the DATP method (M = 33) (a) and the ADATP method (M = 33) (b) for example II.
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the second and third quadrants and adaptively added collocation
points to the quadrant regions (see the shaded regions in Fig. 7a),
while the DATP method treated all quadrants as of equal impor-
tance and thus assigns points equally to all quadrants (see
Fig. 7b). Thus, this example further verifies that, for problems with
unequal degrees of nonlinearity in 2N N-hyperoctants, the ADATP
method is more efficient than the DATP method.

4.3. Mathematical example III: trivariate interaction

Consider a mathematical function

gðxÞ ¼
XN¼5

k¼1

ðxk � 1Þ2 �
XN¼5

k¼3

xr
kxr

k�1xr
k�2 ð30Þ
Table 2
Moment estimations by the ADATP and dimension reduction methods (L = 1.0).

r Mean (lg) Standard deviation (rg)

UDRa BDRa ADATPa MCSb UDR BDR ADATP MCS

0 0.2946 0.3283 0.3246 0.3336 0.1436 0.2119 0.2738 0.2691
1 4.7588 5.4681 5.3999 5.5650 2.9811 4.4782 5.7853 5.5953
2 5.6486 6.3037 6.2180 6.4028 2.9942 4.4296 5.6848 5.5264
3 5.8516 6.4914 6.4154 6.5855 2.9131 4.3343 5.6112 5.4657

a UDR and BDR required 21 and 181 function evaluations (FEs), respectively;
ADATP required 121 FEs.

b MCS required 1,000,000 FEs at MC sample points.

Fig. 8. Estimates (a) and relative errors (b) of sta
where the five random variables were assumed to be statisti-
cally independent and uniformly distributed between 0 and L.
The proposed ADATP method with eC = 0.10, Mmax = 120 and cubic
Lagrange splines as the hierarchical basis functions was employed
to compute the mean lG and standard deviation rg of g(x). These
two moments were calculated using the UDR and BDR integrations
[6] based on a fully tensorized Gauss–Legendre quadrature tech-
nique [33] with the number of one-dimensional quadrature points
mI = 5. Two cases were considered: (i) Case 1: increasing the trivar-
iate order (r = 0, 1, 2, or 3; L = 1.0); (ii) Case 2: increasing the uncer-
tainty of input random variables (L increases from 0.1 to 1.0; r = 2).
The results for Case 1 were summarized in Table 2. Both the BDR
and ADATP methods provide good approximations of the mean
lg, when compared with the results of MCS for a trivariate order
up to 3. However, the UDR method can not accurately estimate
lg for any trivariate order. Regarding the standard deviation rg,
the ADATP method gives a consistently more accurate estimate,
while both the UDR and BDR methods fail to give sufficiently accu-
rate estimates. The results of rg for Case 2 are plotted in Fig. 8. All
three methods can give a good approximation when the uncer-
tainty (controlled by L) of input random variables is small. How-
ever, as the uncertainty increases, the ADATP method becomes
superior to the UDR and BDR methods. This comparison with the
UDR and BDR methods suggests that the ADATP method is better
in terms of both accuracy and efficiency when the trivariate
interaction is strong as in this problem. The ADATP method outper-
forms the UDR and BDR methods because of the following two rea-
sons: (i) the UDR and BDR methods do not consider trivariate
ndard deviations for increasing values of L.
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interactions; (ii) without an adaptive sampling scheme, the UDR
and BDR methods may unnecessarily assign many uni- or bivariate
sample points in regions with small nonlinearity. Even if we could
resolve the first limitation by increasing S in the S-variate
dimension reduction (DR) technique, the second limitation still
remains unresolved. In fact, it is often difficult or impractical to
predetermine S in the S-variate DR technique. In contrast, the
ADATP method is capable of automatically detecting tri- and high-
er-variate interactions and generating corresponding collocation
points to reproduce the interactions in the interpolation. Therefore,
the ADATP method is distinctively advantageous from the S-variate
dimension reduction (DR) technique.
4.4. Fortini’s clutch: very low and high reliability levels

This example is the Fortini’s clutch, as shown in Fig. 9. This
problem has been extensively used in the field of tolerance design
[34,35]. As shown in Fig. 9, the overrunning clutch is assembled by
inserting a hub and four rollers into the cage. The contact angle, y,
Fig. 9. Fortini’s clutch.

Table 3
Input random variables for the Fortini’s clutch example.

Component Distri.
type

Mean
(mm)

Std. dev.
(mm)

Parameters for non-normal
distributions

x1 Beta 55.29 0.0793 a1 = b1 = 5.0a

x2 Normal 22.86 0.0043 –
x3 Normal 22.86 0.0043 –
x4 Rayleigh 101.60 0.0793 r4 = 0.1211b

a 55.0269 6 x1 6 55.5531.
b x4 P 55.5531.

Table 4
Uncertainty analysis results for the Fortini’s clutch example (Case I).

ADATP MCS

Mean (rad) 0.1219 0.1219
Std. dev. (rad) 0.0116 0.0117
Skewness �0.0770 �0.0511
Kurtosis 2.8322 2.8805
Pr(y < 4�) 0.000000 0.000000 (±0.00000
Pr(y < 5�) 0.001133 0.001228 (±0.0000
Pr(y < 6�) 0.071830 0.073825 (±0.0005
Pr(y < 7�) 0.502174 0.502903 (±0.0009
Pr(y < 8�) 0.939208 0.936671 (±0.0004
Pr(y < 9�) 0.999639 0.999233 (±0.0000
Pr(4� < y < 9�) 0.999639 0.999233 (±0.0000
No. FE 39 1000,000

a Error bounds computed with a 95% confidence level.
b 100 function evaluations for Pr(y < 4�) and Pr(y < 5�), 25 for Pr(y < 6�),
between the vertical line and the line connecting the centers of two
rollers and the hub, is expressed in terms of the random compo-
nent variables, x1, x2, x3, and x4 as follows:

yðxÞ ¼ arccos
x1 þ 0:5ðx2 þ x3Þ
x4 � 0:5ðx2 þ x3Þ

� �
ð31Þ

The statistical information of the random variables is summa-
rized in Table 3. The limit-state function was defined as (y � c)
where c specifies a limit-state value. In the ADATP method,
eC = 0.10, Mmax = 50, and cubic Lagrange splines were employed
as the hierarchical basis functions. Two cases were tested, one with
the assumption of statistical independence between the random
variables to compare the accuracy and efficiency of various reli-
ability analysis methods, and the other with a statistical depen-
dence modeled by a copula to demonstrate how the ADATP
method deals with dependant random variables.

4.4.1. Case I: statistical independence
In this case, we assume the four random variables to be

mutually independent. Table 4 summarizes the uncertainty anal-
ysis results of the ADATP method with comparison to MCS, the
UDR method (with the Pearson PDF generation system), and
FORM. To reflect the variation in the probability estimate by
MCS, we computed the error bounds with a 95% confidence le-
vel. The error bound with a 100(1 � a)% confidence can be com-
puted as [42]

eS ¼ z1�a=2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Pð1� PÞ

NS

s
ð32Þ

where z1�a/2 is the 100(1 � a/2)th percentile of the standard normal
distribution, P is the probability estimate by MCS and NS is the
number of MCS samples. For a 95% confidence level, a = 0.05 and
z1�a/2 = 1.96. As can be seen from Table 4, the ADATP method pro-
duced more accurate reliability estimates than the other methods at
various reliability levels, including two very low levels (i.e., around
10�3) and a very high level (i.e., around 1–10�3). The errors of the
UDR method in reliability estimations come from moment estima-
tions and PDF approximations with the Pearson system, while the
errors of FORM are due to the increased response nonlinearity by
the transformation between the original random x-space and the
standard normal random u-space.

4.4.2. Case II: statistical dependence
In this case, the random variables x1 and x4 were assumed to

have a statistical dependence, or more specifically, a nonlinear
correlation described by a copula. In what follows, we intend to
demonstrate how the ADATP method resolves the nonlinear
correlation.
4N + 1 UDR FORM

0.1219 –
0.0116 –
0.0952 –
2.8775 –

0a) 0.000018 0.000082
69a) 0.000486 0.002375
13a) 0.066697 0.087707
80a) 0.514469 0.520360
77a) 0.933024 0.934922
54a) 0.998696 0.999112
54a) 0.998678 0.999030

17 (100/100/25/10/15/25)b

10 for Pr(y < 7�), 15 for Pr(y < 8�), 25 for Pr(y < 9�).
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4.4.2.1. Introduction of copula. In statistics, a copula is defined by
Roser [38] as ‘‘a function that joins or couples multivariate joint
distribution functions to their one-dimensional marginal distribu-
tion functions’’, or ‘‘multivariate distribution functions whose one-
dimensional margins are uniform on the interval [0,1]’’.

Let F be an N-dimensional cumulative distribution function
(CDF) with continuous marginal CDFs F1, F2, . . ., FN. Then according
to Sklar’s theorem, there exists a unique N-copula C such that

Fðx1; x2; . . . ; xNÞ ¼ CðF1ðx1Þ; F2ðx2Þ; . . . ; FNðxNÞÞ ð33Þ

It then becomes clear that a copula formulates a joint CDF with
the support of separate marginal CDFs and a dependence structure.
The copula is capable of constructing the joint CDF in real applica-
tions with different types of marginal CDFs or dependence struc-
tures. Various general types of dependence structures can be
represented, corresponding to various copula families, such as
Gaussian, Clayton, Frank, and Gumbel. Let ui = Fi(xi), i = 1, 2, and
then we can formulate a bivariate Clayton copula as

Cðu1;u2jaÞ ¼ ðu�a
1 þ u�a

2 � 1Þ�1=a ð34Þ

More detailed information on copula families can be found in
References [38,39].

4.4.2.2. Rosenblatt transformation. The Rosenblatt transformation
has been used extensively for mapping the correlated random vari-
ables onto the independent standard normal variables [40]. The
successive conditioning procedures for a vector of correlated ran-
dom variables are defined as
Fig. 10. PDF approximations for the Fortini’s clutch example.

Table 5
Uncertainty analysis results for the Fortini’s clutch example (Case II).

ADATP MCS

Mean (rad) 0.1221 0.1222
Std. dev. (rad) 0.0084 0.0085
Skewness �0.0607 �0.0981
Kurtosis 3.3509 3.5953
Pr(y < 4.5�) 0.000000 0.000000 (±0.000000a)
Pr(y < 5.5�) 0.001850 0.002486 (±0.000098a)
Pr(y < 6.5�) 0.144443 0.142989 (±0.000686a)
Pr(y < 7.5�) 0.861061 0.867337 (±0.000665a)
Pr(y < 8.5�) 0.998335 0.997820 (±0.000091a)
Pr(4.5� < y < 8.5�) 0.998335 0.997820 (±0.000091a)
No. FE 45 1000,000

a Error bounds computed with a 95% confidence level.
z1 ¼ u�1½F1ðx1Þ�
z2 ¼ u�1½F2ðx2jx1Þ�

..

.

zN ¼ u�1½FNðxNjx1; x2; � � � ; xN�1Þ�

ð35Þ

where z1, z2, . . ., zN denote the independent standard random vari-
ables after the transformation, u�1(�) denotes the inverse CDF of a
standard normal variable, Fi(xi|x1, x2, . . ., xi�1) denotes the CDF of xi

conditioned on X1 = x1, X2 = x2, . . ., Xi�1 = xi�1, and can be expressed
as

Fiðxijx1; x2; � � � ; xi�1Þ ¼
R xi
�1 fiðx1; x2; � � � ; xi�1; sÞds

fi�1ðx1; x2; � � � ; xi�1Þ
ð36Þ

where fi(x1, x2, . . ., xi) denotes the marginal joint PDF of x1, x2, . . ., xi.
In particular, the Rosenblatt transformation for a bivariate copula is
given as [41]

z1 ¼ u�1½u1� ¼ u�1½F1ðx1Þ�
z2 ¼ u�1½Cðu2ju1Þ� ¼ u�1½CðF2ðx2ÞjF1ðx1ÞÞ�

ð37Þ

where

Cðu2ju1Þ ¼ PðU2 6 u2jU1 ¼ u1Þ

¼ lim
Du1!0

Cðu1 þ Du1;u2Þ � Cðu1;u2Þ
Du1

¼ @Cðu1;u2Þ
@u1

ð38Þ

After the Rosenblatt transformation, the independent standard
normal variables are used as the Gaussian input variables for the
ADATP method.

4.4.2.3. Results and discussion. The rank correlation coefficient was
used to quantify the nonlinear correlation. We assumed the rank
Fig. 11. PDF approximations for the V6 engine example.

Table 6
Uncertainty analysis results for the V6 engine example.

ADATP MCS PCE
(p = 25)

20N + 1
UDR

FORM

Mean (kW) 0.3935 0.3935 0.3934 0.3935 –
Std. dev. (kW) 0.0311 0.0310 0.0311 0.0314 –
Skewness �0.6062 �0.5883 �0.5742 �0.5393 –
Kurtosis 3.0567 3.0828 3.0566 3.0974 –
Pr(PL < 0.3) 0.0055 0.0054 (±0.0005a) 0.0057 0.0048 0.0057
No. FE 72 100,000 625 41 15

a Error bounds computed with a 95% confidence level.



Fig. 12. Stress contours for load case 2 (a) and load case 8 (b).
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correlation coefficient Kendall’s s to be 0.35 and the corresponding
copula parameter to be 1.08. The Rosenblatt transformation de-
tailed in the previous section was employed to transform the
dependant input variables x1 and x4 into independent standard
normal variables. To illustrate the effect of statistical nonlinear cor-
relation on the system response, we plotted the PDFs for both cor-
related and uncorrelated cases in Fig. 10. It shows that the effect of
the nonlinear correlation on the response PDF is significant and
that the ADATP method accurately reproduces the peak and tail re-
gions of the PDF. Quantitative results of uncertainty analysis are
summarized in Table 5, where we can observe satisfactory results
produced by the ADATP method.
x3

x4

x5

x7

x6

x1

x2

Fig. 13. Seven thickness variables (x8 not shown).
4.5. V6 gasoline engine power loss: bimodal PDF

This example is the V6 gasoline engine problem used by Lee
[17]. The performance function considered in this example is the
power loss due to the friction between the piston ring and the cyl-
inder liner, oil consumption, blow-by, and liner wear rate. A ring/
liner subassembly simulation model was used to compute the
power loss. The simulation model has four input parameters, the
ring surface roughness x1, liner surface roughness x2, linear Young’s
modulus x3 and linear hardness x4. Of the total four inputs, the first
two, ring surface roughness x1 and linear surface roughness x2,
were treated as random inputs following normal distributions with
mean 4.0 and 6.119 lm, respectively, and with unit variance. The
other two inputs, linear Young’s modulus x3 and linear hardness
x4, were treated as deterministic inputs fixed at 80 GPa and 240
BHV, respectively. It has been shown in [17] that the power loss
has a bimodal PDF. To predict the bimodal shape of the PDF, the
ADATP method used eC = 0.005, Mmax = 70, and cubic Lagrange
splines as the hierarchical basis functions. Fig. 11 shows the PDF
approximations by the 25th order PCE with a fully tensorized
Gauss–Hermite quadrature (mI = 25), the UDR method, the ADATP
method and MCS. Both the ADATP and PCE methods provide rea-
sonably accurate approximations of the irregularly shaped PDF.
The UDR method fails to represent the irregular shape of this
PDF mainly due to the following two reasons: (i) errors in moment
estimations propagate to errors in the PDF construction; and (ii)
the first four moments are not sufficient to accurately construct
the PDF. The uncertainty analysis results in Table 6 suggest that
the number of function evaluations of the ADATP method is much
smaller than that of the PCE method with a fully tensorized Gauss-
ian quadrature. In this example, the FORM requires the smallest
number of function evaluations while still producing a good reli-
ability estimate. The small error produced by the FORM is due to
the nonlinearity of the power loss function. However, the usage
of FORM cannot be used for cases that require the construction
of a complete PDF and subsequent uncertainty propagations.

4.6. Lower control A-arm: nonlinear fatigue reliability

Vehicle suspension systems experience intense loading condi-
tions throughout their service lives. Control-arms act as the back-
bone of the suspension system, through which the majority of
these loads are transmitted [36]. Therefore, it is crucial that the fa-
tigue life of control-arms be high enough to fulfill the design
requirement. A HMMWV lower control-arm was used for fatigue
reliability analysis using the ADATP method.

The lower control-arm was modeled with plane stress elements
using 54,666 nodes, 53,589 elements, and 327,961 DOFs, where all
welds were modeled using rigid beam elements. Hyper-Works 8.0
was used for finite element modeling and design parameterization.
ANSYS 10.0 was used for stress analyses for 14 load cases at four
joints for the A-arm: a ball joint, a spring-damper joint and front
and rear pivot bushing joints, respectively. The stress contours
for two loading cases are shown in Fig. 12. The fe-safe 5.0 was em-
ployed for durability analysis based on the dynamic stress results
from ANSYS. A preliminary durability analysis was executed in
fe-safe to estimate the fatigue life of the HMMWV A-Arm and to
predict the critical regions that experience a low fatigue life. For
this preliminary durability analysis, the fatigue life for crack
initiation was calculated using the equivalent von Mises stress-life
approach at all surface nodes of the mechanical component (i.e.,
A-arm) in order to predict the critical regions. More accurate dura-
bility analysis was then carried using the strain-life method at the
selected critical regions of the A-arm that experience short life
spans.

The random variables are the thicknesses of the eight major
components of the control-arm, as shown in Fig. 13. The statistical



Table 7
Input random variables for the lower control A-arm example.

Component Distri. type Mean (in) Std. dev. (in)

x1 Normal 0.157 0.006
x2 Normal 0.183 0.006
x3 Normal 0.178 0.009
x4 Normal 0.200 0.007
x5 Normal 0.312 0.013
x6 Normal 0.250 0.009
x7 Normal 0.200 0.007
x8 Normal 0.201 0.009

Fig. 14. PDF approximations for the lower control A-arm example.

Table 8
Uncertainty analysis results for the lower control A-arm example.

ADATP MCS

Mean (blocks) 2.9014E+6 2.8866E+6
Std. dev. (blocks) 1.1501E+6 1.1612E+6
Skewness 8.9795E�1 1.2608E+0
Kurtosis 4.0504E+0 5.8083E+0
R = Pr(L > 2.0 
 106) 0.768 0.774 (±0.026a)
R = Pr(L > 1.5 
 106) 0.920 0.930 (±0.016a)
R = Pr(L > 1.0 
 106) 0.992 0.993 (±0.005a)
No. FE 83 1000

a Error bounds computed with a 95% confidence level.
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information of these random variables is summarized in Table 7.
From a worst-case scenario analysis, one hotspot with the smallest
fatigue life was found at the rear pivot bushing joint and was se-
lected for fatigue reliability analysis. In this case study, the fatigue
reliability is defined as R = Pr(L > Lt), where Lt denotes the target
fatigue life.

The ADATP method with eC = 0.10, Mmax = 80 and cubic
Lagrange splines was used to evaluate the fatigue reliability at
the selected hotspot. The ADATP method allows for a stochastic
response surface approximation from a small number of deter-
ministic finite element and fatigue analyses, through construct-
ing an explicit hierarchical interpolation formula with respect
to the random inputs. Conducting the MCS on the explicit inter-
polation formula gives the full probability information (i.e.,
moments, reliability and PDF) of the fatigue life. A direct MCS
with 1000 samples was carried out as a reference. Fig. 14 shows
the PDF approximations by the ADATP method and MCS, where
we can observe a good agreement between the two methods.
Table 8 summarizes the uncertainty analysis results, where the
ADATP method outperforms MCS in terms of efficiency while
still maintaining good accuracy for moderate (between 0.70
and 0.80), high (between 0.90 and 0.95) and very high reliability
levels (above 0.99). The 95% confidence intervals of the MCS reli-
ability estimates include the corresponding ADATP estimates for
all three reliability levels.
5. Conclusion

The asymmetric dimension-adaptive tensor-product (ADATP)
method is proposed for efficient reliability analysis involving high
nonlinearity. The ADATP method possesses three technical contri-
butions: (i) an asymmetric dimension-adaptive sampling scheme
considering both directional and dimensional importance, (ii) the
concepts of the directional sparse grid (DSG) and directional index
(DI) for the systematic generation of asymmetric collocation
points, (iii) a hierarchical interpolation scheme using cubic
Lagrange splines for eliminating the numerical inaccuracy of the
high-order Lagrange interpolation.

It was found that the asymmetric dimension-adaptive sam-
pling scheme and the hierarchical interpolation method showed
better accuracy and efficiency than the DATP method in the case
of unequal degrees of nonlinearity in 2N N-hyperoctants. The
better performance can be attributed to the fact that the ADATP
method identifies the highly nonlinear hyperoctants and assigns
more collocation points to these regions, while the DATP treats
all the hyperoctants as of equal importance and thus assigns
points equally.

A limited comparative study between the ADATP method and
the widely used reliability analysis methods, including FORM and
moment-based reliability (mostly DR) methods, was also con-
ducted in this work. Our initial results suggest that the ADATP
method achieves higher accuracy and comparable efficiency for
problems with moderate dimensions. The higher accuracy can be
attributed to the automatic detection and adaptive reproduction
of significant variate interactions in structural system responses,
including tri- and higher-variate interactions. We also expect that
the ADATP method perform well for high dimensional engineering
problems as exemplified in the lower control A-arm example dis-
cussed in this work. Relative to the DR and PCE methods, the
ADATP method has the advantage of the complexity reduction in
the algorithm controls, since the desired interpolation accuracy
and resource constraints allow a user to easily define a relative
error threshold and maximum number of collocation points. In
contrast, it is often difficult or impractical to predetermine S in
the S-variate DR technique, or the expansion order and the number
of one-dimensional quadrature points in the PCE method. Further-
more, the proposed ADATP method can approximate a multi-
modal PDF. Future research will investigate the effect of a relative
error threshold on the convergence rate as well as integrate the
proposed method with system reliability analysis and design
optimization.
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Appendix A

This appendix presents the pseudo code of the proposed ADATP algorithm as follows:

Pseudo code: Symbols:

i = (1, . . ., 1) IO old index set
IO = £, IA = {i} IA active index set
l = 0, er = 1, M = 1 IT trial index set
while ðmaxIA ðerÞ > ec&&M < MmaxÞ IFðitÞ forward neighborhood of trial index

select IT � IA with erðITÞ > ec er relative error indicator
IO = IO [ IA, IA = £ ec relative error threshold
while (IT – £&&M < Mmax) gmax maximum function value

select it � IT with er(it) > er(ir), "ir e IT gmin minimum function value

IFðitÞ ¼ fit þ eþ=�k ; 1 6 k 6 Ng eþ=�k
kth directional unit vector

IA = IA [ IF(it) adatpstep step hierarchical interpolation function

wif ¼ gðXif Þ � adatpstepðIO; fwIOg; fXif gÞ
M ¼ M þMif

erðif Þ ¼ 1
ðgmax�gminÞMif

P
jjw

if
j j

endwhile
l = l + 1

endwhile
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