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Abstract In practical engineering design, most data sets for
system uncertainties are insufficiently sampled from un-
known statistical distributions, known as epistemic uncer-
tainty. Existing methods in uncertainty-based design
optimization have difficulty in handling both aleatory and
epistemic uncertainties. To tackle design problems engaging
both epistemic and aleatory uncertainties, reliability-based
design optimization (RBDO) is integrated with Bayes
theorem. It is referred to as Bayesian RBDO. However,
Bayesian RBDO becomes extremely expensive when
employing the first- or second-order reliability method
(FORM/SORM) for reliability predictions. Thus, this paper
proposes development of Bayesian RBDO methodology and
its integration to a numerical solver, the eigenvector
dimension reduction (EDR) method, for Bayesian reliabil-
ity analysis. The EDR method takes a sensitivity-free
approach for reliability analysis so that it is very efficient
and accurate compared with other reliability methods such
as FORM/SORM. Efficiency and accuracy of the Bayesian
RBDO process are substantially improved after this
integration.

Keywords Bayesian . Epistemic . RBDO .

Eigenvector dimension reduction . Uncertainty

1 Introduction

Reliability is of critical importance in product and process
design (Hazelrigg 1998). Hence, various methods (Youn et al.
2005b; Chen et al. 1997; Du and Chen 2004) have been
developed to systematically treat uncertainties in engineering
analysis and, more recently, to carry out reliability-based
design optimization (RBDO). In RBDO, a design optimiza-
tion strategy has been advanced to improve computational
efficiency and stability (Wu et al. 2001; Wang and Kodiyalam
2002; Youn et al. 2005a). Additionally, new methods for
reliability assessment have been proposed to enhance
numerical efficiency and stability (Du et al. 2004; Rahman
and Xu 2004a; Youn et al. 2006b). In practical engineering
applications, the amount of uncertainty data is extremely
restricted mainly due to limited resources (e.g., manpower,
expense, time). Generally, a random (or uncertain) variable
where its random property is completely known is defined as
an “aleatory” random variable, whereas a random variable
with an insufficient amount of data where its random property
is incompletely known is defined as an “epistemic” random
variable. To deal with epistemic uncertainty, Bayesian
approach has been investigated for the reliability modeling
(Zhang and Mahadevan 2000), and in this paper, Bayesian
reliability-based design optimization (Bayesian RBDO)
methodology is proposed to deal with engineering design
problems, which involve both aleatory and epistemic uncer-
tainties. Bayesian RBDO is a general reliability-based design
method that embraces traditional RBDO as a special case.
The capability to deal with both aleatory and epistemic
uncertainties is of vital importance in practical engineering
applications constrained by limited resources.

However, Bayesian RBDO could be expensive if the
first- or second-order reliability method (FORM/SORM) is
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used for reliability analysis. This is because the numerical
algorithms in FORM/SORM require sensitivity and/or
Hessian information of system responses during the
reliability analysis process (Madsen et al. 1986; Palle and
Michael 1982). Many algorithms have been proposed to
improve efficiency and accuracy of reliability analysis
(Youn et al. 2003; Wu et al. 1990; Wu 1994; Hasofer and
Lind 1974; Liu and Kiureghian 1991; Wang and Grandhi
1994; Wang and Grandhi 1996). To overcome this
challenge, this paper proposes an integration of Bayesian
RBDO with the eigenvector dimension reduction (EDR)
method (Youn et al. 2007; Zhimin et al. 2007). The EDR
method additively decomposes the multidimensional inte-
gration of the probability function into a series of one-
dimensional integrations to increase the computational
efficiency while maintaining good accuracy. Then, the
EDR method computes statistical moments of the system
responses, which are used to generate the probability
density functions (PDFs) of the system responses. The
EDR method facilitates the Bayesian RBDO process with
high efficiency and accuracy.

In this paper, we propose development of Bayesian
RBDO methodology and its integration to a numerical
solver, the EDR method, for Bayesian reliability analysis.
Five technique contributions are made in this paper: (1)
Bayesian approach is successfully applied on RBDO, (2)
Bayesian reliability is uniquely defined for design opti-
mization, (3) a guideline of target Bayesian reliability is
made as a function of data size, (4) sensitivity analysis is
developed for Bayesian RBDO, and (5) the EDR method
is employed for Bayesian reliability analysis. Section 2 of
this paper briefly introduces RBDO under both aleatory
and epistemic uncertainties, and Section 3 presents the
proposed Bayesian RBDO methodology. Section 4 briefly
describes the EDR method for reliability analysis. One
example is used to demonstrate the effectiveness of the
EDR method in terms of efficiency and accuracy for
reliability analysis. The integration of Bayesian RBDO
with the EDR method will be discussed in Section 5. The
proposed method is applied to one mathematical example
and an engineering case study in Section 6.

2 Introduction of RBDO under both aleatory
and epistemic uncertainties

Knowing that both aleatory and epistemic uncertainties
exist in the system of interest, RBDO can be formulated as

minimize C Xa;Xe; dð Þ
subject to PB Gi Xa;Xe; dð Þ � 0ð Þ � 6 βti

� �
; i ¼ 1; � � � ; np

dL � d � d
U
; d 2 Rnd and Xa 2 Rna;Xe 2 Rne

ð1Þ

where PB (Gi(Xa,Xe;d)≤0)=RB
i (Xa,Xe;d) is Bayesian reli-

ability where Gi(Xa,Xe;d)≤0 is defined as a safety event;
C (Xa, Xe; d) is the objective function; d=μ(X) is the
design vector; Xa and Xe are the aleatory and epistemic
random vectors, respectively; βt is a prescribed target
reliability index; and np, nd, na, and ne are the numbers
of probabilistic constraints, design variables, aleatory
random variables, and epistemic random variables, respec-
tively. Among all (both aleatory and epistemic) random
variables, if the parameters describing a random variable are
controllable, they are considered as design variables. For
instance, a random variable with a normal distribution may
have two design variables, mean and standard deviation.

When modeling epistemic uncertainties with insufficient
data, the degree of statistical uncertainty could be greater than
that of physical uncertainty. Then, although RBDO is
successfully performed, the optimum design could be unreli-
able due to a lack of data. Hence, when involving epistemic
uncertainties, the probabilistic constraints in a Bayesian sense,
as shown in (2), will ensure to produce a reliable design.

RB
i Xa ;Xe;dð Þ ¼

Z
:::

Gi XaXeð Þ�0

Z
fxaxe xaxeð Þdxadxe � 6 βti

� � � Rt
i

ð2Þ
where RB

i (Xa,Xe;d) is the Bayesian reliability, Rt
i ¼ 6 βti

� �
is

a target reliability, and fXaXe xaxeð Þ is the joint PDF of both
aleatory and epistemic uncertainties. Due to lacking data for
epistemic uncertainty, it is impossible to precisely model the
joint PDF fXe xeð Þ for epistemic uncertainties. Modeling the
joint PDF for epistemic uncertainties strongly depends on a
set of data and is thus subjective. For example, let X1 and X2
be epistemic and aleatory uncertainties, respectively. X2 is
assumed to be normally distributed with N(μ=5.0, σ=1.0),
whereas X1 is modeled with 20 samples generated from N
(5.0, 1.0). The mean, standard deviation, skewness, and
kurtosis from the data are 4.5789, 0.9294, 0.2908, and 2.4851,
respectively. It is found that the Gamma distribution,
f(x2)=b

−aΓ−1(a)xa−1e−x/b, provides the best fit to the data with
a=25.4439 and b=0.1800. By assuming that both random
variables are statistically independent, the joint PDF can be
plotted, as shown in Fig. 1.

As shown in Fig. 1, inaccurate joint PDF could lead to
inaccurate reliability estimate and unreliable design due to
insufficient data. Therefore, the presence of the epistemic
uncertainty in the formulation prohibits the use of conven-
tional methods to calculate the probabilistic constraints, and
this necessitates the Bayesian approach for reliability
assessment and reliability-based design. RBDO turns to be
a special case of Bayesian RBDO because Bayesian RBDO
is able to handle aleatory and/or epistemic uncertainties.
The next section presents the definition of Bayesian
reliability and a method for Bayesian reliability analysis.

108 B.D. Youn, P. Wang



3 Bayesian RBDO

3.1 Bayesian binomial inference and reliability distribution

When modeling uncertainties with insufficient data, reli-
ability must be uncertain and subjective. A question is how
to model uncertain and subjective reliability in a probability
sense. The following discussion will answer the question of
modeling reliability using the Bayesian binomial inference.

In many engineering applications, outcomes of events
from repeated trials can be a binary manner, such as
occurrence or nonoccurrence, success or failure, good or
bad, and so forth. In such cases, random behavior can be
modeled with a discrete probability distribution model. In
addition, if the events satisfy the additional requirements of
a Bernoulli sequence, that is to say, if the events are
statistically independent and the probability of occurrence
or nonoccurrence of events remains constant, they can be
mathematically represented by the binomial distribution
(Haldar and Mahadevan 2000). In other words, if the
probability of an event occurrence in each trial is p and the
probability of nonoccurrence is (1−r), then the probability
of x occurrences out of a total of N trials can be described
by the probability mass function (PMF) of a Binomial
distribution as

Pr X ¼ x;N jrð Þ ¼ N
x

� �
rx 1� rð ÞN�x x ¼ 0; 1; 2; . . . ;N

ð3Þ
where the probability of success identified in the previous
test, r, is the parameter of the distribution.

In (3), a given r is provided before the calculation of the
probability of x/N (x occurrences out of N trials). However,
when r is an uncertain parameter and a prior distribution is

provided, the Bayesian inference process can be employed
to update r based on the outcomes of the trials. Given x
occurrences out of a total of N trials, the probability
distribution of r can be calculated using Bayes’ rule as
(Li et al. 2002)

f rjxð Þ ¼ f rð Þf xjrð ÞR 1
0 f rð Þf xjrð Þdr

ð4Þ

where f (r) is the prior distribution of r, f (r|x) is the
posterior distribution of r, and f (x|r) is the likelihood of x
for a given r. The integral in the denominator is a
normalizing factor to make the probability distribution
proper. The prior distribution is known for r, prior to the
current trials. In this paper, a uniform prior distribution is
used to model r bounded in [0, 1]. However, it is possible
to obtain a posterior distribution with any type of a prior
distribution.

For Bayesian reliability predictions, both prior reliability
distribution (r) and the number (x) of safety occurrences out
of the total number of test data set N must be known. If
prior reliability distribution (r) is unavailable, it will be
simply modeled with a uniform distribution, r∼U (a, b)
where a<b and a, b∈[0, 1]. At an early design stage, it can
be modeled using reliability for the previous product
designs or expert opinions. If the reliability distribution
has been predicted with a data set in a precedent test, this
reliability distribution will be used as the prior reliability
distribution and updated to posterior reliability distribution
with a new data set. In all cases, reliability will be modeled
with Beta distribution, the conjugate distribution of the
Bayesian binomial inference, because the uniform distribu-
tion is a special case of the Beta distribution. Equation (5)
is the PDF of the Beta distribution as

f rjxð Þ ¼ 1

B α; βð Þ r
α�1 1� rð Þβ�1; B α; βð Þ ¼

Z 1

0
tα�1 1� tð Þβ�1dt

� �

ð5Þ
where α=x+1 and β=N−x+1. The posterior distribution,
f (p|x), is the Beta distribution and represents the probability
distribution of reliability. It is found that the distribution is a
function of x and N, the number of safety trials and the total
number of trials, respectively.

Figures 2 and 3 show such a functional relationship
between the Bayesian reliability distribution and its
parameters, x and N. Figure 2 demonstrates the dependence
of the reliability PDF on the number of safety occurrences,
x, out of the given N trials (e.g., N=40 in Fig. 2). The larger
the number of safety occurrences for a given N trials, the
greater the mean of reliability. The PDF of reliability
appears to be feasible because the mean of the PDF is
close to x/N, which is a Frequentist estimate of reliability
(e.g., μBeta(5,37)≈4/36). Figure 3 exhibits the dependence of

Fig. 1 Joint PDF contours: black (approximate joint PDF with limited
data) and blue (true joint PDF)
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the reliability PDF on the total number of trials (N) with the
same ratio of x to N. As the total number of trials is
increased, the variation of reliability is decreased, such as
σBeta(451,151)<σBeta(151,51)<σBeta(46,16)<σBeta(16,6). In other
words, the PDF of reliability asymptotically converges to
the exact reliability with the increase of the number of
trials. It is also associated with a confidence of the
reliability model. The larger the data size, the higher the
confidence level of the reliability model. This will also be
observed in Bayesian RBDO in Section 5.1. In summary,
this posterior distribution is feasible and applicable to
model reliability, despite the dearth of data for modeling
uncertainties. The Bayesian updating process can be
conveniently carried out because the Beta distribution for
uncertain reliability, r, is the conjugate distribution.

3.2 PDF of reliability with both aleatory and epistemic
uncertainties

When only epistemic uncertainties are engaged to assess
reliability, its PDF can be modeled using the Beta
distribution in (5) by counting the number of safety
occurrences, x. In general, both aleatory and epistemic
uncertainties generally appear in most engineering design
problems. In such situations, the PDF of reliability can be
similarly obtained through Bayesian reliability analysis. To
build the PDF of reliability, reliability analysis must be
performed at every data point for epistemic uncertainties
while considering aleatory uncertainties. Different reliability
measures, Rk=R(xe,k), are obtained at different sample points
for epistemic uncertainties. In (5), α=x+1 and β=N−x+1,

where x=ΣRk. Then, the PDF of reliability r with a uniform
prior distribution is updated to R(Xa, Xb; d) as

R Xa;Xe; dð Þ ¼ f rjxð Þ ¼ 1
Beta α;βð Þ r

a�1 1� rð Þβ�1

whereα ¼ 1þ x; β ¼ N � xþ 1; x ¼ xe;1; � � � ; xe;N
� �

x ¼ P
Rk ; and Rk ¼ Pr g Xað Þ � 0jxe;k

� 	
ð6Þ

N is the number of finite data sets for epistemic
uncertainties. A detailed description is given in the
following example.

3.3 Definition of Bayesian reliability

For design optimization, Bayesian reliability must satisfy
two requirements: (a) sufficiency and (b) uniqueness. The
sufficiency requirement means that the Bayesian reliability
must be smaller than an exact reliability realized with a
sufficient amount of data for the input uncertainties. Then,
Bayesian RBDO provides an optimum design with higher
reliability than target reliability, regardless of the data size.
To meet the sufficiency requirement, an extreme distribu-
tion theory for the smallest reliability value is employed to
guarantee the sufficiency of reliability. R values are
different for different data sets, xe,k, of which each has the
same sample size N. Without generating expensive data
sets, the extreme distribution theory determines the proba-
bility distribution of the smallest R value that guarantees the
first requirement. Then, the median value of the extreme
distribution uniquely determines Bayesian reliability. To
satisfy both requirements, Bayesian reliability is defined as
the median value of the extreme distribution for the
smallest value derived from the Beta distribution in (6).

Fig. 2 Dependence of the PDF of reliability on the number of safety
occurrences, x

Fig. 3 Dependence of the PDF of reliability on the total number of
trials, N
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First, based on the extreme distribution theory, the
extreme distribution for the smallest reliability value is
constructed from the reliability distribution, Beta distribu-
tion. For random reliability R with the Beta distribution
function, FR(r), let

1R be the smallest value among N data
points for random reliability, R. Then, the cumulative
distribution function (CDF) of the smallest reliability value,
1R, can be expressed as (Rao 1992)

1� F1R rð Þ¼ P 1R > rð Þ
¼ P 1R > r; 2R > r; � � � ; NR > rð Þ ð7Þ

Because the ith smallest reliability values, iR (i=1,..., N),
are identically distributed and statistically independent, the
CDF of the smallest reliability value becomes

F1R rð Þ ¼ 1� 1� FR rð Þ½ �N ð8Þ
Bayesian reliability, RB, is defined as the median value

of the reliability distribution. That is to say, Bayesian
reliability is the solution of the nonlinear equation in (8) by
setting F1R RBð Þ ¼ 0:5.

RB ¼ F�1
R 1�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� F1R rmð ÞN

ph i
¼ F�1

R 1�
ffiffiffiffiffiffiffi
0:5N

ph i
ð9Þ

3.4 Numerical procedure of Bayesian reliability analysis

Bayesian reliability analysis can be conducted using the
following numerical procedure as

Step 1 Collect a limited data set for epistemic uncertain-
ties where the data size is N.

Step 2 Calculate reliabilities (Rk) with consideration of
aleatory uncertainties at all epistemic data points.

Step 3 Build a distribution of reliability using the Beta
distribution in (6) with aleatory and/or epistemic
uncertainties.

Step 4 Construct the extreme distribution in (8) with the
Beta distribution obtained in step 3.

Step 5 Determine the Bayesian reliability using (9).

A mathematical example is used to help understand the
numerical procedure of Bayesian reliability analysis.

Example Let g(X1,X2)=1−X 2
1 X2/20≤0 be an inequality

constraint with two random variables where X1 is an
epistemic random variable and X2 is an aleatory random
variable, X2∼N (μ2=2.8, σ2=0.2). To calculate the actual
reliability so as to show the comparison of the modeled
reliability distribution with the actual reliability, although
X1 is an epistemic variable and its distribution is assumed to
be unknown, 20 data for X1 are randomly sampled from
Normal distribution (μ1=2.9, σ1=0.2), as shown in Table 1.
The table also shows the corresponding reliabilities Rk=
Pr [g(X2)≤0|X1(k)] for k=1,..., 20 that are computed from
reliability analyses. For example, X1(1)=3.1047, then R1=
P [1–3.10472*X2/20≤0]=0.99986. From Table 1, the
expected number of safe design points out of the 20 designs
can be obtained from the sum of all 20 reliabilities, x=ΣRk=
17.7066. The reliability can then be modeled by the Beta
distribution as Beta(18.7066, 3.2934) at the design point,
(μ1=2.9, μ2=2.8). This is graphically shown in Fig. 4.

To validate the results, X1 is assumed to follow N(μ1=
2.9, σ1=0.2). A Monte Carlo simulation (1,000,000
samples) obtains the actual reliability (which is 0.8488) of
the design point. As shown in Fig. 4, the actual reliability is
close to the mean value of the reliability distribution.

X1 Probability

3.1047 0.99986
2.7750 0.84471
2.8175 0.91969
2.9277 0.99018
3.1706 0.99997
3.4741 1.00000
2.9029 0.98353
2.8196 0.92247
2.7157 0.67025
2.8869 0.97730
2.7605 0.80983
3.1006 0.99984
2.5933 0.19228
2.9604 0.99520
2.9354 0.99168
2.9575 0.99488
2.9430 0.99295
2.9706 0.99618
2.6738 0.50480
2.8185 0.92101

Table 1 X1 samples and
probabilities

Fig. 4 Actual and estimated reliability
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Therefore, the reliability distribution gives a quite feasible
estimate with both aleatory and epistemic uncertainties. In this
example, a uniform distribution, r∼U(0,1), is used as the prior
distribution of reliability. Therefore, the reliability distribu-
tion appears to be widely distributed, but it can be narrowly
distributed if the prior distribution is more precisely given.

Using (8), the extreme distribution for the smallest
reliability value is obtained as

F1R rð Þ ¼ 1� 1�
Z 1R

0

1

B 18:7066; 3:2934ð Þ θ
17:7066 1� θð Þ2:2934

" #20

From (9), Bayesian reliability is calculated as PB=
0.6884. The Beta distribution for reliability, its extreme
distribution for the smallest reliability value, and the
Bayesian reliability are graphically shown in Fig. 5.

3.5 A setup of Bayesian target reliability

Target reliability must depend on the data size of epistemic
uncertainties. With few data for uncertainties, setting target
reliability to 99.9% is not possible. Although high reliability
is achieved through RBDO, the confidence of reliability will
be extremely low. This section provides a guideline to set
target reliability in Bayesian RBDO, which depends on a
data size of epistemic uncertainties. To assist the setup of
target reliability, the maximum Bayesian reliability, Pmax

B ,
will be determined for a given sample size, N. For example,
suppose that the prior distribution is a uniform distribution,
say, r∼U (0,1). The Beta distribution for reliability is Beta
(1+N,1) with all safe samples. Then, the maximum Bayesian
reliability can be defined for a given sample size as

Pmax
B ¼ median F1R rð Þ½ � where R~Beta 1þ N ; 1ð Þ ð10Þ

This is graphically shown in Fig. 6. As the data size
rises, Pmax

B rapidly increases to 90% and then slowly
increases. Target reliability must be set lower than the
maximum Bayesian reliability for a given data size. For
example, the target reliability with 50 data for epistemic
uncertainties must be lower than 92%. If the prior
distribution is more precisely given, such as Beta(α, β),
the distribution for reliability in (10) can be generally set to
R∼Beta(α+N, β). Then, Pmax

B can be correspondingly
obtained.

3.6 Formulation of Bayesian RBDO

Knowing that both aleatory and epistemic uncertainties
exist in the system of interest, Bayesian RBDO can be
formulated as

minimize C Xa;Xe; dð Þ
subject to PB Gi Xa;Xe;dð Þ � 0ð Þ � 6 βti

� �
; i ¼ 1; � � � ; np

dL � d � dU; d 2 Rnd and Xa 2 Rna;Xe 2 Rne

ð11Þ

where PB(Gi (Xa, Xe; d)≤0)=RB,i is Bayesian reliability
where Gi(Xa, Xe; d)≤0 is defined as a safety event; C(Xa,
Xe; d) is the objective function; d=μ(X) is the design
vector; Xa and Xe are the aleatory and epistemic random
vectors, respectively; βti is a prescribed target Bayesian
reliability index; and np, nd, na, and ne are the numbers of
probabilistic constraints, design variables, aleatory random
variables, and epistemic random variables, respectively.

Fig. 5 Bayesian reliability

Fig. 6 Target Bayesian reliability with sample size, N
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3.7 Sensitivity analysis of Bayesian reliability

Let the ith reliability follow the Beta distribution, Beta
(αi,βi), where

αi ¼ 1þ x ¼ 1þ R1 þ R2 þ � � � þ RN

βi ¼ 2þ N � αi
ð12Þ

Recall the definition of Bayesian reliability in (9).

FRi R
B
i

� � ¼ 1�
ffiffiffiffiffiffiffi
0:5N

p
¼

Z RB
i

0

1

B αi;βið Þ θ
αi�1 1� θð Þβi�1dθ

ð13Þ
From (13), a function g(RB

i , αi) can be defined as

g RB
i ;αi

� � ¼ Z RB
i

0

1

B αi; 2þ N � αið Þ θ
αi�1 1� θð Þ1þN�αi dθþ

ffiffiffiffiffiffiffi
0:5N

p
� 1

ð14Þ
The sensitivity for Bayesian reliability with respect to dj

can be expressed as

@RB
i

@dj
¼ dRB

i

dαi
� @αi

@dj
ð15Þ

where

dRB
i

dαi
¼ � @gi=@αi

@gi=@RB
i

ð16Þ

@αi

@dj
¼ @P1

@dj
þ @P2

@dj
þ � � � þ @PN

@dj
ð17Þ

After calculating two parts in the right side of (15)
through (16) and (17), the sensitivity for Bayesian reliability
with respect to the jth design variable, dj, can be expressed as

@RB
i

@dj
¼ �

R RB
i

0 θαi�1 1� θð Þ1þN�αi ln θ
1þθ þ Bi

dBe�1
i

dαi

� �
dθ

RB
ið Þαi�1 1� RB

ið Þ1þN�αi

XN
j¼1

@Pj

@dj

ð18Þ
Note that the integration part in (18) may encounter

numerical singularity when computing the sensitivity of
Bayesian reliability. Additionally, it follows a complicated
mathematical derivation and implementation. A more
simple way is sought to calculate Bayesian reliability
sensitivity. The idea comes from a one-to-one mapping
between Bayesian reliability and the mean value of the Beta
distribution (the posterior distribution) for reliability for a
given sample size, RB

i ¼ RB
i Mið Þ or Mi ¼ Mi RB

i

� �
. The

transform between these two values is shown in (19):

1�
ffiffiffiffiffiffiffi
0:5N

p
¼

Z RB
i

0

1

B p; qð Þ θ
p 1� θð Þqdθ ð19Þ

where p=(N+2)Mi, q=(N+2)(1−Mi). Instead of Bayesian
reliability, the corresponding mean value of the beta
distribution for reliability and the sensitivity of the mean
value with respect to the design variables will be used for
design optimization. For a given sample size, the one-to-
one mapping relates a target Bayesian reliability to a single-
valued target mean value of the beta distribution for
reliability. Thus, satisfaction of the target mean value of
the beta distribution for reliability always ensures satisfac-
tion of the target Bayesian reliability.

Suppose that the Beta distribution Beta (α, β) is used to
model reliability. Its mean value, Mi ¼ Mi Ri

B

� �
, can be

expressed as

Mi ¼ αi

αi þ βi
¼ αi

N þ 2
ð20Þ

The sensitivity of its mean value to design variable, dj,
can be expressed as

@Mi

@dj
¼ 1

N þ 2

@αi

@dj
ð21Þ

From (17), (21) can be expressed as

@Mi

@dj
¼ 1

N þ 2

@P1

@dj
þ @P2

@dj
þ � � � þ @PN

@dj

� �
ð22Þ

Results of reliability mean, Mi ¼ Mi Ri
B

� �
, can be

converted to a reliability index. Then, the sensitivity can
be developed for the format of the reliability index bBi ,
where βB

i ¼ 6�1 Mið Þ. Correspondingly, all reliabilities,
Pi; i ¼ 1~N , can be transformed into the reliability indices,
βi. The sensitivity of Bayesian reliability index can be
expressed as

@βB
i

@dj
¼ @Mi

@dj

,
@Mi

@βB
i

ð23Þ

where

@Mi

@βB
i

¼ 1ffiffiffiffiffiffi
2π

p e�
βB
ið Þ2
2 ð24Þ

Similarly,

@Mi

@dj
¼ 1

N þ 2

@P1

@β1

@β1

@dj
þ � � � þ @PN

@βN

@βN

@dj

� �
ð25Þ

where

@Pi

@dj
¼ @Pi

@βi

@βi

@dj
¼ 1ffiffiffiffiffiffi

2:
p e�

β2
i
2
@βi

@dj
ð26Þ
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By substituting the sensitivity of reliability index,
@βi


@dj, into (26), the sensitivity of Bayesian reliability,

@βB
i


@dj, can be obtained as

@βB
i

@dj
¼ e

βB
ið Þ2
2

N þ 2

XN
k¼1

e�
β2
k
2
@βk

@dj
ð27Þ

where i=1,...,nc, j=1,...,nd, k=1,...,N.

3.8 Numerical procedure of Bayesian RBDO

Based on the discussion in the previous sections, the
Bayesian RBDO procedure is presented in Fig. 7. The
Bayesian reliability analysis in the left shaded box in Fig. 6
calculates the Bayesian reliabilities, as well as their
sensitivities, which require reliability analyses at all
epistemic sample points. For instance, the probabilistic

constraints at any data point for epistemic uncertainties
become functions of only aleatory uncertainties, and then
the existing reliability analysis methods (FORM, SORM, or
EDR method, etc.) are used for reliability and its sensitivity
analyses. Thus, one Bayesian reliability analysis engages
reliability and its sensitivity analyses N times. This is why
Bayesian RBDO could become expensive, and thus, more
investigation must be made to reduce its computational
effort. Once the cost function, Bayesian reliability, and their
sensitivities are computed, design optimization is conducted
in the right shaded box in Fig. 7. It is clear from the
flowchart that Bayesian RBDO completely integrates
Bayesian reliability analysis to RBDO.

4 Eigenvector dimension reduction method
for reliability analysis

In general, statistical moments (or PDF) of system
responses can be calculated as

E Ym Xð Þf g ¼
Z þ1

�1
� � �

Z þ1

�1
Ym xð Þ � fX xð Þ � dx ð28Þ

In (28), a major challenge here is the multidimensional
integration over the entire random input domain. To resolve
this difficulty, the EDR method (Youn et al. 2007; Zhimin
et al. 2007) uses an additive decomposition (Rahman and

Reliability analysis 
w/ Aleatory 
Uncertainty

Bayesian reliability 
analysis

Sensitivity analysis 
for Bayesian 

reliability

Cost analysis

Get samples for
epistemic

uncertainties

Set target 
Bayesian reliability

Constraint analysis

Update 
design 
k=k+1

Converged?End

Bayesian Reliability
Analysis

Design 
optimization

Design
Opt.

Fig. 7 Bayesian RBDO flowchart

Table 2 Properties of random variables of vehicle side-impact model

Random variables Distr. type Std. dev.

X1 (B-pillar inner) Normal 0.050
X2 (B-pillar reinforce) Normal 0.050
X3 (floor side inner) Normal 0.050
X4 (cross member) Normal 0.050
X5 (door beam) Normal 0.050
X6 (door belt line) Normal 0.050
X7 (roof rail) Normal 0.050
X8 (mat. B-pillar inner) Normal 0.006
X9 (mat. floor side inner) Normal 0.006
X10 (barrier height) Normal 10.0
X11 (barrier hitting) Normal 10.0

Table 3 Components and safety criteria of vehicle side-impact model

Components Safety criteria

G1: abdomen load (kN) ≤1
G2–G4: rib deflection
Upper/middle/lower ≤32
G5–G7: VC (m/s)
Upper/middle/lower ≤10.32
G8: pubic symphysis force (kN) ≤4
G9: velocity of B-pillar ≤99
G10: velocity of front door at B-pillar ≤15.7

Table 4 Results of component reliability analysis

Const. FORM SORM EDR MCS

G1 1 1 1 1
G2 1 1 1 1
G3 0.9989 0.9989 0.9989 0.9989
G4 0.9 0.9136 0.9026 0.9026
G5 1 1 1 1
G6 1 1 1 1
G7 1 1 1 1
G8 0.9 0.8723 0.7097 0.7019
G9 0.9897 0.9905 0.9905 0.99
G10 0.9 0.9025 0.9495 0.9444
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Xu 2004a) that converts a multidimensional integration in
(28) into multiple one-dimensional integrations. Thus, (28)
can be approximated as

E Ym Xð Þ½ � ’ E Y
m
Xð Þ� 	

¼ R 1
�1� � � R 1

�1Y
m � fX xð Þ � dx ð29Þ

where Y ¼ Pn
j¼1 Y μ1; . . . ;μj�1;Xj;μjþ1; . . . ;μn

� �
� n� 1ð Þ�

Y μ1; . . . ;μnð Þ.
Using a binomial formula, (29) can be evaluated by

executing one-dimensional integration recursively. Uncer-
tainty of system responses can be evaluated through
multiple one-dimensional numerical integrations. The chal-
lenge of the problem still remains how to carry out one-
dimensional integration effectively.

To overcome the challenge, the EDR method incorpo-
rates three technical components: (1) eigenvector sampling,
(2) one-dimensional response approximations for efficient
and accurate numerical integration, and (3) a stabilized
Pearson system for PDF generation.

4.1 Eigenvector sampling

Accuracy for probability analysis can be increased as the
number of integration points becomes larger for the
recursive one-dimensional integration. However, the in-
crease of integration points makes simulations prohibitively
expensive. To achieve both accuracy and efficiency in
probability analysis, one-dimensional response surface will
be created using samples along the eigenvectors of a
random system. For efficiency, the EDR method employs
only either three or five samples along, depending on the
nonlinearity of system responses. For n number of random
variables, the EDR method demands 2n+1 or 4n+1 sample
points including the design point.

To obtain the eigenvectors and eigenvalues, an eigen-
problem can be formulated as

ΣX ¼ 1X ð30Þ
where X and 1 are eigenvectors and eigenvalues of the
covariance matrix, Σ. Depending on statistical configura-

Fig. 8 a FORM and SORM reliability analysis in hyperplane for G8. b FORM and SORM reliability analysis in hyperplane for G10

Table 5 The efficiency study for different methods

Methods EDR FORM SORM MCS

Total number of function
evaluation times

23 47 47 1,000,000

Total number of sensitivity
evaluation times

0 47 47 0

Hessian matrix evaluation times 0 0 10 0
Fig. 9 Three loading variables (epistemic)
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tion of the system, four different types of problems can be
defined: (a) uncorrelated and symmetric, (b) correlated and
symmetric, (c) uncorrelated and asymmetric, and (d)
correlated and asymmetric. For any circumstance, eigen-
vector samples will be found at

1X
0
i ¼ μi � k

ffiffiffiffi
1i

p
and 2X

0
i ¼ μi þ k

ffiffiffiffi
1i

p
ð31Þ

where X
0
i and 1i are the ith eigenvector and eigenvalue and

k determines samples along the eigenvectors. The eigen-
vector samples are used for constructing one-dimensional
response approximations using the stepwise moving least
squares (SMLS) method in the following section.

4.2 SMLS method for numerical integration

The moving least squares (MLS) method (Youn and Choi
2004) is improved by a stepwise selection of basis
functions, referred to as the SMLS method. The optimal
set of basis terms is adaptively chosen to maximize
numerical accuracy by screening the importance of basis
terms. This technique is exploited for approximating the
integrand in (29). The idea of a stepwise selection of basis
functions comes from the stepwise regression method
(Myers and Montgomery 1995). The SMLS method allows
the increase in the number of numerical integration points
without requiring actual system evaluations through simu-
lations or experiments. Thus, a large number of integration
points can be used to increase numerical accuracy in
assessing statistical moments of the responses while

maintaining high efficiency. The EDR method has no
restriction to choose numerical integration schemes.

4.3 A stabilized Pearson system

The Pearson system (Johnson et al. 1995) can be used to
construct the PDF of a random response (Y) based on its
first four moments (mean, standard deviation, skewness,
and kurtosis). The detail expression of the PDF can be
achieved by solving the differential equation as

1

p Yð Þ
dp Yð Þ
dY

¼ � aþ Y

c0 þ c1Y þ c2Y 2
ð32Þ

where a, c0, c1, and c2 are four coefficients determined by
the first four moments of the random response (Y) and
expressed as

c0 ¼ 4β2 � 3β1ð Þ 10β2 � 12β1 � 18ð Þ�1μ2

a ¼ c1 ¼
ffiffiffiffiffi
β1

p
β2 þ 3ð Þ 10β2 � 12β1 � 18ð Þ�1 ffiffiffiffiffi

μ2
p

c2 ¼ 2β2 � 3β1 � 6ð Þ 10β2 � 12β1 � 18ð Þ�1
ð33Þ

where β1 is the squares of skewness, β2 is the kurtosis, and
μ2 is the variance. The mean value is always treated as zero
in the Pearson system, and it can be easily shifted to the
true mean value once the differential equation is solved.
Basically, the differential equation can be solved based on
the different assumptions of the four coefficients a, c0, c1,

Fig. 10 Seven thickness variables (aleatory)

Fig. 11 Thirty-nine critical constraints of the lower control A-arm
model

Table 6 Random properties in lower control A-arm model

Random
variable

Lower bound
of mean

Mean Std. dev. Dist. type

X1 0.1 0.12 0.006 Normal
X2 0.1 0.12 0.006 Normal
X3 0.1 0.18 0.009 Normal
X4 0.1 0.135 0.00675 Normal
X5 0.15 0.25 0.0125 Normal
X6 0.1 0.18 0.009 Normal
X7 0.1 0.135 0.00675 Normal

Fig. 12 Bayesian reliability for G1
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and c2. For example, if c1=c2=0, this equation can be
solved with a normal distribution, and the type 1 in Pearson
system corresponds to both roots of c0+c1Y+c2Y

2 being
real. In the Pearson system, however, a singularity problem
is often encountered due to the failure in calculating
coefficients of a specific distribution type, which results in
numerical instability.

In the EDR method, a stabilized Pearson system is
proposed to avoid instability. Two hyper-PDFs (PDF with a
perturbed kurtosis value from the original) are generated by
fixing the first three statistical moments and incrementally
adjusting the original kurtosis by slightly increasing or
decreasing the value until two hyper-PDFs are successfully
constructed. Then, these two hyper-PDFs are used to
approximate the PDF using the original moments. Once
the PDF is approximated, the probability of the failure can
be evaluated directly. Section 3.4 gives a verification of the
EDR method by comparing FORM, SORM, and the EDR
method against MCS, for the component reliability analysis
of a vehicle side-impact model.

4.4 Verification of EDR method

In practice, reliability is the engineering metric to determine
how well a product or process is designed. The most

common methods for reliability analysis are the first-order
reliability method (FORM) and second-order reliability
method (SORM), due to their reasonable accuracy and
efficiency. This study aims at realizing the feasibility of
applying the EDR method towards reliability analysis.
Thus, the EDR method, FORM, and SORM will be
compared against MCS for an accuracy study through
verifying the reliability of vehicle side crash problem.

The response surface for the vehicle side-impact model
can be briefly summarized with 10 constraints and 11
random variables (Youn et al. 2004). The descriptions of
the 11 random variables and the 10 constraints are shown in
Tables 2 and 3, respectively. The detailed formulation for
this model can be found in Myers and Montomery (1995).
In this study, the design used for the reliability verification
is obtained from the FORM-based RBDO optimum design
with a target component reliability 90%, which is [d*]T=
[0.5, 1.32739, 0.5, 1.26206, 0.623175, 1.5, 0.5, 0.345,
0.192, 0, 0]. Given this design for the model, component
reliabilities will be verified by four different methods:
FORM, SORM, EDR method, and Monte Carlo simulation
using one million sample points. The comparison results for
this study are shown in Table 4.

From Table 4, it is clear that FORM- and SORM-based
reliability analysis methods induce substantial error for
reliability analysis, whereas the EDR method gives fairly
accurate results compared with MCS. Figure 8 shows the
first- and second-order approximations in hyperplanes for
the failure surfaces of two active constraints, G8 and G10, at
the given optimum design. From Fig. 8, it is clear that large

Fig. 13 Bayesian reliability for G24 Fig. 15 Bayesian reliability for G38

Fig. 14 Bayesian reliability for G35

Table 7 Verification of optimum designs (MCS with one million
samples)

Method Optimum points Reliability (by MCS)

X1 X2 G1 G2 G3

FORM 3.3786 3.1238 0.8833 0.9170 1.0000
EDR 3.4576 3.0898 0.9000 0.9001 1.0000

Bayesian reliability-based design optimization using eigenvector dimension reduction (EDR) method 117



errors may be induced by FORM- and SORM-based
reliability analysis methods when the failure surfaces are
highly nonlinear. However, these nonlinear behaviors of
failure surfaces are accurately captured by the EDR
method. Through this study, the feasibility and accuracy
using the EDR method for reliability analysis is verified.

It is found in many examples that the EDR method is more
accurate than FORM/SORM (Youn et al. 2006b; Youn et al.
2007) because FORM or SORM approximates a failure
surface in a linear or quadratic manner at the most probable
point (MPP) and then takes an integration over the failure
domain, whereas the EDR method precisely approximates
the integration directly and the largest error comes from the
fourth-order derivative (Rahman and Xu 2004a,b). More-
over, as shown in Table 5, the EDR method turns out to be
more efficient than FORM and SORM in this example.

5 Bayesian RBDO using EDR method

5.1 Bayesian reliability analysis using EDR method

As described in Section 4, the EDR method is more
efficient and accurate than FORM and SORM. Because
Bayesian RBDO is computationally intensive, it is inte-
grated with the EDR method that evaluates Bayesian
reliabilities efficiently and accurately. In this section,

Bayesian reliability analysis using the EDR method is
performed, considering a lower control arm for the high-
mobility, multipurpose, wheeled vehicle (HMMWV).

Vehicle suspension systems experience intense loading
conditions throughout their service lives. Control arms act as
the backbone of suspension systems, where the majority of
the loads are transmitted through. Therefore, it is crucial that
control arms be highly reliable while remaining cost-effective.
For the purpose of validating the Bayesian RBDO method, a
HMMWV lower control arm is presented as a case study. The
following example incorporates Bayesian reliability analysis,
where a later section shows the use of Bayesian RBDO.

The lower control arm is modeled with plane stress
elements using 54,666 nodes, 53,589 elements, and
327,961 degree of freedoms (DOFs), where all welds are
modeled using rigid beam elements. For finite element (FE)
and design modeling, HyperWorks 7.0 is used. The loading
and boundary conditions for this case study are shown in
Fig. 9, where loading is applied at the ball joint (point D) in
three directions and the boundary conditions are applied at
the bushings (points A and B) and the shock-absorber/
spring assemble (point C). Due to a lack of data, the loads
are considered as epistemic random variables. The design
variables for this problem are the thicknesses of the seven
major components of the control arm, as shown in Fig. 10.
The statistical information of these components, shown in

Fig. 16 Bayesian RBDO by using FORM and EDR with sample size N. a The optimum designs in the entire design space. b The optimum
designs (zoomed)

Table 8 Efficiency comparison between EDR and FORM

Methods EDR FORM

Total times of function evaluation 250 1,052
Total times of sensitivity evaluation 50 1,052

Table 9 Assumed random properties for epistemic uncertainties

Epistemic variable Distribution

Fx ∼Normal(1,900, 95)
Fy ∼Normal(95, 4.75)
Fz ∼Normal(950, 47.5)
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Table 6, is well known, and these random parameters are
therefore considered as aleatory variables in the Bayesian
RBDO.

To determine the hot spots (high-stress concentrations)
in the model, which are used to determine the constraints, a
worst-case scenario analysis of the control arm is per-
formed. For this worst-case scenario, all the design variables
are set at their lower bounds as shown in Table 6, and all the
loads are set at their highest values attained from the
epistemic data points.

From the worst-case scenario, 39 constraints (G1 to G39)
are defined on several critical regions using the von Mises
stress in Fig. 11. For those constraints, Bayesian reliabilities
are defined as

RB
i Xa;Xe; dð Þ ¼ PB Gi Xð Þ ¼ si Xð Þ

sU
� 1 � 0

� �
ð34Þ

The PDFs for reliabilities at the critical spots are
estimated using Bayesian inference. Four representative
PDFs (G1, G24, G35, and G38) are plotted in the dotted
curve in Figs. 12, 13, 14, and 15. The extreme distributions
(solid curves) of the reliability PDFs are presented in the
figures. The median values of the extreme distribution are

then defined as the Bayesian reliabilities for different
constraints, which are also plotted in Figs. 12, 13, 14, and
15 as vertical dashed lines. As illustrated in Figs. 11, 12,
13, and 14, G1 and G35 (the most critical spots at the
current design point) are much less reliable than G24 and
G38. This observation is consistent with a stress contour in
Fig. 10 because the stresses in G1 and G35 are extremely
high. When a target Bayesian reliability is set to 90%, G1

and G35 are violated but others are inactive.

5.2 Sensitivity analysis for Bayesian reliability

To get the sensitivity of Bayesian reliability with respect to
a design variable, a one-to-one mapping between Bayesian
reliability and the mean value of the Beta distribution for
reliability is used, such as Ri

B ¼ Ri
B Mið Þ or Mi ¼ Mi RB

i

� �
.

The transformation between these two variables RB
i and Mi

is shown in (19). Instead of Bayesian reliability, the
corresponding mean value of the Beta distribution for
reliability can be used for design optimization. Then,

Table 10 Random properties in lower control A-arm model

Random variable dL μX=d (mean) dU Std. dev. Dist. type

X1 0.1 0.120 0.5 0.00600 Normal
X2 0.1 0.120 0.5 0.00600 Normal
X3 0.1 0.180 0.5 0.00900 Normal
X4 0.1 0.135 0.5 0.00675 Normal
X5 0.15 0.250 0.5 0.01250 Normal
X6 0.1 0.180 0.5 0.00900 Normal
X7 0.1 0.135 0.5 0.00675 Normal

Table 11 Bayesian RBDO design history

Iter. Design

X1 X2 X3 X4 X5 X6 X7 Mass

1 0.12 0.120 0.180 0.135 0.25 0.180 0.135 30.76
2 0.10 0.100 0.109 0.307 0.15 0.500 0.100 37.04
3 0.10 0.143 0.143 0.100 0.15 0.500 0.100 26.70
4 0.10 0.144 0.153 0.107 0.15 0.242 0.500 28.013
5 0.10 0.137 0.153 0.141 0.15 0.500 0.100 29.64
6 0.10 0.138 0.157 0.151 0.15 0.500 0.100 30.51
7 0.10 0.138 0.156 0.156 0.15 0.500 0.100 30.84
8 0.10 0.137 0.156 0.158 0.15 0.500 0.164 31.01
9 0.10 0.137 0.156 0.160 0.15 0.500 0.156 31.11
10 (optimum) 0.10 0.137 0.1559 0.1598 0.15 0.500 0.177 31.13

Fig. 17 Objective function history

Fig. 18 Bayesian reliability history
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Bayesian RBDO can be reformulated with the mean value
of the Beta distribution as

minimize C Xa;Xe; dð Þ
subject to M RB;i

� � � Mt Rt
B;i

� �
; i ¼ 1; � � � ; np

dL � d � dU; d 2 Rnd and Xa 2 Rna;Xe 2 Rne

ð35Þ
Using (35), sensitivity of the mean value of the Beta

distribution for reliability with respect to a design variable must
be derived for Bayesian RBDO. Moreover, a target Bayesian
reliability, Rt

B, must be mapped to the corresponding mean
value, Mt Rt

B

� �
, of the Beta distribution for reliability.

Starting from (22), the sensitivity of the reliability, Ri,
with respect to the design variable, dj, can be easily
computed using the EDR method (Youn et al. 2007; Zhimin
et al. 2007).

6 Results of BRBDO using EDR method

In this section, two examples are used to demonstrate the
proposed methodology of Bayesian RBDO using the EDR
method. To make Bayesian RBDO affordable, a distributed
computing system is used for this study.

6.1 Mathematical example

For Bayesian RBDO, different reliability analysis methods
are used to compare numerical accuracy and efficiency: the
FORM and the EDR method. Consider the following
mathematical problem with three random variables: Two of
them are aleatory with Xi∼Normal(μi, 0.6), i=1, 2, and X3 is
epistemic with N samples. In this paper, aleatory random
variables are considered as design variables, d=[d1, d2]

T=
[μ1=μ(X1), μ2=μ(X2)]

T. Epistemic random variable, X3, is
not considered as a design variable because none of its

statistical properties are known. Here, the RBDO problem
is defined as

Minimize d1 þ d2
Subject to PB Gi Xð Þ � 0ð Þ ¼ FB

Gi
0ð Þ � Rt

B;i; i ¼ 1; 2; 3
0 � d1 & d2 � 10

ð36Þ
where

G1 ¼ X 2
1 X2X3=20� 1

G2 ¼ 1
30 X1 þ X2 þ X3 � 6ð Þ2 þ 1

120 X1 � X2 � X3 � 11ð Þ2 � 1
G3 ¼ 80


X 2
1 þ 8X2X3 þ 5

� �� 1

ð37Þ
In this study, the target reliability is set to Rt

B;i ¼ 90%.
Before performing Bayesian RBDO, the EDR method is

compared to FORM in terms of numerical accuracy of
Frequentist RBDO. The optimum design using the EDR
method is quite different from that from RBDO using
FORM. These two optimum designs are verified using
MCS with one million samples, and the results are
summarized in Table 7. It is found that FORM yields an
error in reliability estimates due to a linearization of the failure
surface at the MPP. Because G1 and G2 at the optimum
design are concave and convex, respectively, the reliability
for G1 is underestimated, while G2 is overestimated. On the
other hand, the optimum design using the EDR method
precisely satisfies reliability constraints.

Bayesian RBDO is carried out for different sample sizes
with N=50, 100, and 500. These samples are randomly
generated during the design optimization by assuming X3∼
Normal(1.0, 0.1). Different optimum designs will be
obtained whenever Bayesian RBDO is performed, even
with the same sample size, N. This is mainly because an
insufficient data size leads to a subjective decision. To
understand the subjective decision due to the dearth of data,
Bayesian RBDOs for each sample size are performed 20
times using both FORM and the EDR method. Moreover,

Fig. 19 Bayesian reliability forG1, G35, and G38 at the optimum design

Fig. 20 Bayesian reliability for G24 at the optimum design
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these results are compared to the Frequentist reliability-
based optimum design by assuming X3 as aleatory with the
statistical properties given above. As expected, both
Bayesian RBDO results using FORM and the EDR method
asymptotically approach that from the Frequentist results
when it increases the sample size of the epistemic variables,
as shown in Fig. 15. Bayesian RBDO with the smaller
sample size (N=50) leads to more subjective decisions. In
other words, the optimum designs are more widely
scattered. Because of the sufficiency requirement given in
Section 3.3, Bayesian RBDO with a smaller sample size
yields the optimum designs with greater reliability com-
pared with Frequentist RBDO results. When more than 500
samples are engaged in Bayesian RBDO, it produces the
optimum design quite close to that from Frequentist RBDO.
The Pareto frontier of the optimum designs can be
constructed along the optimum design trajectory as the
data size increases, as shown in Fig. 16.

Table 8 shows the total number of function and
sensitivity evaluations using FORM and the EDR method
in Bayesian RBDO. This example employs 50 data samples
for epistemic variables. It is found that the EDR method is
much more efficient than FORM. This is because one EDR
execution evaluates reliabilities for all constraints, unlike
FORM. From this example, it is apparent that the EDR

method is much more efficient and accurate than FORM for
Bayesian RBDO.

6.2 Lower control ARM

The control arm used in Section 4 is used for Bayesian
RBDO. In this example, seven thickness design variables
are considered as aleatory random variables, whereas three
load variables (not design variables) are considered as
epistemic random variables. Fifty data sets are employed
for the epistemic loads during Bayesian RBDO. These
samples are randomly generated using the assumed dis-
tributions shown in Table 9. The properties of the design
and random variables are shown in Table 10.

With 39 constraints, Bayesian RBDO is formulated as

Minimize Mass

Subject toPB Gi Xð Þ ¼ si Xð Þ
sU

� 1 � 0
� �

¼ FB
Gi

0ð Þ � Φ βti

� �
; i ¼ 1; � � � ; 39

ð38Þ

In this study, target reliability is set to Rt
B;i ¼ 90%. Ten

design iterations reach the Bayesian reliability-based
optimum design. The histories of the design parameters,
objective function, and the Bayesian reliabilities for
significant constraints are shown in Table 11 and Figs. 17

Fig. 21 Element stress contour
for G35. a At the initial design
and b at the optimum
design

a b

Fig. 22 Element stress contour
for G38. a At the optimum
design and b at the initial design
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and 18. At the optimum design, three constraints, G1,
G35, and G38, become active and others are feasible.
Figures 19 and 20 illustrate the reliability PDFs and
Bayesian reliabilities at the optimum design for G1, G24,
G35, and G38, of which the PDFs at the initial design are
shown in Figs. 12, 13, 14, and 15. The stress contours and
the hot spots for the initial design and optimum designs are
shown in Figs. 21 and 22.

Finally, the Bayesian reliability-based optimum design is
verified by MCS with 10,000 samples. In this verification,
three epistemic load variables are assumed to follow the
distributions in Table 9. At the optimum design, reliabilities
for G1, G35, and G38 are 98.85, 99.15, and 98.6%. The
sufficiency requirement assures higher reliability than the
target reliability, 90%.

7 Conclusion

Practical engineering analysis and design problems involve
both sufficient (aleatory) and insufficient (epistemic) data
for their random inputs, such as geometric tolerances,
material properties, loads, etc. However, conventional
RBDO methods cannot handle the design problems that
involve both aleatory and epistemic uncertainties simulta-
neously. To tackle the design problems engaging both
epistemic and aleatory uncertainties, Bayesian RBDO has
been proposed. However, Bayesian RBDO becomes ex-
tremely expensive when employing either FORM or SORM
for reliability prediction. Thus, this paper proposed devel-
opment of Bayesian RBDO methodology and its integration
to a numerical solver, the eigenvector dimension reduction
(EDR) method, for Bayesian reliability analysis to improve
its efficiency and accuracy. One mathematical example and
one engineering design example (vehicle suspension sys-
tem) were used to demonstrate the feasibility of Bayesian
RBDO using EDR method. In Bayesian RBDO using the
EDR method, random parameters associated with manu-
facturing variability are considered as the aleatory random
parameters, whereas random parameters associated with the
load variability are regarded as the epistemic random
parameters. It was found through these two examples that
the EDR method enhances numerical efficiency and
accuracy for Bayesian RBDO.
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