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Abstract This paper presents the eigenvector dimension
reduction (EDR) method for probability analysis that makes
a significant improvement based on univariate dimension
reduction (DR) method. It has been acknowledged that the
DR method is accurate and efficient for assessing statistical
moments of mildly nonlinear system responses in engineer-
ing applications. However, the recent investigation on the
DR method has found difficulties of instability and in-
accuracy for highly nonlinear system responses while main-
taining reasonable efficiency. The EDR method integrates
the DR method with three new technical components: (1)
eigenvector sampling, (2) one-dimensional response approx-
imation, and (3) a stabilized Pearson system. First, 2N+1
and 4N+1 eigenvector sampling schemes are proposed to
resolve correlated and asymmetric random input variables.
The eigenvector samples are chosen along the eigenvectors
of the covariance matrix of random parameters. Second, the
stepwise moving least squares (SMLS) method is proposed
to accurately construct approximate system responses along
the eigenvectors with the response values at the eigenvector

samples. Then, statistical moments of the responses are
estimated through recursive numerical integrations. Third,
the stabilized Pearson system is proposed to predict prob-
ability density functions (PDFs) of the responses while
eliminating singular behavior of the original Pearson sys-
tem. Results for some numerical and engineering examples
indicate that the EDR method is a very accurate, efficient,
and stable probability analysis method in estimating PDFs,
component reliabilities, and qualities of system responses.

Keywords Probability analysis . Eigenvector dimension
reduction . Reliability . Quality . Sensitivity-free

1 Introduction

A high-fidelity modeling has come true as computational
mechanics has been sophisticated. Thus, probability anal-
ysis is of critical importance to understand random nature
of physics in various engineering applications. However,
a common challenge in probability analysis is a multi-
dimensional integration to quantify probabilistic nature
of system responses (e.g., fatigue life, corrosion, injury
metrics) in various engineering applications (e.g., vehicle,
airplane, electronics). Neither analytical multi-dimensional
integration nor direct numerical integration is possible for
large-scale engineering applications. Other than those
approaches, existing approximate methods for probability
analysis can be categorized into five groups: 1) sampling
method; 2) expansion method; 3) the most probable point
(MPP)-based method; 4) response surface approximate
method; and 5) approximate integration method.

The sampling method is the most comprehensive but
expensive method to use for estimating statistical moments,
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reliability, and quality of system responses. Monte Carlo
Simulation (MCS) (Varghese et al. 1996; Lin et al. 1997) is
the most widely used sampling method, but demands
thousands of computational analyses (e.g., finite element
analysis (FEA), crash analysis, etc.). To relieve the compu-
tational burden, other sampling methods have been devel-
oped, such as quasi-MCS (Niederreiter and Spanier 2000;
Sobol 1998), (adaptive) importance sampling (Engelund and
Rackwitz 1993; Melchers 1989; Bucher 1988; Wu 1994),
directional sampling (Bjerager 1988), etc. Nevertheless, sam-
pling methods are considerably expensive. Thus, it is often
used for verification of probability analysis when alternative
methods are used.

The idea of the expansion method is to estimate sta-
tistical moments of system responses with a small pertur-
bation to simulate input uncertainty. This expansion method
includes Taylor expansion (Jung and Lee 2002), pertur-
bation method (Kleiber and Hien 1992; Rahman and
Rao 2001), Neumann expansion method (Yamazaki and
Shinozuka 1988), etc. Taylor expansion and perturbation
methods require high-order partial sensitivities to maintain
good accuracy. The Neumann expansion method employs
Neumann series expansion of the inverse of random
matrices, which requires an enormous amount of computa-
tional effort. In summary, all expansion methods could
become computationally inefficient or inaccurate when the
number or the degree of input uncertainty is higher. More-
over, as it requires high-order partial sensitivities of system
responses, it may not be practical for large-scale engineer-
ing applications.

The MPP-based method has been widely used to per-
form reliability analysis. Rotationally invariant reliability
index is introduced through a nonhomogeneous trans-
formation (Hasofer and Lind 1974). Probability analysis
can be conducted in two different ways: performance-
level (G-level) (Hasofer and Lind 1974) and probability-
level (P-level) (Youn et al. 2004a; Du and Chen 2002)
methods. It has been found that the P-level method is more
efficient and stable than the G-level method (Youn et al.
2004a). However, the MPP-based method requires the
first-order sensitivities of system responses. Moreover, it
could generate relatively large error caused by some non-
linearity of system response and is not suitable for mul-
tiple MPP problems.

The response surface approximate method (Myers and
Montgomery 1995) is often used with MCS to perform reli-
ability analysis. A true system response is approximated
based on limited design of experiment (DOE) samples and a
response surface approximation method. Once the response
surface is constructed, the MCS can be used for reliability
analysis without extra expense except for the DOE samples.
The accuracy of this method greatly depends on the accuracy
of response surface. Besides, response surface method is not

suitable for high-dimensional problems because of a course
of dimensionality.

The approximate integration method is a direct approach to
estimate the probability density function (PDF) (or statistical
moments) through numerical integration. Numerical integra-
tion can be done in the input uncertainty domain (Rahman
and Xu 2004; Seo and Kwak 2003) or the output uncertainty
domain (Youn et al. 2005). Recently, the dimension reduc-
tion (DR) method (Rahman and Xu 2004; Xu and Rahman
2004) has been proposed and is known to be a sensitivity-
free method. In the univariate DR method (Rahman and Xu
2004), it uses an additive decomposition of the responses
that simplifies one multi-dimensional integration to multiple
one-dimensional integrations. Generally, it can provide
accurate lower moment of system responses such as mean.
However, it may produce a relatively large error for the
second-order or higher moments of nonlinear system
responses. Otherwise, it could be expensive with large num-
ber of numerical integration points. In the general DR
method (Xu and Rahman 2004), the theoretical error of
univariate DR method can be reduced by considering multi-
dimensional integrations. However, the computation effort
is increased exponentially. Therefore, it is hard to afford a
general DR calculation in most engineering applications.

This paper proposes the eigenvector dimension reduction
(EDR) method, which is an enhancement of the univariate
DR method. It has three technical elements: (1) eigenvector
sampling, (2) one-dimensional response approximations,
and (3) a stabilized Pearson system. The 2N+1 and 4N+1
eigenvector sampling schemes are proposed in the EDR
method to resolve correlated and asymmetric random input
variables while maintaining high accuracy and efficiency
for sensitivity-free probability analysis. The Stepwise
Moving Least Squares (SMLS) method is proposed for
response approximation. The SMLS method integrates a
Moving Least Squares (MLS) method (Youn and Choi 2004)
with a stepwise regression scheme (Myers and Montgomery
1995). The one-dimensional response approximation allows
the increase of integration points without demanding addi-
tional computation. Therefore, the EDR method improves
numerical accuracy in calculating the statistical moments
with no extra expense other than the eigenvector samples.
The stabilized Pearson system is proposed to predict prob-
ability density functions (PDFs) of the responses while
eliminating singular behavior of the original Pearson system.

In this paper, the univariate DR method is reviewed in
Section 2. The EDR method is then developed based on the
univariate DR method with three new technical components
in Section 3. Finally, six examples demonstrate that the
EDR method makes considerable improvements from the
perspective of accuracy, efficiency, and stability compared
with the univariate DR method and some traditional
probability analysis methods.
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2 Review of univariate dimension reduction method

2.1 Dimension reduction method using additive
decomposition

In general, statistical moments (or PDF) of system responses
(e.g., fatigue life, corrosion, injury metrics), Y(X), can be
calculated as

E Ym Xð Þf g ¼
Z þ1

�1
� � �
Z þ1

�1
Ym xð Þ � fX xð Þ � dx; m ¼ 0; 1; 2; � � �

ð1Þ
In (1), a major challenge is a multi-dimensional integra-

tion over the entire random input (X) domain. To resolve this
difficulty, the univariate DR method uses an additive
decomposition (Rahman and Xu 2004) that converts a
multi-dimensional integration in (1) into multiple one-
dimensional integrations. The additive decomposition, Ya,
is defined as

Y X1; . . . ;XNð Þ ffi Ya X1; . . . ;XNð Þ

¼
XN
j¼1

Y μ1; . . . ;μj�1;Xj;μjþ1; . . . ;μN

� �
� N � 1ð ÞY μ1; . . . ;μNð Þ

ð2Þ

To validate the use of the additive decomposition, the
error incurred because of its use in determining the sta-
tistical moments must be small. To accomplish this, the
Taylor series expansion of the actual function, Y(x), in (3) is
compared to the expansion of the additive decomposition,
Ya(x), in (4).
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It can be seen in (5) that the largest error occurs at the
fourth even-order term, producing negligible error. In fact,

the error produced by the additive decomposition is less
than that of a second-order Taylor expansion method for
probability analysis (Rahman and Xu 2004). The accuracy
in the use of the additive decomposition is partly because
the integration is being performed over a symmetric
domain. This results in all of the odd-order terms in the
integration to be zero.

I Y xð Þ½ � � I Ya xð Þ½ � ¼ 1
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j

þ � � � ð5Þ

In aid of the additive decomposition, probability analysis
of system responses becomes much simpler. For reliability
and quality assessment, the mth statistical moments for the
responses are considered in (6) as

E Ym Xð Þ½ � ’ E Ym
a Xð Þ� �

¼ E

XN
j¼1

Y μ1; . . . ;μj�1;Xj;μjþ1; . . . ;μN

� �
� N � 1ð Þ � Y μ1; . . . ;μNð Þ
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�fXj xj
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Using a binomial formula, (6) can be evaluated by
executing one-dimensional integration recursively. In other
words, uncertainty of system responses can be evaluated
through multiple one-dimensional numerical integrations.
So the challenge of the problem still remains how to carry
out one dimensional integration effectively. Using numer-
ical integration, one-dimensional integration will be per-
formed with integration weights wj,i and points xj,i using
(7).

E
XN
j¼1

Ym μ1; . . . ;μj�1;Xj;μjþ1; . . . ;μN

� �" #

ffi
XN
j¼1

Xn
i¼1

wj;iY
m μ1; . . . ;μj�1; xj;i;μjþ1; . . . ;μN

� �
ð7Þ

The number of integration points determines computa-
tional efficiency of the univariate DR method. In general,
the univariate DR method uses (n−1)×N+1 integration
points where N is the number of input random parameters
and n is the integration points along each random variable.
It is suggested in the proposed Eigenvector Dimension
Reduction (EDR) method that n must be maintained at 3 or,
at most, 5, for large-scale engineering design problems.
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2.2 One-dimensional numerical integration
in the dimension reduction method

The DR method suggests the use of a moment-based
quadrature rule (Rahman and Xu 2004; Xu and Rahman
2004) to perform the one-dimensional numerical integration
in (6). Integration points and weights can be obtained by
solving a linear system equation that requires the statistical
information of the input parameters. The linear relationship
is made between low- and high-order moments of the
random input variables, as shown in (8).

μj;n�1 �μj;n�2 μj;n�3 � � � �1ð Þn�1μj;0

μj;n �μj;n�1 μj;n�2 � � � �1ð Þn�1μj;1
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..

. ..
. ..
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ð8Þ

Here, μj,n represents the nth raw moment considering the
jth input variable and r is a moment vector. The solution of
(8) can be manipulated to produce the resulting integration
points and the weights.

2.3 Remarks on the Dimension Reduction (DR) method

A different statistical moment formula from (6) was
developed in Xu and Rahman 2004 by replacing Ym with
Z, expressed as

EZ Ym Xð Þ½ � ¼ E Z½ �

’ EZ

XN
j¼1

Zðμ1; . . . ;μj�1;Xj;μjþ1; . . . ;μN Þ

� N � 1ð Þ � Z μ1; . . . ;μNð Þ
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’ EZ

XN
j¼1
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264
375

ð9Þ

Thus, it may eliminate a complicated process using a
binomial formula. However, it is found that this formula
could lead to larger error caused by the replacement of the

power term before the additive decomposition. For exam-
ple, when m=2, (6) gives the following formula as

E Y 2 Xð Þ� � ’ E
XN
j¼1

Y 2 μ1; . . . ;μj�1;Xj;μjþ1; . . . ;μN

� �" #
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However, (9) proposed for simplicity gives the different
formula as

EZ Y 2 Xð Þ� �
’ EZ

XN
j¼1

Y 2 μ1; . . . ;μj�1;Xj;μjþ1; . . . ;μN

� �" #
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ð11Þ

A distinctive difference is found between two formulae as

E Y2 Xð Þ� �� EZ Y2 Xð Þ� � ’ N2 � N
� �

Y2 μ1; . . . ;μNð Þ

� 2 N� 1ð ÞY μ1; . . . ;μNð Þ

E
XN
j¼1

Y μ1; . . . ;μj�1;Xj;μjþ1; . . . ;μN

� �" #
;

ð12Þ
where the difference is an additional error induced by the
different formulation in Xu and Rahman 2004.

3 Eigenvector Dimension Reduction (EDR) method

The univariate DR method is enhanced by incorporating
three technical components: (1) eigenvector sampling, (2)
the Stepwise Moving Least Squares (SMLS) method for
efficient and accurate numerical integration, and (3) a
stabilized Pearson system for PDF generation. Although
the univariate DR method gives reasonably good results
for probability analysis, the EDR method attempts to
resolve the disadvantages of the DR method addressed in
Section 1.

3.1 Eigenvector sampling

With the additively decomposed function in (2), the
challenge of probability analysis still remains how to carry
out one dimensional integration efficiently and accurately.
Accuracy for probability analysis can be increased as the
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number of integration points in recursive one-dimensional
integration. However, the increase of integration points
makes probability analysis prohibitively expensive for
large-scale applications. To achieve both accuracy and
efficiency in probability analysis, an eigenvector sampling
scheme selects sample points along the eigenvectors of the
covariance matrix (Σ) of the system input random
parameters (X), and then one dimensional response surface
(Section 3.2) will be created using the response values at
the samples. The primary reason to choose samples along
the eigenvectors is because the eigenvectors and eigenval-
ues contain information for statistical correlation and
variation.

The eigenvector sampling scheme assist finding the
samples using the eigenvectors and eigenvalues of the
covariance of the system input random parameters. For
efficiency, the EDR method employs either two (n=2) or
four (n=4) samples along each eigenvector excluding the
sample at the design point, depending on nonlinearity of
the system responses. For N number of random variables,
the EDR method demands 2N+1 or 4N+1 samples. To
obtain the eigenvectors and eigenvalues, an eigenvalue
problem for the covariance of the system input random
parameters X can be formulated as

ΣX ¼ 1X ð13Þ
where X and 1 are eigenvectors and eigenvalues of the
covariance matrix Σ. The covariance matrix with the N
random input variables is defined as

@ ¼
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@21 @22 @23 � � � @2N
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where the covariance between the input variables Xi and Xj

can be defined as

Cov Xi;Xj

� � ¼
X

ij
¼ E Xi � mið Þ Xj � mj

� �h i
and μi and μj are the means of Xi and Xj. According to the
definition, the covariance is symmetric with Σij=Σji and s2

i

is the variance of any random variable Xi.
Depending on the random properties of system inputs,

four different types of the random properties can be defined
as: (1) uncorrelated and symmetric, (2) correlated and
symmetric, (3) uncorrelated and asymmetric, and (4)

correlated and asymmetric. The 2N+1 eigenvector sampling
scheme is first considered here. For any circumstance, the
2N+1 eigenvector samples will be found at

1Vi ¼ μ� k
ffiffiffiffi
1i

p
X

0
i and

2Vi ¼ μþ k
ffiffiffiffi
1i

p
X

0
i ð14Þ

where X
0
i and 1i are the ith eigenvector and eigenvalue, and

k determines a sample location along the eigenvectors. The
locations of the eigenvector samples dictate accuracy of
one-dimensional response approximations. Subsequently,
accuracies of one-dimensional response approximations
determine accuracy of one-dimensional numerical integra-
tions and, eventually, probability analysis in the EDR
method.

If the k is too large, the accuracy of one-dimensional
response approximations will be degraded on the inner side
of two eigenvector samples 1V

0
i and

2V
0
i; on the other hand,

if k is too small, the accuracy of the response approxima-
tions will be descended on the outer side of eigenvector
samples because of an extrapolation. As the response
approximation is involved, it is nearly impossible to
determine the optimum location (k) of the eigenvector
samples with a reasonable justification. Thus, a parametric
study is performed by using a set of mathematical
examples, and two facts are observed: (1) the accuracy of
the EDR appears to be the best with k=[2.5∼3.5]; (2) the
accuracy is nearly insensitive with any k value in the range.
So, this paper uses k=3 for eigenvector sampling. For the
different types of the system input random properties, the
eigenvector samples are found as follows:

a. Uncorrelated and symmetric
If all random variables are statistically uncorrelated, all

off-diagonal terms in the covariance matrix become zero. In
this case, the eigenvectors are simply the original random
variable axes. The eigenvector samples are obtained along the
original random vectors at 1Vi ¼ μ� 3

ffiffiffiffi
1i

p
X

0
i ¼ μ� 3σiX

0
i

and 2Vi ¼ μþ 3
ffiffiffiffi
1i

p
X

0
i ¼ μþ 3σiX

0
i, where X

0
i is the ith

eigenvector where all elements are zero except the ith
element is one.
b. Correlated and symmetric

If some random variables are statistically correlated, the
eigenvector samples are obtained at 1Vi ¼ μ� 3

ffiffiffiffi
1i

p
X

0
i and

2Vi ¼ μþ 3
ffiffiffiffi
li

p
X

0
i along the eigenvectors of the eigenvalue

problem in (13).
c. Uncorrelated and asymmetric

If all random variables are statistically uncorrelated but
asymmetrically distributed, the eigenvectors are still same
as the original random variable axes. To facilitate the
eigenvector sampling for asymmetrically distributed ran-
dom input parameters, the random parameters are trans-
formed into a standard-normally distributed random
parameter (U), such as T: Xi → Ui (Rackwitz and Fiessler
1978). The eigenvector samples are similarly obtained along
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the eigenvectors in the transformed space at 1Ui ¼ �3U’i
and 2Ui ¼ þ3U'i , where U

0
i is the ith eigenvector where all

elements are zero except the ith element is one. Then, two
eigenvector samples 1Vi and

2Vi will be found from 1Ui and
2Ui through the inverse transformation, T−1.
d. Correlated and asymmetric

If some random variables are both correlated and with
asymmetric distributions, the eigenvectors of the covariance
matrix of the system input random parameters must be first
obtained, as illustrated in the part b. For the random
variables with correlated and asymmetric distributions, the
eigenvector samples will be chosen along the eigenvectors
through the transformation given in the part c.

The 2N+1 eigenvector samples are illustrated for the four
different cases shown in Fig. 1 and the samples are used for
constructing one-dimensional response approximation us-
ing the SMLS method in the following section. To enhance
numerical accuracy in probability analysis, the 4N+1
eigenvector samples will be selected with two extra samples
located at 3Vi ¼ μ� 1:5

ffiffiffiffi
1i

p
X

0
i and

4Vi ¼ μþ 1:5
ffiffiffiffi
1i

p
X

0
i.

3.2 Stepwise Moving Least Squares (SMLS) Method
for numerical integration

The moving least square (MLS) method (Youn and Choi
2004) is improved by a stepwise selection of basis functions,
referred to as the Stepwise Moving Least Squares (SMLS)
method. The optimal set of basis terms is adaptively chosen
to maximize numerical accuracy by screening the importance
of basis terms. This technique is exploited for approximating
the additively decomposed one-dimensional integrand in (6).
The idea of a stepwise selection of basis functions comes
from the stepwise regressionmethod (Myers andMontgomery
1995). The SMLS method for one-dimensional response
approximation proceeds in the following steps:

Step 1. Define a pool of basis elements and forced basis
elements out of the pool. Set the total number of
basis elements, nb, and sub-domain counter, m=0.

Step 2. Define the mth sub-domain surrounded by nb
neighboring samples.

Fig. 1 Eigenvector samples for
EDR method
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Step 3. Find nt training points in all sub-domains, where
training points are defined in the middle of every
two samples.

Step 4. Approximate responses at training points using the
MLS method (see Appendix) as

bY dð Þ ¼ hT dð ÞM�1 dð ÞB dð ÞY where M ¼ HTW dð ÞH;

B ¼ HTW dð Þ where W is the weight matrix and H is
the basis matrix

:

Step 5. Filter the basis elements adaptively in the mth
subdomains by ranking the magnitudes of the
coefficients. The basis element with the maxi-
mum coefficient will be selected and add to the
forced basis elements as the current basis ele-
ments. This process will be repeated until the total
number of required basis elements (nb) is
reached.

Step 6. Set m=m+1 and go to Step 2 if m � ns, where ns
is the total number of subdomains. Otherwise go
to Step 7.

Step 7. Construct one-dimensional response surface using
sample responses.

3.2.1 Example of SMLS Method

As the objective is to approximate one-dimensional
response accurately, a highly nonlinear one-dimensional
response example is used to show accuracy of the SMLS.
For the purpose of the EDR method, the response would be
treated as the integrand used in the EDR method. The exact
response is explicitly expressed as

Y Xð Þ ¼ X 2 2þ sin 2Xð Þð Þ=4; 1 � X � 7 ð15Þ
Six subdomains (m=6) are defined and six training points

(nt=6) are used. Seven basis terms (nb=7) are used where
two (1 and X) are the forced basis terms. Including the forced
basis terms, the pool of basis terms are {1, X, X 2, X 3, X 4,
X 5, X 6, X 7, sin X, cos X, exp(X)}. In addition to the ordinary
polynomial basis, the sinusoidal and exponential basis terms
are used because they are good for nonlinear representation.
For example, at X=4 the selected basis terms are [1, X, sinX,
cosX, X 2, X 3, X 4] with the corresponding coefficients
[−124.2285, 617.9624, −151.2387, −97.4442, −382.9456,
74.3153, −4.4639]. As shown in Fig. 2, the SMLS method
approximates the response very accurately in aid of the
adaptive selection of basis elements in different subdomains.
In Table 1, the normalized error is measured as

e ¼ 1

nt

Xnt
i¼1

byi � yti
� �2

ytið Þ2
 !

; ð16Þ

where the total trial points, nt=61. byi and yti are approximate
and true responses, respectively, at the ith trial points.

In general, for numerical calculation of statistical moments,
the integration domain is relatively small because the con-
tribution of PDF is negligible for X<μ−6σ and X>μ+6σ. For
some bounded random distributions, such as uniform and
beta distributions, the integration domain will be limited
from lower to upper bounds. Therefore, although probability
analysis is applied for nonlinear system responses, they are
less nonlinear in a local region than those in a global region.
Thus, the SMLS method can approximate system responses
very accurately in the integration domain. The SMLS
method allows the increase in the number of numerical
integration points without requiring actual simulations (or
experiments) for system response evaluations. Responses at
all integration points are approximately obtained from
approximated one-dimensional responses, bY xj;i

� �
, instead

of system responses, Y xj;i
� �

through actual system evalua-
tions, as shown in (17).

E
XN
j¼1

Y μ1; . . . ;μj�1;Xj;μjþ1; . . . ;μN

� �" #

ffi
XN
j¼1

Xn
i¼1

wj;iY μ1; . . . ;μj�1; xj;i;μjþ1; . . . ;μN

� �
ffi
XN
j¼1

Xn
i¼1

wj;iby μ1; . . . ;μj�1; xj;i;μjþ1; . . . ;μN

� �

ð17Þ

Thus, a large number (n=20∼30) of integration points
can be used to increase numerical accuracy in assessing
statistical moments of the responses without requiring actual
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Fig. 2 Response approximation using stepwise moving least square
method

Table 1 Normalized errors of the MLS and SMLS

Method MLS SMLS

Normalized error 3.2200 0.0130
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system evaluations. So, numerical accuracy in estimating
statistical moments is improved considerably while high
efficiency is remained, as only 2N+1 or 4N+1 simulations or
experiments are required.

a. Moment-based quadrature rule In the DR method, a
moment-based quadrature rule (Rahman and Xu 2004) was
proposed for one-dimensional numerical integration be-
cause of its good accuracy and efficiency, compared with
other integration methods. However, it may still produce a
relatively large error for the second order or higher
moments of nonlinear responses as will be shown in the
later examples. In the EDR method, however, as large
amount of integration points could be used without actual
simulations (or experiments) for system response evalua-
tions, accuracy of moment-based quadrature rule could be
improved substantially. Thus, moment-based quadrature

rule could still be used in the EDR method. However,
moment-based quadrature rule could have two problems as

1) The number of integration points should be predeter-
mined. So it is hard to decide an optimal number of the
points to maximize accuracy of the EDR method for
probability analysis.

2) Larger amount of integration points could result in a
singular moment matrix in (8), so it may fail to find the
corresponding integration points. Specifically, a large
number of integration points require the use of higher
order statistical raw moments. As the order of the
moments is increased, the matrix in (8) becomes
singular because of the higher-order moments asymp-
totically approaching zero.

b. Adaptive Simpson rule This paper suggests an adaptive
Simpson rule (Yamazaki and Shinozuka 1988) as an
alternative integration method. It gives more freedom on
selection of probability distribution types for system input
random variables. Adaptive Simpson’s rule uses an adap-
tive way to estimate the error from calculating a definite
integral using Simpson’s rule. If the error is larger than a
user-specified tolerance, the integration interval is divided
into subintervals, and Simpson’s rule is applied to each
subinterval. The adaptive Simpson rule generally demands

Fig. 3 Pearson curve
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a large number of integration points to preserve good
accuracy by specifying the tolerance. The SMLS method
enables the increase in the number of integration points to
as many as possible with no additional computation. Unlike
the DR method, the EDR method has no restriction to
choose numerical integration schemes, although this paper
uses the adaptive Simpson rule for the one-dimension
integration.

3.3 A stabilized Pearson system

The Pearson system (Johnson et al. 1995) can be used to
construct the PDF of a random response (Y) based on its
first four moments (mean, standard deviation, skewness,
and kurtosis). The detail expression of the PDF can be
achieved by solving the differential equation as

1

p Yð Þ
dp Yð Þ
dY

¼ � aþ Y

c0 þ c1Y þ c2Y 2
;

where a, c0, c1, and c2 are four coefficients determined by
the first four moments of the random response (Y) and
expressed as

c0 ¼ 4" 2 � 3" 1ð Þ 10" 2 � 12" 1 � 18ð Þ�1μ2

a ¼ c1 ¼
ffiffiffiffiffiffi
" 1

p
" 2 þ 3ð Þ 10" 2 � 12" 1 � 18ð Þ�1 ffiffiffiffiffi

μ2
p

;

c2 ¼ 2" 2 � 3" 1 � 6ð Þ 10" 2 � 12" 1 � 18ð Þ�1

where " 1 is the square of skewness (x-axis in Fig. 3), " 2 is
the kurtosis ( y-axis in Fig. 3), and μ2 is the variation. The

mean value is always treated as 0 in the Pearson system,
and later it can be shifted to the true mean value once the
differential equation is solved. Basically, the differential
equation can be solved based on the different assumptions
of the four coefficients a, c0, c1, and c2. For example, if c1=
c2=0, this equation can be solved with a normal distribu-
tion, which corresponds to [0, 3] point in Fig. 3, and the
type 1 in Pearson system corresponds to both roots of c0+
c1Y+c2Y

2 being real. For more detail information, readers
can refer to Johnson et al. 1995.

Generally, there are seven distribution types in the
Pearson system based on the four coefficients, and among
some types, subtypes are present. Normally, PDF can be
successfully constructed based on the first four moments.
However, the Pearson system can fail to construct the PDF,
especially when the statistical moments in the Pearson

Table 2 Statistical properties of random variables in beam example

Variable Type Mean Std.
Dev.

Lower
bound

Upper
bound

Mode

P Normal 6,070 200 – – –
L Beta 120 6 100 150 –
a Uniform – – 50 80 –
S Lognormal 17,0000 4760 – – –
h Triangular – – 2.25 2.38 2.30
w Weibull 2.9665 0.0750 – – –
t1 Normal 0.1600 0.0208 – – –
t2 Lognormal 0.2600 0.0208 – – –

Table 3 Comparison of statistical moments

Mean Std. Dev. Skewness Kurtosis

MCS (1,000,000) −49883 12961 0.0083 3.1479
EDR (4N+1) −49860 12815 0.0050 2.9840
Error (%) 0.0460 1.1312 39.9880 5.2077
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Fig. 7 PDFs using the EDR and MCS method

Table 4 Properties of design and random variables of vehicle side
impact model

Random Variables Distr.
Type

Std
Dev.

dL d dU

X1 (B-pillar inner) Normal 0.050 0.500 1.000 1.500
X2 (B-pillar reinforce) Normal 0.050 0.500 1.000 1.500
X3 (Floor side inner) Normal 0.050 0.500 1.000 1.500
X4 (Cross member) Normal 0.050 0.500 1.000 1.500
X5 (Door beam) Normal 0.050 0.500 1.000 1.500
X6 (Door belt line) Normal 0.050 0.500 1.000 1.500
X 7 (Roof rail) Normal 0.050 0.500 1.000 1.500
X8 (Mat. B-pillar inner) Normal 0.006 0.192 0.300 0.345
X9 (Mat. Floor side inner) Normal 0.006 0.192 0.300 0.345
X10 (Barrier height) Normal 10.0 –a –a –a

X11 (Barrier hitting) Normal 10.0 –a –a –a

a 10th and 11th random variables are not regarded as design variables
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curve fall into the region that several distribution types
merge, as shown in Fig. 3. The horizontal axis is for the
square of skewness (" 1) and vertical axis is for the kurtosis
(" 2). The solid dots stand for the locations having an
instability problem while constructing the PDF. The trouble
lies at the calculation of coefficients of a specific
distribution type, which results in a numerical instability.

For the distributions (type II, III, V, VII) with an equality
condition, it is rare that statistical moments meet the
condition tightly. To resolve instability of the Pearson
system, the condition is relaxed with a tolerance bound. In
this study, 0.001 is used for the tolerance bound. For
instance, the PDF should belong to type 6 based on the first

four moments (−0.5491, 0.1085, −0.1573, 3.0464). How-
ever, numerical singularity is met because of larger
numbers of n1=3273.5 and n2=−3930.2 in type 6 as

p Yð Þ ¼ K a1 � Yð Þn1 a2 � Yð Þn2 ; Y < a2

The Pearson system fails to calculate the coefficient, K,
as p(Y) approaches 0 � 1. By relaxing the tolerance bounds,
type 3 can be selected, but the singularity problem still
remains. Finally, a normal distribution is selected to
approximate the PDF by increasing the tolerance value to
0.0118. However, as shown in Fig. 4, the Pearson system
produces a noticeable error, compared to MCS with one
million samples.
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In the EDR method, a stabilized Pearson system is
proposed to avoid instability without relaxing tolerances.
Two PDFs are generated by fixing the first three statistical
moments and slightly increasing or decreasing the original
kurtosis until two PDFs are successfully constructed. Then
these two PDFs are used to approximate the PDF with
original kurtosis. Suppose that the Pearson system fails to
construct a PDF with the first four moments (m1, m2, m3,
m4). Detail procedures follow as

Step 1: The first three moments are kept constant and
gradually decrease the m4 by a small decrement
(Δm4=0.01) until a PDF can be successfully
constructed. p1(Y) and m4,1 are denoted as the
PDF and the corresponding kurtosis value,
respectively.

Step 2: The first three moments are kept constant and
gradually increase the m4 by a small increment
(Δm4=0.01) until a PDF can be successfully
constructed. p2(Y) and m4,2 are denoted as the
PDF and the corresponding kurtosis value,
respectively.

Step 3: To build the PDF over the entire domain of the
random response (Y), the response domain is
discretized as Yi, i=1 to l. At every value Yi, the
PDF value, p(Yi), is obtained using two hyper-
PDFs p1(Yi) and p2(Yi), where they are obtained
with the kurtosis m4,1 and m4,2, respectively. With
two hyper-PDF values having the kurtosis m4,1

and m4,2, the PDF p(Yi) with the actual kurtosis m4

(m4,1 < m4 < m4,2) can be approximated using
SMLS without a singularity. It is found that the
PDF p(Yi) is accurately generated because the
amount of the kurtosis perturbation is relatively
small.

The perturbation size (Δm4=0.01) of a kurtosis is used
to preserve a relatively small perturbation. Basically, the
smaller the difference between m4,1 and m4,2, the more
accurate the PDF approximation for the actual kurtosis m4.
Once the probability distribution (p(Y)) for system response
is obtained, the distribution is explicitly given. So, reli-
ability is computed through a numerical integration for

Reliability ¼
Z 0

�1
p Yð ÞdY

4 Examples

Six examples are used to show the effectiveness of the EDR
method. In these examples, either 2N+1 or 4N+1 eigenvec-
tor samples are used based on the degree of response
nonlinearity. A systematic selection of 2N+1 or 4N+1 is out
of the scope of this paper; however, it will be discussed in
the future research.

4.1 Mathematical example

The following nonlinear mathematical example (Rahman
and Xu 2004) is used to compare accuracy and efficiency of
different probability analysis methods such as the DR
method, Taylor expansion, EDR method, etc.

G ¼ exp � 1

1þ 100X 2
1 þ 2X 2

2 þ X 2
1 X

2
2

	 

;

where Xj∼Normal(0,σ 2), j=1, 2 are two independent and
identically normal distribution. The MCS is conducted with

Table 5 Random properties in plate model

Random Variable Mean Standard deviation Distribution type

h (shape) 500.0 25.0 Normal
w (shape) 500.0 25.0 Normal
d (shape) 100.0 5.0 Normal
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100,000 samples, while the DR and EDR methods operate
with 4N+1 samples (five samples in each eigenvector
direction). In addition, the DR method is performed with
6N samples (six samples in each eigenvector direction) to
illustrate the stability problem of the DR method in
Section 3.2. In addition, the second-order Taylor series
and fourth-order Perturbation method (P-method) are
compared. As shown in Fig. 5, the standard deviations of
the response are displayed with different standard devia-
tions of the inputs. The EDR method approximates the
standard deviation of system response very accurately,
compared with the MCS result. However, the approximated
standard deviation using the DR method with 4N+1
samples is overestimated and underestimated with 6N
samples when the standard deviations of the input variables
increase. The fourth-order P-method shows some degree of
error in estimating the standard deviations of the response
except when input standard deviations are extremely small.
And the second-order Taylor expansion shows large error,
even the input standard deviation are very small.

4.2 I beam example

An I-beam example (Huang and Du 2006) is used to
demonstrate that the EDR method is capable of handling all

kinds of input uncertainties such as symmetric, asymmetric,
bounded, and unbounded distributions. An I beam is
subject to a concentrate force P with a distance a away
from the fixed end as shown in Fig. 6. The maximum stress
can be expressed as:

smax ¼ Pa L� að Þh
2LI

;

where

I ¼ wh3 � w� t2ð Þ h� 2t1ð Þ3
12

The beam is safe only if the maximum stress is less than
a target value S. A system response can be defined as Y=σmax−
S with the safety domain Y<0. The uncertainty properties of
eight random variables are shown in Table 2. Many distribution
types such as normal, lognormal, uniform, etc. are considered
as they are commonly met in engineering problems.

4N+1 eigenvector samples are used to approximate the
eight one-dimensional responses accurately using SMLS.
Any numerical integration method can be used to calculate
the statistical moments of system response without extra
computation effort except for the 4N+1 eigenvector
samples. The statistical moments of system response
achieved by the EDR method and 1,000,000 MCS are
compared in Table 3. The percentage error of statistical
moments is quite small except for the skewness because of
the small value. Based on the approximated statistical
moments, stabilized Pearson system is used to approximate
the PDF of system response. In Fig. 7, the PDF directly
achieved from MCS are compared with the one constructed
by the stabilized Pearson system. The reliability value
calculated by the EDR method and MCS are 99.9943 and
99.9827%, respectively. The results with similar accuracy
can be achieved using bivariate DR method in the reference
paper (Huang and Du 2006). However, bivariate DR
method used 277 function evaluations, which are much
more than 33 function evaluations used in the EDR method.

4.3 Side impact crash problem

Vehicle side impact responses (Youn et al. 2004b) are
considered for system performances with statistical corre-

Table 6 Results of buckling example

Method First buckling mode Second buckling mode

Mean Std. Dev. Skewness Kurtosis Mean Std. Dev. Skewness Kurtosis

MCS 3.5031 0.3948 0.3234 3.1692 27.2504 1.3570 0.3209 3.3813
EDR 3.4943 0.3966 0.3038 3.2273 27.2195 1.3374 0.3283 3.1536
Error, % 0.2512 0.4559 6.0606 1.8333 0.1135 1.4425 2.2932 6.7329

Table 7 Results of component reliability analysis

Reliabilities FORM SORM EDR MCS

G1 1 1 1 1
G2 1 1 1 1
G3 0.9989 0.9989 0.9989 0.9989
G4 0.9000 0.9136 0.9026 0.9026
G5 1 1 1 1
G6 1 1 1 1
G7 1 1 1 1
G8 0.9000 0.8723 0.7140 0.7067
G9 0.9897 0.9905 0.9905 0.9900
G10 0.9000 0.9025 0.9794 0.9714
Function Eval. 47 47 23 100,000
Sensitivity Eval. 47 47 0 0
Hessian Eval. 10 10 0 0
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lation. The properties of the design and random variables
are shown in Table 4. In this example, the velocity of front
door at B-pillar is studied. The system performance can be
expressed as

G ¼ 16:45� 0:489X3X7 � 0:843X5X6 þ 0:0432X9X10

� 0:0556X9X11 � 0:000786X 2
11

Two studies are performed with different set of statistical
correlation. In the first study, among these input variables,
[X3, X7], [X5, X6], and [X9, X10] are assumed to have
statistical correlation coefficient 0.8, 0.7, and 0.4, respec-
tively. The EDR method employing 2N+1 (15) analyses is
carried out to approximate the first four statistical moments
of system performance and construct the PDF. The MCS
with 100,000 samples is also carried out for both correlated
and uncorrelated cases and the PDFs are correspondingly
constructed. Figure 8a displays the results of the first case.
In this case, there is only slight difference between corre-
lated and uncorrelated cases. In the second study, as X10

and X11 are the variables having the maximum variation,
they are assumed to have a statistical correlation coefficient
rX10X11

¼ 0:7. Unlike the previous, this case shows the
significant effect of statistical correlation on the system
response, as shown in Fig. 8b. In both cases, the EDR
method can predict the PDF of the system response with
statistical correlation very efficiently and accurately.

4.4 Dimension dependency study

A mathematical multi-dimension problem (Rahman and Xu
2004) is considered for the accuracy study with the increase

of random variables. In this example, the standard deviation
of system response is used for the accuracy study. The input
random variables are assumed to follow normal distribution
as Xk ∼ Normal(0, 1). The multi-dimension problem is
expressed as

G ¼
XN
k¼1

kX 2
k � Xk

First, the analytical solution for the standard deviation of
the response G is solved for the increasing number of
random variables up to 40. Then, the EDR method with
2N+1 and MCS with 100,000 samples are separately carried
out to approximate the standard deviation of response G.
Finally, their absolute errors with respect to the analytical
solution are calculated, as shown in Fig. 9. This result clearly
indicates that accuracy of EDR is independent with the
number of random variables. Accuracy of MCS, however, is
dependent on the random variables.

4.5 Plate buckling

Buckling is a very important design issue occurring in
many engineering disciplines, such as mechanical, aero-
space, civil, etc. Structural buckling often leads to catas-
trophic failures. Thus, it is crucial to accurately estimate the
effects of uncertainties inherent in a design upon the critical
buckling load. As shown in Fig. 10, a highly non-linear
buckling example is considered with three-shape design
variable: the height (h) and width (w) of the plate and the
hole diameter (d). The statistical information regarding
these variables is presented in Table 5. A morphing

Fig. 12 FORM and SORM reliability analysis in hyper-plane (a): G8; (b): G10. a Failure surface for G8. b Failure surface for G10
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technique in the HyperWorks 7.0 software package is used
to deal with the shape variables (h, w, and d) in the FEA
model. The plate is modeled using plane stress quad4
elements, consisting of 1,681 nodes, 1,571 elements, and
9,798 DOF. A unit load is applied along the top edge of the
plate, while the bottom edge of the plate remains fixed in
all six directions. The plate is made of Aluminum 6061,
where E=67.6 GPa and ν=0.3.

The 2N +1 samples (seven buckling analyses) are used
for this problem. As shown in Fig. 11, there is a good
agreement of statistical moments for the first two buckling
modes between the MCS and the EDR method. Moreover,
Table 6 displays the resulting statistical information of the
response from the EDR method and the MCS with 100,000
samples. It is found that the EDR method performs the
uncertainty propagation analysis accurately.

4.6 Comparison of EDR, FORM, and SORM for reliability

In practice, reliability is one of the important engineering
metrics to determine how well a product or process is
designed. The most common method for reliability analysis
is the First-Order Reliability Method (FORM) or Second-
Order Reliability Method (SORM) because of their reason-
able accuracy and efficiency. This study aims at comparing
the EDR method with both FORM and SORM for
reliability analysis. For reliability analysis and design, it
will be shown that the EDR method is far more efficient
than the other two, as one EDR execution takes care of
reliability analyses for all constraints without requiring
sensitivity of system responses.

The same example used in 4.3 is used here to compare
reliability results from the EDR method, FORM, SORM,
and MCS at the optimum design using FORM (Youn et al.
2004b). With 90% target reliability, the optimum design
point is obtained at [d*]T=[0.500, 1.327, 0.500, 1.262,
0.623, 1.500, 0.500, 0.345, 0.192, 0.000, 0.000]T. At the
optimum design, reliabilities for ten constraints is verified
using three other different methods: SORM, EDR, and
MCS, with 100,000 samples. It is found in Table 7 that
FORM yields large errors in reliability estimation especially
for G8 and G10 constraints. Although the errors can be
slightly reduced to some extent using SORM, its accuracy
is deficient. However, the EDR method predicts the
reliability very accurately. The reason that both FORM
and SORM have large error is mainly caused by highly
nonlinear responses, as shown in Fig. 12. The dashed and
dotted lines show the first-/second-order approximations of
failure surfaces used in FORM and SORM for two active
constraints G8 and G10 at the optimum design. Inaccurate
approximations of failure surfaces lead to the significant
errors of FORM and SORM, whereas the EDR method can

precisely estimate the failure domains. Nonetheless, it is
found that the EDR method is far more efficient than both
FORM and SORM.

5 Conclusion

This paper proposes the Eigenvector Dimension Reduction
(EDR) method for probability analysis that makes a
significant improvement, based on the univariate Dimen-
sion Reduction (DR) method. In the univariate DR method,
to improve accuracy of probability analysis, a large number
of integration points must be involved. Moreover, while
increasing the number of integration points, the univariate
DR method may become singular and inefficient. To
resolve those difficulties, the EDR method is proposed
with the three new technical elements: (1) eigenvector
sampling, (2) the Stepwise Moving Least Squares (SMLS)
method for efficient and accurate numerical integration, and
(3) a stabilized Pearson system. First, the 2N+1 and 4N+1
eigenvector sampling schemes are proposed for probability
analysis to maintain high accuracy without requiring
sensitivity of system performances. Second, the Stepwise
Moving Least Squares (SMLS) method is used to accu-
rately approximate the responses, which allow one-dimen-
sional numerical integration with no extra cost other than
simulations or experiments at the eigenvector samples.
Both moment-based quadrature rule and adaptive Simpson
rule can be used for numerical integration. Third, the
stabilized Pearson system is proposed to eliminate a
singular behavior of the original Pearson system while
accurately predicting Probability Density Functions (PDFs)
of engineering system performances. In summary, com-
pared with the univariate DR method, the EDR method
makes considerable improvements from the perspective of
accuracy, efficiency, and stability. The EDR method is far
more efficient than traditional probability analysis method
such as FORM and SORM, as one EDR execution takes
care of reliability analyses for all constraints without
requiring sensitivity of system responses. The EDR method
could be more accurate than FORM and SORM for highly
nonlinear limit state function or limit state function
involving inflection points. However, the EDR method
may not be good for problems with substantial contribution
of high-order mixed terms. In addition, the EDR method
may be less accurate than FORM/SORM for large
probability levels (e.g., more than 99.9%).
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Appendix

Moving Least Squares (MLS) Method

For a given probability level, probabilistic responses at
design points can be assessed after following the previous
two steps. Any design-of-experiments (DOE) technique can
be exercised to obtain design points over the entire design
space. Then, the moving least squares (MLS) method can
be used to build a stochastic response surface.

For a given probability level, j, the MLS method (Youn
and Choi 2004) can be used to approximate stochastic
response as

bYj dð Þ ¼
XNB

i¼1
hi dð Þai dð Þ � hT dð Þa dð Þ ðA:1Þ

A stochastic response for the given probability level can
be approximated at any design point d as

bYj d; d� � ¼XNB

i¼1
hi d
� �

ai dð Þ ¼ hT d
� �

a dð Þ; ðA:2Þ

where NB is the number of terms in the basis, hi d
� �

are
monomial basis functions evaluated at a set of given sample
design points d, and ai(d) are their coefficients, which are
functions of the design parameter d.

To compute the coefficient vector a(d), a weighted
residual is defined as

J ¼PNS
I¼1 w d� dIð Þ bYp d; dIð Þ � bYp dIð Þ

h i2
¼PNS

I¼1 w d� dIð Þ Pi hi dIð Þai dð Þ � bYp dIð Þ
h i2 or

J ¼ Ha� Yp

� �T
W dð Þ Ha� Yp

� �
; ðA:3Þ

where NS is the number of sample points, w(d−dI) is a
weight function with a compact support, and

Yj ¼ Yj d1ð Þ Yj d2ð Þ ::: Yj dNSð Þ½ �T ;
H ¼ h d1ð Þ h d2ð Þ ::: h dNSð Þ½ �T ;
W ¼ diag w d1ð Þ w d2ð Þ ::: w dNSð Þ½ �

ðA:4Þ

An appropriate support size at any data point dI is selected
so that a sufficient number of neighboring data points are
included to avoid a singularity. A variable weight over the
compact support provides local averaging of the response
approximated by the MLS method.

The minimum of the weighted residual, J, by ∂J/∂a=0,
yields the coefficient a(d) in (A.1) as represented by

a dð Þ ¼ M�1 dð ÞB dð ÞYj where M ¼ HTW dð ÞH; B ¼ HTW dð Þ
ðA:5Þ

Substituting (A.5) into (A.1), the approximation bYj dð Þ with
function information can then be expressed as

bYj dð Þ ¼ hT dð ÞM�1 dð ÞB dð ÞYj: ðA:6Þ
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