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Surface damping treatment is a typicalway to reduce noise and vibration of structures. The damping performance

of a surface treatment is highly sensitive to the variability in operational temperature. This paper proposes a

statistical approach tomodel the variability of viscoelastic dampingmaterial in a constrained-layer damping layout,

to predict variability in the dynamic responses of viscoelastic damping material, and to obtain an optimal robust

layout that accounts for severe variability in operational temperature. The viscoelastic damping material property

can be modeled as a sum of 1) a random complex modulus due to operational temperature variability and

2) experiment/model errors in the complex modulus. The eigenvector dimension reduction method is used in

probability analysis to predict the variability in the dynamic responses of the viscoelastic damping material. It is

concluded that temperature variability is strongly propagated to that in the dynamic responses of the damping

material. This study also performs reliability-based design optimization for an optimal robust design of the

constrained-layer damping structure. It is shown that reliability-based design optimization gives a more robust and

reliable damping layout design amidst severe variability in operational temperature.

Nomenclature

A = covariance matrix
a0 = material parameter of the fractional derivative model
a1 = material parameter of the fractional derivative model
b = design variable vector
c1 = material parameter of the fractional derivative model
d1 = material constant of the Arrhenius equation
E = expectation operator
E�1 = random complex modulus
E� = complex modulus
E0 = storage modulus
E00 = loss modulus
e = vector of residual
f� = reduced frequency
G = constraint function
Gt = target constraint value
H1 = thickness of the damping layer
H2 = thickness of the constraining layer
i =

�������
�1
p

K = global stiffness matrix of the beam finite element model
k = generalized modal stiffness
L = length of the damping/constraining layer

M = global mass matrix of the beam finite
element model

m = generalized modal mass
N = number of random variables
P = probability
p = probability distribution function
q = number of test data
Rt = target reliability value
SSE = residual sum of squares
s = standard deviation
sT = standard deviation of temperature distribution

s
_2 = unbiased estimator of variance
T = temperature
v = eigenvector
W = weight of damping and constraining layers
w = density of damping and constraining layers
X = random variable vector
Y = statistical moment of the response
y = complex eigenvector of the beam finite element model
zi = observed value for residual sum of squares
ẑi = fitted value for residual sum of squares
a = shift factor
� = material parameter of the fractional derivative model
�ij = Kronecker delta

~" = strain

"�E = noise in the complex modulus
� = point receptance frequency response function
�k = modal loss factor of the kth mode of the beam finite

element model
� = eigenvalue
�c = complex eigenvalue of the beam finite element model
�T = mean of temperature distribution
� = width of the beam structure
	 = correlation coefficient
~
 = stress
 k = natural frequency of the kth mode of the beam finite

element model
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I. Introduction

A DDING a viscoelastic damping material to a structural surface
is a typical way to reduce noise and vibration of structures [1].

For example, damping sheets on the body of passenger cars reduce
noise and vibration in the cabin. Damping materials are also used in
airplanes, launching vehicles, ships, and electric appliances. In
these applications, it is important to optimize the layout of the
unconstrained/constrained-layer damping material to reduce vibra-
tion and noise of structures effectively. The optimization generally
determines the optimal location and dimensions of damping sheets in
view of damping efficiency and/or material cost.

It is difficult to obtain a robust damping layout design, since
the viscoelastic damping material possesses frequency- and
temperature-dependent dynamic responses. In most cases surface
damping treatments are exposed to an open air, so the damping
material experiences a wide range of temperatures, which vary
periodically and randomly. As a result, substantial variations in the
damping material properties can be observed in the service life of the
material and are expected to reduce the quality of damping perfor-
mance against noise and vibration. On the other hand, test data
inherently contain experimental errors (e.g., experimental noise and
measurement errors) due to difficulty in measuring the dynamic
responses of the viscoelastic dampingmaterial. For example, the loss
factor, which is one of the material properties, can be obtained by
measuring time or frequency responses in a simple beam test. The
loss factor is highly sensitive to the boundary conditions of a mea-
surement apparatus, resulting in significant experimental error. The
loss factor estimation is known to be the least accurate among the
modal parameters of a structure [2]. A fractional derivative model
is often used to describe frequency- and temperature-dependent
dynamic characteristics of the damping material with a few
parameters. Although the fractional derivative model is one of the
best-known mathematical models, model error (or uncertainty) is
inevitable.

Many researchers have suggested different optimal design
formulations for damping layout of structures [3–10]. Studies have
primarily focused on designing a constrained-layer damping layout
to maximize damping efficiency. One of the authors of this
paper also proposed design optimization methods for constrained/
unconstrained-layer damping layouts in structural noise and vibra-
tion problems, in which the frequency- and temperature-dependent
dynamic responses of the viscoelastic damping material were
considered [11,12]. However, in these previous works the optimal
damping layouts were obtainedwith no consideration of temperature
variation and damping material uncertainty. Only a few researchers
have acknowledged the importance of these factors to random
damping characteristics in structural dynamic problems [13–16]. To
the authors’ knowledge, no systematic approach has been proposed
to deal with the variability in the dynamic responses of the visco-
elastic damping material in a design process.

This paper proposes a sound statistical approach to optimize
a constrained-layer damping structure while considering the var-
iability in the damping material properties due to operational
temperature, experimental errors, and model error. In Sec. II, a
constrained-layer damping beammodel and the fractional derivative
model are briefly explained as mathematical models for constrained-

layer damping analysis. The fractional derivative model predicts
frequency- and temperature-dependent dynamic responses of the
damping material. Section III presents a statistical approach for vari-
ability characterization of the viscoelastic damping material (e.g.,
ISD-110 [17]). Variability of the damping material is decomposed
into two parts: 1) a random complex modulus considering opera-
tional temperature variability and 2) the experimental/model errors in
the complex modulus. In Sec. IV, reliability-based design optimiza-
tion (RBDO) is carried out to find an optimal robust design of the
constrained-layer damping structure. The eigenvector dimension
reduction (EDR) method [18,19] is used for the probability analysis.
It is shown that the proposed statistical approach gives robust and
reliable damping layout design that considers variability in the visco-
elastic damping material properties and operational temperatures.

II. Finite Element Analysis of Constrained-Layer
Damping Structure

A. Finite Element Analysis

The constrained-layer damping beam in this work consists of three
layers: the base beam, the viscoelastic damping layer, and the
constraining layer. It is assumed that the three layers are bonded
perfectly. To compute vibrational responses of the constrained-layer
damping beam, a 10-DOF finite element formulation was developed,
as shown in Fig. 1. The bottom, the middle, and the top layers are
the base beam, viscoelastic damping layer, and constraining layer,
respectively. The 10-DOF beam element assumes that the base beam
and the constraining layer satisfy the Bernoulli–Euler beam theory
and undergo the same transverse and rotational deformations and that
the viscoelastic damping layer has an additional shear angle asso-
ciated with nonnegligible transverse shear. A brief explanation of the
finite element formulation will be given here; a detailed formulation
can be found in [11]. By considering the kinematic conditions of the
displacements for the constrained-layer damping beam and applying
the virtual work principle and discretizing the resulting equation
using the finite elements, one can define the eigenvalue problem of
the constrained-layer damping beam problem as

Ky � �cMy (1)

where M and K represent the global mass and stiffness matrices,
respectively; y is the complex eigenvector; and �c is the complex
eigenvalue. It should be noted that the stiffness matrixK becomes a
complex-valued and frequency-dependent matrix due to the visco-
elastic damping layer. To solve the frequency-dependent eigenvalue
problem, the resubstitution method [12] is used. The ith eigenvector
yi satisfies the orthogonal conditions of the form

y Ti Myj � �ijmj (2)

y Ti Kyj � �ijkj (3)

where �ij is the Kronecker delta and mj and kj are the generalized
modal mass and the stiffness of the jth mode, respectively. The
normalization condition that sets the mth component of the kth
eigenvector (ymk ) equal to one should also be imposed, where the
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a) Displacements and sign conventions b) Nodal degrees of freedom of the beam element

Fig. 1 Ten-DOF finite element for a constrained-layer damping beam.
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index m is the maximum component of the kth eigenvector in the
absolute sense. The natural frequency k and themodal loss factor �k
of the kth mode are defined as

 k �
���������������
Re��ck�
2�

r
; �k �

Im��ck�
Re��ck�

(4)

where Re and Im refer to the real and the imaginary parts of the
argument, respectively. To calculate the forced responses of the
constrained-layer damping beam, themodal superposition method is
used [11].

An analytic design sensitivity formula for dynamic responses can
be obtained by differentiating the modal superposition expression.
Knowing the eigenvalues and eigenvectors, the generalized modal
masses, and the derivatives of the mass and stiffness matrices, the
design sensitivity formula can be evaluated with a few matrix
operations. The details are in [11].

B. Fractional Derivative Model

Viscoelastic damping material is made of very long intertwined
and crosslinkedmolecular chains, each containing thousands or even
millions of atoms. The internal molecular interactions that occur
during deformation in general and vibration in particular give rise to
macroscopic properties such as stiffness and energy dissipation
during cyclic deformation. The material properties of the viscoelas-
tic material show highly frequency- and temperature-dependent
characteristics. By introducing an accurate mathematical model for
those dependencies, one can enhance the efficiency of the finite
element analysis in dynamic problems. In this subsection, the mathe-
matical models for frequency- and temperature-dependent visco-
elastic material will be explained briefly.

The dynamic responses of viscoelastic material in a frequency
domain can be represented by a complex modulus such as

~
 � E� ~"� �E0 � iE00� ~" (5)

where� refers to the Fourier transform, andE0 andE00 are the storage
modulus and loss modulus, respectively. The complex modulus of
the viscoelastic damping material is strongly dependent on tempera-
ture and frequency. From the temperature–frequency equivalence
hypothesis, any two complexmoduli at different temperatures have a
relation such as

E��f0; T0� � E��f1��T1�� (6)

where f� is the reduced frequency. Therefore, by preparing the
master curve at a reference temperature T0, one can use the shift
factor � to predict the complex modulus at any given temperature T.
In addition, the shift factor and temperature in absolute degrees can
be related by the Arrhenius equation as

log���T�	 � d1�1=T � 1=T0� (7)

Assuming a homogeneous isotropic material and linearity with
respect to vibration amplitudes, the constitutive equation of the
fractional derivative model of order one can be written as


�t� � c1D�
�t� � a0"�t� � a1D�"�t� (8)

where 0< � < 1, andD� indicates the fractional derivative [17]. The
complexmodulus of the viscoelastic damping material following the
fractional derivative model can be obtained through the Fourier
transforms of Eq. (8) and comparing the resulting equation with
Eq. (5) in the case of extensional deformation as follows:

E� � �E0 � iE00� � a0 � a1�if��T�	
�

1� c1�if��T�	�
(9)

where frequency is replaced by reduced frequency from the
temperature–frequency equivalence hypothesis. The four material
parameters a0, a1, c1, and � are identified by minimizing the
differences between the test data and the fractional derivative

model [17]. Additionally, the parameters satisfy thermodynamic
restrictions of the fractional derivative model [20]: 1) all parameters
are positive and 2) a1=c1 is larger than a0. In most cases, the visco-
elastic damping material has one peak for the loss factor along
frequencies. For the one-peak material, it is known that the four-
parameter fractional derivative model sufficiently represents the real
behavior of viscoelastic material over a wide frequency range [21].
Finally, it is evident that the complex modulus expression of Eq. (9)
can be applied to the shear modulus in the same way, as can Young’s
modulus. Therefore, in this paper the complex Young’s modulus and
complex shear modulus will not be distinguished in symbols
hereafter.

III. Characterization of Variability in the Viscoelastic
Damping Layer

The constrained-layer damping performance is related to the
dynamic properties of the viscoelastic damping material. However,
the dynamic properties of the damping material are highly sensitive
to changes in environmental temperature and/or the chemical com-
position of the material. RBDO can consider such variations in the
process of design optimization so that one can obtain a robust design
of the damping-layer layout even with extreme variability in the
dynamic properties of the dampingmaterial. However, no systematic
approach for identifying the variability in damping materials under
environmental temperature change and/or composition uncertainty
has been proposed. The authors propose a sound statistical approach
to characterize the variability of the viscoelastic dampingmaterial for
RBDO of the constrained-layer damping layout. This section pres-
ents the decomposition of the variability in the viscoelastic damping
material into inherent variability and error in the complexmodulus of
the viscoelastic damping material.

A. Decomposition of Variability in Viscoelastic Damping Material

The variability in the dynamic responses of the viscoelastic damp-
ing material is primarily due to two sources: 1) operational tempera-
ture variation and 2) experimental/model errors associated with the
viscoelastic dampingmaterial.When the damping layer is exposed to
environmental air, operational temperature fluctuation causes sub-
stantial variation in the dynamic responses of the viscoelastic
damping material, which can be observed through the Arrhenius
equation in Eq. (7). In addition, errors in experimental data and
mathematical models are inevitable in characterizing the viscoelastic
damping material. The experimental errors include experiment noise
and measurement inaccuracy. In addition, the mathematical models,
such as the fractional derivativemodel, also introduce approximation
errors because the models idealize and simplify the complicated
behaviors of the viscoelastic damping material. It is extremely diff-
icult to distinguish themodel error from the experimental error unless
the mathematical models are perfect or the experimental data is
sufficiently given. To characterize the variability in the viscoelastic
damping material properties, the complex modulus of the visco-
elastic damping material can be expressed as

E��f; T� � E�1 �f; T� � "�E�f� � E�1 �f; T�
� �E�2 �f; T0� � �E�2�f; T0�� (10)

where E��f; T� indicates the uncertain complex modulus of the
viscoelastic damping material considering the operational temper-
ature variability and experiment/model errors (or uncertainty). The
uncertain complex modulus can be decomposed into two terms: the
random complex modulus E�1 and the error (or uncertainty) in
the complex modulus "�E. The random complex modulus considers
the operational temperature variability. From a set of test data over a
concerned frequency range, the fractional derivative model gives a
master curve of the complex modulus, which is a function of
frequency at a given reference temperature T0. Operational tempera-
ture fluctuation results in variations of the shift factor and the master
curve in Eqs. (7) and (9). The variation of the master curve due to
temperature fluctuation indicates the random complex modulus E�1 .
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In contrast, the error in the complex modulus is primarily due to
experiment/model errors at a given temperature. Because of the
experiment/model errors, there is random noise (or uncertainty) in

the master curve of the complex modulus. In Eq. (10), �E�2�f; T0� is
the mean of the master curve and E�2 �f; T0� is the uncertain master
curve due to the experimental/model errors. Thus, the error in the
complex modulus can be defined as

"�E�f� � E�2 �f; T0� � �E�2�f; T0�

It is assumed that "�E�f� follows a Gaussian process and the
experimental/model errors are dependent on frequency but not on
operational temperature.

In this study, the variability of E�1 and "
�
E is sought to characterize

the variability in the uncertain complexmodulus,E��f; T�, based on
the Arrhenius equation and the fractional derivative model. In
Sec. III.B, the method used to characterize E�1 �f; T� with hourly
temperature data is presented. In Sec. III.C, we propose a statistical
approach for "�E characterization based on a confidence interval (CI)
on the master curve. In Sec. III.D, the proposed approach for
variability characterization of the damping material is demonstrated
with the viscoelastic damping material (ISD-110 [17]) and the
material test (or experimental) data of the complex shear modulus.

B. Random Complex Modulus Because of Operational Temperature

For the characterization of the first term, E�1 �f; T�, hourly
temperature data measured for 1 year (2007) in Seoul was selected as
a typical example of temperature variation. Figure 2 shows the
temperature histogram generated from the temperature fluctuation in
Seoul. Three temperature levels, mean �T and 
3-sigma levels

3sT are displayed in Fig. 2. It should be noted that the histogram
shows a bimodal distribution. Figure 3 displays a rough estimate of
the variability in the storage shear modulus and loss factor for the
viscoelastic damping material (ISD-110) due to the temperature
variation. Using the fractional derivativemodel, three curves in Fig. 3
are generated for the shift factor values corresponding to the three
different temperature levels (�T and 
3sT ). One can see that the
storage shear modulus and loss factor vary significantly due to the
temperature variation, and the variation of the material properties

can affect the dynamic responses of the constrained-layer damping
structure.

C. Error in Complex Modulus Because of Experimental/Model

Errors

This section presents amethod to characterize the variability of the
second term, "�E, in Eq. (10), which requires estimating the variability
of the parameters of the complex modulus due to experimental/
model errors. To do so, the first step is to determine an unbiased esti-
mator of the variance and the confidence interval (CI) for the master
curve. The second step is to obtain the statistical information for the
parameters of the complex modulus. This study employs a confi-
dence level of 95%.Aset ofmaterial test data of viscoelastic damping
material, themaster curve for the complexmodulus, andmeanvalues
for the parameters of the complex modulus are required for charac-
terization of "�E.Weuse information on the complex shearmodulus of
ISD-110 given in [17].

First, the unbiased estimator of the variance for the master curve is
calculated to construct the CI for the master curve. The residual sum
of the squares between the observed value (zi) and the fitted value on
the master curve (ẑi) can be determined [22] as

SSE �
Xq
i�1
�zi � ẑi�2 �

Xq
i�1

e2i � eTe (11)

where q is the number of test data, ei is the residual value for ith test
data, and the vector of residuals is denoted by e� z � ẑ. Thus, the
unbiased estimator of the variance, ŝ2, is given by

ŝ 2 � SSE
q � l (12)

where l is the number of regression coefficients and q � l indicates
the degrees of freedom associated with SSE. The CI of the master
curve can be obtained over a concerned frequency region using the
following formulas:

E�2:5% � �E�2�f; T0� � 1:96ŝ; E�97:5% � �E�2�f; T0� � 1:96ŝ (13)

Here, the errors between the observed complexmodulus value zi and
the fitted value ẑi are assumed to be normally distributed with a zero
mean.

The next step is to estimate the statistical information (e.g., CI) for
the model parameters of the complex modulus over a specified
frequency range. The statistical information can be extracted by
analyzing the physical meanings of the fractional derivative model
parameters (a0, a1, c1, and�). First, the parameter log�a0� is equal to
the estimated logarithmic value of the storagemodulus in the range of
low frequency. Thus, the variance of the parameters log�a0� can be
directly characterized with the CI of the master curve using the
following formula:

slog�a0� �
log�a0�97:5% � log�a0�

1:96
(14)

Fig. 2 Temperature histogram of Seoul in 2007.

Fig. 3 Variability of material properties due to temperature variation.
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where slog�a0� is the standard deviation of log�a0�; log�a0�97:5% is
obtained from the E�97:5% curve at low frequency (10�6 Hz); and

log�a0� is the mean value of log�a0�. Knowing that the parameter �
represents the slope of the plot of log�E0� versus log�f�� in a
transition region, the variation of the parameter� can be estimated by
calculating the unbiased estimator of the variance of the slope.
Finally, the ratio of the parameters a1=c1 represents the asymptotic
value of the storage modulus at very high frequencies, as one can see
in Eq. (9). Therefore, the variation of log�a1=c1� can be estimated
from the variation of the storage modulus in the range of high
frequency. It should be noted that the two parameters log�a1� and
log�c1� are statistically correlated. Themeanvalues of the parameters
are given from the master curve. To characterize the joint probability
density function (PDF) of log�a1� and log�c1�, an allowable set of
two parameters, log�a1� and log�c1�, can be constructed by iden-
tifying the random samples that sit in the 95% CI of the master curve
at high frequency. The random samples are obtained by assuming
that thevariations of twoparameters are the same as that of log�a0�. A
correlation matrix can be constructed to represent the statistical
correlation of the two parameters. The correlation matrix can be
approximated by defining the following eigenvalue problem as

Av � �v� 0; A� a11 a12
a21 a22

� �
(15)

where A is the covariance matrix, and � and v are the eigenvalues
and eigenvectors, respectively. Here, the covariance matrix A is
unknown. Instead, the allowable set of their realization can approxi-
mate the eigenvalues and eigenvectors of the covariance matrix and
build the covariance matrix A. The variances s2 and the correlation
coefficient 	 of the parameters log�a1� and log�c1� can be calculated
by the following relation as

s2log�c1� � a11; s2log�a1� � a22; 	log�c1�;log�a1� �
a12�������

a11
p � �������

a22
p

(16)

The procedurewith the viscoelastic dampingmaterial (ISD-110) will
be explained in detail in the next subsection.

D. Variability Characterization of the Viscoelastic Damping Material
(ISD-110)

The proposed method to estimate the variability of damping
material due to operational temperature and experimental/model
errors was applied to a dampingmaterial, ISD-110. The 3Mdamping
material ISD-110 is a typical damping adhesive usually used in
constrained-layer damping. This study employs material test data on

ISD-110 taken from sandwich beam tests in [17]. The test data
include the storage shear moduli and loss factors at different fre-
quencies and corresponding shift factors. From the test data, the
parameters of the complex modulus are estimated, as is the master
curve at a reference temperature T0. The variability of E�1 �f; T� can
be characterized through uncertainty propagation usingMonte Carlo
simulation (MCS), which employs Eqs. (7) and (9). Likewise, the
variability of "�E�f� can also be characterized using the statistical
approach explained in Secs. III.B and III.C. The uncertainty charac-
terization procedure for the viscoelastic dampingmaterial (ISD-110)
is shown in Fig. 4.

Following the proposed method, the variation of shift factor for
ISD-110 is first obtained. The temperature information in Seoul is
used for operational temperature, as shown in Fig. 2. The variability
in the temperature profile results in the uncertainty of the Arrhenius
shift factor in Eq. (7). The shift factor is a function of both operational
temperatureT and thematerial constant d1. However, the uncertainty
of d1 is not considered due to its negligible effect on the shift factor.
This is confirmed by comparing the histograms of the shift factor
with and without corresponding d1 variance. Figure 5 shows the
histogram of the shift factor due to the temperature change only.
Table 1 shows the estimated statistical information of temperature,
d1, and log���.

Next, for "�E, the proposed statistical approach is applied to the
material test data of ISD-110. Figure 6a shows the log–log plots of
the material test data, the master curve (solid line), and 95%CI of the
master curve calculated usingEq. (13) (dashed line) about the storage
shear modulus of ISD-110. As shown in Fig. 6a, most of the storage
shear modulus data are within the 95% CI. The variance of the
parameter log�a0� is obtained using Eq. (14). Similarly, the variation
of the parameter � is also obtained from the test data in the transition
region, log 10�0:5– log 102 Hz. Figure 7 shows the test data in the
transition region. The unbiased estimator of the variance for the

Fig. 4 Variability characterization procedure of viscoelastic damping material.

Fig. 5 Histogram of the shift factor.
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parameter� is obtained from the residual sum of squares between the
linear regressionmodel and the test data usingEqs. (11) and (12). The
linear regression model and 95% CI for the parameter � are also
shown in Fig. 7.

Finally, the variances and the correlation coefficient of the
parameters log�a1� and log�c1� are characterized. It is assumed that
the log�a1=c1� is normally distributed, as are the log�a1� and log�c1�.
Figure 8 shows the allowable combinations of the parameters log�a1�
and log�c1�, which sit in the 95% CI of Fig. 6a over the specified
frequency range. Because the value of log�a1=c1� is equal to the
asymptotic logarithmic value of the storage shear modulus in the
range of high frequency, log�a1� is linearly proportional to log�c1�.
In other words, log�a1=c1� � constant or log�a1� � log�c1��
constant. Therefore, the principal directions of the anticipated joint
PDF are ��1; 1	 and [1, 1]. The hexagon that encompasses all the
allowable combinations is obtained based on the principal directions
for joint PDF approximation. The set of allowable combinations
appears to maintain the symmetry of the joint PDF to the principal
directions. Because the hexagon encompasses the allowable combi-
nations foundwith 95%CI of Fig. 6a, the hexagon is considered to be
the joint PDF with 95% confidence level. This process gives the
eigenvalues of the joint PDF as follows:

�1 � s21; �2 � s22 (17)

where s21 and s
2
2 are the variances along the directions of the principal

axes, respectively, and s1 and s2 are calculated by dividing the
hexagonwidths along the principal directions by 1.96. The joint PDF
of log�a1� and log�c1� fitting the allowable combinations can be
obtained by solving the eigenvalue problem in Eq. (15). The
variances and the correlation coefficients of the parameters log�a1�
and log�c1� are calculated using Eq. (16). The variability due to the
experiment/model errors for the ISD-110 damping material is
summarized in Table 1. The characterized variability is cross-
validated with the test data on the loss factor of ISD-110. Figure 6b
shows 95% CI of the master curve for the loss factor. The 95% CI is
calculated using the variance of the characterized parameters of the

complex modulus in Table 1. It is noted that most of the loss factor
data also lie within the 95% CI. The characterized parameters are
used for RBDO of the constrained-layer damping layout in Sec. IV.

E. Influence of Material Variability on System Response

To show the influence of the material variability on the dynamic
response of a damping-layer structure, this study considers a simply
supported beam problem (Fig. 9) with constrained-layer damping
material. For the constrained-layer damping beam problem, the four
parameters (a0, a1, c1, and �) of the fractional derivative model and
operational temperature (or shift factor �) are selected as the random
variables, and their properties are listed in Table 1. The forced
responses (point receptance frequency responses) are calculated at
1000 random samples of the random variables generated by MCS.
Figure 10 shows the calculated variability bound (with 95% CI) of
the forced response in a decibel scale over a specified frequency
range. Themagnitude of the amplitudevariation at the peak is beyond
10 dB. It is true that the variability of the viscoelastic damping
material causes large variability on the frequency response of the
constrained-layer damping structure. This highlights the importance
of the variability in the optimization of a damping-layer design.

IV. Reliability-Based Design Optimization of
Constrained-Layer Damping Layout

A. Reliability-Based Design Optimization Formulations

The design objective of a constrained-layer damping treatment is
to maximize the robustness andmeet a reliability target while using a
minimal amount of the damping layer. The simply supported
aluminumbeam structurewith constrained-layer damping in Fig. 9 is
considered for demonstration purposes. The ISD-110 damping
material is used for the damping layer of the structure. A unit forceF

Table 1 Properties of random variables for constrained-layer

damping performances (ISD-110 damping material and

�log�c1�;log�a1� � 0:7349�)

Random variable Mean Standard deviation Distribution type

Temperature, �C 13.28 9.79 Bimodal data
d1 5224 54 Normal
log��� �1:14 0.63 Bimodal
log�a0� log�0:0287� 0.0663 Normal
log�a1� log�1:0350� 0.0913 Normal
log�c1� log�0:0115� 0.0913 Normal
� 0.5 0.0246 Normal

Fig. 6 Material properties of ISD-110 damping material.

Fig. 7 Variability of the parameter �.

2990 JUNG, LEE, ANDYOUN



is applied to the center of the aluminumbeam and the thickness of the
base beam is 20 mm.

The beam structure has three design variables: the length of the
constrained layer (L) and the thicknesses of the damping layer (H1)
and the constraining layer (H2). The thickness of the base beam

remains constant during the optimization. The random variables for
the constrained-layer damping performance shown in Table 1 are
used in this optimization problem. Additionally, the manufacturing
variability of the design variables is also considered in the RBDO
formulation. As listed in Table 2, their coefficients of variations
(COVs) are assumed to be 1, 10, and 5%, respectively.

The RBDO problem can be formulated as

minimize ��b;X� subject to P�Gi�b;X�h0�iRt

i� 1; . . . ; np bL  b  bU;XL  X  XU
(18)

whereb is the designvariable vector,X is the randomvariable vector,
� is the objective function, P��� indicates probability, G is the
constraint function, np is the number of constraints, and Rt is the
target reliability (99.865%, 3-sigma level). The RBDO formulation
minimizes the mean and standard deviation of the objective function
for system robustness.

In general, the objective and the constraint functions can be
differently formulated to meet various design objectives or require-
ments. Three design performances are used to represent design
objectives or requirements as

�1�b� �W �2�b;X� �
Z
f2

f1

�
20 log

k�k
�ref
� �dB0

�
df

�3�b;X� � �1 � �3 (19)

where � is the forced response function (point receptance frequency
response function) at the center point and h�i is defined as

h�i �
�
� if � > 0

0 if �  0

�
(20)

�ref is 1:0 � E � 6, and �dB0 is a prescribed level in the decibel scale.
The first function, �1�b�, is the weight performance in the
constrained-layer damping structure, where the weight is defined as

W � 2 � L � �w1 �H1 � w2 �H2� � � (21)

where w1 and w2 are the densities of damping and constraining
layers, respectively, and � is the width of the beam structure. The
second function, �2�b;X�, is the overall damping performance,
which corresponds to the area of the forced response not beyond a
target value in the decibel scale over a specified frequency range. The
smaller�2�b;X� indicates more damping and response abatement.
The third function, �3�b;X�, is the modal damping performance
that corresponds to the sum of the loss factors at the first and third
structural modes. The greater �3�b;X� indicates more modal
damping.

Three different design formulations have been commonly used
in a deterministic form [4,11]. Therefore, we used three RBDO
formulations for the constrained-layer damping problem, as
summarized in Table 3. The first RBDO problem is formulated to
maximize the damping performance (design objective) and to meet
the weight performance requirement (design requirement). Here, the
constraint means that the added weight due to the constrained-layer
damping should be less than 5% of the base-beam weight. It should
be noted that the probability constraint of formulation I is not
dependent on the variability in the damping material properties and
operation temperature, but dependent only on the manufacturing
variability. Thus, another possible formulation that maximizes the
modal damping performance (�3�b;X�) under theweight constraint

Fig. 8 Joint PDF for the parameters a1 and c1.

Fig. 9 Simply supported beam problem.

Fig. 10 Forced response variability of a constrained-layer damping

beam problem.

Table 2 Design variable of the beam structure

Design variable Initial
value

Lower
bound

Upper
bound

COV Distribution
type

L, m 0.2 0.1 0.45 1% Normal
H1, mm 0.5 0.1 3 10% Normal
H2, mm 5 1 10 5% Normal

Table 3 Optimization formulations for the constrained-layer damping layout design

Formulation I Formulation II Formulation III

Design variables b� fL H1 H2 gT b� fL H1 H2 gT b� fL H1 H2 gT
Objective function � �2�b;X� �1�b� �1�b�
Constraint functiona G1 ��1 �Wb � Gt < 0,

where Gt � 0:05
G2 ��2 ��20 � Gt < 0,

where Gt � 0:90
G3 �Gt ��3 < 0,

where Gt � 0:15

aWb is the base beam weight, �20 is the functional value of �2 at initial design, and G
t refers to the target constraint value.
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is not considered in the formulation set. On the other hand, the second
and third problems are formulated to minimize the weight per-
formance (design objective) to meet the damping performance
requirement (design requirement). In the second and third RBDO
formulations, the different constraint forms treat the damping
performance requirement differently. In formulation II, the constraint
means that the area generated by response graph should be reduced
by 10% than that of initial design. In formulation III, the constraint
forces the summation of the modal loss factors to be larger than the
constraint target value, 0.15.

B. Uncertainty Propagation and Probability Analysis

The eigenvector dimension reduction (EDR) method [18] is used
for effectively building probability distributions for the dynamic
responses of a damping layer. The EDR method is an enhanced
version of the univariate dimension reduction (DR)method [23]. The
univariate DR method estimates the statistical moments of a system

response using an additive univariate decomposition of the response.
Statistical moments of the response, Y�X�, can be calculated as

EfYm�X�g �
Z 1
�1

Z 1
�1
Ym�x� � px�x� � dx; m� 0; 1; 2; . . .

(22)

whereE indicates an expectation operator andpx�x� is the joint PDF
ofX. Multidimensional integration in Eq. (22) can be converted into
multiple one-dimensional integrations using an additive decom-
position. Using the binomial formula, multiple one-dimensional
integration can be solved recursively. Any numerical integration
scheme can be used to perform one-dimensional integration.

To enhance both accuracy and efficiency in probability analysis,
three technical elements are used in the EDR method:

1) The eigenvector sampling method is used to resolve correlated
and asymmetric random input variables.

2) The stepwise-moving least-squares method is used for one-
dimensional response approximation.

3) A stabilized Pearson system is used to generate a PDF of a
system response.

Thus, for N number of random variables, the EDR method
demands 2N � 1 or 4N � 1 eigenvector samples at which system
responses are computed using simulations or experimental tests. The
detailed procedure of the EDR method is explained in [18].

C. Design Optimization Result

The RBDO problems are solved using our in-house RBDO
software along with an fmincon function in MATLAB software
[24] as a gradient-based optimizer. The finite element (FE) for-
mulation is employed to calculate the frequency responses of the
constrained-layer damping beam problem, and a continuum design
sensitivity analysis is used to compute their sensitivities for design
optimization. The constrained-layer damping beam is modeled with
20 elements using the 10-DOF finite elements for the constrained
part and the degenerated elements for the bare part. The EDRmethod
uses 4N � 1 FE analysis calls for estimating the objective function
and constraint in a probabilistic manner. The target reliability for
the all design formulations is set to 99.865% (3-sigma level). The
deterministic design optimization (DDO) is first performed and
followed by RBDO starting from the deterministic optimal design
points. RBDO uses the statistical information of the random
variables shown in Tables 1 and 2, and the corresponding RBDO
results are carefully compared in this study. To confirm the accuracy
of the EDR method, MCS results are employed as benchmark
solutions.

Formulation I is preferredwhenweight is constrained in the design
of the constrained-layer damping layout. Table 4 shows the results of
formulation I at the initial, deterministic, and reliability-based
optimum design points. First, as shown in Fig. 11, the PDF of G1

Table 4 Optimization results of formulation I

Initial DDO RBDO

Design variable
L, m 0.2000 0.1180 0.1026
H1, mm 0.5000 0.1000 0.1000
H2, mm 5.0000 4.2025 4.1901

Object function 41,453 46,108 47,689
Reliability
EDR 0% 50% 99.865%
MCS —— —— 99.82%

Fig. 11 MCS histogram and EDR PDF at the optimum design for

formulation I.

Fig. 12 PDFs of the performance functions for formulation I.
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from the EDRmethod is comparedwith the histogram from theMCS
with 10,000 random samples. Uncertainty in the design variables
precisely propagates to that of the constraint functionG1 through the
EDR method. Table 4 confirms that the reliability is also predicted
accurately. In Table 4, it is noted that the damping performance
(design objective) is sacrificed by about 15% to improve the weight
reliability (design requirement) by 99.865%. Figure 12 shows the
overall and modal damping performances of three different designs
(initial, deterministic optimum, and reliability-based optimum
designs). It was found that a great deal of the infeasibility of the initial
design forced the mean of the overall damping performance (design
objective) to be sacrificed. Since the modal damping performance is
not considered in formulation I, its variation is slightly reduced.
However, significant reduction in the variation of the overall
damping performance indicates greater robustness, which proves the
usefulness of this optimization formulation.

Formulation II is preferred when the overall damping performance
is constrained in the design of constrained-layer damping layout. The
optimization results of formulation II are listed in Table 5. Figure 13

shows the PDF ofG2 from the EDR method and the histogram from
MCS with 10,000 random samples. The EDR method gives an
accurate PDF and reliability with lower computational cost. The
variability of G2 that is propagated from the variability of tem-
perature, the experimental/model error, and the design variables is
around 10% of the mean value of G2. As found in Table 5 and
Fig. 14a, the deterministic optimum design turns out to be unreliable
(38.5%) due to the variability ofG2. This underscores the strong need
to consider the uncertainties in the design of constrained-layer
damping layout. A deterministic optimumdesign tends to have about
50% reliability; however, 38.5% reliability is mainly due to bimodal
temperature variability. Theweight performance (design objective) is
sacrificed by about 58.2% to improve the reliability of the overall
damping performance (design requirement) by 99.865%. Figure 14
shows the PDFs of the overall and modal damping performances at
the initial, deterministic, and reliability-based optimum design
points. The overall damping performance (design requirement) is
considerably improved, as shown in Fig. 14a; however, the modal
damping performance becomes substantially worse in terms of its
variation since it is not considered in formulation II. Figure 15
shows the forced responses at three different design points for
formulation II. The design requirement (damping performance)
becomes reliable by moving the resonant frequencies to higher (or
reducing the overall damping performance) rather than by reducing
the amplitude at the first and third resonance frequencies (the modal
damping performance). That is mainly because formulation II
considers the overall damping performance.

Formulation III is used when modal loss factors are crucial in the
design of constrained-layer damping layout. The optimization results
of formulation III are listed in Table 6. As shown in Fig. 16,
uncertainty in the design and the uncontrollable random variable
precisely propagates to that of the constraint function, G3, through
the EDR method. The variability of G3 is around 50% of the mean
value of G3. In Table 6, one can also see that the deterministic
optimum design is unreliable (30.88%) due to the variability of G3.
The weight performance (design objective) is sacrificed by about
116.6% to improve the reliability of themodal damping performance
(design requirement) by 99.865%. Figure 17 shows the PDFs of the

Table 5 Optimization results of formulation II

Initial DDO RBDO

Design variable
L, m 0.2000 0.1753 0.1794
H1, mm 0.5000 0.1000 0.1000
H2, mm 5.0000 7.4684 8.7109

Object function 0.2857 0.3629 0.4520
Reliability
EDR 0% 38.60% 99.865%
MCS —— —— 99.79%

Fig. 13 MCS histogram and EDR PDF at the optimum design for

formulation II.

Fig. 14 PDFs of the performance functions for formulation II.

Table 6 Optimization results of formulation III

Initial DDO RBDO

Design variable
L, m 0.2000 0.2837 0.3836
H1, mm 0.5000 0.7975 1.0074
H2, mm 5.0000 5.0313 5.2353

Object function 0.2857 0.4159 0.6188
Reliability
EDR 0% 30.88% 99.865%
MCS —— —— 99.92%
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overall and modal damping performance at the initial, deterministic,
and reliability-based optimum design points. The overall and modal
damping performances are considerably enhanced in terms of their
mean values. However, the variation of the modal damping perfor-
mance slightly increases in terms of its variation, which is far better
than the result of formulation II (see Fig. 14b). Figure 18 shows the
forced responses at three different design points for formulation III.
The design requirement (the modal damping performance) becomes
reliable by reducing the amplitude at the first and third resonance
frequencies.

V. Conclusions

This paper proposed a statistical approach 1) to model variability
of viscoelastic damping material in a constrained-layer damping
layout, 2) to predict variability in the dynamic responses of visco-
elastic damping material, and 3) to obtain an optimal robust layout
amidst severevariability in operational temperature. Variability in the
viscoelastic damping material property can be decomposed into a
random complex modulus due to operational temperature variability
and experiment/model errors in the complex modulus. The vari-
ability of operational temperature was characterized with hourly
measured temperature data and was propagated through the
Arrhenius equation to the variability in the dynamic responses of
viscoelastic damping material. A statistical approach was suggested
for the variability characterization of experiment/model errors in the
complex modulus. The EDR method was used to predict the
variability in thematerial properties of viscoelastic dampingmaterial
and operational temperature. The result of the probability analysis
demonstrated that temperature variability is strongly propagated
to that in the dynamic responses of the damping material. The
characterized variability of dynamic responses enables a robust
design optimization of the constrained-layer damping structure. In
this study, three RBDO formulations were employed to meet various
design objectives or requirements. In formulation I, the damping
performance (design objective) was sacrificed by about 15% to
improve the weight reliability (design requirement) by 99.865%.
Therefore, this design formulation is preferred when weight is
constrained in the design of constrained-layer damping layout. On

Fig. 16 MCS histograms and EDR PDF at the optimum design for

formulation III.

Fig. 17 PDFs of the performance function for formulation III.

Fig. 15 Forced responses at the optimum design for formulation II.

Fig. 18 Forced responses at the optimum design for formulation III.

2994 JUNG, LEE, ANDYOUN



the other hand, formulations II and III increased the weight (design
objective) by 58.2 and 116.6%, respectively, while improving the
reliability of their damping performances (overall damping for
formulation II and modal damping for formulation III) by 99.865%.
Hence, these design formulations are more suitable when damping
performances are constrained in the design of constrained-layer
damping layout. It is not meaningful to make direct comparisons
between formulations II and III because the results depend on their
target constraint values. Overall, it is shown that the proposed
approach results in robust and reliable damping layout designs
amidst severe variability in operational temperature.
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