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Abstract This paper presents an effective method-
ology for reliability-based robust design optimiza-
tion (RBRDO). The eigenvector dimension reduction
(EDR) method plays a pivotal role in making RBRDO
effective because the EDR method turns out to be
very efficient and accurate for probability analysis. The
use of the EDR method provides three benefits to
RBRDO. First, an approximate response surface faci-
litates sensitivity calculation of reliability and quality
where the response surface is constructed using the
eigenvector samples. Thus, sensitivity analysis becomes
very efficient and simple. Second, one EDR execution
evaluates a set of quality (objective) and reliability
(constraint) functions. In general, the EDR requires
2N + 1 or 4N + 1 simulation runs where N is the
total number of random variables. The EDR exe-
cution does not require an iterative process, so the
proposed RBRDO methodology has a single-loop
structure. Moreover, the EDR execution time can be
much shorter by taking advantage of a parallel com-
puting power, and RBRDO can be far more efficient.
Third, the EDR method allows solving problems with
statistically correlated and non-normally distributed
random inputs. Three practical engineering problems
are used to demonstrate the effectiveness of the pro-
posed RBRDO method using the EDR method.
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1 Introduction

Probability analysis is an essential tool to observe the
effect of uncertainty (e.g., manufacturing variability
and loads) in engineering systems. However, a common
challenge in probability analysis is a multidimensional
integration to quantify the probabilistic nature of the
system responses. It is almost impossible to conduct the
multidimensional integration analytically and numeri-
cally. Other than direct integration approach, the exist-
ing approximation methods for probability analysis can
be categorized into four groups: (1) sampling method;
(2) expansion method; (3) the most probable point
(MPP)-based method; and (4) approximate integration
method.

The sampling method is most comprehensive but
expensive for estimating statistical moments, reliability,
and quality of system responses. Monte Carlo simu-
lation (MCS; Varghese et al. 1996; Lin et al. 1997) is
the most widely used sampling method but demands
thousands of computational analyses [e.g., finite ele-
ment analysis (FEA), crash analysis, etc.]. To relieve
the computational burden, other sampling methods
have been developed, such as quasi-MCS (Niederreiter
and Spanier 2000; Sobol 1998), (adaptive) importance
sampling (Engelund and Rackwitz 1993; Melchers 1989;
Bucher 1988; Wu 1994), directional sampling (Bjerager
1988), etc. Nevertheless, sampling methods are consid-
erably expensive but accurate with a sufficiently large



476 B.D. Youn, Z. Xi

size of samples. Hence, it is often used for the verifi-
cation of probability analysis when alternative methods
are employed.

The idea of the expansion method is to estimate the
statistical moments of system responses with a small
perturbation to simulate the input uncertainty. This
expansion method includes Taylor expansion (Jung and
Lee 2002), perturbation method (Kleiber and Hien
1992; Rahman and Rao 2001), the Neumann expan-
sion method (Yamazaki and Shinozuka 1988), etc. The
expansion methods could become computationally in-
efficient or inaccurate when the degree of input un-
certainty is high. Moreover, as it requires high-order
partial sensitivities of system responses to maintain
good accuracy, it may not be practical for large-scale
engineering applications.

The MPP-based method has been widely used to
perform reliability analysis. Rotationally invariant reli-
ability index is introduced through a nonhomogeneous
transformation (Hasofer and Lind 1974). Probability
analysis can be conducted in two different ways: per-
formance level (G-level; Hasofer and Lind 1974) and
probability level (P-level; Youn et al. 2004a; Du and
Chen 2002) methods. It has been found that the P-level
method is more efficient and stable than the G-level
method (Youn et al. 2004a). However, the MPP-based
method requires the first-order sensitivities of system
responses. Moreover, it could generate relatively large
error for highly nonlinear responses, such as responses
with multiple MPPs.

The approximate integration method is a direct
approach to estimate the probability density func-
tion (PDF; or statistical moments) through numer-
ical integration. Numerical integration can be done
in the input domain (Rahman and Xu 2004; Seo
and Kwak 2003) or the output domain (Youn et al.
2005). Recently, the dimension reduction (DR) method
(Rahman and Xu 2004; Xu and Rahman 2004) has been
proposed and is known to be a derivative-free method.
In the univariate DR method (Rahman and Xu 2004),
it uses an additive decomposition of the responses that
simplifies one multidimensional integration to multiple
one-dimensional integrations. Generally, it provides
accurate lower moments of system responses such as
mean and SD. However, it may produce a relatively
large error for higher moments of nonlinear system
responses. Otherwise, it could be expensive with a large
number of numerical integration points. In the general
DR method (Xu and Rahman 2004), the theoretical
error of the univariate DR method can be reduced
by considering multivariate integrations. However, the
computation effort increases significantly. Recently,
the eigenvector dimension-reduction (EDR) method

(Youn et al. 2008) has been proposed to enhance the
univariate DR method. The EDR method has three
technical elements: (1) eigenvector sampling, (2) one-
dimensional response approximations for effective nu-
merical integration, and (3) a stabilized Pearson system.
It has been found that the EDR method significantly
improves numerical accuracy, efficiency, and stability
in conducting a probability analysis for reliability and
quality assessment. Moreover, the EDR method is
capable of handling problems with non-normal distri-
bution and statistical correlation as long as such infor-
mation is disclosed.

This paper proposes a very efficient and accurate
approach for reliability-based robust design optimiza-
tion (RBRDO) by incorporating the EDR method.
Even if the EDR method requires no sensitivity of the
responses, RBRDO still requires sensitivity of relia-
bility and quality to find a design direction in design
optimization. In the proposed RBRDO method, an
approximate response surface is exploited to calculate
sensitivity of reliability and quality where the response
surface is constructed using the eigenvector samples.
Thus, sensitivity analysis becomes very efficient and
simple. Three case studies (side impact crash, layered
plate bonding process, and A-Arm in HMMWV) are
used to demonstrate the effectiveness of the proposed
RBRDO method using the EDR method.

2 Eigenvector dimension-reduction method

In general, the statistical moments of system responses
can be calculated as

E
[
Ym (X)

] =
∫ +∞

−∞
· · ·

∫ +∞

−∞
Ym (x) · fx (x) · dx (1)

In (1), a major challenge is a multidimensional integra-
tion over the entire random input domain. To resolve
this difficulty, the EDR method uses an additive de-
composition from the univariate DR method (Rahman
and Xu 2004) to convert a multidimensional integration
in (1) into multiple one-dimensional integrations. Thus,
(1) can be approximated as

E
[
Ym (X)

] ∼= E
[
Y

m
(X)

]
=

∫ ∞

−∞
· · ·

∫ ∞

−∞
Ȳm · fx (x) · dx

(2)

where Y = � j=1,NY
(
μ1, . . . , μj−1, Xj, μj+1, . . . , μN

) −
(N − 1) · Y (μ1, . . . , μN). Using a binomial formula, (2)
can be evaluated by executing one-dimensional integ-
ration recursively. Uncertainty of system responses
can be evaluated through multiple one-dimensional
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numerical integrations. However, there are still chal-
lenges to be addressed. For example, how to perform
probability analysis with correlated random variables
when the information of correlation is disclosed? How
to predict the reliability from the statistical moments of
a system response?

To address the challenges, the EDR method incor-
porates three technical components: (1) eigenvector
sampling scheme (Section 2.1), (2) one-dimensional
response approximations for effective numerical inte-
gration (Section 2.2), and (3) a stabilized Pearson sys-
tem for PDF generation (Section 2.3).

2.1 Eigenvector sampling

Accuracy of probability analysis can be improved with
an increase of the number of numerical integration
points in (2). However, increasing the number of the
integration points makes reliability-based robust de-
sign optimization (RBRDO) prohibitively expensive
because responses at the points must be evaluated
through simulation or experiment. To achieve both
accuracy and efficiency in probability analysis, one-
dimensional response surface will be created using
samples along the eigenvectors of a random system
(Section 2.2). The primary reason to choose samples
along the eigenvectors is that the eigenvectors and
eigenvalues contain information for statistical corre-
lation and variation. So, the eigenvectors and eigen-
values assist finding samples over the random space.
For efficiency, the EDR method employs only either
three or five samples along each eigenvector (includ-
ing a design point), depending on the nonlinearity of
system responses. For N number of random variables,
the EDR method demands 2N + 1 or 4N + 1 samples
including the design point.

To obtain the eigenvectors and eigenvalues, an
eigen-problem can be formulated as

�X = λX (3)

where X and λ are eigenvectors and eigenvalues of the
covariance matrix, �. The covariance matrix with the
N random input variables is defined as

�=

⎡

⎢
⎢
⎢⎢
⎢
⎣

�11 �12 �13 · · · �1N

�21 �22 �23 · · · �2N

�31 �32 �33 · · · �3N
...

...
...

. . .
...

�N1 �N2 �N3 · · ·�NN

⎤

⎥
⎥
⎥⎥
⎥
⎦

=

⎡

⎢
⎢
⎢⎢
⎢
⎣

σ 2
1 �12 �13 · · ·�1N

�21 σ 2
2 �23 · · ·�2N

�31 �32 σ 2
3 · · ·�3N

...
...

...
. . .

...

�N1 �N2 �N3 · · · σ 2
N

⎤

⎥
⎥
⎥⎥
⎥
⎦

where the covariance between input variables Xi and
Xj can be defined as

Cov
(
Xi, X j

) = �ij = E
[
(Xi − μi)

(
Xj − μj

)]

where μi and μ j are the means of Xi and Xj. Ac-
cording to the definition, the covariance is symmetric
with �ij = � ji and σ 2

i is the variance of any random
variable Xi. Depending on statistical configuration of
the system, four different types of problems can be
defined: (a) uncorrelated and symmetric, (b) correlated
and symmetric, (c) uncorrelated and asymmetric, and
(d) correlated and asymmetric. For any circumstance,
eigenvector samples will be found at

1Vi = μ − k
√

λiX′
i and 2Vi = μ + k

√
λiX′

i (4)

where X′
i and λi are the ith eigenvector and eigen-

value. The value of k determines the locations of the
eigenvector samples along each eigen direction (say,
1Vi) and the accuracy of one-dimensional response
approximation. Subsequently, the response accuracy
determines accuracy of one-dimensional numerical in-
tegrations and the EDR method. On the one hand,
if the k is too large, accuracy of approximate one-
dimensional response will be degraded on the inner
side of eigenvector samples; on the other hand, if k is
too small, accuracy of the response will be descended
on the outer side of eigenvector samples because of
the extrapolation. It is true that the accuracy of the
EDR method becomes maximized with the optimal k
value. However, it is nearly impossible to determine
the optimal k analytically because of involvement of
the response surface approximation (see Section 2.2).
Thus, a parametric study that adjusts the k value from 1
to 6 for several numerical examples found two facts: (1)
the accuracy of the EDR method appears to be the best
with k = [2.5∼3.5]; (2) the accuracy is nearly insensitive
with any k value in the range. So, this paper uses k = 3
for eigenvector sampling. The eigenvector samples for
the different types of problems are found as follows:

a. Uncorrelated and symmetric

If all random variables are statistically uncorrelated,
all off-diagonal terms in the covariance matrix become
zero. In this case, the eigenvectors are simply the origi-
nal random variable axes. The eigenvector samples are
obtained along the original random vectors at 1Vi =
μ − 3

√
λiX′

i = μ − 3σiX′
i and 2Vi = μ + 3

√
λiX′

i = μ +
3σiX′

i, where X′
i is the ith eigenvector where all ele-

ments are zero except the ith element is one.
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b. Correlated and symmetric

If some random variables are statistically correlated,
the eigenvector samples are obtained at 1Vi = μ −
3
√

λiX′
i and 2Vi = μ + 3

√
λiX′

i along the eigenvectors
of the eigenvalue problem in (3).

c. Uncorrelated and asymmetric

If all random variables are statistically uncorrelated but
asymmetrically distributed, the eigenvectors are still
the same as the original random variable axes. To
facilitate the eigenvector sampling for asymmetrically
distributed random input parameters, the random para-
meters are transformed into standard-normally distrib-
uted random parameters (U), such as T: Xi → Ui. The
eigenvector samples are similarly obtained along the ei-
genvectors in the transformed space at 1Ui =−3U′

i and
2Ui =+3U′

i, where U′
i is the ith eigenvector where all

elements are zero except the ith element is one. Then,
two eigenvector samples 1Vi and 2Vi will be found from
1Ui and 2Ui through the inverse transformation, T−1.

d. Correlated and asymmetric

If some random variables are both correlated and
with asymmetric distributions, the random parameters
are first transformed into standard-normally distributed
random parameters (U), such as T: Xi → Ui. After
identifying the eigenvector in U-space, the scheme used
for uncorrelated and asymmetric distributions will lo-
cate the eigenvector samples along the eigenvectors.
Then, the samples in X-space will be obtained through
an inverse transformation, as shown in Fig. 1d, so the
responses at the samples can be calculated in the origi-
nal X-space.

The 2N + 1 eigenvector samples are illustrated for
the four different cases shown in Fig. 1, and the samples
are used for constructing one-dimensional response ap-
proximation using the SMLS method in the following
section. To enhance numerical accuracy in probabil-
ity analysis, the 4N + 1 eigenvector samples will be
selected with two extra samples located at 3Vi = μ −
1.5

√
λiX′

i and 4Vi = μ + 1.5
√

λiX′
i.

Fig. 1 Eigenvector
samples for the EDR
method. a Symmetric and
uncorrelated, b Symmetric
and correlated, c Asymmetric
and uncorrelated,
d Asymmetric and
correlated
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Table 1 PDFs of Pearson system (Johnson et al. 1995)

Type Criteria PDF

Normal c1 = c2 = 0 p (y) = K exp
[− (y + a)2/(2c0)

]
,

where y ∈ (−∞, ∞,)

Types I and II c2
1 − 4c0c2 > 0 and roots (a1, a2) p (y) = K (y − a1)

m1 (a2 − y)m2 ,

of c0 + c1 y + c2 y2 = 0 satisfy where m1 = a + a1

c2 (a2 − a1)
, m2 = a + a2

c2 (a1 − a2)
, y ∈ [a1, a2]

a1 < 0 < a2

Type III c2 = 0, c1 �= 0 p(y) = K (c0 + c1 y)m exp
(−y

c1

)
, where m = c−1

1

(
c0c−1

1 − a
)

If c1 > 0, y ∈ [−c0/c1, ∞); If c1 < 0, y ∈ (−∞, −c0/c1]

Type IV c2
1 − 4c0c2 < 0 p (y) = K

[
C0 + c2 (y + C1)

2
]−(2c2)−1

exp
[
−a − C1√

c2C0
tan−1 y + C1√

C0
/

c2

]

where C0 = c0 − c2
1c−1

2 / 4, C1 = c1c−1
2 / 2, y ∈ (−∞, ∞)

Type V c2
1 = 4c0c2 p (y) = K (y + C1)

−1/c2 exp

[
a − C1

c2 (y + C1)

]
, where C1 = c1

/
(2c2)

If (a − C1)
/

c2 < 0, y ∈ [−C1, ∞); If (a − C1)
/

c2 > 0, y ∈ (−∞, −C1]

Type VI Roots (a1, a2) of If a1 <a2 <0, p (y) = K (y − a1)
m1 (y − a2)

m2 where y ∈ [a2, ∞)

c0 + c1 y + c2 y2 = 0 are real and If a1 >a2 >0, p(y)= K (a1−y)m1 (a2−y)m2 where y ∈ (−∞, a2]
of the same sign

Type VII c1 = a = 0, c0 > 0, c2 > 0 p (y) = K
(
c0 + c2 y2

)−(2c2)−1

, where y ∈ (-∞, ∞)

2.2 Stepwise moving least squares method
for numerical integration

For the calculation of statistical moments as shown in
(2), multiple one-dimensional numerical integrations
need to be performed recursively along the eigen-
vector directions as illustrated in Section 2.1. To en-
hance numerical efficiency and accuracy, approximate
one-dimensional response surfaces will be constructed
along the eigenvectors. So, the number of integration
points can be increased as many as possible without
extra computational cost. This section introduces the
stepwise moving least square (SMLS) method for one-
dimensional response approximation.

The moving least square (MLS) method (Youn and
Choi 2004) is improved by a stepwise selection of ba-
sis functions, referred to as the stepwise moving least
square (SMLS) method. The optimal set of basis terms
is adaptively chosen to maximize numerical accuracy by
screening the importance of basis terms. This technique
is exploited for approximating the integrand in (2).
The idea of the stepwise selection of basis functions
comes from the stepwise regression method (Myers and
Montgomery 1995; McAllister and Simpson 2003). The
SMLS method for one-dimensional response approxi-
mation proceeds in the following steps:

Step 1. Define a pool of basis elements and default
basis elements out of the pool. Set the total

number of basis elements, nb, and sub-domain
counter, m = 0. Prepare actual responses eval-
uated at the 2N + 1 or 4N + 1 eigenvector
samples.

Step 2. Define the mth sub-domain surrounded by nb
neighboring samples.

Step 3. Find nt training points in each sub-domain,
where training points are defined in the mid-
dle of every two samples.

Fig. 2 Pearson curve (x-axis is the square of skewness, β1, and
y-axis is the kurtosis, β2)
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Fig. 3 FORM and SORM
reliability analysis in
hyper-plane for a G8 and
b G10

Step 4. Approximate responses at training points
using the MLS method as

Ŷ (d)=hT (d) M−1 (d) B (d) Y where M=HTW (d) H,

B=HTW (d)

where W is the weight matrix, H is the basis matrix, and
Y is the actual responses at the eigenvector samples.

Step 5. Filter the basis elements adaptively in the mth
sub-domains by ranking the magnitudes of the
coefficients. The basis element with the max-
imum coefficient will be selected and added
to the default basis elements. This process will
be repeated until the total number of required
basis elements (nb) is reached.

Step 6. Set m = m + 1 and go to Step 2 if m ≤ ns
where ns is the total number of sub-domains.
Otherwise go to Step 7.

Step 7. Construct one-dimensional response surface
using sample responses.

Using actual responses evaluated at the 2N + 1 or
4N + 1 eigenvector samples, the SMLS method ap-
proximates the one-dimensional responses at all inte-
gration points. It is true that the increase of the number
of numerical integration points enhances the accuracy
of numerical integration and probability analysis. The
use of the SMLS method can increase the integra-
tion points without extra simulations or experiments.
Thus, in (2) a large number of integration points can
be used to improve numerical accuracy in assessing
statistical moments of the responses while maintaining
high efficiency. The SMLS method can be integrated
with any numerical integration methods, so the EDR
method has no restriction to choose numerical inte-
gration schemes. The moment-based quadrature rule
used in the DR method can be employed for the EDR
method. However, a number of integration points must
be predetermined before conducting the probability
analysis. Even if the number of integration points is

Table 2 Results of
component reliability
analysis

Reliability of constraints FORM SORM EDR MCS

G1 1 1 1 1
G2 1 1 1 1
G3 0.9989 0.9989 0.9989 0.9989
G4 0.9000 0.9136 0.9026 0.9026
G5 1 1 1 1
G6 1 1 1 1
G7 1 1 1 1
G8 0.9000 0.8723 0.7097 0.7019
G9 0.9897 0.9905 0.9905 0.9900
G10 0.9000 0.9025 0.9495 0.9444
Function evaluation 47 47 23 100,000
Sensitivity evaluation 47 47 0 0
Hessian evaluation 0 10 0 0
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increased for better accuracy, the information from
the smaller number of integration points cannot be
reused for that from the larger number. Besides, a
large number of integration points may cause a nu-
merical singularity of an inverse matrix for obtaining
integration points. This paper also suggests an adaptive
Simpson rule (Yamazaki and Shinozuka 1988) as an
alternative integration method. Although the adaptive
Simpson rule generally demands a larger number of
integration points to preserve good accuracy compared
to the moment-based quadrature rule, it gives more
freedom on selection of probability distribution types
for input random variables. Adaptive Simpson’s rule
adaptively identifies numerical integration points until
the error of numerical integration is smaller than a user-
specified tolerance.

2.3 A stabilized Pearson system

The EDR method calculates the first four statistical mo-
ments (mean, SD, skewness, and kurtosis) in (2). Then,
the Pearson System (Johnson et al. 1995) is used to con-
struct the PDF of a random response (Y) based on its
first four moments. The detailed expression of the PDF
can be achieved by solving a differential equation as

1

p (Y)

dp (Y)

dY
= − a + Y

c0 + c1Y + c2Y2
(5)

where a, c0, c1, and c2 are four coefficients determined
by the first four moments of the random response (Y)

and expressed as

c0 = (4β2 − 3β1) (10β2 − 12β1 − 18)−1 μ2

a = c1 = √
β1 (β2 + 3) (10β2 − 12β1 − 18)−1 √

μ2

c2 = (2β2 − 3β1 − 6) (10β2 − 12β1 − 18)−1

Fig. 4 Sensitivity with respect to a SD of the first random input
(2N + 1 eigenvector sample scheme)

Fig. 5 Sensitivity with respect to a mean of the first random input
(2N + 1 eigenvector sample scheme)

where β1 is the squares of skewness, β2 is the kurtosis,
and μ2 is the variation. The mean value is always
treated as zero in the Pearson System, and it can be
easily shifted to the true mean value once the differen-
tial equation is solved. The differential equation can be
solved and its solutions, p(Y), are classified into seven
different distribution types, depending on the values of
the four coefficients a, c0, c1, and c2, as listed in Table 1.
Normal distribution is a special case when c1 =c2 = 0.
The coefficient K can be numerically calculated by
forcing the integration of PDF in the defined domain to
be a unity. The Pearson system, however, encounters a
singularity problem while calculating the coefficient K
at the solid dots as shown in Fig. 2.

In the EDR method, a stabilized Pearson system is
proposed to avoid instability. In this system, the dis-
tribution at the singular point (skewness and kurtosis)
in Fig. 2 is assumed to be a continuous function of the
hyper-PDFs, where the hyper-PDFs must be selected
as close to the distribution at the singular point as
possible. The hyper-PDFs are obtained with positively
and negatively perturbed kurtosis values rather than
skewness because the hyper-PDFs with the kurtosis
perturbation are much closer to the distributions than
those with the skewness perturbation. Then these two
hyper-PDFs are used to approximate the PDF at the
singular point (or statistical moments) in Fig. 2.

Suppose that the Pearson system fails to construct
a PDF with [m1, m2, m3, m4]. A detailed procedure
follows:

Step 1. The first three moments are kept constant and
gradually decrease the m4 by a small decre-
ment (�m4 = 0.01) until a PDF can be success-
fully constructed. p1(Y) and m4,1 are denoted
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Fig. 6 Sensitivity with respect to an input mean (2N + 1 integra-
tion scheme)

as the PDF and the corresponding kurtosis
value, respectively.

Step 2. The first three moments are kept constant and
gradually increase the m4 by a small increment
(�m4 = 0.01) until a PDF can be successfully
constructed. p2(Y) and m4,2 are denoted as
the PDF and the corresponding kurtosis value,
respectively.

Step 3. To build the PDF over the entire domain
of the random response (Y), the response
domain is discretized as Yi, i = 1 to l. At
every value Yi, the PDF is obtained using two
hyper-PDFs p1(Yi) and p2(Yi), where they
are obtained with the kurtosis m4,1 and m4,2,
respectively. With two hyper-PDF values hav-
ing the kurtosis m4,1 and m4,2, the PDF p(Yi)

with the actual kurtosis m4 (m4,1 < m4 < m4,2)

can be approximated using the SMLS method
without a singularity. It is found that the
PDF p(Yi) is accurately generated because the
amount of the kurtosis perturbation is rela-
tively small.

The perturbation size (�m4 = 0.01) of a kurtosis is used
to preserve a relatively small perturbation. Basically,
the smaller the difference between m4,1 and m4,2, the
more accurate the PDF approximation for the actual
kurtosis m4.

3 Comparison of EDR, FORM, and SORM
for reliability

In this example, the side impact crash model (Youn
et al. 2004b) with multiple MPPs or high nonlinearity of
responses (see Fig. 3) is employed to compare accuracy
of the EDR method for reliability analysis with FORM
and SORM. With 90% target reliability, RBDO using
FORM produces the optimum design point at [d∗]T =
[0.500, 1.327, 0.500, 1.262, 0.623, 1.500, 0.500, 0.345,
0.192, 0.000, 0.000]T . This optimum design is verified
using four different methods: FORM, SORM, EDR,
and MCS with 100,000 samples. The results are shown
in Table 2. It is evident that the FORM produced large
errors for reliability analysis compared with the MCS,
especially for the constraints of G8 and G10. The SORM
slightly reduces the error, but the EDR method predicts
the reliability much more accurately.

The dashed and dotted lines show the first-/second-
order approximations of failure surfaces used in the
FORM and SORM for two active constraints of G8

and G10 at the optimum design. Inaccurate approxi-
mations of failure surfaces lead to the significant er-
rors in reliability values using the FORM and SORM,
whereas the EDR method can precisely estimate the
failure domains. Furthermore, as shown in Table 2,
the EDR method is far more efficient than the other
two, as the EDR method requires no sensitivity of
system responses, and one EDR execution takes care
of reliability analyses for a set of the crashworthiness
constraints.

Table 3 Properties of design
and random variables of
vehicle side impact model

X10 and X11 are not design
variable.

Random variables Distr. Type SD dL d dU

X1 Normal 0.050 0.500 1.000 1.500
X2 Normal 0.050 0.500 1.000 1.500
X3 Normal 0.050 0.500 1.000 1.500
X4 Normal 0.050 0.500 1.000 1.500
X5 Normal 0.050 0.500 1.000 1.500
X6 Normal 0.050 0.500 1.000 1.500
X7 Normal 0.050 0.500 1.000 1.500
X8 Normal 0.006 0.192 0.300 0.345
X9 Normal 0.006 0.192 0.300 0.345
X10 Normal 10.0
X11 Normal 10.0
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Table 4 Components and
safety rating criteria of
vehicle side impact model

Components Safety criteria

Objective: quality of abdomen load (kN) ≤ 1
G1 − G3: rib deflection Upper ≤ 32

Middle
Lower

G4 −G6: VC (m/s) Upper ≤ 0.32
Middle
Lower

G7: Pubic symphysis force (kN) ≤ 4
G8: Velocity of B-pillar ≤ 9.9
G9: Velocity of front door at B-pillar ≤15.7

4 Probabilistic sensitivity analysis

At a given design point, sensitivity of quality and relia-
bilities with respect to a mean and a SD (or variation) of
a random input must be provided to perform RBRDO.
This is referred to as a probabilistic sensitivity analysis.
Sensitivity of quality and reliabilities require sensitivity
analysis of system responses (e.g., fatigue, stress, etc.)
at the eigenvector samples. The sensitivity results at the
samples are obtained using the finite difference method
(FDM). Perturbation of mean or SD of a random input
identifies new eigenvector samples. Then, the SMLS
method is used to approximate the responses at the
new eigenvector samples. Finally, the EDR method
is performed to compute the perturbed quality and
reliabilities with the perturbed mean or SD of the ran-

dom input. Using the original and perturbed values of
quality and reliabilities, the FDM computes sensitivities
of quality or reliabilities.

4.1 Probabilistic sensitivity with respect to an input SD

This section considers a probabilistic sensitivity analysis
with respect to a SD of a random input. As shown in
Fig. 4, the new eigenvector sample points, (x1,1′ , x2,0)

and (x1,2′ , x2,0), are identified with a perturbed SD of
the random input, X1. A perturbation size of 0.1% is
commonly used for the FDM. For xi, j, the first subscript
(i) indicates the ith random parameter, and the second
( j ) indicates the jth sample point along each random
parameter.

Table 5 Design history
(case 1) Iteration 0 1 2 3 4 Optimum

Number of analyses 230 230 230 230 230 1,150
Objective 0.693 0.158 0.130 0.114 0.114 0.114
Mean 0.643 0.117 0.090 0.073 0.073 0.073
SD 0.049 0.040 0.041 0.041 0.041 0.041
X1 1.000 1.003 1.007 1.073 1.073 1.073
X2 1.000 1.500 1.500 1.500 1.500 1.500
X3 1.000 1.257 1.402 1.500 1.500 1.500
X4 1.000 1.494 1.500 1.500 1.500 1.500
X5 1.000 1.000 1.000 1.000 1.000 1.000
X6 1.000 1.028 1.035 1.062 1.056 1.056
X7 1.000 1.000 1.000 1.000 1.000 1.000
X8 0.300 0.308 0.344 0.345 0.345 0.345
X9 0.300 0.345 0.345 0.345 0.345 0.345
G1 −0.018 −0.377 −0.102 −0.088 −0.101 Inactive
G2 0.459 −2.762 −3.014 −3.237 −3.237 Inactive
G3 4.295 0.015 0.001 0.000 0.000 Active
G4 −0.079 −0.090 −0.093 −0.097 −0.097 Inactive
G5 −0.095 −0.093 −0.089 −0.089 −0.089 Inactive
G6 −0.035 −0.055 −0.065 −0.067 −0.067 Inactive
G7 0.247 −0.065 −0.108 −0.142 −0.141 Inactive
G8 0.313 −0.441 −0.459 −0.448 −0.453 Inactive
G9 −0.157 −0.228 −0.302 −0.370 −0.365 Inactive
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The SMLS method is used to approximate the re-
sponse values at the two new eigenvector sample points
when the 2N + 1 eigenvector sample points are em-
ployed. Finally, the EDR method is performed to com-
pute the quality (Q) and reliabilities (Ri) with the
perturbed SD of the random input. The sensitivities of
quality and reliabilities with respect to the SD of the ith
random variable (i = 1„..., N) are computed using the
following equations.

∂ Q
∂σXi

≈ Q
(
σXi +�σXi

)−Q
(
σXi

)

�σXi

∂ Rk

∂σXi

≈ Rk
(
σXi +�σXi

)−Rk
(
σXi

)

�σXi

for k=1, · · · , NC

(6)

where NC is the number of constraints for system
responses.

4.2 Probabilistic sensitivity with respect
to an input mean

This section considers a probabilistic sensitivity analysis
with respect to a mean of a random input. The eigen-
vector samples with a perturbed mean of the random
input are identified with a common perturbation size
of 0.1%. The five new eigenvector samples with the
perturbed mean of X1 are identified at (x1,0′ , x2,0), (x1,1′ ,
x2,0), and (x1,2′ , x2,0) along X1 and (x1,0′ , x2,1) and (x1,0′ ,
x2,2) along X2′ , as shown in Fig. 5. The SMLS method

is used to approximate the responses at the five new
eigenvector sample points when the 2N + 1 eigenvector
sample points are employed. Finally, the EDR method
is performed to compute the quality (Q) and reliabili-
ties (Ri) with the perturbed mean of the random input.
The sensitivities of quality and reliabilities with respect
to the mean of the ith random variable (i = 1,..., N) are
computed using the following equations.

∂ Q
∂μXi

≈ Q
(
μXi +�μXi

)−Q
(
μXi

)

�μXi

∂ Rk

∂μXi

≈ Rk
(
μXi +�μXi

)−Rk
(
μXi

)

�μXi

for k=1, · · ·, NC

(7)

The response values can be accurately approximated
at the perturbed eigenvector samples located along X1

axis, as the SMLS method accurately approximates the
one-dimensional response along X1, as illustrated in
the Section 2.2. However, it is difficult to approximate
the response values at the samples, (x1,0′ , x2,1) and
(x1,0′ , x2,2), located along the axes other than X1′ . These
samples and response values are referred to as the off-
axis samples and response values. A feasible approach
to resolve the difficulty is to approximate the off-axis
response values using the assistant points (square), as
shown in Fig. 6. The off-axis response values can be
approximated using the SMLS method after the re-
sponse values at the assistant points are obtained. In

Table 6 Design history
(case 2) Iteration 0 1 2 3 4 Optimum

Number of analyses 23 23 23 23 23
Objective 0.693 0.296 0.140 0.115 0.115 0.115
Mean 0.643 0.258 0.099 0.073 0.073 0.073
SD 0.049 0.038 0.041 0.042 0.042 0.042
X1 1.000 1.009 1.008 1.050 1.074 1.074
X2 1.000 1.394 1.500 1.500 1.500 1.500
X3 1.000 1.145 1.346 1.500 1.500 1.500
X4 1.000 1.372 1.500 1.500 1.500 1.500
X5 1.000 1.000 1.000 1.000 1.000 1.000
X6 1.000 1.000 0.988 0.960 0.949 0.949
X7 1.000 1.000 1.003 1.013 0.995 0.995
X8 0.300 0.328 0.285 0.317 0.345 0.345
X9 0.300 0.345 0.345 0.345 0.345 0.345
G1 −0.018 −0.621 0.012 0.005 −0.334 Inactive
G2 0.459 −2.593 −2.110 −2.592 −3.221 Inactive
G3 4.295 0.446 0.576 0.476 −0.001 Active
G4 −0.079 −0.092 −0.086 −0.094 −0.100 Inactive
G5 −0.095 −0.098 −0.089 −0.088 −0.092 Inactive
G6 −0.035 −0.063 −0.051 −0.061 −0.067 Inactive
G7 0.247 0.022 −0.082 −0.119 −0.116 Inactive
G8 0.313 −0.385 −0.362 −0.428 −0.540 Inactive
G9 −0.157 −0.153 −0.240 −0.297 −0.275 Inactive
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doing so, hyper-assistant points (triangle) are used to
approximate the responses at the assistant points. The
hyper-assistant points are defined along each variable
axis (e.g., X1, X2) and their responses can be obtained
with high accuracy. Along the dotted lines in Fig. 6,
two hyper-assistant points are employed to approxi-
mate the response at one assistant point (square). It
is found that the error in the response value could
be relatively large when two hyper-assistant points
are directly used for off-axis response approximation.
Therefore, the responses at the assistant points are em-
ployed to approximate the responses at the perturbed
eigenvector samples. Such an approach is expected to
reduce a numerical error in probabilistic sensitivity
estimation.

5 Reliability-based robust design optimization

Three practical engineering examples are used to show
the effectiveness of the EDR method for RBRDO. To
improve computational efficiency, RBRDO starts with
2N + 1 and adaptively increases the sample size to
4N + 1 if a response is known to be highly nonlinear.

5.1 Side impact crash problem

A vehicle side impact problem is considered for
RBRDO with five different cases: (1) sensitivity cal-
culation with actual function evaluation; (2) sensitivity

calculation with approximated function evaluation; (3)
correlated random variables; (4) non-normal random
variables; and (5) SD as the design parameter (Youn
et al. 2004b). The sequential quadratic programming
(SQP) is used in RBRDO for all five cases. All the
design and random variables are shown in Table 3 for
case 1 to case 3. In this example, the quality of the
abdomen load is treated as an objective function with
nine reliability constraints, as defined in Table 4. The
quality is defined as the summation of mean and SD.
The reliability level for all the constraints is set to
99.87%. The RBRDO is formulated as

MinimizeQ = μload + σload

Subject toRk = P (Gk (X) ≤ 0) ≤ �
(−βtk

)
,

k = 1, 2, · · · , 9

0.5 ≤ Xi ≤ 1.5; i=1, · · · , 7;
0.192 ≤ Xi ≤0.345; i=8, 9

where μload and σ load are the mean and SD of abdomen
load; Gi(X) is the nine constraints defined in Table 4;
and β ti = 3.

Case 1 sensitivity calculation with actual function
evaluation

The EDR method with 2N + 1 eigenvector sam-
ples are employed to calculate the quality (objective

Table 7 Design history
(case 3) Iteration 0 1 2 3 4 5 Optimum

Number of analyses 23 23 23 23 23 23
Objective 0.694 0.149 0.126 0.118 0.118 0.118 0.118
Mean 0.643 0.101 0.080 0.073 0.073 0.073 0.073
SD 0.051 0.048 0.046 0.045 0.044 0.044 0.044
X1 1.000 1.008 1.046 1.073 1.099 1.101 1.101
X2 1.000 1.500 1.500 1.500 1.500 1.500 1.500
X3 1.000 1.331 1.459 1.500 1.500 1.500 1.500
X4 1.000 1.500 1.500 1.500 1.500 1.500 1.500
X5 1.000 1.000 0.999 0.998 0.998 0.998 0.998
X6 1.000 1.176 1.129 1.091 1.043 1.040 1.040
X7 1.000 1.000 1.006 1.008 1.009 1.009 1.009
X8 0.300 0.325 0.345 0.345 0.337 0.336 0.336
X9 0.300 0.345 0.345 0.345 0.345 0.345 0.345
G1 −0.088 0.031 −0.001 −0.109 −0.318 −0.335 Inactive
G2 0.380 −2.955 −3.259 −3.347 −3.388 −3.395 Inactive
G3 4.295 0.021 −0.008 0.000 0.003 0.000 Active
G4 −0.062 −0.070 −0.076 −0.079 −0.081 −0.082 Inactive
G5 −0.090 −0.082 −0.081 −0.082 −0.085 −0.085 Inactive
G6 −0.034 −0.060 −0.068 −0.069 −0.067 −0.067 Inactive
G7 0.272 −0.034 −0.057 −0.058 −0.045 −0.044 Inactive
G8 0.313 −0.332 −0.391 −0.425 −0.465 −0.468 Inactive
G9 −0.282 −0.544 −0.570 −0.561 −0.523 −0.520 Inactive
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Table 8 Properties of
random input variables Variable Type Mean SD Lower bound Upper bound Mode

X1 Lognormal 1.000 0.050 – – –
X2 Beta 1.000 0.050 0.500 1.300 –
X3 Beta 1.000 0.050 0.500 1.300 –
X4 Uniform 1.000 0.0866 – – –
X5 Uniform 1.000 0.0866 – – –
X6 Uniform 1.000 0.0866 – – –
X7 Uniform 1.000 0.0866 – – –
X8 Triangular – – 0.282 0.318 0.300
X9 Triangular – – 0.282 0.318 0.300
X10 Normal 0 10.000 – – –
X11 Normal 0 10.000 – – –

function) and nine reliability constraints, respec-
tively. For the sensitivity analysis of the quality and
reliability, (2N + 1)M function evaluations must be car-
ried out, where N and M are the number of random and
design variables, respectively. Although the computa-
tion is independent upon the number of the constraint
and objective function, it is still expensive. The design
history is shown in Table 5. In each iteration, (2N + 1)
(M + 1) number of function evaluation is employed
for the calculation of the quality, reliability constraints,
and their sensitivity. After four design iterations, the
optimum design is obtained where the third constraint
becomes active and X2, X3, X4, X8 and X9 reach their

upper bounds, as shown in Table 5. Using MCS with
100,000 random samples, the reliability of G3 at the
optimum design is found to be 99.87%.

Case 2 sensitivity calculation with approximated func-
tion evaluation

It is found that case 1 turns out to be very expensive
(1,150 function evaluations). In case 2, sensitivity of the
quality and reliability constraints are estimated using
approximated responses. The design history is shown
in Table 6 and the reliability of G3 (active constraint)
is confirmed as 99.87% at the optimum design using

Table 9 Design history
(case 4) Iteration 0 1 2 3 4 Optimum

Number of analyses 23 23 23 23 23
Objective 0.699 0.216 0.156 0.135 0.135 0.135
Mean 0.643 0.159 0.096 0.073 0.073 0.073
SD 0.056 0.057 0.060 0.062 0.062 0.062
X1 1.000 1.003 1.011 1.078 1.079 1.079
X2 1.000 1.483 1.500 1.500 1.500 1.500
X3 1.000 1.197 1.362 1.500 1.500 1.500
X4 1.000 1.453 1.500 1.500 1.500 1.500
X5 1.000 1.000 1.000 1.000 1.000 1.000
X6 1.000 0.946 0.890 0.849 0.849 0.849
X7 1.000 1.000 1.000 1.000 1.000 1.000
X8 0.300 0.309 0.334 0.345 0.345 0.345
X9 0.300 0.345 0.345 0.345 0.345 0.345
G1 0.042 −0.679 −0.476 −0.537 −0.538 Inactive
G2 0.507 −2.767 −2.923 −3.212 −3.213 Inactive
G3 4.317 0.001 −0.003 −0.000 −0.000 Active
G4 −0.079 −0.091 −0.095 −0.102 −0.102 Inactive
G5 −0.094 −0.097 −0.094 −0.094 −0.094 Inactive
G6 −0.036 −0.054 −0.060 −0.066 −0.066 Inactive
G7 0.254 −0.437 −0.537 −0.587 −0.587 Inactive
G8 0.314 −0.500 −0.573 −0.624 −0.624 Inactive
G9 −0.062 −0.048 −0.080 −0.110 −0.110 Inactive
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Table 10 Design history with
standard deviation as the
design parameter

Iteration 0 1 2 Optimum

Number of analyses 23 23 23
Objective 0.116 0.086 0.085 0.085
Mean 0.073 0.073 0.073 0.073
SD 0.042 0.013 0.012 0.012
X1 0.050 0.050 0.050 0.050
X2 0.050 0.001 0.001 0.001
X3 0.050 0.017 0.001 0.001
X4 0.050 0.001 0.001 0.001
X5 0.050 0.050 0.050 0.050
X6 0.050 0.050 0.050 0.050
X7 0.050 0.050 0.050 0.050
X8 0.006 0.006 0.006 0.006
X9 0.006 0.001 0.001 0.001
G1 −0.334 −0.430 −0.435 Inactive
G2 −3.221 −3.436 −3.438 Inactive
G3 −0.001 −0.218 −0.218 Inactive
G4 −0.100 −0.101 −0.101 Inactive
G5 −0.092 −0.093 −0.093 Inactive
G6 −0.067 −0.069 −0.069 Inactive
G7 −0.116 −0.130 −0.130 Inactive
G8 −0.540 −0.566 −0.566 Inactive
G9 −0.275 −0.281 −0.282 Inactive

MCS with 100,000 samples. The optimum design in case
2 is slightly different from that in case 1 due to the
approximate sensitivity. However, case 2 is far more
efficient (150 function evaluations) than case 1 (1,150
function evaluations). FORM is also employed to carry
out RBRDO, while the FDM is used for sensitivity
computation. FORM requires a total of 1,734 function
evaluations in RBRDO.

Case 3 correlated random variables

For correlated random variables, the EDR method
identifies eigenvector samples, and then, the correlated
problem is transformed to the uncorrelated. Then, the
rest of the reliability analysis procedure is same as

case 2. In this example, x2 and x3, x10 and x11, x5 and x7

are assumed correlated each other with the correlation
coefficients as 0.7, 0.7, and -0.6, respectively. RBRDO
converges to the optimum design at the five design
iterations, as shown in Table 7. It is found that five
design variables (X1, X5, X6, X7, X8) are different at
the optimum designs of cases 1 and 2. It indicates that
the correlated random variables may have a significant
impact to the reliability analysis and design. MCS with
100,000 samples verifies the reliability of G3 as 99.88%.

Case 4 non-normal random variables

In this case, non-normal random variables are as-
sumed to be dominated. These random inputs are listed

Fig. 7 Target bonding
process and FE model.
a Isometric view of the
quarter model, b FM model
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Table 11 Design/random
properties of layered plate
bonding model

Design variables Distr. Type Mean SD

X1 Normal 4,000 400
X2 Normal 2,000 200
X3 Normal 1 0.1

in Table 8. In the triangular distribution, the mode
value is treated as design parameter unlike the mean
value for all other distribution types. For the beta
distribution with four parameters, the lower and upper
bounds are assumed to be located at μ - 10σ and
μ + 6σ , respectively, where μ and σ indicate the mean
and SD, respectively. For triangular distributions, both
the lower and upper bounds are assumed to be 0.018
away from the mode value. After four design iterations,
an optimum design is found with an active G3 constraint
as shown in Table 9. The optimum design is similar to
that in case 2 except for a relatively larger SD of the
objective function. The mean and SD of the objective
function is confirmed as 0.073 and 0.064 by running
MCS with 100,000 random samples. The reliability of
G3 is also confirmed as 99.87%.

Case 5 standard deviation as the design parameter

Generally, the mean of a random variable is re-
garded as a design parameter instead of the SD because
it is difficult to control the SD rather than the mean
value. Robust design attempts to minimize the SD of
the objective function. In this case study, the optimum
design in case 2 is defined as the initial design. There-
fore, the contribution of the SDs of the random input
variables to RBRDO results can be solely investigated.
The sensitivity of quality and reliability is approximated
using the approach stated in Section 4.1. The lower
bound of the SD (x1 to x9) is set as 0.001, and noise
variables (x10 and x11) are non-designable. After two

design iterations, the SD of the objective function is re-
duced from 0.042 to 0.012 as the SD of design variables
x2, x3, x4, and x9 are reduced to the lower bound 0.001
as shown in Table 10.

5.2 Robust design of layered bonding plates model

The bonding process of layered plates is very popular
in the manufacturing of semiconductor or electronic
display components. During this process, two-layered
plates are bonded together by a suitable adhesive to
form laminated stacks, which can be further processed
in the following four steps:

1) heating the two plates above the melting tempera-
ture of the adhesive;

2) applying the adhesive at each surface of the plate;
3) putting them in contact with each other;
4) cooling them down to a room temperature.

In this process, residual stress due to the mismatch of
the thermal expansion coefficients of two-layered plates
could result in failures of the component such as crack,
distortion, and interfacial delamination. Therefore, it
is very important to accurately estimate the stress to
improve the product quality. Herein, a transient ther-
mal finite element (FE) analysis is used to predict the
stress and deformation of plates. The model for the
layered bonding plates is shown in Fig. 7. Considering
the symmetry of the problem, a quarter of the model is
used, as shown in Fig. 7a. Due to the brittle property
and high stress at adherent 1, cracks and distortion

Table 12 Design history of layered bonding plates model

Iteration Obj Mean SD X1 X2 X3 G1 G2 Number of analysis

0 23.322 23.020 0.302 4,000.000 2,000.000 1.000 −94.876 1.051 7
1 21.437 21.350 0.087 4,579.841 3,633.035 2.317 −85.742 0.108 7
2 21.358 21.215 0.143 4,659.514 4,704.467 3.356 −79.354 −0.467 7
3 21.177 21.040 0.137 4,316.124 5,000.000 3.734 −77.240 −0.631 7
4 (2N + 1) 20.884 20.808 0.075 3,121.245 5,000.000 3.772 −77.371 −0.567 7
4 (4N + 1) 20.976 20.862 0.115 3,121.245 5,000.000 3.772 −77.342 −0.563 6
5 20.909 20.802 0.110 2,752.275 4,996.178 3.024 −80.775 −0.207 13
6 20.900 20.798 0.102 2,554.780 4,998.089 2.862 −81.861 −0.122 13
7 20.898 20.795 0.103 2,520.106 4,998.208 2.849 −82.046 −0.114 13
Optimum 20.898 20.795 0.103 2,520.106 4,998.208 2.849 Inactive Inactive 80
MCS 20.891 20.786 0.105 2,520.106 4,998.208 2.849 Inactive Inactive 1.000
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Fig. 8 Three loading
variables (random variables).
a Load variables (random
variables), b Thickness
variables (design variables)

could occur. To reduce such defects, weights are ap-
plied on top of adherent 1, as shown in Fig. 7a, from
the beginning of the process, and are removed at the
end of the cooling process. The bonded assembly is
placed on a pair of supporting bars, as shown in Fig. 7a.
Three design variables, weight at the edge (X1 or F2),
weight at the center (X2 or F1), and height of the
bar (X3 or y0), are considered in this problem. Their
statistical information is shown in Table 11. The objec-
tive function is to minimize the quality (summation of
mean and SD) of residual stress. Two constraints are
maximum stress during the process (<130 MPa) and
center displacement (<3 mm).

The RBRDO is formulated as:

Minimize Q = μr + σr

Subject to Ri = P(Gi(X) ≤ 0) ≤ �(−βti), i = 1, 2

2, 000 ≤ X1 ≤ 10, 000;
1, 000 ≤ X2 ≤ 5, 000; 1 ≤ X3 ≤ 5;

where μr and σ r are the mean and SD of residual stress;
G1(X) is the instantaneous stress; G2(X) is the edge
displacement; β ti = 3.

The EDR method is applied to evaluate the quality
(= mean + SD) of residual stress and the reliabilities of
two constraints. As the responses are highly nonlinear,
the SMLS method may produce inaccurate responses
with only 2N + 1 eigenvector samples. Subsequently,
inaccurate responses may lead to inaccurate statistical
moments of the system responses. To maximize numer-
ical accuracy and efficiency in RBRDO, the sample size
of the EDR method is adaptively decided. RBRDO
starts with the 2N + 1 sample size of the EDR method
to efficiently reach the neighborhood of the optimum
design and then continues with the 4N + 1 sample
size of the EDR method to achieve accuracy of the
optimum design. The transition from 2N + 1 to 4N + 1
is determined after satisfying a relaxed convergence
criteria (ε ≤ 0.1). This transition is found at the fourth
design iteration in Table 12. Although the predicted

SD of the residual stress is 0.075 at the fourth design
iteration, this value has relatively large error. It is con-
firmed by running the EDR with 4N + 1 eigenvector
samples at the same design. The SD is found to be 0.115
instead of 0.075. The SQP is used as a design optimizer
in RBRDO. After eight design iterations, the optimum
design is found where X2 is close to the upper bound, as
shown in Table 12. The EDR method requires totally
80 function evaluations for RBRDO. MCS with 1,000
random samples is used to confirm the EDR results at
the optimum design. It is found that the results (the
mean and SD of the residual stress) of the EDR method
are very close to those of MCS at the optimum design.
The overall quality is drastically improved by 38%.

5.3 Robust design of lower control A-Arm

Vehicle suspension systems experience intense loading
conditions throughout their service lives. Control arms
act as the backbone of suspension system, where the
majority of these loads are transmitted through. There-
fore, it is crucial that control arms be highly reliable,
while minimizing its mass. For the purpose of demon-
strating RBRDO using the EDR method, a HMMWV
lower control arm is presented as a case study.

The lower control arm is modeled with plane stress
elements using 54,666 nodes, 53,589 elements, and
327,961 DOFs, where all welds are modeled using rigid
beam elements. For FE and design modeling, Hyper-
Works 7.0 is used. The loading and boundary conditions
for this case study are shown in Fig. 8a, where loading
is applied at the ball-joint (point D) in three directions,

Table 13 Random properties of force for lower control A-Arm
model

Random variable Distribution

Fx ∼ N(1,900,95)
Fy ∼ N(95,4.75)
Fz ∼ N(950,47.5)
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Table 14 Design variables in
lower control A-arm model Design variable dL Initial des. dU SD Dist. Type

X1 0.100 0.120 0.500 0.006 Normal
X2 0.100 0.120 0.500 0.006 Normal
X3 0.100 0.180 0.500 0.009 Normal
X4 0.100 0.135 0.500 0.007 Normal
X5 0.150 0.250 0.500 0.013 Normal
X6 0.100 0.180 0.500 0.009 Normal
X7 0.100 0.135 0.500 0.007 Normal

and the boundary conditions are applied to simulate
the bushing joints (points A and B) and the joint with
a shock absorber and spring assemble (point C). The
design variables are the thicknesses of the seven major
component of the control arm, as shown in Fig. 8b. The
statistical information of these components is shown in
Tables 13 and 14. The thicknesses are considered as
random design variables, whereas the loading condition
is considered as random noise variables.

To determine the hot spots (high stress concentra-
tions) in the model, which are used to determine the
constraints, a worst case scenario analysis of the control
arm is performed. For this worst case scenario, all the
design variables are set at their lower bounds, and all
the loads are set at their high values. From the worst
case scenario, 91 constraints (G1 to G91) are defined
on several critical regions using the von Mises stress, as
shown in Fig. 9. In this case study, the quality function
(= mean + SD) of mass is treated as objective function
and a target stress value for 91 stress constraints is set
to 60.9 ksi. The reliability level for all the constraints is
set to 99.87%.

The EDR method with 2N + 1 (=21) FE analyses
is carried out to evaluate the quality of the mass,

91 reliability constraints, and their sensitivities at any
design iteration, where N = 10 (seven for random
design parameters and three for random loads). The
SQP is used for an optimizer in RBRDO. At initial
design, the 6th and 80th constraints severely violate
the required reliability. After seven design iterations,
the optimum design is found where the aforementioned
two and 87th constraints become active. The design
variables X1 and X5 reach the lower bound, and X6

reaches the upper bound, as shown in Table 15. The
EDR method requires totally 147 FE simulations for
RBRDO. In this example, even though RBRDO begins
with the severely violated initial design, the mass is
slightly increased because X6 ensures high reliability
of the stress with only a small increase in the overall
mass unlike other design variables. MCS with 10,000
random samples is also employed to confirm the EDR
results at optimum design. The mean and SD of mass
are confirmed as 31.967 and 0.712. Using MCS, the
reliabilities of the 6th, 80th, and 87th active constraints
are confirmed as 99.84%, 99.86%, and 99.89%, respec-
tively, and all other constraints are confirmed inactive.
The stress comparison at initial and optimum designs
for the 6th and 80th constraints is shown in Fig. 10.

Fig. 9 Ninety-one critical
constraints of the lower
control A-arm model
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Table 15 Design history of lower control A-arm model

Iteration 0 1 2 3 4 5 6 7 Opt.

Number of analyses 21 21 21 21 21 21 21 21
Objective 31.474 32.011 32.694 32.644 32.680 32.683 32.680 32.680 32.680
Mean 30.762 31.299 31.982 31.931 31.968 31.971 31.967 31.968 31.968
SD 0.712 0.712 0.712 0.712 0.712 0.712 0.712 0.712 0.712
X1 0.120 0.100 0.100 0.100 0.100 0.100 0.100 0.100 0.100
X2 0.120 0.140 0.140 0.140 0.140 0.140 0.140 0.140 0.140
X3 0.180 0.158 0.164 0.163 0.163 0.163 0.163 0.163 0.163
X4 0.135 0.160 0.162 0.165 0.166 0.166 0.165 0.166 0.166
X5 0.250 0.150 0.150 0.150 0.150 0.150 0.150 0.150 0.150
X6 0.180 0.500 0.500 0.500 0.500 0.500 0.500 0.500 0.500
X7 0.135 0.100 0.291 0.148 0.107 0.141 0.138 0.136 0.136
G6 1.388 0.109 −0.006 0.003 0.000 0.000 0.000 0.000 Active
G80 2.804 0.365 0.006 0.029 0.009 −0.004 0.001 0.000 Active
G87 −0.490 0.262 −0.021 0.003 0.000 0.000 0.000 0.000 Active

6 Conclusion

This paper proposes an effective approach for RBRDO
by incorporating the EDR method. It has been shown
that the use of the EDR method provides three benefits
to RBRDO. First, an approximate response surface fa-
cilitates sensitivity calculation of reliability and quality
where the response surface is constructed using the
eigenvector samples. Thus, sensitivity analysis becomes
very efficient and simple. Second, one EDR execution

evaluates a set of quality (objective) and reliability
(constraint) functions. In general, the EDR requires
2N + 1 or 4N + 1 simulation runs where N is the
total number of random variables. Unlike FORM or
SORM, the EDR execution does not require an it-
erative process, so the proposed RBRDO methodol-
ogy has a single-loop structure. Moreover, the EDR
execution time can be much shorter by taking advan-
tage of a parallel computing power, and RBRDO can
be far more efficient. Third, the EDR method allows

Fig. 10 Stress comparison of
initial and optimum design.
a G6 at initial design,
b G6 at optimum design,
c G80 at initial design,
d G80 at optimum design



492 B.D. Youn, Z. Xi

solving problems with statistical correlated and non-
normally distributed random inputs. This study also
found that the EDR method could be more accurate
than FORM and SORM for the problems with mul-
tiple MPPs or highly nonlinear limit state functions.
As demonstrated with three case studies (side impact
crash, layered plate bonding process, and A-Arm in
HMMWV), it is expected that the proposed RBRDO
using the EDR method can enhance numerical effi-
ciency substantially while maintaining good accuracy.
Even though the EDR method provided many desir-
able features to RBRDO, the use of the EDR method
must be carefully considered when system responses
have high-order interaction terms or when high target
reliability (e.g., greater than 99.9%) is required.
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