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Most engineered systems are designed with a passive and fixed design capacity and,
therefore, may become unreliable in the presence of adverse events. Currently, most engi-
neered systems are designed with system redundancies to ensure required system reliabil-
ity under adverse events. However, a high level of system redundancy increases a
system’s life-cycle cost (LCC). Recently, proactive maintenance decisions have been
enabled through the development of prognostics and health management (PHM) methods
that detect, diagnose, and predict the effects of adverse events. Capitalizing on PHM
technology at an early design stage can transform passively reliable (or vulnerable) sys-
tems into adaptively reliable (or resilient) systems while considerably reducing their
LCC. In this paper, we propose a resilience-driven system design (RDSD) framework
with the goal of designing complex engineered systems with resilience characteristics.
This design framework is composed of three hierarchical tasks: (i) the resilience alloca-
tion problem (RAP) as a top-level design problem to define a resilience measure as a
function of reliability and PHM efficiency in an engineering context, (ii) the system
reliability-based design optimization (RBDO) as the first bottom-level design problem for
the detailed design of components, and (iii) the system PHM design as the second
bottom-level design problem for the detailed design of PHM units. The proposed RDSD
framework is demonstrated using a simplified aircraft control actuator design problem
resulting in a highly resilient actuator with optimized reliability, PHM efficiency and re-
dundancy for the given parameter settings. [DOI: 10.1115/1.4004981]

Keywords: resilience, reliability, complex engineered systems, prognostics and health
management

1 Introduction

In the past few decades, reliability has been widely recognized as
of great importance in engineering product and process design.
Hence, considerable advances have been made in the field of
reliability-based design optimization (RBDO) [1–6] for engineered
system reliability analysis and design while taking into account var-
ious variability sources (e.g., material properties, loads, and geo-
metric tolerances). Additionally, advanced numerical methods for
reliability assessment have been proposed to enhance numerical ef-
ficiency and stability [6–10]. In RBDO, reliability is defined as the
probability that a system performance (e.g., fatigue, corrosion, and
fracture) meets its marginal value under variability. Although
reliability-based design can improve system reliability to some
degree, most engineered systems can only be designed with a pas-
sive and fixed design capacity—the load level that the system
design can withstand—and, therefore, may become unreliable in
the presence of adverse events.2 To maintain the desired level of
system reliability under adverse events, a great deal of system re-
dundancy is designed into most engineered systems, resulting in a
strikingly high life-cycle cost (LCC) to be incurred in development,
operation, and maintenance processes.

Recently, prognostics and health management (PHM) methods
have been developed to detect, diagnose, and predict the system-
wide effects of adverse events. Condition monitoring (CM) is the
process of diagnosing health conditions based on sensory signals

and related health measures. Popular tools used for CM include
statistical methods [11,12] and artificial intelligence, such as
neural networks and fuzzy logic [13,14]. CM has been applied to
various engineering applications, including: machine components
[15,16], machine tools [17,18], and power generator/transformers
[19–21]. Real-time prognostics research has been conducted with
an emphasis on modeling the remaining useful life (RUL) distri-
bution and reliability. In general, prognostics approaches can be
categorized into model-based approaches [22–24], data-driven
approaches [25–27] and hybrid approaches [28,29]. PHM research
has been conducted with various systems, such as light-emitting
diodes [30,31], civil systems [32], and fuel cells [33]. Condition-
based maintenance (CBM) is the maintenance decision process
that exploits CM and prognostics information to maximize the
availability of the system and to minimize its long-run expected
cost. Component replacement in this maintenance is triggered
when the system condition reaches a threshold condition or the
owner’s cost is minimal [34–36]. It is noted that PHM has been
successful, in part, in lowering system maintenance costs. In addi-
tion, it was reported that PHM may have the capability to make
engineered systems highly reliable with a reduced level of redun-
dancy [37]. However, it has not been used as a means to adap-
tively ensuring high system reliability under adverse conditions.
Capitalizing on PHM technology at an early design stage may
enable the transformation of passively reliable (or vulnerable)
conventional systems into adaptively reliable (or resilient) com-
plex systems while considerably reducing systems’ LCCs. There
is, however, no definition and mathematical framework of engi-
neering resilience to take advantage of PHM because the two
interrelated disciplines (engineering reliability and PHM) have, to
date, been developed in parallel and independently.

The above literature survey reveals a great potential for the
advancement of PHM technology together with the system reli-
ability technology to further make engineered systems resilient.

1Corresponding author.
2Adverse events could include the failure of components due to internal hazards

(e.g., degradation) and/or external hazards (e.g., harsh operational conditions) that
occur during the mission of the systems.
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This study aims at exploiting this potential to incorporate the resil-
ience concept into engineering design and to transform the con-
ventional RBDO to resilience-driven system design (RDSD). This
design framework is composed of three hierarchical tasks, namely
the resilience allocation problem (RAP) as a top-level design
problem to define a resilience measure as a function of reliability
and PHM efficiency in an engineering context, the system
reliability-based design optimization (RBDO) as the first bottom-
level design problem for the detailed design of components, and
the system PHM design as the second bottom-level design prob-
lem for the detailed design of PHM units. We expect that the
resulting system design is capable of detecting, anticipating and
recovering from adverse events.

The paper is organized as follows. Section 2 reviews the
research in resilience and introduces the concept of resilience to a
complex engineered system. The notions detection, anticipation,
and recovery are situated in this context. Section 3 presents the
hierarchical RDSD framework along with detailed design and
analysis problems. Section 4 reports the results of an engineering
case study to illustrate the proposed framework. The paper is con-
cluded in Sec. 5.

2 Resilience Concept

Many developments have been achieved in the research on re-
silience in several nonengineering fields. However, resilience in
engineering design remains almost untouched. There is still a
great need for a theoretical basis that furnishes a better under-
standing of how engineered systems achieve resilience, as well as
enables the development of a generic resilience principle widely
applicable to the field of engineering design. This section first pro-
vides a brief review of the research on resilience in nonengineer-
ing fields, and then presents a mathematical definition of
engineering resilience along with its generic formula.

2.1 Research on Resilience. In recent years, research on re-
silience has been widely conducted in ecology [38–40], psychol-
ogy [41–44], economics and organizational science [45–47], and
others to improve the ability of systems or people to respond to
and quickly recover from catastrophic events.

In ecology, resilience is loosely defined as “the ability of the
system to maintain its function when faced with novel dis-
turbance” [38]. The current research on resilience applied to eco-
systems mainly focuses on the analysis of ecosystem resilience
using complex adaptive systems (CAS) theory [39]. As an exten-
sion of traditional systems theory, the CAS theory enables analy-
sis of the role of adaptation in system resilience through
specifically modeling how individual variation and changes in
that variation lead to system-level responses [39]. Furthermore,
natural selection and evolution plays an important role in shaping
ecological response to disturbance, which provides new insight to
the understanding of resilience [40]. In psychology, resilience is
defined as a dynamic process that individuals exhibit positive be-
havioral adaptation when they encounter significant adversity
[41]. The process of resilience involves both the exposure of ad-
versity and the positive adaptation to that adversity. Extensive

research has been conducted to understand the protective factors
that contribute to people’s adaptation to adverse conditions, e.g.,
bereavement [42], terrorist attacks [43], or urban poverty [44].

In economics and organizational science, resilience of an organi-
zation can be defined as its intrinsic ability to keep or recover a sta-
ble state, thereby allowing it to continue operations after a
disruption or in presence of continuous stress [45,46]. In econom-
ics, resilience can be improved by adding redundancy or increasing
flexibility. While investments in redundancy means a pure increase
in cost, investments in flexibility yields many competitive advan-
tages in day-to-day operations [45]. Of particular interest here is the
characterization of a resilient organization with the following three
steps within the context of a perturbation, as shown in Fig. 1 [47].
First, the organization should continuously monitor key state varia-
bles indicative of its health condition to anticipate the occurrence of
a perturbation. Second, upon the occurrence of a perturbation, the
system should conduct the situation assessment and identify an
optimal way to reorganize itself and keep operations. Third, after
the occurrence of a perturbation, the organization should analyze
various alternative ways of functioning and learn from the past
experiences to determine the most relevant state variables for the
first step and to enhance its capability to cope with perturbations.

In contrast to the aforementioned developments of resilience in
many nonengineering fields, resilience in engineering design has
rarely been studied. One possible reason is that PHM, which is
essential to make engineered systems resilient, has only recently
received critical attention from the research community. It is fair to
say, therefore, that there is still a great need for a theoretical basis
that furnishes a better understanding of how engineered systems
achieve resilience, as well as enables the development of an engi-
neering resilience principle readily applicable to engineering design.

2.2 Definition of Engineering Resilience. This subsection
aims at proposing a conceptual definition of engineering resil-
ience, which will facilitate the derivation of its generic formula in
terms of reliability and other key PHM attributes. Nonresilient
system designs encounter gradual degradation of system capacity
and performance due to adverse events (see Fig. 2(a)). In contrast,
resilient system designs will be able to recover from their critical
health states by restoring the system capacity (see Fig. 2(b)).
PHM will support logical decisions about when and how to restore
the system capacity. The capacity restoration (q) can be defined as
the degree of reliability recovery. It can be found that the restora-
tion is a joint probability of a system failure event (Esf), a correct
diagnosis event (Ecd), a correct prognosis event (Ecp), and an miti-
gation/recovery (M/R) action success event (Emr), expressed as

q R;KP;KD;jð Þ ¼D Pr Esf Ecd Ecp Emr

� �
¼ Pr EmrjEcpEcdEsf

� �
�

Pr EcpjEcdEsf

� �
� Pr EcdjEsf

� �
� Pr Esf

� �
¼ j � KP � KD 1� Rð Þ

(1)

where j, KP, and KD are the conditional probabilities of the M/R
action success, correct prognosis and diagnosis, and (1�R) is the

Fig. 1 Resilient (Proactive) organization
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probability of system failure. In this study, the value of j is held
constant here by assuming that M/R maintenance actions are con-
sistently performed. However, there is no restriction on the form
of j. In particular, j can be a nonlinear function of the system
reliability R, indicating that the performance of an M/R action is
affected by the health condition of the engineered system.

The conceptual definition of engineering resilience is the degree
of a passive survival rate (or reliability) plus a proactive survival rate
(or restoration). Mathematically, the resilience measure can be
defined as the addition of reliability and restoration as (see Fig. 2(b))

Resilience ðWÞ ¼D ReliablityðRÞ þ Restoration ðqÞ ! W

¼D Rþ q R;KP;KD;jð Þ (2)

It is noted that the above definition turns engineering resilience to
a quantifiable property, making it possible to analyze the resil-
ience potential of an engineered system. In what follows, we
intend to further elaborate on the two hallmarks of engineering re-
silience: reliability and restoration.

Reliability: Reliability quantifies the ability of an engineered sys-
tem to maintain its capacity and performance above a safety limit
during a given period of time under stated conditions. Accordingly,
resilience is characterized by preserving an acceptable level of
capacity and performance despite adverse events. We note that reli-
ability should be treated as an important system characteristic that
contributes to engineering resilience from the perspective of system
self-preservation. Conventional RBDO practice endeavors to pur-
sue high reliability with low cost through cost minimization under
stringent reliability constraints [1–6].

Restoration: Restoration measures the ability of an engineered
system to restore its capacity and performance by detecting, pre-
dicting, and mitigating or recovering from the system-wide effects
of adverse events. It can be viewed as the adaptability of an engi-
neered system to its changing performance and capacity due to
adverse events. This adaptability enables an adaptive reliability
throughout the system’s lifetime.

From the perspective of conventional engineering reliability,
the failure of an engineered system typically refers to a break-
down or malfunctioning of the system and/or its components. This
view assumes that success or failure is only an observable conse-
quence that does not necessarily reflect the system’s characteristic
of adaptation. From the perspective of engineering resilience,
however, success is due to the ability of an engineering system to
make right adjustments in a timely manner, in particular to antici-
pate failures before they occur. Failure is due to the absence of
that ability—either temporarily when the system performance
falls below the safety limit or permanently. Reliability and resto-
ration works in a highly cooperative manner to build the system’s
resilience. System design must encompass enhancing this cooper-
ative strength, rather than just reducing the probability of failure.
The framework of system design with this purpose will be dis-
cussed in detail in Sec. 3.

3 Framework of Resilience-Driven System Design

This section presents the proposed framework of resilience-
driven system design. Section 3.1 provides an overview of this
framework which consists of one top-level and two bottom-level
design problems. Section 3.2 details the top-level design problem,
namely the resilience allocation problem (RAP). Section 3.3 is
dedicated to introducing the first bottom-level design problem for
the detailed design of components, namely the system RBDO.
Following the first bottom-level design problem, the detailed
PHM design is determined in the second bottom-level design
problem, namely, the system PHM, which is thereafter detailed in
Sec. 3.4.

3.1 Overview of Resilience-Driven System Design. We
begin with an overview of the resilience-driven system design
framework. This framework is composed of three hierarchical
design tasks (see Fig. 3), namely the resilience allocation problem
(RAP) as a top-level design problem to define a resilience mea-
sure as a function of reliability and PHM efficiency in an engi-
neering context, the system RBDO as a bottom-level design
problem for the detailed design of components, the system PHM
design as a bottom-level design problem for the detailed design of
PHM units.

The bottom level design problems, the system RBDO and the
system PHM design, should be solved interactively. However,
since optimal design of PHM units depends on failure mecha-
nisms and layouts of components, it is noted that PHM units must
be designed upon the completion of initial component design.
Therefore, the RBDO problem will be solved first and then the
system PHM design will be conducted. The results from the PHM
design will be used to refine the solution of the RBDO problems
iteratively if necessary. Depending on the design results, the itera-
tive process between the system RBDO and the PHM design
might be needed. In the bottom-level design problems, the system
physics of failure (PoF) information is shared between system
RBDO and system PHM design, which includes the failure modes
considered in RBDO and the PHM design, the probability of

Fig. 2 System performance changes over lifetime without (a) and with the resil-
ience practice (b)

Fig. 3 A hierarchical resilience-driven system design
framework
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failure and the PHM efficiency for each failure mode. It is natural
that with reliability and PHM efficiency being the focuses of the
system RBDO and system PHM design, respectively, one should
be able to predict the reliability and PHM efficiency levels for
given components and PHM unit designs. This necessitates the
developments of system reliability analysis and PHM analysis for
these two bottom-level design problems which then complete the
framework.

3.2 Resilience Allocation Problem (Top-Level). This sec-
tion proposes the top-level design problem, referred to as the resil-
ience allocation problem (RAP). Solving this design problem
enables the optimal allocation of resilience levels—redundancy,
reliability and PHM efficiency levels—to components.

3.2.1 Problem Formulation. The resilience of a system can
be enhanced by increasing the degree of redundancy, reliability,
and/or PHM efficiency at a component level. A rise in the resil-
ience of a system, however, could lead to an increase in system
LCC. Thus, based on the resilience definition above, a systematic
trade-off can be formulated as an original RAP in this subtask.
This original problem can be formulated as

minimize
r;k;m

subject to

LCCðrt; kt;mÞ
W wðrt; kt;mÞð Þ � Wt; 0 � rt; kt � 1

mL
j � mj � mU

j ; j ¼ 1; 2;…;N
(3)

where LCC is the system life-cycle cost, W and Wt are system re-
silience and its target value, w¼ (w1, w2, …, wN)T is an allocated
resilience vector for all subsystems, N is the number of the subsys-
tems, and the allocation decision variables include the target
component-reliability vector rt¼ (r1

t, r2
t, …, rN

t)T with rj
t being

the target component-reliability of the jth subsystem, the target
component-PHM efficiency vector kt¼ (k1

t, k2
t, …, kN

t)T with kj
t

being the component-PHM efficiency of the jth subsystem, and
the target component-redundancy vector m¼ (m1, m2, …, mN)T

with mj being the target redundancy level of the jth subsystem. It
is noted that, rather than considering PHM-relevant measures j,
KP and KD separately, we derive a combined measure, namely the
component-PHM efficiency, defined as k : j�KP�KD. Here k is
the measure of the capability of system restoration given a system
failure event, which mathematically is the conditional probability
of restoring the system through successful diagnosis, successful
prognosis, and successful mitigation/recovery (M/R) action. For
example, 0% k represents one extreme case that the component
does not have the restoration capability (no PHM unit is designed
and integrated), whereas 75% k means that, if there is a failure,
the component will have 75% probability to restore its designed
functionality through functioning of the PHM system. The pro-
posed top-level RAP incorporates the PHM efficiency in design,
where the reliability allocation can be considered as one special
case in which PHM efficiencies for all components equal zero.
Despite the loss of information to some extent, we argue that this
manipulation greatly reduces the complexity of the problem as
well as allows for an integrated treatment of a PHM unit in the
subsequent system LCC analysis. This treatment is natural since,
in the system level, we are interested in quantifying the counter-
part of reliability in the resilience definition, i.e., the integrated
capability (restoration) of a PHM unit to detect, predict and miti-
gate or recover from the system-wide effects of adverse events.
We note that, in cases where we can build a detailed LCC model
with the PHM-relevant measures (j, KP, and KD) as model inputs,
their separate consideration is quite possible but requires a greater
amount of information regarding the LCC as well as leads to a
higher complexity of the problem. The RAP in Eq. (3) makes it
possible to optimally allocate target resilience levels—redun-
dancy, reliability, and PHM efficiency levels—to components
while meeting the target system resilience (Wt). This problem is a
mixed-integer nonlinear programming problem. It can be solved

using a genetic algorithm [48], ant colony optimization [49], parti-
cle swarm optimization [50], or other optimization techniques.
Solving this problem will be computationally economic since the
system resilience function W can be analytically expressed in
terms of the target component reliability vector r

t, the component-
PHM efficiency vector kt and the target component-redundancy
vector m. In what follows, the system resilience and LCC will be
analyzed in details to evaluate the constraint and objective func-
tion in Eq. (3), respectively. For demonstration purposes, we
intend to provide an example of a series-parallel system (see Fig. 4)
which uses hypothetical data as its optimally allocated values for
the target attributes (PHM efficiency and reliability levels) and the
target structures (redundancy levels). As will be detailed in the sub-
sequent section, these target attributes will be used later in the
detailed design of components and PHM units.

3.2.2 Top-Level System Resilience Analysis. For different
system configurations [51] (e.g., series-parallel, parallel-series,
and general mixed system), the system resilience function can be
built with the following two steps as:

Step 1: Derive the system resilience function in terms of subsys-
tem resilience levels, i.e., W(w)¼W(w1, …,wN). Since the system
resilience is evolved from the system reliability, a reliability block
diagram [52] and the analogy between the system reliability and
resilience can be readily used to develop the analytic expression
for the system resilience function.

Step 2: Build the subsystem resilience functions in terms of the
target component-reliability, component-PHM efficiency and
component-redundancy vectors, i.e., wj¼wj(rj

t, kj
t, mj) for j¼ 1,

2,…,N. Take a series-parallel system (see Fig. 4) as an example.
Based on the generic resilience formula in Eq. (2), we can build
the resilience function for the jth subsystem being a parallel sys-
tem, expressed as

wj ¼
D

Rt
j þ Kt

j � ð1� Rt
jÞ ¼ 1� ð1� rt

jÞ
mjð1� kt

jÞ
mj (4)

where Rj
t and Kj

t are the jth subsystem reliability and PHM effi-
ciency. In this series-parallel system, the components in the same
subsystem possess the same reliability (rj

t) because the compo-
nents in parallel are identical and redundant, as are the PHM
units.

3.2.3 Life-Cycle Cost (LCC) Analysis with PHM. In this
study, we derive a LCC model by modifying and adding PHM rel-
evant cost elements to an existing LCC model for deteriorating
structural systems [53]. The LCC model consists of four cost ele-
ments: the expected initial development cost of components, the
expected cost of preventive maintenance, the expected cost of cor-
rective maintenance, and the expected development cost of PHM.
Given the target component-reliability vector r

t, the target
component-PHM efficiency vector kt, and the target component-
redundancy vector m, this LCC model can be expressed as

Cðr;m; kÞ ¼ CI þ CPM þ CCM þ CPHM (5)

Fig. 4 Results of the resilience allocation problem for a series-
parallel system
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where CI denotes the initial development cost of components,
CPM denotes the cost of preventive maintenance, CCC denotes the
cost of corrective maintenance, and CPHM denotes the cost of
PHM units. In what follows, the four cost elements will be dis-
cussed in details.

System development cost CI. In the binary-state reliability-re-
dundancy allocation problem, it is often assumed that there is an
inverse power relationship between component cost and compo-
nent failure rate [54,55]. Under the assumption of a constant fail-
ure rate, the initial development cost of the jth subsystem with mj

parallel components can be expressed as [54,55]

CI
j ¼ cI

j rt
j

� �
� mj þ exp

mj

4

� �h i
; where cI

j rt
J

� �
¼ aC

j � T

In rt
j

� �
0
@

1
A

bC
j

(6)

where cj
I(rj

t) is the cost function of a component in the jth subsys-
tem, cj

I(rj
t)�mj is the cost of components in the jth subsystem, an

additional cost cj
I(rj

t)�exp(mj/4) accounts for the cost for intercon-
necting parallel components, T is the required system mission
time, aj

C and bj
C denote constants representing the physical char-

acteristics of each component in the jth subsystem and can be
determined based on the collected data of component cost and
reliability. Therefore, the system initial development cost can
computed as

CI
j ¼

XN

j¼1

aC
j � T

In rt
j

� �
0
@

1
A

bC
j

� mj þ exp
mj

4

� �h i
(7)

Preventive maintenance cost CPM. That preventive mainte-
nance occurs if PHM successfully detects critical system health
states and accurately predicts the system RUL. As a function of
the component reliability, subsystem redundancy and PHM effi-
ciency, the preventive maintenance cost can be expressed as

CPM ¼
XN

j¼1

mjk
t
j 1� rt

j

� �
CPM

j (8)

where Cj
PM denotes the preventive maintenance cost of each com-

ponent in the jth subsystem. The assumption here is that a preven-
tive maintenance occurs when any component approaches its end
of life predicted by the PHM and that all the components and
PHM systems fail independently. We note that this cost element is
associated with the primary benefit from the application of PHM
to systems, i.e., failure avoidance [56]. System failures are very
undesirable due to the extremely high failure costs, and the failure
avoidance can be realized by capitalizing on PHM to provide an
early anticipation and warning of future failure that allows pre-
ventative maintenance to be performed at a convenient place and
time [56].

Corrective maintenance cost CCM. The corrective maintenance
occurs if PHM fails in detecting critical system health states and
making an accurate prediction of the system RUL. As a function
of the component reliability, subsystem redundancy and PHM ef-
ficiency, the corrective maintenance cost can be expressed as

CCM ¼
XN

j¼1

mj 1� kt
j

� �
1� rt

j

� �
CCM

j (9)

where Cj
CM denotes the corrective maintenance cost of each com-

ponent in the jth subsystem and is far higher than the preventive
maintenance cost Cj

PM. The assumption here is that a corrective
maintenance occurs upon the failure of any component and that

all the components and PHM systems fail independently. In con-
trast to the preventive maintenance which always takes place
before system failure, the corrective maintenance occurs after sys-
tem failure and restores the system to a healthy state [57]. Since
system failures incur very high costs, the corrective maintenance
actions are rather undesirable, the minimization of which can be
realized with PHM.

PHM unit cost CPHM. The PHM unit cost is specifically the
costs associated with developing PHM units to be integrated with
components. In this study, the PHM unit cost will be formulated
as a parametric model with the subsystem redundancy and compo-
nent PHM efficiency as inputs. Inspired by the component cost
function for reliability-redundancy allocation, shown in Eq. (3),
we define the PHM unit cost as

CPHM ¼
XN

j¼1

aPHM
j � T

In rt
j

� �
0
@

1
A

bPHM
j

� mj (10)

where aj
PHM and bj

PHM denotes constants representing the physi-
cal characteristics of each PHM unit in the jth subsystem. Prior to
solving the optimization problem in Eq. (3), these constants can
be determined based on the collected data of the PHM unit cost
and efficiency. Since the PHM efficiency quantifies the probability
of a PHM unit working properly and reliability quantifies the
probability of a component functioning well, there is a similarity
between these two probabilistic measures. Therefore, we derive
the PHM unit cost model in Eq. (10) based on the component cost
model [54,55] in Eq. (6) by replacing the target reliability rj

t with
the target PHM efficiency kj

t. It is noted that, in general, there is
no interconnections between parallel PHM units. Therefore,
unlike the component cost, the additional cost for interconnecting
parallel elements is not considered in the PHM unit cost.

3.3 System RBDO (Bottom-Level). This section presents
the bottom-level component design problem, referred to as the
system reliability-based design optimization (RBDO). Solving
this problem produces detailed designs of components in subsys-
tems while ensuring the target reliability levels obtained in the
top-level RAP.

3.3.1 System RBDO Formulation. To ensure the required sys-
tem resilience W, target component reliability levels optimally
allocated in the top-level RAP will set the design constraints in
this RBDO problem. This problem involves a vector dj

C of
detailed design variables for a component in the jth subsystem and
can be formulated as

Minimize CI
j dC

j

� �

subject to rsys
j ¼Pr Esys

j

� �
¼Pr

[npj

k¼1

\
i2Pk

Gi
j xC

j ;dC
j

� �
�0

� �
� rt

j

d
C;L
j �dC

j �d
C;U
j

(11)

where, the objective function Cj
I is the refined model for the initial

development cost of a component in the jth subsystem; xj
C is the

random vector; dj
C¼ l(xj

C) is the design vector; Gj
i is the per-

formance function of the ith constraint for i¼ 1, …, ncj, with ncj

being the number of constraints; rj
sys is the system reliability

level; Ej
sys is the system success event; Pk is the index set of con-

straints in the kth path set; npj is the number of mutually exclusive
path sets; rj

t is the target system reliability level; dj
C,L and dj

C,U

are the lower and upper bounds on dj
C, respectively. We note that

a component in the jth subsystem possesses a “system” of multiple
failure constraints. Thus, the “system” here should not be con-
fused with the engineered system to which we apply the
resilience-driven system design. It is also noted that the path set
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formulation of the system reliability in Eq. (11) can represent any
system structure (series, parallel, and mixed systems). In particu-
lar, the system success event Ej

sys of a series system contains only
one path set in which the intersection operations are imposed over
all constraints, expressed as

Eseries
j ¼

\ncj

i¼1
Gi

j xC
j ; dC

j

� �
� 0 (12)

In this case, the component survives if and only if all of its con-
straints are satisfied. In contrast to a series system, a parallel sys-
tem has multiple path sets with each being its component safety
event, expressed as

Eparallel
j ¼

[ncj

i¼ 1
Gi

j xC
j ; dC

j

� �
� 0 (13)

In this case, the component survives if any of its constraints is
satisfied.

In the past few decades, there has been a lot of serious research
work in the component RBDO [1–6] with strong support from
advanced numerical methods for component reliability analysis
[7–10]. However, it is not until recently, to the best of our knowl-
edge, that such research effort has been dedicated to the system
RBDO, for which the system reliability analysis has been recog-
nized as of great significance. The most recent works, we are
aware of are [58] and [59] of which the former proposed a single-
loop system RBDO formulation with the upper second-order
bound to compute the probability of system failure and the latter
used a matrix-based system reliability method to compute the sys-
tem probability of failure in this system RBDO formulation.
Through this literature survey, we intend to emphasize that any
advanced system RBDO approach that will be newly developed
can be readily incorporated into the proposed design framework.
Despite a few technical advances in the system RBDO, the
research in this field has been undergoing very slow progress
mainly due to the stagnant status in the research of system reliabil-
ity analysis. In the subsequent section, we will present the current
research status on the system reliability analysis as well as intro-
duce system reliability analysis for the bottom-level system
RBDO.

3.3.2 System Reliability Analysis. Reliability analysis entails
the computation of a multidimensional integration of a joint prob-
ability density function over a safety region

r ¼
ð

Xs
f ðxÞdx (14)

where r denotes the structural reliability; f(x) denotes the joint
probability density function (PDF) of the vector of random varia-
bles; x¼ (x1, x2,…, xM)T models uncertainty sources such as mate-
rial properties, loads, and geometric tolerances; XS denotes the
safety domain. For component reliability analysis, the safety do-
main can be defined in terms of a limit-state function as XS¼fx:
G(x)< 0g, where G(x) is a structural performance function. For
system reliability analysis on a component in the jth subsystem
involving ncj performance functions, the safety domains can be
expressed as

Xs ¼ xC
j :
\ncj

i¼1
Gi

j xC
j ; dC

j

� �
� 0

n o
; series system

Xs ¼ xC
j :
[ncj

i¼1
Gi

j xC
j ; dC

j

� �
� 0

n o
; parallel system

Xs ¼ xC
j :
[npj

k¼1

\
i2Pk

Gi
j xC

j ; dC
j

� �
� 0

n o
; mixed system

(15)

In practice, however, it is extremely difficult to perform the multi-
dimensional numerical integration even for component reliability

analysis when the number of random variables is relatively large.
The search for efficient computational procedures to estimate the
component reliability has resulted in a variety of numerical and
simulation methods [7–10]. Compared with tremendous advances
in component reliability analysis, the research in system reliability
analysis has been stagnant, mainly due to two technical difficul-
ties. First, it hard to derive an explicit formula for system reliabil-
ity for given system redundancy. Second, even if system
reliability is given explicitly, most numerical methods cannot
effectively assess system reliability with high efficiency and
accuracy.

3.4 System PHM Design (Bottom-Level). This section
presents the bottom-level PHM unit design problem, referred to as
the system PHM design. Solving this problem produces detailed
designs of PHM units in subsystems while ensuring the target
PHM efficiency levels obtained in the top-level RAP.

3.4.1 System PHM Design Formulation. To ensure the
required system resilience (W), we formulate a bottom-level sys-
tem PHM design problem whose constraints are the target PHM
efficiency levels optimally allocated in the top-level RAP. This
problem involves a vector dpj of detailed design variables for a
PHM unit in the jth subsystem and can be formulated as

Minimize CPHM
j dPHM

j

� �

Subject to kj dPHM
j

� �
� kt

j

d
PHM;L
j � dPHM

j � d
PHM;U
j

(16)

where the objective function Cj
PHM is the refined model for the

development cost of a PHM unit in the jth subsystem; dj
PHM is the

design vector; kj is the PHM efficiency level; Ej
sys; rj

t is the target
system reliability level; dj

PHM,L and dj
PHM,L are the lower and

upper bounds on dj
PHM, respectively. The development cost of a

PHM unit mainly consists of two elements, that is, the sensing
cost being proportioned to the number of sensors and the prognos-
tic algorithm development cost. As mentioned in Sec. 3.2.1, the
PHM efficiency can be further expressed as a multiplication kj :
jj�KPj�KDj, where the conditional probabilities KPj and KDj of cor-
rect prognosis and diagnosis vary with the design change and the
conditional probability jj of correct maintenance remains fixed.
Accordingly, the PHM design vector can be further decomposed
into the diagnostics design vector dj

D and prognostics design vec-
tor dj

P. In what follows, we intend to elaborate on these two cate-
gories of design variables.

Diagnostics design vector: The diagnostics design vector con-
sists of design vectors for sensor network (SN) design to meet the
required detectability level. Here, we use the term “detectability”
to refer to the probability of correct diagnosis. In this work,
dj

D¼ (dj
TS, dj

LOC) where dj
TS¼ (d1j

TS, d2j
TS, …, dKj

TS) is a non-
negative sensor type vector of which the kth element dkj

TS repre-
sents the type (e.g., accelerometer, strain gauge, and acoustic
sensor) of the kth sensor; and dj

LOC¼ (d1j
LOC, d2j

LOC, …, dKj
LOC)

is a real-valued sensor location vector of which the kth element
dkj

LOC is a three dimensional vector representing the sensor loca-
tion of the kth sensor.

Prognostics design vector: The prognostics design vector
consists of design vectors for prognostic algorithm design to meet
the required prognostic accuracy level. Here, the term “prognostic
accuracy” refers to the probability of correct prognostics.
The design space for the prognostic algorithm design mainly
consists of decision variables regarding the selection of algorithm
types (e.g., the interpolation-based approaches [26,27], the
extrapolation-based approach [60], and machine learning [61])
and control variables regarding the determination of algorithm pa-
rameters (e.g., numbers of training and testing units, and training
termination criterion), i.e., dj

P¼ (dj
TA, dj

PA). Here, dj
TA¼ (d1j

TA,
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d2j
TA,…, dQj

TA) is a vector of the binary decision variables
regarding the selection of algorithm types: dqj

TA¼ 1 if the prog-
nostic algorithm of the qth type is applied to the jth subsystem,
and dqj

TA¼ 1 if this type of algorithm is not applied; and
dj

PA¼ (d1j
PA, d2j

PA, …, dZj
PA) is a real-valued vector of the pa-

rameter settings of selected algorithms.
As mentioned earlier, the PHM efficiency is mainly determined

by the probabilities of correct diagnostics and prognostics, or the
detectability and prognostic accuracy. In order to make the PHM
design problem manageable, we intend to decouple the design
problem associated with these two significant measures into two
sub-problems, that is, a sensor network (SN) design problem to
ensure a target probability of correct diagnostics or target detect-
ability, and a prognostic algorithm design problem to achieve a
target probability of correct prognostics or target prognostic accu-
racy. The SN design problem should be first solved to obtain an
optimum SN satisfying the target detectability, followed by the
prognostic algorithm design problem based on the sensory signals
collected by the designed SN. In both sub-problems, the key PHM
performance measures, detectability and prognostic accuracy, will
be defined and measured in a nondeterministic manner. In what
follows, the two design sub-problems will be elaborated with a
focus on how to analyze the two PHM performance measures.

3.4.2 Sensor Network Design. This section presents the first
PHM design sub-problem, detectability-based SN design, for
health diagnostics of complex engineered systems. We first intro-
duce the concept of detectability in a probabilistic manner that
measures the diagnostic performance of a given SN. Subse-
quently, the detectability-based SN design framework is briefly
discussed. In order to focus on the development of the RDSD
framework, we intend not to delve deep into the SN design prob-
lem. Detailed information regarding this problem can be found in
our complementary papers [62].

We propose the concept of detectability to quantify the capabil-
ity of an SN to detect critical health states of complex engineered
systems while accounting for multiple failure modes. With many
failure modes obtained from the failure mode and effects analysis
(FMEA) [63], the detectability can be expressed in a matrix form
(see Fig. 5). The matrix is composed of true and detected failure
modes on the vertical and horizontal axes, respectively, with the
diagonal and off-diagonal elements being the probabilities of cor-
rect and incorrect detection, respectively. In what follows, we use
Di instead of Dii to denote the ith diagonal element of the detect-
ability matrix. The component detectability Diþ1 (diagonal ele-
ments in Fig. 5) of the healthy condition HC (i¼ 0) or ith failure
mode FMi (i � 1) can be defined as the probability of correct
detection of the HC or FMi via an SN in the presence of the HC or
FMi. With the specified target detectability, these diagonal terms
in the PoD matrix will then constitute Mþ 1 detectability con-

straints in the SN design process. Since theses detectability con-
straints involve the computation of multiple conditional
probabilities, an efficient and accurate methodology for detect-
ability analysis must be developed, which has been attempted
with the support of computational models in our complementary
papers [62].

In the SN design problem, the objective function is the sensing
cost as a function of the sensor types and the number of sensors
for each type. The design constraints are detectability require-
ments considering uncertainties presented in manufacturing and
system operation processes. With all factors considered above, the
SN design problem can be formulated as [62]

Minimize CD
j dD

j

� �

subject to Dij dD
j

� �
� Kt

Dj; i ¼ 1; 2;…M þ 1
(17)

where Cj
PHM is the sensing cost model for a PHM unit in the jth

subsystem; dj
D is the diagnostics design vector; Dij is the detect-

ability of the SN for the ith predefined health state, which is a
function of the diagnostics design vector dj

D; KDj
t is the target

detectability. The SN design optimization problem in Eq. (17)
contains a discrete decision vector dj

TS for the selection of sensor
types, and continuous variables dj

LOC for the sensor locations.
Thus, it is formulated as a mixed-integer nonlinear programming
(MINLP) problem [64], and heuristic algorithms such as genetic
algorithms (GAs) can be employed to solve this optimization
problem.

3.4.3 Prognostic Algorithm Design. This section introduces
the second PHM design sub-problem, prognostic algorithm
design, for health prognostics of complex engineered systems. In
what follows, we will put the focus on the development of a sys-
tematic procedure to evaluate the prognostic accuracy of a given
prognostic algorithm, while accounting for uncertainties presented
in manufacturing and system operation processes. By evaluating
the prognostic accuracy of candidate algorithms, we optimize the
performance of these algorithms by adjusting their parameter set-
tings. Upon the completion of performance optimization, we then
select the one with the highest accuracy. We note that, since the
development cost of a prognostic algorithm is dependent on the
infrastructure and internal processes of the developer as well as on
the implementation and testing of the algorithm, it is very diffi-
cult, if not possible, to trace back and identify all the cost ele-
ments incurred during the prognostic algorithm development. To
simplify the problem in this study, we do not take into account
any cost element in the prognostic algorithm design. The only
objectives in the prognostic algorithm design are to optimize the
algorithms and select the one with the highest prognostic
accuracy.

Recently, many measures [61] have been developed for evalu-
ating the performance of a prognostic algorithm; however, these
measures do not take into account the unit-to-unit variation in a
systematic manner. In this section, we attempt to derive an accu-
racy measure from the standpoint of probability. The measure can
be evaluated based on the error data obtained over a population of
prognostic components. The overall procedure to assess the prog-
nostic accuracy KPqj of the algorithm of the qth type in the jth
subsystem is detailed as follows:

Step 1: Apply the prognostic algorithm to a population of com-
ponents in the jth subsystem and obtain the error vector consisting
of errors in the RUL prediction of all components in the jth sub-
system. The error in the RUL prediction is defined as the subtrac-
tion of the true RUL from the predicted RUL.

Step 2: Construct the error histogram based on the error vector
and, if required for more convenient data representation, model
the error histogram with an empirical PDF (error PDF in Fig. 6).
An empirical PDF of the RUL prediction error eqj can be con-
structed with the following three steps: (i) obtain optimumFig. 5 Detectability matrix
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distribution parameters for candidate distributions using the maxi-
mum likelihood method; (ii) perform quantitative hypothesis tests
with the Chi-Square goodness-of-fit test for the candidate distribu-
tion types with the optimum distribution parameters obtained in
the first step; and (iii) select the distribution type with the maxi-
mum p-value as the optimal distribution type for the RUL predic-
tion error eqj.

Step 3: The prognostic accuracy KPqj can be defined as the
probability (shaded area in Fig. 6) that the prediction error lies
within the error tolerance zone, expressed as

KPqj ¼ Pr eC � eqj � 0
� �

� 1

nsj

Xnsj

k¼1

I½eC ;0� e
ðkÞ
qj

� �
(18)

where eC is the lower bound of the zone, nsj is the number of
prognostic components in the jth subsystem and I[�] is an indicator
function of safe or fail state such that

I½eC ;0� e
ðkÞ
qj

� �
¼ 1;

0;
ife
ðkÞ
qj 2 ½eC; 0�

otherwise

�
(19)

We note that, with a larger number of prognostic components, the
resulting prognostic accuracy estimate better captures the uncer-
tainties in manufacturing and system operation processes. How-
ever, in engineering practice, the number of prognostic
components should be determined based on the amount of resour-
ces available. In the above equation, the upper bound of the zone
is defined as the zero error, since a late prediction may cause a
system failure. The lower bound must be carefully defined consid-
ering the cost of an M/R action, since an early prediction can lead
to an unnecessary M/R action.

4 Aircraft Control Actuator Case Study

This section presents a case study for the design of a simplified
aircraft control actuator. The aircraft control actuator considered
is the electro-hydrostatic actuator (EHA) [66]. In this case study,
we aim at demonstrating the RDSD framework by designing a
highly resilient EHA with optimized reliability, PHM efficiency
and redundancy. Hypothetical data will be used for demonstration
purposes.

4.1 Problem Description. The EHA (see Fig. 7), as a
closed-loop, hydrostatic control system, mainly consists of an
electronic control unit (ECU), a variable-speed electric motor
(EM), a fixed-displacement hydraulic pump and a hydraulic piston
actuator [67]. In the EHA, a variable-speed electric motor (typi-
cally DC) is used to drive a fixed-displacement hydraulic pump,
which in turn, powers a hydraulic piston actuator. Compared to a
conventional hydraulic actuator, the EHA can achieve higher
energy efficiency (with on-demand usage) and positional accuracy
with enhanced compactness. These advantages have led to the
wide use of the EHA for flight surface actuation in today’s com-
mercial and military aircrafts. Failures of the EHAs in these safety

critical applications can be catastrophic, resulting in great loss of
lives. Therefore, the EHA must be designed to achieve a suffi-
ciently high reliability level. To this end, a common practice is to
introduce a great deal of redundancy into the EHA (e.g., a triplex-
redundant flight control system [68]). While a high redundancy
level improves reliability, it results in a strikingly high life-cycle
cost (LCC) to be incurred in development, operation, and mainte-
nance processes. To reduce the LCC while still maintaining an
equivalent reliability level, we apply the proposed RDSD frame-
work to the EHA with an aim to compensate the redundancy
reduction with the PHM technology. It is noteworthy that the
RDSD framework leads to the possibility to implement this com-
pensation in an optimum manner.

4.2 Top-Level RAP. This subsection aims at demonstrating
the top-level RAP in the RDSD framework by allocating a target
system resilience into the target component-reliabilities, compo-
nent-PHM efficiencies and component-redundancies of the four
subsystems.

4.2.1 RAP Formulation. Solving the top-level RAP will allo-
cate a target system resilience level into the target resilience levels
of the four subsystems. Assumptions under which this design
problem is solved are listed as follows:

(1) The failure times all components considered in the example
are exponentially distributed, leading to constant failure
rates.

(2) PHM will detect critical system health states and predict
system RUL through health diagnostics and prognostics

(3) The redundancy level of each subsystem should be no more
than nine due to subsystem weight and volume constraints.

(4) All the components and PHM units fail independently. An
observed failure is due to the loss of resilience, i.e., the fail-
ures of both a component and its associated PHM unit.

Based on the RAP formulation in Eq. (3), this problem is for-
mulated as follows:

find rt ¼ rt
1; r

t
2; r

t
3; r

t
4

� �
; kt ¼ kt

1; k
t
2; k

t
3; k

t
4

� �
;

m ¼ m1;m2;m3;m4ð Þ

to minimize LCC¼
X4

j¼1

CI
j þ CPM

j þ CCM
j þ CPHM

j

� �

subject to W¼
Y4

j¼1

1� 1� rt
j

� �mj

1� kt
j

� �mj
h i

� Wt

0 � rt; kt � 1; 1 � m � 9

(20)

where LCC is the system life-cycle cost, W and Wt are system re-
silience and its target value, the lower and upper bounds for any
target component-reliability or target component-PHM efficiency
are 0 and 1, respectively, and the lower and upper bounds for any
target component-redundancy are 1 and 9, respectively. The pa-
rameters for the cost models are listed in Table 1 and the system
mission time T¼ 1000. The RAP problem is a mixed-integer

Fig. 7 An airplane control actuator with series-connected
subsystemsFig. 6 Error PDF of RUL prediction
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nonlinear programming problem. To determine an optimum solu-
tion of the RAP problem, we employed a genetic algorithm of
which the details will be presented in the Sec. 4.2.2.

4.2.2 Genetic Algorithm as the Optimization Solution
Method. The top-level RAP in the RDSD framework is a mixed-
integer nonlinear programming (MINLP) problem. To the best of
the authors’ knowledge, MINLP problems are generally solved by
heuristic algorithms as an exhaustive search of the optimum solu-
tion is usually impractical. One of the most widely used algorithms
is the so-called genetic algorithm (GA) [48] due to the following
advantages: (i) the encoding scheme (binary or decimal encoding)
in the GA leads to the flexibility to represent both continuous and
discrete design variables and (ii) the search in the solution space
for optimal solutions can be very efficient due to the use of fitness
evaluation and genetic operator functions. Although the GA is
employed to solve the top-level RAP, the computational cost for
function evaluations can be negligible since the system LCC and
resilience are computed through the evaluation of analytic models.

In the GA, each candidate solution is called a chromosome and
a set of candidate solutions is called a population. The GA for
solving the RAP in this case study employed the decimal encod-
ing. The solution procedures are presented as follows [69]:

Step 1 (Initialization): Set the population size and maximum
number of iterations as 500 and 100, respectively. Since one deci-
mal digit represents one design variable in the RAP shown in Eq.
(3), the length L of a chromosome reads: L¼ 3N. Set the upper
and lower bounds for both component-reliability and component
efficiency to 0 and 1, respectively. Set the upper and lower bounds
for component-redundancy to 1 and 9, assuming the redundancy
level should not be too high. Set the generation index kg¼ 1 and
randomly generate an initial population C(1).

Step 2 (Evaluation): Evaluate the fitness function (ftn) for each
chromosome in the current population C(kg). The fitness function
used here is a composite of both the objective value (i.e., system
LCC) and the penalty arising from the violation of the constraint
(i.e., system resilience). Mathematically, the fitness function can
be expressed as

ftn ¼ LCCðrt; kt;mÞ;
inf;

if W � Wt

otherwise

�
(21)

Step 3 (Parent selection): Select chromosomes from the current
population based on their fitness values to form a new generation
C(kgþ 1). Here the roulette-wheel selection scheme is used. These
chromosomes are called parent and will be used in the next step to
generate new chromosomes in the new generation.

Step 4 (Crossover and mutation): Implement the two-point
crossover operator with a crossover rate of 0.85 and the uniform
mutation operator with a mutation rate of 0.10 to generate new
chromosomes in the new population.

Step 5 (Termination check): If the generation index kg exceeds
the maximal number of iterations, terminate the iteration and
report the solution. Otherwise, increase the generation index:
kg¼ kgþ 1, and go back to Step 2.

4.2.3 Results and Discussion. We would like to investigate
scenarios with different target system resilience levels. First let
us look at the scenario in which the target system resilience Wt is
set as 0.90. The optimum solution is shown in Table 2. It can be
seen that the incorporation of PHM by the proposed RDSD
reduces the system redundancy from m¼ (3, 2, 3, 2) to m¼ (2, 2,
2, 1). As a consequence, the system LCC decreases from 73.6301
under the traditional design (without PHM) to 38.3416 under the
RDSD (with PHM). It is noted that, even though the target
component-reliabilities are relatively low for both traditional
design (below 0.8500) and RDSD (below 0.7500), the incorpora-
tion of redundant components (traditional design and RDSD) and
PHM (RDSD) still leads to high subsystem reliabilities (above
0.90). Finally, the system resilience levels under both optimum
designs read 0.9000, which just satisfies the system resilience
requirement.

Raising the target system resilience to 0.95 and 0.99, respec-
tively, we then obtained two sets of optimal designs, which are
listed in Table 3 and Table 4, respectively. We observe that, in
order to meet higher target system resilience level, more compo-
nents are used with higher component-reliabilities and PHM effi-
ciencies. Compared with the traditional design, the RDSD still
yields optimum designs with much lower LCCs by considering
PHM in the early design stage. The target component-reliabilities
and component-PHM efficiencies allocated in this RAP can serve
as design specifications for bottom-level system RBDO and PHM
design that will be detailed in the Secs. 4.3 and 4.4.

4.3 Bottom-Level System RBDO. This subsection aims at
demonstrating the bottom-level system RBDO in the RDSD
framework. We intend to determine the optimal design of the hy-
draulic actuator satisfying the target reliability obtained from the
RAP with the target system resilience Wt being 0.99. The success
event of the actuator is considered as a series system success event
consisting of four component success events.

4.3.1 Description of EHA Model. In order to investigate the
performance of different actuator designs, we employed an EHA
model built in a 1D multidomain simulation platform LMS Imagi-
ne.Lab AMESim [70]. A simplified schematic of the EHA model
is shown in Fig. 8, where each submodel (e.g., motor, pump and
actuator) is composed of a set of algebraic and differential equa-
tions accounting for linear and nonlinear effects such as friction
and leakage. Here, a variable-speed DC motor drives a fixed-
displacement hydraulic pump, which supplies oil to the actuator.
A proportional controller controls the flow rate by varying the
speed of the electric motor. An accumulator is used to prevent
cavitation and compensate leakage loss with refeeding valves.

Table 1 Model parameters for the EHA case study

Subsystem aj
C (� 10� 5) bj

C Cj
PM Cj

CM aj
PHM(� 10� 6) bj

PHM

1 0.5 1.5 2.5 7.5 3.3 1.5
1 0.8 1.5 5.0 15.0 5.3 1.5
2 1.0 1.5 6.5 19.5 6.7 1.5
3 0.7 1.5 12.5 37.5 4.7 1.5

Table 2 Optimum results of traditional design and RDSD with Wt 5 0.90

Traditional design (without PHM) RDSD (with PHM)

Subsystem rj
t mj kj

t LCC W rj
t mj kj

t LCC W

1 0.7371 3 0 73.6301 0.9000 0.6291 2 0.6721 38.3416 0.9000
2 0.8088 2 0 — — 0.6412 2 0.6682 — —
3 0.7287 3 0 — — 0.6519 2 0.6732 — —
4 0.8292 2 0 — — 0.7363 1 0.7679 — —
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The pressure relief valves aim at preventing excessive pressure
build-up in the hydraulic lines. As the flow encounters the actua-
tor, the fluid pressure increases. The pressure difference between
the two actuator chambers results in an actuation force, and thus a
linear piston motion. A mechanical arm (not shown in Fig. 8) then
transforms the piston motion to an equivalent aileron angle while
taking into account the aileron inertia.

4.3.2 System RBDO Formulation. For the system RBDO, we
used the weight of the actuator to build the objective function and

the control performance to formulate the reliability constraints.
Regarding the control performance, we intended to take into
account two aspects: timeliness and robustness. We applied a step
request (1 cm) on the piston position at the time t¼ 0.5 s and a
resistive torque (2000 N�m) at the time t¼ 1.0 s to test the control
timeliness and robustness, respectively. The piston position
response is shown in Fig. 9, where the reliability constraints G1

and G2 are treated as timeliness-relevant constraints and G3 and
G4 robustness-relevant. Specifically, this system RBDO problem
can be formulated as follows:

Minimize
x

CðxÞ ¼ x � Vsðdp; lsÞ þ ð1� xÞ � Vrðdr; lsÞ

where x ¼ 0:098; Vs ¼ ls � pðdp=2Þ2; Vr ¼ ls � pðdr=2Þ2

Subject to rsys ¼ Pr Esysð Þ ¼ Pr
\4

i¼1
GiðxÞ � 0

� �
� rt

G1 ¼
ð2

0

YðtÞ � Yref ðtÞ
�� ��dt� enc ðnormal control errorÞ

G2 ¼ arg min
0:5�t�2

YðtÞ � Yref ðtÞ
�� �� � etol;s

� 	
� tc;s ðstabilization timeÞ

G3 ¼
ð4

2

YðtÞ � Yref ðtÞ
�� ��dt� epc ðdisturbed control errorÞ

G4 ¼ min
2�t�4

YðtÞ � Yref ðtÞ
�� ��� 	

� etol;d ðdisturbed steady�state errorÞ

G5 ¼ g� dr=dp ðrod�to�piston diameter ratioÞ

(22)

where the critical normal control error enc¼ 0.20 cm�s, the stabili-
zation error tolerance etol,s¼ 0.03 cm and is used to determine
whether a stable state is achieved, the critical stabilization time
tc,s¼ 0.90 s, the critical perturbed control error enp¼ 0.05 cm�s,
the steady-state error tolerance under a disturbance etol,d¼ 0.04
cm and the rod-to-piston diameter ratio g¼ 1/3. To avoid having a
weak rod relative to a piston, we also add the fifth constraint G5 in
Eq. (22) which ensures that the rod-to-piston ratio exceed a certain
level. The following two design variables are considered: the pis-
ton diameter dp and the rod diameter dr. These design variables

are assumed to follow normal distributions with their standard
deviations, initial values and lower and upper bounds detailed in
Table 5. Three model parameters (i.e., the leakage coefficient b,
viscous friction coefficient t, and the stroke length ls) are consid-
ered as random noise variables with their statistical information
summarized in Table 6. In summary, five random design and noise
variables are considered in this study.

4.3.3 Results. The adaptive-sparse polynomial chaos expan-
sion (PCE) method with 4nvþ 1 (¼ 21) univariate samples was

Table 3 Optimum results of traditional design and RDSD with Wt 5 0.95

Traditional design (without PHM) RDSD (with PHM)

Subsystem rj
t mj kj

t LCC W rj
t mj kj

t LCC W

1 0.7901 3 0 82.2774 0.9500 0.6152 2 0.6448 45.9357 0.9500
2 0.7731 3 0 — — 0.6437 2 0.6644 — —
3 0.7872 3 0 — — 0.6486 2 0.6677 — —
4 0.8574 2 0 — — 0.7539 2 0.7423 — —

Table 4 Optimum results of traditional design and RDSD with Wt 5 0.99

Traditional design (without PHM) RDSD (with PHM)

Subsystem rj
t mj kj

t LCC W rj
t mj kj

t LCC W

1 0.8102 4 0 111.6017 0.9900 0.6488 3 0.6772 55.0199 0.9900
2 0.7745 4 0 — — 0.6483 3 0.7049 — —
3 0.7850 4 0 — — 0.6567 2 0.8014 — —
4 0.8411 3 0 — — 0.7720 2 0.7678 — —
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carried out to evaluate the objective function, system reliability
and their sensitivities at any design iteration, without considering
the bivariate polynomial basis functions [71]. The sensitivities of
the objective function and system reliability with respect to the
two design variable were computed using a finite difference
method (FDM). The perturbed values of the objective function
and system reliability were estimated based on approximate sto-
chastic response surfaces (PCE) with perturbed design variables,
without requiring gradients of the original weight or displacement
functions. A perturbation size of 0.1% is employed in this study.

The design optimization problem was solved using a gradient-
based optimization technique (e.g., sequential quadratic optimiza-
tion). The histories of the design parameters, objective function,
component reliabilities and system reliability are shown in Table
7. At the initial design, the system reliability rsys severely violated
the reliability requirement due to the relatively low component
reliabilities r3 and r4. After six design iterations, the optimum
design was found where the system reliability requirement was
satisfied. Overall, the adaptive-sparse PCE method required 126
simulations for system RBDO. After the optimization, the direct
Monte Carlo simulation (MCS) with 10,000 random samples was
employed to verify the reliability results at the optimum design.
The component reliabilities r1, r2, r3, r4, and r5 and system reli-
ability rsys were estimated by the MCS as 95.36%, 94.40%,
85.99%, 89.74%, 93.65%, and 77.24%, respectively.

4.4 Bottom-Level System PHM Design. This subsection is
dedicated to demonstrating the bottom-level system PHM design
in the RDSD framework. We intend to design a data-driven prog-
nostic algorithm for the actuator leakage prognostics by identify-
ing the most appropriate algorithm from an algorithm pool. We
assume that the PHM unit can successfully identify the incipient
leakage degradation of the actuator among various possible failure
modes (KD¼ 1) and that, upon a correct prognosis event, the M/R
maintenance actions can fully restore the reliability of the actuator
(j¼ 1).

4.4.1 Prognostic Data Generation. The failure mode consid-
ered in this study is the actuator cross-line leakage which is rela-
tively common in practice [72,74]. The wear of the piston seal
causes an increase of internal cross-port leakage and thus an
increase in the leakage coefficient of the actuator. Thus, the cross
line leakage was realized by increasing the leakage coefficient of
the actuator. The end of life is defined as the time when the actua-
tor leakage reaches ten times its initial value. We note that, for
demonstration purposes, this study only considers a single failure
mode, but the same idea can be readily extended to cases with
multiple failure modes.

Since it is very difficult, if not impossible, to obtain direct
measurements of the leakage coefficients of actuators, indirect
measurements are most often used to diagnose the health condi-
tion and predict the RULs of actuators [72,74]. In particular, the
stabilized piston displacement after disturbance (measured by a
position sensor) and the stabilized rotary speed of the motor shaft
after disturbance (measured by a rotary speed sensor) could char-
acterize the actuator leakage degradation before any irreparable
damage occurs [72]. Thus, this case study employs these two sen-
sory signals of an EHA to predict the RULs of actuators. To
model the trajectory of increase in leakage over time, this study
uses a damage propagation model with an exponential form as
Ref. [74]

bðtÞ ¼ b0 þ bE expðaEtÞ � 1ð Þ (23)

where b0 is the initial leakage coefficient; aE and bE are the model
parameters; t is the cycle time. The initial Young’s modulus E0

follows the same normal distribution with b (see Table 6). The
model parameters aE and bE are independent and normally distrib-
uted with means 0.01 and 1.2� 10� 3, each of which has a 10%
coefficient of variation. The random parameters considered in this
study are listed in Table 5 and Table 6, which include the material
properties as well the geometries of the actuator. The uncertainties
in the two sensory signals propagated from these uncertain param-
eters will be accounted for when generating prognostic data.
The prognostic data generation were conducted under the optimal
actuator design obtained in the bottom-level system design (see
Sec. 4.3).

Since data-driven prognostic approaches require a large amount
of prognostic data, it is computationally expensive, if not impossi-
ble, to simply run the simulation to generate every data point. To
overcome this difficulty, this study employed the univariate
decomposition method that only uses a certain number of univari-
ate sample points to construct the response surface for a general
multivariate response function while achieving good accuracy
[75]. Since this study employed two sensory signals, namely the
stabilized piston displacement after disturbance and the stabilized
rotary speed of the motor shaft after disturbance, the data genera-
tion requires the construction of two responses surfaces. Specifi-
cally, the data generation process involves four sequentially
executed procedures:

Step 1: Obtain univariate sample points from the dynamic simu-
lation in LMS Imagine.Lab AMESim to construct response surfa-
ces, along the damage propagation path, that approximate the two
sensory measurements as functions of random variables detailed
in Table 5 and Table 6. We used four univariate sample points for
each random variable. The piecewise linear spline was used as the
numerical scheme for the response surface construction.

Table 6 Random noise variables for the hydraulic actuator
model

Random variable Distri. type Mean Std. dev.

B (L/min/Bar) Normal 1.2� 10� 3 6.0� 10� 5

t (N�s/m) Normal 5.0� 103 2.5� 10� 2

ls (mm) Normal 50.0 2.5

Fig. 8 Schematic of an (EHA) model

Table 5 Random design variables for the hydraulic actuator
model

Design
variable

Distri.
type

Lower
bound

Initial
des.

Upper
bound

Std.
dev.

dp (mm) Normal 55.0 62.0 75.0 3.5
dr (mm) Normal 10.0 22.0 30.0 1.0
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Step 2: Generate 400 random samples of b0, aE, and bE and use
these samples in conjunction with Eq. (23) to produce 400 damage
propagation paths, of which 200 paths were assigned to the train-
ing units and the rest to the testing units.

Step 3: Interpolate, based on the constructed response surfaces,
the two sensory measurements for a given set of randomly gener-
ated geometries and material properties and damage propagation
paths and repeatedly execute this process for 400 times to obtain
the training data set with 200 training units and the testing data set
with 200 testing units.

Step 4: Add measurement noise following a zero mean normal
distribution to both the training and testing data sets to finalize the
data generation.

The two simulated measurements are plotted against the
adjusted cycle index, defined as the subtraction of the cycle-to-
failure from the actual operational cycle, for all 200 training units
in Fig. 10, where we can clearly observe monotonic lifetime
trends for both measurements.

4.4.2 Description of Prognostic Algorithms. This section pro-
vides a brief overview of the five selected data-driven prognostic
algorithms: Method 1—a similarity-based interpolation (SBI)
approach with the relevance vector machine (RVM) as the regres-
sion technique (RVM-SBI) [26,76,77], Method 2—SBI with the
relevance vector machine (SVM) as the regression technique
(SVM-SBI) [26,78], Method 3—SBI with the least-square expo-
nential fitting (Exp-SBI) [26], Method 4—a Bayesian linear
regression (BLR) with the least-square quadratic fitting (Quad-
BLR) [60], and Method 5—a recurrent neural network (RNN)
approach (RNN) [61,79]. A data processing scheme with a generic
health index system is used for the first four algorithms while a
data processing scheme with a simple normalization scheme for
the last algorithm. These five algorithms represent the current
state-of-art in data-driven prognostics and cover a wide range of

techniques that include the interpolation (Methods 1–3), extrapo-
lation (Method 4) and machine learning (Method 5).

For the construction of the virtual health index in Methods 1–3,
the system failure matrix Q0 was created with the sensory data in
a system failure condition, 0 � L � 4, while the system healthy
matrix Q1 with those in a system healthy condition, L> 250. The
RVM employed a linear spline kernel function with the initial
most probable hyper-parameter vector for kernel weights
am¼ [1� 104,…, 1� 104] and the initial most probable noise var-
iance rm

2¼ 1� 10–4. In the SVM, a Gaussian kernel function is
used with the parameter settings as: the regularization parameter
C¼ 10 and the parameter of the e-insensitive loss function
e¼ 0.10. In the RNN training, the two normalized sensory signals
were used as the multidimensional inputs of the RNN and the
RUL at the corresponding cycle was used as the output. The
implementation details can be found in Ref. [61]. In the RNN
architecture, the numbers of the input, recurrent and output units
are jIj ¼ 2, jRj ¼ 4, and jOj ¼ 1.

4.4.3 Results. Table 8 summarizes the prognostic accuracy of
the five candidate algorithms as well as the detailed information
regarding the empirical error PDFs. The lower bound eC of the
error tolerance zone was set as� 35 cycles. Among the five candi-
date algorithms, RNN yields the highest prognostic accuracy of
0.790 on the testing data set, a 43.6% improvement over the sec-
ond best algorithm, Exp-SBI, whose prognostic accuracy reads
0.550. To further investigate this accuracy gap, we plotted the
RUL predictions by the two algorithms for 200 testing units in
Fig. 11(a) and their error PDFs in Fig. 11(b). It can be observed
from both plots that RNN consistently gives early RUL predic-
tions while Exp-SBI is prone to produce RUL predictions being
randomly distributed around zero. Therefore, RNN provides
higher accuracy in spite of a larger variance and, with failure pre-
vention being the main goal of PHM, one would select RNN
among the candidate algorithms to have moderately early RUL
predictions. Indeed, it is noted that only RNN satisfies the target
component-PHM efficiency 0.7678 obtained in Sec. 4.2 with the
assumption of perfect diagnostics and M/R actions. Finally, we
note that, by capitalizing on PHM, the EHA is capable of detect-
ing, predicting and mitigating or recovering from the actuator
leakage, and thus achieves the resilience characteristics intended
by the underlying idea of RDSD, namely the optimal restoration
of system capacity and performance.

5 Conclusion

This paper presents a novel design framework, namely
resilience-driven system design (RDSD), to incorporate resilience
characteristics into complex engineered systems. This new design
framework consists of three hierarchical tasks, namely the top-
level RAP, the bottom-level system RBDO and the bottom-level

Fig. 10 Simulated measurements by piston displacement sensor (a) and rotary
speed sensor (b) for the hydraulic actuator model

Fig. 9 Piston position response under a step request and
resistive torque
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system PHM design. The top-level RAP incorporates the trade-off
decisions regarding the component-reliability, component-PHM
efficiency, and component-redundancy into the system-level
design for an optimum integration of PHM with minimum LCC.
The bottom-level system RBDO determines an optimal compo-
nent design while ensuring the optimally allocated target
component-reliability from the top-level RAP. Following the sys-
tem RBDO, the bottom-level system PHM design derives an opti-
mal PHM unit design for the optimal component design while
meeting the optimally allocated PHM efficiency from the top-
level RAP. The proposed RDSD framework, featured with a rigor-
ous theoretical basis and analysis and design strategy of engineer-
ing resilience, is expected to ensure highly resilient system
designs under various loading/environmental conditions and
system-wide effects of adverse events while considerably reduc-
ing systems’ LCC. The proposed RDSD framework is demon-
strated with a simplified aircraft control actuator design problem,
in which the incorporation of PHM significantly reduces the sys-
tem LCC and the detailed component and PHM unit designs
respectively satisfy the target component-reliability and

component-PHM efficiency. Future works under contemplation
include the verification of the proposed framework using testing
data from a real complex engineered system, the consideration of
multiple failure modes for the system PHM design and the inte-
gration of diagnostics design (SN design) with prognostics design
(prognostic algorithm design).
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Nomenclature
rj

t ¼ target component-reliability of the jth subsystem
mj ¼ component redundancy level of the jth subsystem

Table 7 Design history of the hydraulic actuator model

Design variables

Iter. dp dr r1 r2 r3 r4 r5 rsys Obj.

0 62.0000 22.0000 0.9985 0.9978 0.4955 0.5350 0.8053 0.3093 3.2015� 104

1 65.8472 24.5219 0.9819 0.9767 0.7695 0.8162 0.9522 0.7136 3.8062� 104

2 66.7479 24.7483 0.9694 0.9617 0.8309 0.8699 0.9471 0.7620 3.8916� 104

3 66.9844 24.7694 0.9640 0.9551 0.8459 0.8826 0.9429 0.7698 3.9075� 104

4 67.1807 24.6941 0.9586 0.9479 0.8607 0.8947 0.9314 0.7707 3.9044� 104

5 67.1847 24.7177 0.9587 0.9479 0.8604 0.8944 0.9331 0.7717 3.9088� 104

6 67.1617 24.7268 0.9594 0.9488 0.8587 0.8929 0.9346 0.7720 3.9092� 104

Opt 67.1617 24.7268 0.9594 0.9488 0.8587 0.8929 0.9346 0.7720 3.9092� 104

Table 8 Prognostic accuracy and empirical error PDF results for the hydraulic actuator model

Algorithm Prognostic accuracy Distri. Type Mean (cycle) Std. dev. (cycle) Parameters for nonnormal distributions

RVM-SBI 0.480 Weibull � 2.66 12.14 a1¼ 49.22, b1¼ 4.15a

SVM-SBI 0.430 Weibull � 3.40 14.91 a2¼ 60.10, b2¼ 4.12b

Exp-SBI 0.550 Normal � 3.17 12.03 —
Quad-BLR 0.125 Weibull 10.62 12.76 a4¼ 63.82, b4¼ 5.31c

RNN 0.790 Weibull � 12.10 13.07 a5¼ 55.17, b5¼ 4.35d

a(e1 �� 47.36).
b(e2 �� 57.96).
c(e4 �� 48.17).
d(e5 �� 62.35).

Fig. 11 RUL prediction results (a) and error PDFs (b) for the hydraulic actuator
model
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Esf ¼ system failure event
Ecd ¼ correct diagnosis event
Ecp ¼ correct prognosis event
Emr ¼ M/R action success event
Rj

t ¼ target system reliability of the jth subsystem
KD ¼ conditional probabilities of the correct diagnosis
Kj

t ¼ target PHM efficiency of the jth subsystem
KP ¼ conditional probabilities of the correct prognosis
j ¼ conditional probabilities of the M/R action success

kj
t ¼ target component-PHM efficiency of the jth subsystem

wj ¼ resilience of the jth subsystem
W ¼ system resilience
Wt ¼ target system resilience
q ¼ system capacity restoration

BLR ¼ Bayesian linear regression
CAS ¼ complex adaptive systems

CBM ¼ condition-based maintenance
CM ¼ condition monitoring

ECU ¼ electronic control unit
EHA ¼ electro-hydrostatic actuator

EM ¼ electric motor
FMEA ¼ failure mode and effects analysis

GA ¼ genetic algorithm
LCC ¼ life-cycle cost
MCS ¼ Monte Carlo simulation
M/R ¼ mitigation/recovery
PCE ¼ polynomial chaos expansion
PDF ¼ probability density function

PHM ¼ prognostics and health management
RAP ¼ resilience allocation problem

RBDO ¼ reliability-based design optimization
RDSD ¼ resilience-driven system design

RNN ¼ recurrent neural network
RUL ¼ remaining useful life

RVM ¼ relevance vector machine
SBI ¼ similarity based interpolation
SN ¼ sensor network

SVM ¼ support vector machine
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