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Abstract
Vibration energy, which is widely available, can be converted into electric energy using a
piezoelectric energy harvester that generates alternating current in response to applied mechanical
strain. For the last decade, there has been a strong surge of interest in developing an
electromechanically-coupled analytical model of a piezoelectric energy harvester. Such a model is of
great importance to enable understanding of the first principle of the piezoelectric transduction and
to quantify harvestable electric power under a given vibration condition. However, existing
analytical models that operate under an assumption of deterministic excitations cannot deal with the
random nature present in realistic vibrations, even though this randomness considerably affects the
variation in harvestable electric power. Furthermore, even when random vibrations are taken into
account, existing stochastic analytical models can only be applied to stationary excitations, such as
in the case of white Gaussian noise. This paper thus proposes a three-step framework for stochastic
quantification of the electric power generated by a piezoelectric energy harvester under
non-stationary random vibrations. First, we propose estimation of the time-varying power spectral
density (PSD) of the input non-stationary random vibration using a statistical time–frequency
analysis. The second step is to employ an existing electromechanical model as the linear operator for
calculating the output voltage response. The final step is to estimate the time-varying PSD of the
output voltage response. Following this three-step process, the expected electric power can be
estimated from the autocorrelation function which is the inverse Fourier transform of the
time-varying PSD of the output voltage response. The merits of the proposed framework are two-fold
in that it enables: (i) quantification of the time-varying electric power generated under non-stationary
random vibrations and (ii) consideration of the randomness in the design process of the energy
harvester. Four case studies are used to demonstrate the effectiveness of the proposed framework.

Keywords: piezoelectric energy harvesting, analytical model, time–frequency analysis,
non-stationary random vibrations, time-varying power spectral density

1. Introduction

Advances in wireless communications and low-power tech-
nology have enabled more widespread use of wireless sensor
networks (WSNs). However, the limited life expectancy and

high replacement cost of batteries still make it difficult to
use wireless sensors, although they have many benefits over
wired sensors. Energy harvesting (EH) technology, which
scavenges electric power from ambient, otherwise wasted,
energy sources, has been explored to develop self-powered
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wireless sensors and possibly eliminate the battery replace-
ment cost for wireless sensors [1–3]. Among ambient energy
sources, vibration energy is one of the most widely avail-
able. Vibration energy can be converted into electric energy
using piezoelectric [1, 3], electromagnetic [4, 5], electrostatic
[6, 7], and/or magnetostrictive [8, 9] transduction mechanisms.
Among the methods for vibration-based energy harvesting
studied in the last decade, piezoelectric energy harvesting has
been the preferred one due to its high energy density and the
lack of need for external equipment. The transduction principle
of a piezoelectric energy harvester is to generate alternating
current (AC) in response to applied mechanical strain [10].

Piezoelectric energy harvesting requires multidisciplinary
research. Extensive research effort has been made to ad-
vance the energy harvesting technology involving materials
science, mechanical, and electrical engineering disciplines.
It is never enough to emphasize only the material issues in
order to improve the mechanical and electrical properties of
piezoelectric materials. For example, piezoelectric ceramics,
such as lead zirconate titanate (PZT), have the required high
piezoelectric and dielectric constants, but are inherently brittle
and not very durable. Meanwhile, piezoelectric polymers, such
as a polyvinylidene fluoride (PVDF), have high flexibility
but low electromechanical coupling. For this reason, many
material scientists have worked to fabricate flexible as well as
electromechanically efficient piezoelectric materials [11–13].
On the other hand, electrical regulation should be optimized
to maximize the harvestable electric power, which is generally
composed of three stages: (1) energy capture, (2) energy
rectification, and (3) energy storage [14, 15]. One of the
most important aspects in this electrical circuit configuration
is the impedance matching between the piezoelectric energy
harvester and the electrical regulation. Moreover, because a
piezoelectric energy harvester produces alternating current
(AC) in accordance with the sign change of the curvatures
of the dynamic strains, an AC/DC converter is needed in
order to use the harvested energy to operate electronic de-
vices. From a mechanical perspective, a variety of design
methodologies of mechanical characteristics have been pro-
posed. For instance, shape optimization [16, 17] and topology
optimization [18] have been implemented to enhance the
generation of electric power. Furthermore, the importance of
appropriate treatment of the flexible proof mass size has been
suggested in micron-scale cantilever beam design due to its
effect on the electromechanical performance [19]. Recently,
nonlinear dynamics of bistable systems [20–22], resonance
frequency tuning schemes [23, 24], and a multimodal res-
onator [25] have been proposed to reliably scavenge electric
power under wideband vibrations. In particular, it has been
proven that a segmentation design can achieve high electric
power under broadband multiple vibration modes by removing
piezoelectric materials to avoid voltage cancellation at strain
nodes [10, 26]. Furthermore, as an alternative design paradigm
of the cantilever beam, a commonly used piezoelectric energy
harvester, a multifunctional energy harvesting skin (EH skin)
has been proposed which can be directly attached to the surface
of a vibrating engineered system and thus requires no clamping
fixtures or proof mass [27, 28].

For the purpose of designing piezoelectric energy har-
vesters and selecting the best sites for installation, it is impor-
tant to preliminarily quantify the harvestable electric power
under a given vibration condition. An electromechanically-
coupled analytical model of a piezoelectric energy harvester
not only enables quick quantification of the harvestable electric
power but also helps to provide information about important
design considerations. In most cases, it is desirable to conduct
this analytical approach prior to a computational or experimen-
tal one. Furthermore, the analytical approach is of great impor-
tance to understand the first principle of piezoelectric energy
conversion and execute design optimization of a piezoelectric
energy harvester in a cost-effective manner. Because of the
great value of the analytical approach, many analytical models
of a piezoelectric energy harvester have been developed to
date with two primary distinct interests: (i) enhancement of
the physics representation and (ii) consideration of the random
nature in vibrations.

The first research interest attempts to provide models that
better represent the physics of a piezoelectric energy harvester
while assuming that the input vibration signal is a harmonic
sinusoidal function. This research interest has driven devel-
opment of two models: lumped- and distributed-parameter
models. Round et al [29] developed a single degree of freedom
lumped-parameter model for a cantilever beam; however, this
model provides no dynamic strain distribution or modal anal-
ysis. Sodano et al [30] formulated a single degree of freedom
model and studied electric charge performance. Because the
lumped-parameter model might yield highly inaccurate results,
Erturk et al [31] developed an amplitude correction factor
which uses the ratio of tip mass to beam mass to accurately
predict the voltage response of the lumped-parameter model.
As an alternative modeling of a lumped-parameter model,
DuToit et al [32] derived an approximate distributed-parameter
model using the Rayleigh–Ritz discretization and a trial family
of admissible functions. Kim et al [33] developed a rigorous
modeling to investigate the effect of a proof mass which
serves to decrease the resonance frequency and to raise the
applied strain. Based on the Euler–Bernoulli beam theory,
Erturk et al [34] proposed an electromechanically-coupled
distributed-parameter model and verified its accuracy with
experimental observations.

In practice, however, most realistic vibrations have phys-
ical uncertainty, such as variation of amplitude and driving
frequency. Although this randomness considerably affects
the variation in harvestable electric power, analytical models
which operate under the assumption of deterministic excita-
tions cannot deal with the random nature in realistic vibration
signals. This drives the second research interest mentioned
above, which is to analyze the amount of harvestable electric
power of a piezoelectric energy harvester in a stochastic man-
ner. There have been several attempts to develop an analytical
model which accounts for random vibrations. In most existing
stochastic models, it is assumed that the excitation is white
Gaussian noise (WGN), which is wideband vibration and has
a time-invariant power spectral density (PSD). Halvorsen [35]
formulated a stochastic description using a PSD to calculate
electric power, proof mass displacement, and optimal load
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of resonant energy harvesters based on the Fokker–Plank
equation. Adhikari et al [36] presented a closed form of a
linear single degree-of-freedom model when the excitation is
assumed to be white Gaussian noise. Seuaciuc-Osorio et al [37]
investigated harvestable electric power from harmonic excita-
tion with a sinusoidally varying driving frequency and constant
amplitude. Ali et al [38] developed an equivalent linear model
for piezo-magneto-elastic energy harvesters under broadband
random vibrations. Zhao et al [39] predicted the expected
electric power and mean-square shunted displacement based
on a constant PSD by employing the Fourier series represen-
tation or an Euler–Maruyama scheme to solve the stochastic
differential equations.

Even though several analytical models that account for
random vibrations have been developed, existing models
cannot be used to predict the amount of harvestable power
under realistic, non-stationary vibration signals which have
both random amplitude and frequency modulations. To address
this challenge, this paper proposes a three-step framework for
stochastic quantification of the electric power of a piezoelectric
energy harvester under non-stationary random vibrations. To
the best of our knowledge, this study is the first attempt to
apply a statistical time–frequency analysis to electric power
quantification of a piezoelectric energy harvester to deal with
the non-stationary random nature of realistic vibrations.

The rest of this paper is organized as follows. Section 2
gives a brief review of the fundamentals of piezoelectricity
and random vibrations. The proposed framework for stochas-
tic quantification of harvestable electric power under non-
stationary random vibrations is presented in section 3. Sec-
tion 4 explains how to model the non-stationary random
vibration signal and estimate the time-varying PSD of an
input non-stationary random vibration using a statistical time–
frequency analysis. An electromechanical model is briefly
introduced as the linear operator for calculating the output
voltage response in section 5. Section 6 explains how to
estimate the time-varying PSD of the output voltage response.
The effectiveness of the proposed framework is demonstrated
using four case studies in section 7. Finally, the conclusion of
this work is given in section 8.

2. Brief review of the fundamentals of
piezoelectricity and random vibrations

To perform stochastic quantification of the electric power
generated by a piezoelectric energy harvester under non-
stationary random vibrations, two fundamental theories are
required: (i) piezoelectricity and (ii) non-stationary random
vibrations. To help the reader to better understand the proposed
framework, this section gives a brief review of the fundamental
theories of piezoelectricity and random vibrations.

2.1. Piezoelectricity

The prefix ‘piezo’ comes from the Greek ‘piezein’ which
means to pressure or squeeze. Electricity is a physical phe-
nomenon related to the flow of an electric charge. Therefore,
piezoelectricity is ‘an interaction between electrical and me-
chanical behavior’ [40].

As a direct piezoelectric effect, a piezoelectric material
can produce electric polarization due to applied mechani-
cal strain. Piezoelectric energy harvesting and piezoelectric
transducers correspond to this direct piezoelectric effect. The
amount of voltage generated is proportional to the dynamic
strain. Conversely, when electric polarization is applied, a
piezoelectric material becomes strained. This is called the
inverse piezoelectric effect.

In the IEEE Standard on Piezoelectricity (1987), the
piezoelectric constitutive relations are given as [41]

Ti j = cE
i jkl Skl − eki j Ek (1)

Di = eikl Skl − ε
S
i j Ek . (2)

These expressions are also called the stress-charge form.
In this case, the independent variables are the strain Skl and
electric field Ek . It should be noted that the elastic constant
cE

i jkl and dielectric permittivity εS
i j (also called the dielectric

constant) are coupled to each other [42].
To calculate the electric current i(t) in response to applied

mechanical strain, Gauss’s law, also known as Gauss’s flux
theorem, can be used with respect to the electric displacement
Di in an integral form as [43]

i(t)=
d
dt
(8D)=

d
dt

(∫
A

D · n dA
)

(3)

where 8D is the electric displacement flux related to free
charge. Because the unit vector n refers to the outward
normal vector of the surface of the piezoelectric material, the
direction of (D · n) is determined in accordance with the poling
direction.

2.2. Non-stationary random vibrations

A non-stationary random vibration signal can be considered as
a one-dimensional stochastic process which refers to a family
of random variables [44]. The possibility to mathematically
describe the random nature of a realistic vibration signal
depends on whether a stochastic process exhibits a statistical
regularity or not [45]. If so, unlike a deterministic vibration
signal, the behavior of a random vibration signal can be
described in terms of statistical moments or probability density
functions (PDFs) which contain meaningful information about
the stochastic process.

Statistical moments can be computed over the entire
collection of samples, resulting in what are called ensemble
averages. As one of the ensemble averages, the autocorrelation
function RX (t, τ ) of a vibration signal x(t) can be defined as
follows:

RX (t, τ )= E[x(t)x∗(t + τ)] (4)

where E[•] is the statistical expectation and τ is the time-lag.
The physical meaning of the autocorrelation function of a
vibration signal is ‘the degree of association of the signal
at time t with itself at time (t + τ)’ [46]. It can be also
defined as the inverse Fourier transform of the time-varying
PSD SX (t, ω), as follows:

SX (t, ω)=
∫
∞

−∞

RX (t, τ )e−iωτdτ . (5)
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Figure 1. Framework for the stochastic quantification of the electric power generated by a piezoelectric energy harvester under
non-stationary random vibrations.

The physical meaning of the time-varying PSD is that the
local average power of the variance is decomposed in the time
and frequency domains. As we can see from equation (5), when
a random vibration signal is non-stationary, the stochastic
process described in the frequency domain ω also depends on
the time t . To characterize a non-stationary random vibration
signal with time-varying amplitude and driving frequency,
a statistical time–frequency analysis is needed, which can
represent how the energy of the signal is distributed over both
the time and frequency domains [47]. The time–frequency
analysis can also identify the variation in frequency content
with time; as a result, it is called the instantaneous frequency
(IF). The details of the theory of random vibrations are
explained in [48].

3. Framework for stochastic quantification of
electric power under non-stationary random
vibrations

As mentioned in section 1, the predictive capability of an
analytical model is normally poor under random vibrations.
Therefore, stochastic quantification of harvestable electric
power should be able to systematically handle the random
nature in realistic vibration signals of engineered systems. In
this research, therefore, we propose a framework for stochastic
quantification of the electric power produced by a piezoelectric
energy harvester under non-stationary random vibration. The
key new idea in this framework is a statistical time–frequency
analysis, which is the first attempt to quantify the electric
power generated by a piezoelectric energy harvester.

The proposed framework is composed of three sequen-
tially executed procedures, as shown in figure 1. The first step
is to estimate the time-varying PSD of the input non-stationary
random vibrations SX (t, ω). There are two main tasks in the
first step: (i) mathematical modeling of the non-stationary
random vibration signals and (ii) statistical time–frequency
analysis to estimate the time-varying PSD. The second step

of our approach is to employ an electromechanical model
as the linear operator H(ω). In the proposed framework,
the linear operator defines the linear relationship between
the time-varying PSDs of the input non-stationary random
vibrations and the output voltage response. The third step is to
estimate the time-varying PSD of the output voltage response
Sυ(t, ω) from the linear relationship. After using our three-step
approach, the expected electric power can be obtained from the
autocorrelation function which is the inverse Fourier transform
of the time-varying PSD of the output voltage response.
Specific techniques and guidelines will be explained for each
step in the following sections.

4. The time-varying power spectral density of
non-stationary random vibrations

4.1. Mathematical modeling of non-stationary random
vibrations

In most cases, variation of the operating conditions of a vi-
brating engineered system affect the statistics of the measured
vibration signals over time [49]. This implies that most real-
istic vibration signals from engineered systems are inherently
non-stationary. Therefore, unlike stationary vibrations, the
mathematical description of non-stationary vibrations must
be modeled as a function of time [50]. This mathematical
representation can then be used to extract the physically
meaningful information involved in signal realization based
upon the acquired vibration data [51].

For several decades, many researchers have proposed
mathematical representations of vibration signals, such as
autoregressive (AR) [52–55], moving average (MA) [56], au-
toregressive moving average (ARMA) [57, 58], and empirical
mode decomposition (EMD) [59–61]. In this study, an analytic
non-stationary random vibration signal x(t) is generated. Its
mathematical description is decomposed by the combination
of mono-component signals based on the concept of the Hilbert
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transform as [62]

x(t)=
p∑
r

Ar (t) cos
[∫ t

0
ωr (t)dt

]
(6)

where p is the number of mono-component signals, Ar (t) is
the instantaneous amplitude, and ωr (t) is the instantaneous
frequency of the r th mono-component signal. These instan-
taneous parameters are assumed to be slowly time-varying
in a random manner. The instantaneous frequency is the
first derivative of the instantaneous phase. In the case of
a mono-component harmonic signal, the amplitude and the
instantaneous frequency are constant, but the instantaneous
phase increases linearly with time [62].

In general, vibrations can be measured in terms of dis-
placement, velocity, or acceleration. In this paper, the vibration
signal x(t) in equation (6) is considered as an acceleration.
Because poor quantification of electric power is mainly caused
by variation of the driving frequencies and the peak am-
plitude levels of the acceleration signal, the amplitude and
instantaneous frequency should be accurately localized using
a time–frequency analysis.

4.2. Estimation of the time-varying PSD of non-stationary
random vibration

This section explains how to estimate the time-varying PSD
of an input non-stationary random vibration signal using a
time–frequency analysis which can localize the frequency
components of the vibration signal in both time and frequency
domains. Time localization seeks to characterize a signal
described during a time interval [63]. On the other hand, fre-
quency localization seeks to identify the spectral components
that are represented at particular frequencies [63]. Therefore,
the choice of a time–frequency analysis plays an important
role for accurate extraction of probabilistic information on a
vibration signal. In the proposed framework, the Wigner–Ville
spectrum, a bilinear time–frequency representation, is used
to estimate the time-varying PSD of a non-stationary random
vibration signal. Further discussion of the Wigner–Ville spec-
trum will be presented in the following section.

4.2.1. The Wigner–Ville spectrum. For localization of the
instantaneous frequency of an amplitude modulation (AM)
with the multiplicative noise and a linear frequency modulation
(FM), the Wigner–Ville distribution (WVD) is known to be
unbiased in estimation of the spread of signal energy in
both the time and frequency domains [47]. The Wigner–Ville
distribution is one of the most commonly used time–frequency
analyses. The Wigner–Ville distribution is defined as [47]

WVDX (t, ω)=
∫
+∞

−∞

x(t)x∗(t + τ)e−iωτdτ. (7)

As mentioned in section 2.2, the time-varying PSD
SX (t, ω) is defined as the Fourier transform of the auto-
correlation function RX (t, τ ); its form is similar to that of
the Wigner–Ville distribution. Therefore, the time-varying
PSD can be obtained from the ensemble averages of the

Wigner–Ville distribution, the so-called Wigner–Ville spec-
trum, as [47]

SX (t, ω)=
∫
∞

−∞

RX (t, τ )e−iωτdτ

=

∫
∞

−∞

E[x(t)x∗(t + τ)]e−iωτdτ

= E
[∫
∞

−∞

x(t)x∗(t + τ)e−iωτdτ
]

= E[WVDX (t, ω)]. (8)

However, it is extremely difficult to directly use the
Wigner–Ville spectrum because ensemble averages demand a
large number of signal realizations. Alternatively, if a stochas-
tic process is stationary, ensemble averages that compute
statistical moments over the entire collection of signals can be
replaced by time averages that calculate statistical moments
using only one representative signal over time. In this case,
the stochastic process is said to be ergodic. Therefore, it is
assumed that the Wigner–Ville distribution is locally ergodic
in a smoothing kernel function 5(t − u, ω − v) so as to
replace the ensemble averages with the time averages [47].
By taking the time averages of the Wigner–Ville distribution,
we can estimate the time-varying PSD Ŝ5X (t, ω), which is the
Wigner–Ville spectrum of non-stationary random vibrations,
as [64]

Ŝ5X (t, ω)=
∫∫
+∞

−∞

WVDX (u, v)5(t − u, ω− v) du dv.

(9)
Equation (9) is the same as in the case of the unified

framework for Cohen’s class, denoted by CX (t, ω;5) [65].
It can also be considered as two-dimensional convolution.
There are two famous Wigner–Ville spectrum estimators: (1)
the spectrogram and (2) the smoothed pseudo Wigner–Ville
distribution (SPWVD). The spectrogram is defined as [47]

Ŝg
X,SPG(t, ω)=

∫
+∞

−∞

∫
+∞

−∞

WVDX (τ, v)

× g(τ − t, v−ω) dτ dv. (10)

In the spectrogram, since only one smoothing window
g(τ − t, v−ω) is used in both time and frequency domains,
the frequency can be smeared according to the Heisenberg–
Gabor uncertainty principle which leads to a trade-off between
time and frequency resolution [47]. In other words, the
resolution cannot be simultaneously improved in both the
time and frequency domains. For example, the shorter the
size of the smoothing window in the time domain, the better
the time resolution that can be achieved. However, the larger
the spectrum bandwidth is, the poorer the frequency resolution
is [66]. On the other hand, the SPWVD adjusts the time and
frequency smoothing kernel functions separately, as [47]

Ŝg,h
X,SPWV(t, ω)=

∫
+∞

−∞

∫
+∞

−∞

WVDX (τ, v)

× g(τ − t)h(v−ω) dτ dv. (11)

The use of separable kernel functions g(τ − t) and
h(v−ω) allows control of the smoothing performance
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in the time and frequency domains individually [64]. If a
non-stationary random vibration signal is a multi-component
frequency modulation, the smearing problem can be more
serious due to the inherent characteristics of smoothing kernel
functions. To improve the localization of the instantaneous
frequency, one can use ‘the reassignment technique which
consists of a smoothing to reduce interferences and a squeezing
to refocus components’ [66]. This technique rearranges the
values of the Wigner–Ville distribution ‘not to the center of
geometry but the center of mass in the smoothing window’ by
computing a centroid point as [47, 66]

t̂(t, ω)= t −
Ŝt ·g,h

X,SPWV(t, ω)

Ŝg,h
X,SPWV(t, ω)

(12)

ω̂(t, ω)=ω+ i
Ŝg,dh/dt

X,SPWV(t, ω)

Ŝg,h
X,SPWV(t, ω)

. (13)

As expected, the readability of the SPWVD is gener-
ally better than that of the spectrogram. In this study, the
SPWVD was thus used for the purpose of demonstration
in the case studies in section 7. Of course, as long as we
appropriately choose any time–frequency analysis technique
(e.g., evolutionary spectrum, Choi–Williams distribution, or
wavelet transform) depending on a given vibration condition,
the chosen technique can be implemented to estimate the
time-varying PSD as well as the Wigner–Ville spectrum in
the proposed framework.

4.2.2. Selection of the smoothing kernel functions. The re-
solvability of a vibration signal depends on not only the
kind of time–frequency analysis but also the selection of a
smoothing kernel function. Therefore, the appropriate shape
and size of a smoothing window should be carefully selected
for the optimal localization based on the characteristics of the
vibration signals. In general, rectangular, Gauss, Hamming,
Hanning, and Kaiser windows are used through a compromise
between the smearing due to the main lobe and the leakage
due to the side lobes caused by the convolution operation in
the smoothing window [46].

For example, to resolve several closely spaced frequency
components in the signal, a smoothing window having a
narrow main lobe is suitable. Meanwhile, if the amplitude is
more significant than the localization of a frequency com-
ponent, a smoothing window having a wide main lobe is
recommended [67]. On the other hand, if the interference
terms (or cross-terms) which are a natural characteristic of
bilinear time–frequency representations, such as the Wigner–
Ville spectrum, are far from the frequency of interest, a
smoothing window having a high roll-off rate of the side lobe
is recommended. In contrast, if interference terms exist near
the frequency of interest, a smoothing window having a low
highest-side lobe is a good candidate [67]. In general, the
Hanning window which has a moderate frequency resolution
and good side lobe roll-off is acceptable in most cases [46].
Details about the effect of the smoothing window for signal
processing are explained in [46, 67].

After determining the optimal size of the chosen smooth-
ing window, the time-varying PSD of the input non-stationary
random vibration signal is finally estimated. In the proposed
framework, this time-varying PSD will be used as the input of
a linear operator which will be defined in the following section
for calculation of the time-varying PSD of the output voltage
response.

5. Electromechanical model as the linear operator

One of the most important aspects in a stochastic process is
to find the linear operator between the input excitation and
the output response; this makes it possible to analytically
obtain certain probabilistic information [68]. In the proposed
framework, any electromechanically-coupled analytical model
can be employed as the linear operator, as long as it can be
expressed in the form of a frequency response function (FRF)
for the output voltage response at arbitrary driving frequency
ω. Therefore, the proposed framework can be applied not only
to the beam but also to the plate theory-based model with any
electrode configuration (e.g., stack, unimorph, or bimorph).

In this study, the distributed-parameter electromechani-
cal model, established by Erturk et al [34], for a bimorph
cantilever-type piezoelectric energy harvester was employed
as the linear operator. This section briefly introduces the
distributed-parameter electromechanical model and explains
the physical interpretation of each parameter.

5.1. Mechanical equation of motion and modal analysis

A bimorph cantilever-type piezoelectric energy harvester is
utilized in a 31-mode configuration in which the directions
of applied stress and generated voltage are perpendicular to
each other. It can be modeled as a thin Euler–Bernoulli beam
which neglects the effects of rotary inertia and shear defor-
mation [69]. In this case, the damped mechanical equation
of motion is expressed by a fourth-order partial differential
equation with two boundary conditions. For the boundary
conditions, fixed at x = 0 and free at x = 1, the transverse
deflection and its slope are zero at x = 0 and the bending
moment and shear force are zero at x = 1. As a result, the
characteristic equation is given as [69]

cos(λn) cosh(λn)+ 1= 0 (14)

where λn is the eigenvalue of the nth mode. The nth mode
shape ψn(x) can be expressed as [69]

ψn(x)=
[

cos
(
λn x

l

)
− cosh

(
λn x

l

)]
−

[
cos(λn)+ cosh(λn)

sin(λn)+ sinh(λn)

]
×

[
sin
(
λn x

l

)
− sinh

(
λn x

l

)]
(15)

where l is the length of the piezoelectric energy harvester. The
bending stiffness Ys I of a bimorph cantilever composite beam
with three layers is [34]

Ys I =
2b
3

[
Ys

(
h3

s
8

)
+ cE

11

{(
hp+

hs

2

)3

−
h3

s
8

}]
(16)
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where b is the width of the piezoelectric energy harvester,
hs is the thickness of the substrate, and hp is the thickness
of the piezoelectric layers. cE

11 is the elastic modulus of the
piezoelectric layers. The nth natural frequency ωn can be
calculated as [69]

ωn = λ
2
n

√
Ys I
ml4 (17)

where m is the mass of the piezoelectric energy harvester. Since
the mode shapes obtained from the boundary value problem
are orthogonal, the expansion theorem can be used to describe
the relative displacementwrel(x, t) of the piezoelectric energy
harvester as [45]

wrel(x, t)=
∞∑

n=1

ψn(x)η(t) (18)

where η(t) is the modal mechanical response. In the Sturm–
Liouville problem, because the sets of the orthogonal mode
shapes ψn(x) are complete in L2(0, l) space, the relative
displacement absolutely and uniformly converges in the series
of mode shapes [70].

Finally, the mechanical equation of motion in modal
coordinates can be expressed as [34]

∂2η(t)
∂t2 + 2ζnωn

∂η(t)
∂t
+ω2

nµ(t)− θnυ(t)= f (t) (19)

where ζn is the modal damping. The electromechanical cou-
pling θn , related to the energy conversion efficiency, is ex-
pressed as [34]

θn = ē31

(
hp+ hs

2

)
dψn(x)

dx

∣∣∣∣
x=l

. (20)

5.2. Electrical circuit equation

Since the poling direction of the bimorph cantilever piezo-
electric energy harvester is normal to the top surface of the
piezoelectric layer, the scalar product of the electric displace-
ment D and the outward normal unit vector n in Gauss’s law
becomes D3 as

i(t)=
d
dt

(∫
A

D · n dA
)
=

d
dt

(∫
A

D3 dA
)
. (21)

As a result, the electrical circuit equation can be derived by sub-
stituting the piezoelectric constitutive relation in equation (2)
into equation (21) as [34]

d
dt

(∫
A

D3 dA
)
=

d
dt

{∫
A
(ē31S1+ ε

S
33 E3) dA

}
(22)

where ē31 is the piezoelectric constant, εS
33 is the dielectric

permittivity at constant strain, and E3 is the electric field. The
dynamic strain S1 can be expressed with respect to the neutral
axis as

S1 =−

(
hp+ hs

2

)
∂2wrel(x, t)

∂x2 . (23)

Finally, the electrical circuit equation can be obtained as [34]

υ(t)
Rload

= − ē31b
(

hp+ hs

2

)∫ l

0

{
∂3wrel(x, t)
∂x2∂t

}
dx

−
εS

33bl
hp

(
dυ(t)

dt

)
(24)

where υ(t) is the output voltage and Rload is the external load.
By substituting equations (18) and (20) into equation (24),

the electrical circuit equation can be expressed in modal
coordinates as [34]

Cpυ̇(t)+
υ(t)
Rload

+

∞∑
n=1

θn η̇(t)= 0 (25)

where Cp is the capacitance of the piezoelectric energy
harvester as follows:

Cp =
εS

33bl
hp

. (26)

5.3. Steady-state voltage response

Finally, the steady-state voltage response υ(ω) can be obtained
by simultaneously solving the mechanical equation of motion
and the electrical circuit equation, as [71]

υ(ω)=

∑
∞

n=1
iωRloadθn

ω2
n−ω

2+i2ζnωnω

( 1
Rload
+ iωCp

2 )+
∑
∞

n=1
iωRloadθ

2
n

ω2
n−ω

2+i2ζnωnω

. (27)

In the proposed framework, this steady-state voltage
response υ(ω) is implemented as the linear operator H(ω). As
the impedance matching for the maximum electric power, the
optimal external load at the short-circuit resonance frequency
can be obtained by setting

∂[
υ(ω)2

Rload
]

∂Rload
= 0. (28)

As a result, the optimal external load for the short-circuit
resonance frequency is expressed as [71]

Ropt,ωsc
n

load =
1

ωnCp[1+{
ē31b(hp+hc)

4ζ 2
n

(
dψn(x)

dx |x=l)}2]1/2
. (29)

According to equation (29), the optimal external load
only depends on the mechanical (e.g., natural frequency,
mode shape, geometry, and damping ratio) and electrical
(e.g., piezoelectric constant and capacitance) parameters of
the piezoelectric energy harvester. This means that the optimal
external load does not depend on the given vibration condition,
if the driving frequency of the vibrating engineered system is
adjacent to the resonance frequency. Therefore, the optimal
external load, derived under the assumption of deterministic
excitation, can also be used under non-stationary random
vibrations.

7
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6. Time-varying power spectral density of the output
voltage response

In this section, we estimate the time-varying PSD of the output
voltage response from the linear relationship. As mentioned in
section 2.2, the autocorrelation function of a vibration signal
can be obtained by computing the inverse Fourier transform
of its time-varying PSD. Finally, based on the definition of the
autocorrelation function, the expected electric power can be
quantified as a function of time. Detailed procedures will be
explained in the following sections.

6.1. Estimation of the time-varying PSD of the output voltage
response

Because of uncertainty propagation [72–74], ‘if the input
excitation is the stochastic process, the output response is also
the stochastic process’ [68]. As a stochastic dynamic, the linear
relationship is then expressed in terms of a statistical moment,
such as a time-varying PSD, as

Sυ(ω, t)= |H(ω)|2SX (ω, t)+ Se(ω, t). (30)

Therefore, the time-varying PSD Sυ(ω, t) of the output voltage
response can be estimated from the linear relationship between
the input and output time-varying PSDs.

In the case of an impulsive response, the error Se(ω, t)
involved in the approximation of the linear relationship for
a vibrating system with high damping is smaller than that
with low damping [75]. Since a piezoelectric energy harvester
is generally manufactured as a highly resonant system with
low damping, one can suppose that equation (30) is not valid.
However, in the case that the piezoelectric energy harvester is
continuously excited by forced vibrations from the surface of
an engineered system, the error approaches zero as the time
t increases. Therefore, given sufficient time, the error can be
negligibly small and the assumption of a linear relationship
is reasonable to estimate the time-varying PSD of the output
voltage response.

6.2. Quantification of the expected electric power

As previously explained in section 2.2, the autocorrelation
function Rυ (t, τ ) of the output voltage response υ(t) can be
obtained by the inverse Fourier transform of the time-varying
PSD Sυ(ω, t) of the output voltage response as

Rυ(t, τ )= E[υ(t)υ(t + τ)] =
1

2π

∫
∞

−∞

Sυ(ω, t)eiωτdω.

(31)
In the end, the expected electric power E[P(t)] can be

obtained by dividing the autocorrelation function of the output
voltage response by the external load Rload and taking zero
time-lag (τ = 0) as [36, 71]

E[P(t)] =
E[υ(t)2]

Rload

=
1

2πRload

∫
∞

−∞

Sυ(ω, t)eiωτdω
∣∣∣∣
τ=0

. (32)

Because the expected electric power quantified by the
proposed framework is a function of time, it is possible to
quickly visualize the variation of harvestable electric power
over time based on the ambient vibration data acquired from
the engineered system. This benefit again suggests that the
proposed framework plays an essential role in scheduling the
operation time interval (OTI) of wireless sensors when the
amount of harvestable electric power is larger than the thresh-
old at which it is set to activate their operation. Therefore, the
proposed framework can be used to quickly confirm whether
it is feasible or not to operate wireless sensor networks for
structural health monitoring or building automation under a
given vibration condition.

7. Case studies

This section uses four case studies to demonstrate the effective-
ness of the proposed framework for stochastic quantification
of the electric power of a piezoelectric energy harvester. In the
first three case studies, different analytic non-stationary ran-
dom vibration signals are described with the aim of investigat-
ing the effect of the randomness of the amplitude and driving
frequency on the amount of harvestable electric power. The
first case considers only variation of the amplitude, while the
second case focuses on randomness of the driving frequency.
The third case accounts for the combined effect of random
variation of the amplitude and driving frequency simultane-
ously. For the purpose of comparing the proposed framework
with a published stochastic electromechanical model, the last
case study considers stationary white Gaussian noise (WGN).

7.1. Random amplitude and constant driving frequency

We first consider the following analytic vibration signal x(t)
with a random amplitude and constant driving frequency:

x(t)= {Ac+ σ(t)} cos(2π fct). (33)

As mentioned in section 4.1, the analytic vibration signal
with a random amplitude modulated by white Gaussian noise
was generated based on the Hilbert transform, as shown
in figure 2. The driving frequency fc was 115 Hz but the
amplitude was randomly modulated by the white Gaussian
noise σ(t)with a standard deviation of 0.357 m s−2. The mean
value Ac of the random amplitude was 4.905 m s−2 (0.5 g).
This type of the vibration signal can be observed on a power
transformer which is one of the most important engineered
systems in a power plant. A power transformer operates at a
fixed driving frequency, while the vibration amplitude of its
core and winding is time-variant.

Because the root mean square (RMS) level of the vibration
signal randomly changes with time, the traditional PSD cannot
be identified in the frequency domain. Therefore, a time–
frequency analysis is required to estimate the time-varying
PSD of non-stationary random vibrations.

The proposed framework was applied to quantify the
harvestable electric power under the given vibration con-
dition. First, the time-varying PSD SX (ω, t) of the input
non-stationary random vibration signal with random amplitude

8
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Figure 2. Decomposition of the non-stationary random vibration signal with random amplitude and constant driving frequency.

Figure 3. The time-varying power spectral density of the input non-stationary random vibration signal with random amplitude and constant
driving frequency: (a) two-dimensional view; (b) three-dimensional view.

Table 1. The mechanical and electrical parameters of a commercially available bimorph cantilever-type piezoelectric energy harvester.

Mechanical parameters Electrical parameters

Elastic modulus of
PSI-5H4E, cE

11

66 GPa Piezoelectric strain coefficient, d31 −3.20× 10−10 m V−1

Elastic modulus of substrate,
Ys

124 GPa Piezoelectric constant, ē31 −21.12 C m−2

Thickness of PSI-5H4E, hp 0.2667 mm Absolute permittivity, ε0 8.85× 10−12 F m−1

Thickness of substrate, hs 0.1016 mm Dielectric permittivity at constant
stress, εT

33

30.10× 10−9 F m−1

Density of PSI-5H4E, ρp 7500 kg m−3 Dielectric permittivity at constant
strain, εS

33

23.35× 10−9 F m−1

Density of substrate, ρs 7800 kg m−3 Relative dielectric constant, εr 3400
Damping ratio, ζn=1 0.0167 Capacitance, Cp 71.40× 10−9 F
Length of energy harvester, l 0.0513 m Electromechanical coupling, θn=1 6.60× 10−3 N m−1

Width of energy harvester, b 0.0318 m Optimal impedance, R
opt,ωsc

n
load 4190 �

and a constant driving frequency was estimated using the
SPWVD. This study used separate Hanning windows for
time and frequency smoothing. This is why the Hanning
window is generally suitable for spectral analysis of random
vibrations or noise measurements. The sizes of the Hanning
window were 15 points in time and 1001 points in frequency,
respectively.

Figure 3 shows the time-varying PSD of the input non-
stationary random vibration signal with random amplitude and

constant driving frequency in figure 2. Because the driving
frequency was constant, the instantaneous frequency was
localized on the 115 Hz line. Therefore, the magnitude of the
time-varying PSD of the input non-stationary random vibration
signal depends only on the amplitude of the acceleration.

In the second step, the linear operator H(ω) was calcu-
lated using the material properties of PZT-5H [76], as shown in
table 1. The fundamental natural frequency was calculated as
115.47 Hz from equation (17) and the optimal external load for

9
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Figure 4. The time-varying power spectral density of the output voltage response under the non-stationary random vibration signal with
random amplitude and constant driving frequency: (a) two-dimensional view; (b) three-dimensional view.

Figure 5. Expected electric power under the non-stationary random vibration signal with random amplitude and constant driving frequency.

the short-circuit resonance frequency was obtained as 4190 �
from equation (29).

In the third step, the time-varying PSD Sυ(ω, t) of
the output voltage response was estimated from the linear
relationship, as shown in figure 4.

Figure 5 shows the result of quantification of the expected
electric power under a non-stationary random vibration signal
with random amplitude and a constant driving frequency. In the
frequency versus time plot, the upper solid line (gray) indicates
the short-circuit resonance frequency of 115.9 Hz, while the
lower solid line (black) describes the instantaneous frequency.
The maximum expected electric power was approximately
1518 µW when the maximum acceleration amplitude was
5.729 m s−2 and when the driving frequency was 115 Hz at
t = 4.673 s. It is worth noticing that the correlation coefficient
of the amplitude and expected electric power was calculated
as 0.9988. This strong correlation clearly shows that the
amplitude of the input random vibration signal and the output
electric power have the same phase, as shown in figure 5. This is
why the amount of electric power generated by a piezoelectric
energy harvester is generally proportional to the square of the
acceleration amplitude at the same driving frequency.

In figure 5, the dashed line indicates a harvestable electric
power of 1130.99 µW which was calculated in a deterministic
manner under forced harmonic vibration with a constant am-
plitude of 4.905 m s−2 and driving frequency of 115 Hz. By

comparing the results for electric power, it can be concluded
that the proposed framework can assist one in more accurately
calculating the harvestable electric power than a rough estima-
tion obtained by assuming a constant amplitude and driving
frequency under non-stationary random vibrations.

7.2. Constant amplitude and random driving frequency

Let us now consider the following analytic vibration signal
with a random driving frequency and constant amplitude:

x(t)= Ac cos
[∫ t

0
{(2π fc)+ ε(t)} dt

]
. (34)

As shown in figure 6, the amplitude Ac was fixed at 4.905 m s−2.
The driving frequency was randomly modulated by Gaussian
noise ε(t) with a standard deviation of 0.63 Hz. The mean
value fc of the random driving frequency was 115 Hz. This
kind of vibration signal can be observed in gearboxes where
the gear mesh frequency changes when the gear changes its
revolutions per minute (RPM).

In the first step, the time-varying PSD SX (ω, t) of the input
non-stationary random vibration signal with a random driving
frequency and constant amplitude was estimated using the SP-
WVD, as shown in figure 7. Separate Hanning windows were
employed for each time smoothing and frequency smoothing in
the SPWVD. The sizes of the Hanning windows were 15 points
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Figure 6. Decomposition of the non-stationary random vibration signal modulated with random driving frequency and constant amplitude.

Figure 7. The time-varying power spectral density of the input non-stationary random vibration signal with random driving frequency and
constant amplitude: (a) two-dimensional view; (b) three-dimensional view.

Figure 8. The time-varying power spectral density of the output voltage response under the non-stationary random vibration signal with
random driving frequency and constant amplitude: (a) two-dimensional view; (b) three-dimensional view.

in time and 701 points in frequency, respectively. Figure 7(a)
shows that the localized value of the instantaneous frequency
randomly changes with time. However, the magnitude of the
time-varying PSD of the input vibration signal is constant
because the amplitude of the vibration signal is fixed over the
entire time domain, as shown in figure 7(b).

Just like the first case study, the mechanical and electrical
parameters of a commercially available piezoelectric energy
harvester, which are summarized in table 1, were used to
calculate the linear operator in the second step.

Finally, the time-varying PSD Sυ(ω, t) of the output
voltage response was estimated in the third step, as shown in

figure 8. We note that the magnitude of the time-varying PSD
of the output voltage response depends only on the variation
of the instantaneous frequency. As shown in figure 8, the mag-
nitude of the time-varying PSD of the output voltage response
fluctuates, in contrast with that of the input vibration signal.
This is why most vibration-based energy harvesters, such as
piezoelectric energy harvesters, are designed as resonators.
In other words, if the other conditions are the same, maxi-
mum voltage generation can be achieved when the resonance
frequency matches the dominant excitation frequency of the
ambient vibrations; so-called frequency matching. Figure 8
shows that the larger the difference between the instantaneous

11
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Figure 9. Expected electric power under the non-stationary random vibration signal with random driving frequency and constant amplitude.

Figure 10. Decomposition of the non-stationary random vibration signal with random amplitude and driving frequency.

and resonance frequencies is, the lower the magnitude of the
time-varying PSD of the output voltage response is.

This physical feature can be also confirmed through
the result of stochastic quantification of the electric power,
as shown in figure 9. For example, when the amplitude
is constant at 4.905 m s−2, a minimum electric power of
753.51 µW is generated at 113.34 Hz which is the farthest
from the short-circuit resonance frequency of 115.9 Hz at
t = 6.555 s. The window size in this case study is shorter
than that of the first case study in the frequency domain for
the purpose of reducing interference induced by variation
of the driving frequency. As a result, the local extremes of
the expected electric power might be slightly underestimated
because greater frequency smoothing can reduce the peak
values of the time-varying PSD.

7.3. Random amplitude and random driving frequency

The third case study considers the following analytic vibration
signal with random amplitude and random driving frequency:

x(t)= {Ac+ σ(t)} cos
[∫ t

0
{(2π fc)+ ε(t)} dt

]
. (35)

As shown in figure 10, the amplitude was randomly modulated
by Gaussian noiseσ(t)with a standard deviation of 0.31 m s−2.
The mean value Ac of the random amplitude was 4.905 m s−2.
The driving frequency was also modulated by Gaussian noise
ε(t) with a standard deviation of 0.82 Hz. The mean value fc
of the random driving frequency was 115 Hz.

Just like the previous two case studies, separate Hanning
windows were used in the first step for time and frequency
smoothing in the SPWVD. Their sizes were 15 points and 501
points, respectively. As a result, the time-varying PSD of the
input non-stationary random vibration signal was estimated,
as shown in figure 11.

Figure 12 shows the time-varying PSD Sυ(ω, t) of the
output voltage response. Note that even though the amplitude
of the input non-stationary random vibration signal is high
at a certain time, the magnitude of the time-varying PSD of
the output voltage response can be relatively low when the
instantaneous frequency is far from the short-circuit resonance
frequency.

These characteristics of piezoelectric energy harvesting
can also be ascertained from the result of the expected
electric power under a non-stationary random vibration signal
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Figure 11. The time-varying power spectral density of the input non-stationary random vibration signal with random amplitude and driving
frequency: (a) two-dimensional view; (b) three-dimensional view.

Figure 12. The time-varying power spectral density of the output voltage response under the non-stationary random vibration signal with
random amplitude and driving frequency: (a) two-dimensional view; (b) three-dimensional view.

Figure 13. Expected electric power under the non-stationary random vibration signal with random amplitude and driving frequency.

with random amplitude and driving frequency, as shown in
figure 13.

This result clearly illustrates that a larger amplitude and
a closer distance between the instantaneous and short-circuit
resonance frequencies ensures a higher expected generation of
electric power. For instance, case À in figure 13 indicates the
effect of amplitude variation on harvestable electric power,
while case Á examines the effect of frequency variation.
Lastly, case Â indicates the maximum expected electric
power, which was approximately 1384.78 µW when the
amplitude was 5.372 m s−2 (relatively high magnitude) and the

instantaneous frequency was 115.98 Hz (frequency matching)
at t = 0.627 s.

7.4. White Gaussian noise

The proposed framework is also applicable to stationary ran-
dom vibrations. A typical example of stationary random vi-
brations is white Gaussian noise (WGN) which is a wideband
random process and has a time-invariant PSD. As mentioned
in section 1, there are several stochastic electromechanical
models for calculating the expected electric power under
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Figure 14. White Gaussian noise and its probability density function.

Figure 15. The autocorrelation function and two-sided noise spectral density of white Gaussian noise.

stationary WGN [35, 36, 39]. Therefore, for the purpose of
comparing the proposed framework with a published stochas-
tic electromechanical model, the last case study considers
stationary WGN with zero mean and unit variance, as shown
in figure 14.

Figure 15 shows the autocorrelation function, which is
a Dirac delta function, and the noise spectral density of the
WGN which is defined as the noise power per unit bandwidth.
Even though ideal WGN has a constant noise spectral density
theoretically, the limited bandwidth in practical implementa-
tion can cause deviation of the noise spectral density. The
mean value of the noise spectral density was calculated as
1.0001 m2 s−4 Hz−1 over the entire bandwidth.

The proposed framework uses the pseudo-excitation
method [68] to estimate the PSD of WGN. A high sampling
frequency is preferred in order to cover as wide a bandwidth as
possible to be close to ideal WGN. In this study, the sampling
frequency was 10 kHz. Because the magnitude of the PSD
in figure 16 is the same as the product of the noise spectral
density and the bandwidth, the PSD can be referred to as the
power spectrum (PS). As shown in figure 16, the PSD of WGN
is spread over the entire frequency bandwidth. We again note
that the PSD of WGN is not a function of time.

From the linear relationship between the input and output
PSDs, equation (30), the PSD of the output voltage response
under the WGN was estimated as shown in figure 17.

Table 2. Expected electric power under stationary white Gaussian
noise with zero mean and unit variance.

Quantification method Expected electric power

Proposed framework 1142.86 µW (mean value)
Published stochastic
electromechanical model [39]

1148.31 µW (mean value)

Figure 18 and table 2 show that the result of the expected
electric power quantified by the proposed framework is in
good agreement with that by the published stochastic elec-
tromechanical model established by Zhao and Erturk [39],
under WGN with zero mean and unit variance. Therefore,
it can be concluded from this observation that the proposed
framework can be used as a generic method for calculating the
expected electric power generated by a piezoelectric energy
harvester under stationary as well as non-stationary random
vibrations. The difference between the mean values of the
expected electric power is about 5.5 µW. The difference can
be explained by two different bandwidth ranges. The proposed
framework quantifies the expected electric power over a lim-
ited bandwidth (one half of the Nyquist frequency), while
the published stochastic electromechanical model calculates
the analytical solution of the expected electric power over an
infinite frequency range.
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Figure 16. The power spectral density of white Gaussian noise: (a) two-dimensional view; (b) three-dimensional view.

Figure 17. The power spectral density of the output voltage response under white Gaussian noise: (a) two-dimensional view; (b)
three-dimensional view.

Figure 18. Comparison between the expected electric power results quantified by the proposed framework and a published stochastic
electromechanical model [39] under stationary white Gaussian noise.

8. Conclusions

This paper proposed a three-step framework for stochastic
quantification of the electric power generated by a piezoelec-
tric energy harvester under non-stationary random vibrations.
The sequentially executed procedures are summarized as fol-
lows.

• Step 1-1: mathematically represent the non-stationary
random vibration signals.

• Step 1-2: estimate the time-varying PSD of the input
non-stationary random vibrations using equation (11).

• Step 2: employ an electromechanical model as a linear
operator using equation (27).
• Step 3-1: estimate the time-varying PSD of the output

voltage response using equation (30).
• Step 3-2: obtain the expected electric power from the

autocorrelation function which is the inverse Fourier
transform of the time-varying PSD of the output voltage
response using equation (32).

The results from first three case studies clearly demon-
strate that the proposed framework can achieve stochastic
quantification of the variation in harvestable electric power
when the amplitude and driving frequency randomly change
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with time. We note that the realistic vibrations of most practical
engineered systems fit within the aforementioned case studies
in terms of significant randomness of amplitude and driving
frequency. Thus, the proposed framework has potential for
wide applications in real-world settings.

The main contributions of the proposed framework are
two-fold: (i) it is the first attempt to apply a statistical time–
frequency analysis to electric power quantification of a piezo-
electric energy harvester under non-stationary random vibra-
tions, and (ii) it provides visualization of harvestable electric
power based on the ambient vibration data acquired from
engineered systems. Through statistical time–frequency analy-
sis, the proposed framework enables the electromechanically-
coupled analytical model to deal with the time-variant random
nature in a stochastic manner. As a result, it is possible to con-
duct design optimization of a piezoelectric energy harvester
for reliable scavenging of electric power while considering the
random nature of vibration. Furthermore, the framework can
be used to quickly confirm whether or not it is feasible to oper-
ate wireless sensor networks for structural health monitoring
or building automation under given vibration conditions.

There can be two main sources of error in stochas-
tic quantification of harvestable electric power. From the
standpoint of signal processing, a bias can occur due to
the time averages or a trade-off between interference and
localization due to the smoothing. Therefore, the size and
shape of the smoothing kernel function, as well as the kind
of time–frequency representation, should be carefully chosen
so as to be appropriate for a given vibration condition. On the
other hand, simplification of assumptions can introduce error
due to modeling uncertainty in an electromechanical model
(e.g., boundary conditions and their interactions). However,
these sources of uncertainty can be minimized by model
verification and validation (V&V).

In this study, we considered the random nature of given
vibration conditions in stochastic quantification of electric
power. To investigate the effect of physical uncertainty in a
piezoelectric energy harvester itself on the variation of har-
vestable electric power, future work will combine our results
from this study with statistical data for mechanical properties
(elastic modulus, density, geometry) and electrical properties
(piezoelectric strain coefficient and dielectric permittivity). In
addition, statistical model calibration will be incorporated with
this study to improve the predictive capability of the analytical
model. Future work will also include examination of practical
application of the proposed framework to realistic vibration
data from engineered systems (e.g., automotive vehicles or
power plants).
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