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Abstract Virtual testing is a recent engineering develop-
ment trend to design, evaluate, and test new engineered
products. This research proposes a framework of virtual
testing based on statistical inference for new product
development comprising of three successive steps: (i)
statistical model calibration, (ii) hypothesis test for valid-
ity check and (iii) virtual qualification. Statistical model
calibration first improves the predictive capability of a
computational model in a calibration domain. Next, the
hypothesis test is performed with limited observed data to
see if a calibrated model is sufficiently predictive for
virtual testing of a new product design. An area metric
and the u-pooling method are employed for the hypothesis
test to measure the degree of mismatch between predicted
and observed results while considering statistical uncer-
tainty in the area metric due to the lack of experimental
data. Once the calibrated model becomes valid, the virtual
qualification process can be executed with a qualified
model for new product developments. The qualification
process builds a design decision matrix to aid in rational
decision-making for product design alternatives. The ef-
fectiveness of the proposed framework is demonstrated
through the case study of a tire tread block.
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Nomenclature
D critical value of area metric
e observation error
L likelihood function
l number of the known variables
p number of the unknown variables
q number of the controllable variables
Um area metric
y observed model
α significance level for a hypothesis test
β known model variable vector
δ prediction error
ζ operation variable vector
Θ hyper-parameter vector
θ unknown model variable vector
μ friction coefficient
υ pressure exponential parameter
φ contact pressure
ψ predicted model

1 Introduction

Increased customer expectations have resulted in new product
developments at an ever increasing pace. The product devel-
opment process is traditionally conceived of as a cost-
intensive and time-consuming process because it requires
repeated product prototyping and testing to improve product
performances and reliability. The left hand side box in Fig. 1
shows a product development process from survey of custom-
er requirement to product recycling. As products are becom-
ing more complex with a shorter product lifecycle, virtual
product testing using computer simulation has become more
important to design and evaluate a new engineered product as
shown in Fig. 1. However, it is still challenging to build highly
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predictive computational models because of our limited
knowledge about the models. To overcome this challenge,
considerable attention has been paid to develop verifica-
tion and validation (V&V) methodology that improves
and assesses predictive capability of computational
models.

Among various works on model V&V, the survey articles
of AIAA (1998), Oberkampf et al. (2004), Thacker et al.
(2004), Babuska and Oden (2004), ASME (2006), Xiong
et al. (2009), and Youn et al. (2011) explain the state-of-the-
art concepts and processes in detail. Based on the references,
authors have redefined model V&V activities with five steps
as shown in Fig. 1: (A.1) code verification, (A.2) solution
verification, (B.1) model calibration, (B.2) validity check and
(B.3) model refinement.

Model verification deals with the relationship between
the mathematical model and its programmed implementa-
tion in the code (computational model) with two activities:
(1) code verification and (2) solution verification
(Oberkampf et al. 2004; Roache 1998). The goal of the
code verification is to confirm that the mathematical model
works as intended by eliminating programming and imple-
mentation errors. The solution verification is to evaluate the
accuracy of the discrete solution of the mathematical model
by estimating the numerical errors due to discretization
approximations.

In this paper, model validation is defined as an activity to
improve and assess the accuracy of computational results in
comparison with experimental data throughmodel calibration,
validity check and model refinement as highlighted with
yellow boxes in Fig. 1. Model calibration is an activity to
adjust a set of unknown model variables associated with a
computational model while maximizing the agreement be-
tween the predicted and observed outputs (Xiong et al.
2009; Trucano et al. 2006; Cho and Jung 2007; Datta 2005).
In a deterministic sense, model calibration is thought of as the
adjustment of a few model variables to minimize the discrep-
ancy between the predicted and observed results. However,
the deterministic approach is not appropriate since it cannot
predict engineered product behaviors under various inherent
uncertainties in manufacturing tolerance, material properties,
loading condition, boundary condition, and other physical
properties. Statistical model calibration, on the contrary, de-
termines the probability distributions of unknownmodel input
variables to maximize the agreement between the predicted
and observed responses in a statistical sense (Campbell 2006).
It can employ maximum likelihood estimation (MLE) (Youn
et al. 2011; Xiong et al. 2009) and Bayesian statistics (Chen
et al. 2008; Kennedy and O’Hagan 2002; Higdon et al. 2008;
Liu et al. 2008; Wang et al. 2009).

Validity check is an activity to statistically and quantita-
tively determine the degree of the validity of computational

Fig. 1 A framework of model validation and virtual production qualification (Youn et al. 2011)
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model by comparing the observed (or experimental) results
with predicted (or computational) ones. Although some validity
check methods including a confidence interval approach (Hills
and Truncano 2002; Chen et al. 2004), Bayesian method (Chen
et al. 2008; Zhang and Mahadevan 2003), mean-based com-
parisons (Oberkampf and Barone 2006) and u-pooling method
(Ferson et al. 2008) have been developed, it is still a challenge
to consider statistical uncertainty in a validity check metric due
to a limited sample size of experiments.

The model validation stops only when acceptable agreement
between experimental and computational results is achieved. If
the validity check turns out to be invalid, model refinement
should be performed by polishing a mathematical or computa-
tional model of an engineered product through reconsideration
of its physical behavior (e.g., governing equations and related
mathematical expressions). The feedback information collected
from model calibration and validity check can be used for
model refinement. Finally, if the model validation builds
a valid computational model successfully, a virtual qual-
ification can be performed for new product designs.

Although researches on model validation have been stud-
ied in various engineering field, there is still open discussion
about systematic approaches for successful virtual qualifica-
tion to enhance, evaluate and employ computational models
statistically developed with limited experimental data. This
paper thus aims at proposing a framework of virtual product
testing that includes statistical model calibration for unknown
model parameters, validity evaluation under limited experi-
mental data, and virtual qualification of new designs. This
paper is organized as follows. Section 2 presents the three-step
framework of the virtual testing as: (1) statistical model cali-
bration, (2) hypothesis test for validity check, and (3) virtual
qualification. The merits of the proposed framework are dem-
onstrated with one case study in Section 3: a tire tread block
simulation for tire friction modeling.

2 A statistical framework of virtual testing

This section presents the three-step framework of the virtual
testing: (i) statistical model calibration, (ii) hypothesis test for
validity check, and (iii) virtual qualification.

2.1 Statistical model calibration

Model calibration is not trivial because a computational model
contains many unknown model variables, such as material
properties and boundary conditions. This difficulty under-
scores the need of a systematic approach for statistical model
calibration. The authors proposed statistical model calibration
techniques with three sequential steps in Ref.(Youn et al.
2011): (1) model calibration planning, (2) model variable
characterization and (3) model calibration execution.

1) Model calibration planning: Calibration experts first
identify calibration resources such as performance of
interest (POI), required computational models, simula-
tion tools, experimental tests, and modeling details of an
engineered product based on time and available budget.
Next, the model variables must be carefully examined,
and classified as known and unknown model variables.
In general, a computational model carries many random
model variables. If the variability of model variables can
be directly characterized with observed data, the vari-
ables are categorized as known model variables (Jung et
al. 2009). Otherwise, the variables are grouped as un-
known model variables. Sensitivity studies can help to
reduce the number of the model variables by leaving out
unimportant variables for model calibration. For a com-
plex system, it is recommended to divide the model
calibration problems into several sub-problems based
on the POIs of an engineered product. Finally, the
statistical model calibration requires uncertainty propa-
gation (UP) analysis such as the eigenvector dimension
reduction (EDR) method (Youn et al. 2008; Choi et al.
2007) to develop the statistical responses of a computa-
tional model.

2) Model variable characterization: Material properties and
physical parameters categorized as known model vari-
ables should be statistically characterized with experi-
mental data tested with multiple specimens. Three steps
were employed as below.

& Step 1: To obtain optimum distribution parameters for
candidate distribution types (e.g., normal, lognormal,
Weibull and gamma distributions) using one of the
point estimation methods. Maximum likelihood
method is used in this paper (Modarres et al. 1999).

& Step 2: To perform a quantitative hypothesis test for
the candidate distributions such as Chi-Square
Goodness-of-Fit (GoF) test and Kolmogorov-
Smirnov (K-S) GoF test (Modarres et al. 1999).

& Step 3: To select the distribution with the maximum
p-value from the accepted distributions at step 2.

3) Model calibration execution: Model calibration execution
adjusts a set of unknown model variables so that the
agreement is maximized between the predicted and ob-
served results. The relationship between the observed
model (y) and the predicted model (ψ) can be defined as
(Kennedy and O’Hagan 2001)

y ¼ Ψ β; θ; ζð Þ þ δ ζð Þ þ e ζð Þ β∈Ωl; θ∈Ωp; ζ∈Ωq ð1Þ

where β = {β1, β2, · ·, βl} is the known model variable
vector; θ = {θ1, θ2, ···, θp} is the unknown model variable
vector; ζ is the operation variable vector (e.g., operational
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conditions, environmental temperature); l, p and q are the
number of the known, unknown and operation variables.
δ and e are the prediction and observation (experiment)
errors, respectively. The uncertainty of unknown model
variable vector (θ) can be represented by statistical pa-
rameters of a suitable distribution. For example, in case of
a normal distribution, the hyper-parameter vector (Θ) is
defined as Θ = {μθ, σθ}, which includes mean and
standard deviation of θ. Then, Θ will be the calibration
parameter vector in the model calibration execution. The
distribution types, such as normal, lognormal, Weibull,
etc., of the model variable vector can be assumed or
determined based on both historic data and expert opin-
ions. Next, the calibration parameter vector (Θ) will be
determined by maximizing the agreement between the
predicted and observed results as:

maximize L Θ
���y� �

¼
X
i¼1

n

log10 f yi

���Θ� �h i
ð2Þ

where yi is a component of the random response; n is the
number of observed (experimental) data; f(yi|Θ) is the
PDF of yi for a given value of Θ; and L is a likelihood
function (1). The likelihood function is used as the cali-
bration metric to measure the degree of the agreement
between the predicted and observed outputs. Of course,
other calibration metrics can be employed for the model
calibration. Figure 2 shows the procedure of the model
calibration execution. After building the PDF of a pre-
dicted response (= ) using UP analysis, the likelihood
function is calculated by integrating probability densities
over experimental data. The initial calibration parameter
vector will be updated until the likelihood function is
converged to a maximum value. Thus, the model calibra-
tion can be formulated as the unconstrained optimization

problem in (2). This paper uses a gradient-based opti-
mizer in MATLAB software to solve the optimization
problem.

Figure 3 shows the concept of the likelihood function. In
the figure, x-axis indicates a controllable variable and y-axis
denotes experimental data. The likelihood function between
the experimental data and the response PDFs in Fig. 3a is
larger than those of Fig. 3b and c. This is because the mean
values of the response PDFs in Fig. 3b are deviated from those
of experimental data, and the standard deviations of the PDFs
in Fig. 3c are larger than those of experimental data.

The observation error (e) such as random error and biased
error can be ignored in model calibration execution with the
following assumptions: (i) inherent uncertainties in material
properties, loading conditions and boundary conditions are
dominant, (ii) experimental tests are well designed so that
experimental data highly represent reality. In many cases, it
is not feasible to find a true computational model through the
model calibration procedure because these errors are unknown
that are highly dependent on current knowledge of experimen-
talists or quality of experiment devices. For instance, it is
extremely prohibitive to obtain the experimental random error
in case of destructive testing such as tread block test.

The prediction error (δ) can capture the deterministic bias
between observed and predicted results that arises from inap-
propriate model form, coding errors, numerical errors due to
discretization approximations, wrong boundary conditions,
etc. However, there is confounding between unknown random
model variables and prediction error during model calibration
execution; that is, they are not statistically identifiable during
optimization. If the prior knowledge about the form of pre-
diction error (e.g., linear form or nonlinear form) is given, it is
beneficial to consider the prediction error in the calibration
process; however, in many cases it is not easy to figure out the
error form before the model calibration activity. Should the
inappropriate model error form be used in the model calibra-
tion process, the calibrated computational model can be se-
verely misrepresented. For example, Xiong et al. (Xiong et al.
2009) considered this error for model calibration; however,
extrapolating capability of the calibrated model was not en-
hanced. To eliminate risk associated with the unknown model
form, the prediction error is ignored in the model calibration
(especially at first iteration in Fig. 1).

2.2 Hypothesis test for validity check

The validity check of a statistically calibrated model requires
many experimental data from multiple samples (or physical
products); however, it is impractical to manufacture many
prototypes due to expensive manufacturing cost (Youn et al.
2011). The dearth of experimental data poses two challenges
for the validity check. First, the experiments for the validityFig. 2 The procedure of model calibration execution
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check are normally conducted under various operating condi-
tions (or experimental settings) in a validation domain. Given
limited experimental data for the validity check, it is beneficial
to integrate the evidence from all observation data over the
entire validation domain into a single measure of overall
mismatch (Ferson et al. 2008). Second, the small sample size
of experiments will produce another layer of uncertainty in a
validity check metric, of which the effect on model validity
must be carefully analyzed. The hypothesis test for validity
check proposed in this paper is thus devised to solve these
challenges. In the hypothesis test, the null hypothesis (H0) is
defined as the claim that the calibrated model is valid. The null
hypothesis can be rejected only if a validity check metric
suggests that H0 is false; otherwise not rejected. Upon the
rejection, the calibrated model should be further refined as
shown in Fig. 1, which is not the scope of this study.

(a) U-pooling Method
To solve the first challenge, the hypothesis test em-

ploys the u-pooling method for the validity check
(Ferson et al. 2008). It allows the integration of the
evidence from all experimental data under various exper-
imental settings (e.g., environmental temperature, load-
ing, etc.) into a single mismatch metric. In the u-pooling
method, the cumulative density, ui, can be obtained

through the transformation of every experimental datum
(yi). The predictive CDF (Fy) of a computational re-
sponse can define the transformation as

ui ¼ Fyi yið Þ ð3Þ
where i is the number of experimental data. Under the
assumption that the experimental data (yi) and the corre-
sponding prediction come from a true distribution of y,
(i.e., the model is valid), the ui values obtained using both
all the experimental data and the predicted results of a
computational model follow a uniform distribution on
[0,1]. In other words, if the ui values follow the uniform
distribution, it indicates that the predicted results perfect-
ly agree with the experimental data. Therefore, we can
quantify the degree of mismatch between the dispersion
of experimental data and the distribution of predicted
results by calculating an area (i.e., the area metric (Um))
between the CDF of the uniform distribution (Funi) and
the empirical CDF (Fu) of ui values corresponding to the
experimental data as

Um ¼ area Fu; Funið Þ

¼
Z

0

1

Fu uð Þ−Funi uð Þj jdu 0≤u≤1; 0≤Um≤0:5 ð4Þ

(a) Case I (b) Case II (c) Case III

y, y,

ζζ ζ

Exp. Data

Predicted Response

Exp. Data

Predicted Response

y,

ζ

Exp. Data

Predicted Response

Fig. 3 The concept of the likelihood function in model calibration execution: a High likelihood function, b Low likelihood function due to deviated
mean values, c Low likelihood function due to large standard deviations

(a) Predicted and observed results (b) Calculation of area metric, Um
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Fig. 4 Calculation of an area
metric
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As an example shown in Fig. 4a, there are three
experimental data (yi) and predicted PDFs (fy) under
different operating conditions (or experimental settings).
The ui of each experimental datum is calculated and its
empirical CDF is drawn as shown in Fig. 4b. The calcu-
lated area of the shaded region in Fig. 4b indicates the
area metric,Um. The smaller the calculatedUm, the closer
the predicted PDF to the distribution of experimental
data. For example, if the model represents the observed
responses well (i.e., the model is valid), Um gets close to
zero when sufficient experimental data exists. Should the
model be invalid, Um is greater than a marginal value of
the area metric, which will be defined in Section II.B.(c).

(b) Area metric under epistemic uncertainty
If experimental data are comprehensively collected

for the validity check, sampling uncertainty in the area
metric (Um) can be eliminated. In such case the null
hypothesis can be rejected unless Um is zero. In practice,
due to limited experimental data, uncertainty exists in the
area metric although the predicted and experimental
results follow the true distribution of y (i.e., the model
is valid). The uncertainty in the area metric can be
characterized for a given observation data size (i) as:

Step 1. Determine a virtual sampling size (k) for uncer-
tainty characterization of the area metric.

Step 2. Generate samples (y1, y2, · ·, yi) randomly for a
virtual observation dataset from a true distribu-
tion (Fy) of y under the assumption that the
predicted and observed data follow Fy (or a
computational model is valid).

Step 3. Compute the CDF values (u1, u2, · · , ui) corre-
sponding to yi using (3).

Step 4. Calculate an area metric value (Um) using (4).
Step 5. Repeat Steps 2 to 4k times to generate

random data (Um1, Um2, · ·, Umk) of the
area metric (Um).

Step 6. Build an empirical probability distribution of the
area metric (fu,i). The Pearson system (Youn
et al. 2008; Xi et al. 2012) is used in this paper.

For example, let us consider three differ-
ent true distributions (fy) of y as shown in
Fig. 5a. The probability distributions of the
area metric (fu,i) are characterized with given
observation data size (i=18) and virtual sam-
pling size (k=5,000). The fu,18 is identically
determined irrespective of the shape of a
true distribution as shown in Fig. 5b, where
N and Wbl indicate normal and Weibull dis-
tributions, respectively. It is because a set of
ui values always follow uniform distribution
regardless of a true distribution shape. This
characteristic allows the proposed hypothesis
test to be generally applicable. In addition,
fu,i asymptotically converges to zero as the
size (i) of experimental data increases, as

(a) Three different true distributions                             (b) PDFs of the area metric (fu,18)

Fig. 5 PDFs of area metric
(fu,i,i=18) obtained with three
different distributions

Fig. 6 PDFs of the area metric (fu,i): the effect of a data size

Table 1 Statistical information of the PDFs of the area metric

i Mean Std. Dev. Skewness Kurtosis Pearson system type

6 0.1296 0.0535 1.1326 4.2585 Type I

12 0.0914 0.0389 1.2337 4.7938 Type I

18 0.0741 0.0319 1.2177 4.6966 Type I

30 0.0569 0.0247 1.4871 6.3728 Type I

60 0.0407 0.0178 1.3245 5.3782 Type I
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shown in Fig. 6. In other words, the uncertainty
in the area metric decreases as the amount of
experimental data increases. Table 1 shows the
statistical moments and the Pearson system type
of the PDFs in Fig. 6.

(c) Hypothesis test for validity check
The hypothesis test uses a calculated area metric (Um)

using predicted and observed results, and the PDF of the
area metric (fu,i) for a given observation data size.
Because fu,i indicates the plausible frequency of the area
metric under the assumption of a valid model, an
upper-tailed test can be employed with a predetermined
rejection region as

Um > Di αð Þ ð5Þ

where Di(α) indicates a critical value of the area metric;
α is a significance level, normally set to 0.05. For exam-
ple, D18(0.05) is 0.137 for the upper-tailed test (see
Fig. 5). The null hypothesis will be rejected if and only
if the calculated area metric (Um) falls in the rejection
region. In the absence of such evidence,H0 should not be
rejected since it is still quite plausible. The significance
level which is referred to as type I error, indicates the
probability we reject a computational model although it
is valid. It can be calculated as

Type I error ¼
Z ∞

Di αð Þ
f u;i xð Þdx ð6Þ

In this study, type II error, the probability that we do
not reject a computational model when it is invalid, is not
considered since quantification of type II error is mean-
ingless since there is no evidence on the degree of inval-
idity between predicted and true distributions. The in-
crease of type I error (or significance level) results in
decrease of the type II error; therefore, it is recommended
that higher type I error is employed for validity check of
engineered products having high risk on predicted
results.

2.3 Virtual qualification

The virtual qualification is a process to qualify a product
design through the use of the valid computational model.
This task will be thus executed only if the validity of a
computational model is assured through the hypothesis
test above. The virtual qualification can be performed in
an absolute or relative manner. The absolute qualification
can be conducted if a performance of interest (POI) has a
strict margin, as shown in Fig. 7a. For example, the
design 1 is qualified if its POI exceeds the margin,
whereas the design 2 is not. The relative qualification
is preferred for a product design if the POI has no strict
margin. Then, various product design alternatives can be
compared with their PDFs of the POI, as shown in
Fig. 7b. For instance, the design 1 is preferred to the
designs 2 and 3 if the POI is a larger-the-better type. The
virtual qualification can be performed quantitatively by
constructing a design decision matrix, as shown in
Fig. 8. This matrix can aid in rational decision-making
for product design selection. Values in the upper trian-
gular part of the matrix indicate the probability that one
design (i: row) is better than the other (j: column, p(di > dj))
where p indicates a probability and di and dj indicate ith

and jth designs. The design decision matrix provides
information for comparison of design alternatives and
helps analysts make a rational decision in the product
development process.

P
D

F

d3: Design 3

d1: Design 1

d2: Design 2

PoI of Product

d1d2d3

(a) Absolute qualification (b) Relative qualification

P
D

F

d1: Design 1

d2: Design 2

PoI of Product

Margin

d1d2

Fig. 7 Absolute and relative
virtual qualification methods
(di indicates ith design)

p(di>dj) d1 d2 d3

d1 0.500 0.85 0.99

d2 0.500 0.79

d3 0.500

Fig. 8 Design decision matrix for relative qualification
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3 Case study: tread block problem

3.1 Problem description

The braking and cornering performances of tire are highly
related with a friction force between tire and road surface. The
consideration of a single tread block, detached from the tire body,
enables the investigation of a tire friction behavior. Therefore, the
tread block tester (or block FE analysis) in Fig. 9 is widely used
to measure (or predict) the friction forces of different tread block
designs. As shown in Fig. 9, the top surface of a tread block
specimen is fixed to a steel plate and the bottom surface contacts
a road surface. While applying a designed normal load to the
tread block specimen and pulling it along x-direction in a con-
stant velocity, a friction force is measured.

The commercial FE tool, Abaqus, was used for the tran-
sient tread block analysis. As a part of model verification
activity (AIAA 1998), a grid (mesh) density was adjusted to
reduce a discretization error in the FE model. Realistic de-
scription of a friction model is most crucial in a tread block
analysis. Generally, the friction model is a function of contact
pressure (φ) and sliding velocity (Cho and Jung 2007;
Hofstetter et al. 2006). Since the sliding velocity (=1 cm/sec)
remains constant during the block test, a contact pressure-
dependent model can be employed as

μ ¼ μ0 �
φ
φref

 !−υ
ð6Þ

where φref is a reference contact pressure (=1.0E5 Pa);
υ is pressure exponential parameter; μ0 is a friction
coefficient when the pressure is equal to φref. The true
values of two model parameters, υ and μ0, vary with
the selection of materials and the pair of surfaces in
contact.

3.2 Statistical model calibration

The POI is a friction force between a tread block and a road
surface. The block model is composed of three random input
variables: elastic modulus and two friction model parameters
(μ0, υ). While the elastic modulus is classified as a known
model variable, the friction model parameters (μ0, υ) as a set
of unknown model variables. To characterize the elastic mod-
ulus, tensile tests (ambient temperature: 23 °C, cross-head
speed: 500 mm/min) with eight rubber samples (size: 2.62×
5×20 mm) were performed and Weibull distribution (Wbl ~
(7.77, 22.07)) was found to be the most suitable distribution
(see Fig. 10).

For the statistical model calibration, twenty-four solid
block specimens (see Design A in Fig. 9b) were fabricated.
Experiments were executed at four different normal loading
conditions (3, 5, 7 and 9 kg/cm2) that were decided based on
tire operating conditions. The response surface models of four
different operating conditions (3, 5, 7 and 9 kg/cm2) were first
constructed to reduce a simulation cost. Computational anal-
yses at four-level full factorial design points with three factors
(μ0, υ and elastic modulus) were conducted to generate the
response surface models. Figure 11 shows a response surface

(a) Tread block tester (b) Schematic of tread block FE model (Design A, size: 

30×30×8mm)

Fig. 9 Tread block tester and tread FE model

Fig. 10 Variance of elastic modulus: Weibull(7.77,22.07) Fig. 11 A surrogate model: 3 kg/cm2 normal loading
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model about the 3 kg/cm2 loading condition. It was observed
that the response models look to be linear in the interested
region. Next, the statistical calibration was performed by
comparing experiment data with the predicted results. The
hyper-parameter vector (Θ) includes the mean and standard
deviation of two unknown model variables (μ0 and υ) that are
assumed to follow a normal distribution. Table 2 shows the
results of the initial and calibrated hyper-parameter vectors.
The predicted friction forces after statistical calibration show
good agreement with the experimental data as shown in
Fig. 12.

3.3 Hypothesis test for validity check

Twelve tread blocks of two alternative tread designs as
depicted in Fig. 13 (six blocks of Designs B and C each) were
fabricated and tested under 7 kg/cm2 normal load for the
validity check experiments. Figure 14a shows the measured
experiment data and the predicted PDFs of the different de-
signs. The area metric (Um=0.0525) was calculated with the
aggregated eighteen test data (six of Designs A, B, and C
each) and the predicted PDFs of three designs as shown in
Fig. 14b. It is found that Um=0.0525 is far less than
D18(0.05)=0.137 as shown in Fig. 5b. It can be concluded
that the calibrated model is valid.

3.4 Virtual qualification

A relative design qualification process was executed with
three different designs in Figs. 9b and 13. As shown in
Fig. 15, the design decision matrix for the product designs

was built with three PDFs in Fig. 14a. It is noted that the
designs in the design decision matrix are ordered based on the
magnitude of the friction force to make the values in upper
triangular matrix larger than 50 %. Based on the design
decision matrix, we can quantitatively see that the chance to
prefer Design C to Design B is 95.61 %. There are two
possible reasons that Design C with a groove along vertical
direction (see Fig. 13) turns out to be better than Design B.
First, Design C of vertical groove has larger contact area than
Design B of longitudinal groove and it increase total friction
force. Second, higher contact pressure of Design B at the edge
of longitudinal groove locally decrease friction coefficient and
friction force and it may decrease total friction force. The
virtual qualification using statistical evidence in the design
decision matrix can help to make a rational decision making
for two reasons as follows:

1. Once a computer simulation model becomes statisti-
cally valid, we can use the model proactively in a
product design process with a high confidence on the
simulated results. Through repeated exercises of the
product virtual testing, one can produce more related
data and make the virtual testing routinely incorpo-
rated into a product design process. This eventually
makes an engineering product developed in a reliable
and efficient manner.

2. The design decision matrix enables a quantitative and
statistical decision making in determining a best de-
sign alternative even though a product involves
manufacturing variability and operational uncertainty.
In other words, this matrix can eliminate a chance to
make an erroneous decision due to deterministic
quantification of product designs. For example, ac-
cording to the matrix in Fig. 15, design A must be
selected although one physical test may reveal that
design B could outperform design A. Eventually the
statistical evidence in the design decision matrix
helps minimize a confliction between experimental
and predicted results in a product development
process.

Table 2 Calibrated friction model parameters

Random
parameters

Initial vector Calibrated vector

Mean Std. Dev. Mean Std. Dev.

μ0 1.95 0.195 1.875 0.0246

υ 0.33 0.033 0.258 0.011

(a) Normal loading: 3kg/cm
2

(b) Normal loading: 7kg/cm
2
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Fig. 12 Predicted and observed
results after model calibration
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4 Conclusion

This paper proposed the generic framework for the virtual
testing, which is composed of three sequentially executed
procedures: (1) statistical model calibration, (2) hypothesis
test for validity check, and (3) virtual qualification. The sta-
tistical model calibration was used to improve the predictive
capability of a computational model in a statistical sense. This
model calibration determined the calibrated statistics of the
unknown model variables while maximizing the likelihood
between predicted and observed data. Secondly, the hypothe-
sis test with limited observed data was proposed for the
validity check to see if a calibrated model is sufficiently
predictive for virtual testing of a new design. The hypothesis
test employed the area metric while taking into account sam-
pling uncertainty in the area metric. The area metric quantifies
the degree of mismatch between predicted and observed re-
sults. The uncertainty in the area metric due to the lack of
experimental data can be characterized with the PDF of the
area metric (fu,i) for a given observation data size. The cali-
brated model can be accepted only if the area metric is less
than a predefined critical value (Di(α)). Lastly, the design
decision matrix of a valid model was proposed to make a
decision on virtual qualification of a product. This qualifica-
tion can provide statistical evidence for rational decision-
making on new product designs. The merits of the proposed
framework were demonstrated with a tread block problem.
The uncertainty in elastic modulus was first characterized with
the material test data whereas the statistics of the unknown
model variables (μ0, v) were determined through the statistical

calibration. The hypothesis test confirms the validity of the
calibrated model. Finally, the virtual qualification helps make
a qualified product design decision. It is concluded that the
proposed framework can offer a standard guideline for engi-
neers to develop a highly predictable computational model
and is more practical and appropriate approach in industry
because of limited resources (e.g., time, budget, man-power).

This study can be further improved in future by addressing
the following issues including

1. In case a calibrated model turns out to be invalid, model
refinement should be considered. ASME (ASME 2006)
defined model refinement as a process to change the math-
ematical expressions for building a more realistic model
that better represents the physics of the system. Technically
speaking, model refinement process includes activities
such as identifying the root causes of the model invalidity
and minimizing the degree of the invalidity by improving
mathematical and computational models. This underscores
the need of a systematicmethodology formodel refinement
to develop formal steps and related ideas.

2. As mentioned in Section II.A, the prediction and observa-
tion (experiment) errors were not considered in this study.
However, it might be interesting to address a model vali-
dation procedure including a process to determining the
best form of these errors when these errors are not negligi-
ble, and how the errors affect the model validation.

3. The distribution type candidates of unknown model vari-
ables were decided based on the best of the authors’
knowledge. It is of course interesting to investigate how

(a) Design B (Longitudinal groove) (b) Design C (Vertical groove)

Fig. 13 Two design alternatives
(size: 30×30×8 mm, contour
indicates simulated contact
pressure.)

(a) Predicted and observed results (b) Calculation of Um

Fig. 14 Predicted and observed
results (Normal load: 7 kg/cm2)
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the distribution types of model variables affect calibration
results. Moreover, it is important to build the database for
the distribution types of the model variables based on pre-
knowledge and known information as one understand an
engineered system better. The database can help computer
model developers determine appropriate distribution types.
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