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Abstract Often engineered systems entail randomness as a
function of spatial (or temporal) variables. The random field
can be found in the form of geometry, material property, and/
or loading in engineering products and processes. In some
applications, consideration of the random field is a key to
accurately predict variability in system performances. How-
ever, existing methods for random field modeling are limited
for practical use because they require sufficient field data. This
paper thus proposes a new random field modeling method
using a Bayesian Copula that facilitates the random field
modeling with insufficient field data and applies this method
for engineering probability analysis and robust design optimi-
zation. The proposed method is composed of three key ideas:
(i) determining the marginal distribution of random field real-
izations at each measurement location, (ii) determining opti-
mal Copulas to model statistical dependence of the field
realizations at different measurement locations, and (iii)
modeling a joint probability density function of the random
field. A mathematical problem was first employed for the
purpose of demonstrating the accuracy of the random field
modeling with insufficient field data. The second case study

deals with the assembly process of a two-door refrigerator that
challenges predicting the door assembly tolerance and mini-
mizing the tolerance by designing the random field and pa-
rameter variables in the assembly process with insufficient
random field data. It is concluded that the proposed random
field modeling can be used to successfully conduct the prob-
ability analysis and robust design optimization with insuffi-
cient random field data.

Keywords Random field . Copula . Proper orthogonal
decomposition (POD) . Robust design optimization . Bayes

Nomenclature
Θ random field
μ ν mean and variation of the random field
ϕ signature of the random field
Σ covariance matrix
Δ distribution parameter vector
d design vector of random parameter variables
γ design vector of random field variables
α coefficient of the random field signature
λ eigenvalue of the covariance matrix
τ Kendall’s tau
C c cumulative distribution function and probability

density function of the Copula
D bivariate data
F f cumulative distribution function and probability

density function
M number of random fields
m n number of random field data and number of

measurement locations
Q number of test Copulas
V random field variable
x measurement location
MD number of random field design variables
ND number of design variables
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NC number of probabilistic constraints
NP number of random parameters

1 Introduction

Random field characterizes randomness as a function of
spatial (or temporal) variables. So far, little effort has
been made to consider the random field in engineering
probability analysis and design (Choi et al. 2006;
Missoum 2008; Chen et al. 2010; Basudhar and
Missoum 2009). That is mainly because of little or no
effective approach for random field modeling, miscon-
ception of minor influence of the random field on
system performances, or both. Hence, the random pa-
rameter approach (RPA) has been popular in probability
analysis and design for engineering products and pro-
cesses. The RPA models manufacturing and operation
variability with simplification or ignorance of the spatial
or temporal variability (i.e. the random field). For in-
stance, spatial variability of a plate thickness can be
modeled with a simplified form like a thickness random
parameter. Such simplification of the random field in
engineering practice may lead to an unreliable design. It
has been recently acknowledged (Missoum 2008; Chen
et al. 2010; Basudhar and Missoum 2009; Rajaee et al.
1994; Tamura et al. 1999; Berkooz et al. 1996;
Fukunaga 1990; Yin et al. 2009; Xi et al. 2010) that
consideration of the random field is a key to accurately
predict variability in system performances, especially,
field-sensitive failures (e.g., notch, buckling) and
small-scale applications, in which tolerance control is
more important but challenging. The random field can
be found in the form of geometry, material property,
and load in micro-electro-mechanical systems (MEMS),
mechanical, and electronics products.

It is challenging to take into account the random
field for probability analysis and design due to three
primary reasons. First, it can be complicated and expen-
sive to characterize the random field in engineered
systems. Second, very few techniques are available to
account for both random parameter and field variables
for probability analysis and design. Third, the amount of
random field realizations is often lacking in most engi-
neering problems. To resolve the first challenge, various
methods for random field characterization have been
proposed, including the midpoint method (Der
Kiureghian and Ke 1988), the spatial averaging method
(Vanmarcke and Grigoriu 1983), the shape function
method (Liu et al. 1986), and the proper orthogonal
decomposition (POD) method (Turk and Pentland
1991). The first two methods can represent a random

field in a discrete manner using a random vector. How-
ever, they require a large number of random field var-
iables to describe the field reasonably well (Li and Der
Kiureghian 1993). The shape function method can ex-
press a random field using a continuous function. But
the accuracy of the method depends upon the selection
of shape functions (Li and Der Kiureghian 1993). The
POD method can describe a random field in both con-
tinuous and discrete ways. Furthermore, it is shown that
the POD method is much more efficient than the other
three methods while meeting a given accuracy level
(Sudret and Der Kiureghian 2000). To resolve the sec-
ond challenge, techniques have been sought to approx-
imate a random field with a set of random field vari-
ables in a parametric form (Missoum 2008; Chen et al.
2010; Basudhar and Missoum 2009). It was, however,
assumed that the random field variables are statistically
independent. This assumption may not be valid because
random field variables using the POD may be statisti-
cally dependent, thus resulting in inaccurate probability
analysis (Xi et al. 2010). In order to address such a
limitation, the authors proposed the random field model-
ing method in the previous work that accounts for the
statistical dependence in the random field variables (Xi
et al. 2010). To resolve the third challenge, an effective
random field modeling technique with insufficient ran-
dom field realizations should be proposed. Our study
shows that available approaches for random field model-
ing are inadequate when random field realizations are
insufficiently provided. This paper thus envisions ad-
dressing the challenge by proposing a Bayesian Copula
based random field modeling technique. The proposed
technique combined with the random field characteriza-
tion approach such as the POD method can leverage
any advanced probability analysis methods, such as the
dimension reduction (DR) method (Rabitz et al. 1999;
Rabitz and Alis 1999; Xu and Rahman 2004; Huang
and Du 2006), eigenvector dimension reduction (EDR)
method (Youn and Xi 2009), polynomial chaos expan-
sion (PCE) method (Lee and Chen 2009; Hu and Youn
2009), etc.

This paper is structured as follows. Section 2 reviews the
POD method for random field modeling. Section 3 presents
the proposed Bayesian Copula based random field modeling
technique with insufficient field realizations. Section 4 pre-
sents a mathematical case study for demonstrating the accu-
racy of the proposed random field modeling technique with
insufficient random field data. In Section 5 an industrial case
study was used to conduct robust design optimization (RDO)
of door misalignment in a two-door refrigerator assembly
process while considering the random field of tolerance with
insufficient realizations. Section 6 concludes the paper with
description of the contributions and limitation.
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2 Review of the proper orthogonal decomposition (POD)
method

A random field θ can be decomposed into mean μ and vari-
ation parts ν. The kth random field realization can be generally
expressed as

θk ¼ μþ νk ð1Þ

As an example, Fig. 1 shows the V-8 engine head and one
random field realization of the head surface height (Wang et al.
2009) (see Fig. 1b), where the color denotes the height (μm)
measured by a Coherix ShapixTM surface inspection system. The
random field reflects the performance of a machining system,
which of course affects engine performances. Other examples
can be found in various engineering fields: chassis and frames in
automotive and aerospace, channel diameters in microfluidics,
and beam thickness in the MEMS bistable mechanism.

Using the POD approach, a random field can be represent-
ed by Eq. (2) with sufficient number (e.g. m) of sampled
random field realizations.

θ xð Þ ¼ μ xð Þ þ
X
i¼1

m

αi
ϕi xð Þ
ϕi xð Þk k ð2Þ

where x is the spatial measurement location; ϕi(x) is the i
th

field signature of an ensemble of the random field variation
ν(x); αi is the coefficient of the i

th field signature and its value
can be obtained through the inner product operation (●) be-
tween the field variation ν(x) and the unit field signature as

αi ¼ ν xð Þ• ϕi xð Þ
ϕi xð Þk k ð3Þ

Theoretically, all signatures are required to exactly repre-
sent the random field that can be realized by a sufficiently
large number (m) of sampled realizations as described in
Eq. (2). However, only a few important signatures may be
vital for the representation of the random field. In Eq. (3), a
dataset of the coefficient (αi) of the ith signature can be
obtained from all sampled realizations. Hence, Vi was defined
as a random field variable that statistically models the coeffi-
cient dataset (αi) of the ith signature. Therefore, the random
field was represented as a function of deterministic field
signatures (ϕi) and the corresponding random field variables
(Vi) as explained in Eq. (4).

θ xð Þ≅μ xð Þ þ
X
i¼1

N

V i
ϕi xð Þ
ϕi xð Þk k ð4Þ

where Vi is the i
th random field variable andN is the number

of the vital field signatures. The distributions and statistical
parameters of the random field variable Vi can be identified

using the maximum likelihood estimation (MLE) and
goodness-of-fit tests.

In engineering applications, it is more practical to represent
a random field in a discrete manner than in a continuous way
because a finite amount of field data is given at discrete field
locations. As shown in Fig. 1, it is reasonable to say that each
realization has a finite amount of measurement locations (n),
and physical quantities at each measurement location has
variability over a finite amount of sampled realizations (m).
The physical quantities could be geometric tolerances, mate-
rial properties, and/or loads. Thus anm×nmatrix representing
the random field (Θ) can be constructed as

θ ¼
θ11 θ12 ⋯ θ1n
θ21 θ22 ⋯ θ2n
⋮ ⋮ ⋱ ⋮
θm1 θm2 ⋯ θmn

2664
3775 ð5Þ

where θlj indicates the measured physical quantity at the jth

measurement location of the lth sampled realization. Such
representation works for multi-dimensional problems. Re-
gardless of the dimension of the random field, the scanned
multi-dimensional data are listed in a one-dimensional array
from θl1 to θln for the l

th sampled realization. The mean of the
random field is estimated as

μ ¼ θ•1; θ•2;⋯; θ•n
� � ð6Þ

where θ• j stands for the average of the jth measured
physical quantity over the sampled realizations. Hence the
variation part is expressed as

ν ¼
θ11−θ̄•1 θ12−θ̄•2 ⋯ θ1n−θ̄•n
θ21−θ̄•1 θ22−θ̄•2 ⋯ θ2n−θ̄•n
⋮ ⋮ ⋱ ⋮

θm1−θ̄•1 θm2−θ̄•2 ⋯ θmn−θ̄•n

26664
37775 ð7Þ

The signature vectorϕ can then be obtained by solving an
eigen-problem asX

ϕ ¼ λϕ ð8Þ

where λ is the eigenvalue of the covariancematrixΣ (n×n)
that is defined asX

¼ vTv ð9Þ

3 Random field modeling with insufficient realizations

When the mean (μ) and variation (ν) of the random field do
not converge to true values, available realizations is said to be
insufficient for the random field modeling. In such cases, the
existing techniques for the random field modeling (Yin et al.
2009; Xi et al. 2010; Der Kiureghian and Ke 1988;
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Vanmarcke and Grigoriu 1983; Liu et al. 1986; Turk and
Pentland 1991; Li and Der Kiureghian 1993) are inadequate
because the random field may be inaccurately represented.
This paper propose a new Bayesian Copula based random
field modeling technique when insufficient random field real-
izations are provided.

Let θ(x) be a continuous random field of interest. The
discretized random field with n measurement locations can be
represented as θ=[θ(x1),…, θ(xn)], where xj is the j

th measure-
ment location andθ(xj) is a vector of measured physical quantity
for all sampled realizations at the jth measurement location. The
randomness ofθ(xj) can be represented by a random variableΘj.
Hence, the random field is represented by a collection of random
variable Θj (j =1, …, n), namely a joint probability density
function (PDF). Thus, random field modeling essentially be-
comes a process to identify an n-dimensional joint PDF with
insufficient random realizations of Θj. The proposed approach
employs a Copula for the joint PDF modeling because the
Copula is capable of modeling a multivariate distribution with
various statistical dependence patterns.

3.1 Joint PDF modeling of the random field

A Copula is a joint distribution function of standard uniform
random variables. According to Sklar’s theorem (Sklar 1959),
there exists an n-dimensional CopulaC such that for allΘj in a
real random space

F Θ1; …;Θnð Þ ¼ C F1 Θ1ð Þ; …; Fn Θnð Þð Þ ð10Þ

where F is an n-dimensional joint distribution function with
marginal distribution functions F1, …, Fn and C is the Copula
cumulative distribution function (CDF). To date, most Copulas
deal with bivariate data due to the lack of practical n-dimensional
generalization of the coupling parameters (Huard et al. 2006;
Roser 1999). Oneway to deal withmultivariate data is to analyze
the data pair-by-pair using two-dimensional Copulas. Hence, a
total number ofCh2

n bivariate Copulamodeling is required for the
joint PDFmodeling of the random field, whereCh2

n indicates the
mathematical operation of 2-combinations from n elements. To
release the computational burden when the number of measure-
ment locations n is too large, it is desirable that only the pair with
strong statistical dependence should be modeled because

accurate generation of the random field realization largely de-
pends on the pair modeling with strong statistical dependence.
One numerical example will be used to further illustrate this
matter in Section 4. It is, however, impossible to know the level
of statistical dependence among pairs unless all the pair modeling
has been conducted. Therefore, it is assumed that the random
field realization at the jth measurement location, i.e. θ(xj), should
have the strongest statistical dependence with its closest neighbor
which could be identified by the Euclidean distance under gen-
eral situations. Compared to the Copula modeling, calculation of
the Euclidean distance is much more computationally efficient.
To facilitate detailed modeling, location index is used to indicate
the closest neighbor at specific measurement location. For in-
stance, it is assigned that xj+1 is the closest neighbor of xj, and xj+2
is the closest neighbor of xj+1 exclude for xj. Therefore, Copula
modeling is only performed between the randomvariableΘj’ and
Θj’+1 (j′=1, …, n-1), resulting in a significant reduction of the
Copula modeling from Ch2

n to n-1. Overall steps of the random
field modeling are first illustrated, then technical details are
followed in the subsections.

Step 1: Optimal marginal distributions are modeled for all
random variablesΘj (j=1, 2,…, n) using Bayesian statistics to
describe random field realizations at each measurement loca-
tion. Technical details are illustrated in subsection 3.1.1.

Step 2: Bivariate Copula modeling is performed pair-by-
pair for random variables Θj’ and Θj’+1 (j′=1, 2, n-1) using a
Bayesian Copula approach. Technical details are illustrated in
subsection 3.1.2.

Step 3: Sufficient random field samples are generated using
Monte Carlo simulation (MCS) according to the conditional
PDF f(θj’+1|θj’) and initial random sample generation for mar-
ginal distribution of f(θ1).

3.1.1 Determination of the optimal marginal distribution

Bayesian statistics is employed to select the optimal marginal
distribution for Θj. Let the random variable Θj follow a PDF
with an unknown distribution parameter vector Δj. From the
Bayesian point of view, δj is interpreted as a realization of a
random vectorΔjwith a PDF f Δ j

δ j

� �
. The density function

expresses what one thinks about the occurring frequency of
Δj before any future observation ofΘj is taken, that is, a prior

Fig. 1 V-8 engine head and its
random field realization of the
surface height
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distribution. Based on the Bayes’ theorem, the posterior dis-
tribution of Δj given a new observation of Θj can be
expressed as

f
Δ j

���Θ j

δ j

���θ j

� �
¼

f
Θ j

���Δ j

θ j

���δ j

� �
f Δ j

δ j

� �
f Θ j

θ j

� � ð11Þ

The Bayesian approach is used for updating information
about the parameter vectorΔj. First, a prior distribution ofΔj

should be assigned before any future observation of Θj is
taken. Then, the prior distribution of Δj is updated to the
posterior distribution as the data of Θj is obtained. It is ex-
tremely difficult to compute an exact analytical form of the
posterior distribution for the parameter vector Δj since the
normalization factor (the denominator in Eq. (11)) requires a
complicated and multi-dimensional integration. Various ap-
proaches have been developed and employed to overcome the
difficulty including the conjugate Bayesian (Zhan et al. 2012),
Laplace approximation (Boone et al. 2005; Wang and Blei
2013), entropy based methods (Zhu and Xing 2009; Guan
et al. 2012), Metropolis-Hastings algorithm (Berg 2004), etc.
With the posterior distribution of the parameter vector Δj in
Eq. (11), the optimal marginal distribution of Θj can then be
determined by generating sufficient random samples using
MCS based on the underlying PDF of Θj.

3.1.2 Determination of the optimal copula

The common methods to select the optimal Copula are based
on the maximum likelihood approach (Fermanian 2005; Chen
and Fan 2005; Panchenko 2005), which estimates an optimal
parameter set. Recently a Bayesian Copula approach (Huard
et al. 2006) was proposed to select the optimal Copula that is
independent on the parameter estimation. It was further shown
in the study that this approach provides more reliable identi-
fication of true Copulas even with the lack of samples (Huard
et al. 2006). Hence, the Bayesian Copula approach is
employed for the statistical dependence modeling between
random variables Θj’ and Θj’+1. For the sake of completeness,
we briefly describe the procedures for selecting the optimal
Copula using the Bayesian approach. Interested readers
should refer to the reference (Huard et al. 2006) for details.

A set of hypotheses is first made as follows using the
Bayesian Copula approach.

Hk : The data come from Copula Ck, k=1, . . ., Q

The objective is to find the Copula with the highest prob-
ability Pr(Hk |D), i.e. the optimal Copula, from a finite set (Q)
of Copulas, where D represents the bivariate data in the

standard uniform space. Based on the Bayes’ theorem, the
probability that the bivariate data come from the Copula Ck is
expressed as

Pr Hk

���D� �
¼

Pr D
���Hk

� �
Pr Hkð Þ

Pr Dð Þ ¼
Z 1

−1

Pr D
���Hk ; τ

� �
Pr Hk

���τ� �
Pr τð Þdτ

Pr Dð Þ
ð12Þ

where τ is a non-parametric measure of the statistical
dependence and ranges from -1 to 1 for all Copulas. Eq. (12)
can be rewritten to Eq. (13) because Pr(τ) is equally likely for
each Copula Ck and Pr(Hk |τ) is equally probable with respect
to a given τwhich reflects no preference for a specific Copula.

Pr Hk

���D� �
¼

Z 1

−1

Pr D
���Hk ; τ

� �
dτ

Pr Dð Þ ð13Þ

Pr(D|Hk, τ) can be calculated from the Copula PDF as

Pr D
���Hk ; τ

� �
¼ ∏

l¼1

m

ck θ j0;l; θ j0þ1;l

���τ� �
ð14Þ

where ck (•) is the PDF of the k
th Copula,m is the number of

the bivariate data set, and θ j’,l and θ j‘+1,l are the l
th bivariate

data realized from random variables Θj’ and Θj’+1. The nor-
malization of Pr (D) can be computed using the sum rule
(Jaynes and Bretthorst 2003). This study employs four repre-
sentative Copulas, i.e. Clayton, Gaussian, Frank, and Gumbel,
for the bivariate statistical modeling.

3.2 Remarks of the random field modeling

With sufficient samples of the random field generated from
the joint PDF modeling, existing random field characteriza-
tion methods such as the POD method can be readily
employed for the random field characterization using
Eq. (4). Then, any advanced probability analysis methods
can be used to further perform probability analysis and engi-
neering design. In addition, bounds of the random field may
be too wide due to insufficient field realizations. It is feasible
to narrow the bounds of the random field by forcing genera-
tion of the random field realizations within a reasonable
confidence interval (CI) (e.g. 95 %) in Step 3 of Section 3.1.

It is worth noting that a generated field realization could be
bumpy due to the sample randomness from the Copula model.
Unlike the Gaussian random field (Haran 2012), the proposed
approach does not assume any explicit functional form of the
covariance functionwhich results in the smooth realization of the
Gaussian field. Such smoothness of the random field may not be
true in reality as shown by the machined surface roughness
(Bhushan et al. 2012). However, if the random field realization
is believed to be smooth, various smoothing filters (e.g. the
Savitzky-Golay smoothing filter (Orfanidis 1996)) can be used
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to smooth out the bumpy realization. Furthermore, it is assumed
in the Gaussian random field that the field realizations are
extracted from the multi-normal distributions. The proposed
random field modeling approach eliminates such an artificial
assumption and hence is more general than the Gaussian
approach.

3.3 Accuracy quantification of the random field modeling

It is desirable to quantify accuracy of the random field model-
ing for various reasons. For example, a good metric can
provide unbiased accuracy measure of the random field
modeling from different approaches. In addition, the metric
should represent about 100 % accuracy level if the approxi-
mate random field converges to the true random field when
sufficient random field realizations are available. Due to little
research in random field modeling with insufficient realiza-
tions, however, such a metric is not readily available.

The cross entropy (Kullback and Leibler 1951), also called
Kullback–Leibler (KL) distance, was proposed to measure the
similarity between a true PDF and an estimated PDF. The
smaller the expected cross entropy, the higher degree of simi-
larity is the approximate PDF to the true PDF. This concept is
adopted in this paper to quantify accuracy of the random field
modeling because the random field is essentially represented by

a joint PDF. Let f(θ) and bf (θ) denote the true and approximate
joint PDFs, respectively, with regard to a random field

realization θ. The cross entropy or KL distance is defined as

ζ f ; bf� �
¼

Z
f θð Þ⋅ln f θð Þbf θð Þ

" #
dθ ð15Þ

Based on the concept of Shannon’s entropy, Eq. (15) com-
putes the difference in the expected information between two
distributions as

ζ f ; bf� �
¼ E f ln fð Þ½ �−E f ln bf� �h i

ð16Þ

where the random field realization θ is omitted for clarity. It
should be noted that ζ is not a physical distance between f andbf in the common sense, since the KL distance is not associa-

tive in general, i.e., ζ(bf , f)≠ζ(f, bf ). Nevertheless, ζ is an
information-theoretic distance measure between two different
distributions.

4 Case study: a mathematical example of random field
modeling

A mathematical example is used to demonstrate accura-
cy of the proposed approach for random field modeling
with insufficient realizations. The analytic random field
is formulated as

θ ¼ 0:1
X
r¼1

5
sin

Krπx
r

	 

þ sin

Krπ 100−xð Þ
r

	 
� �
ð17Þ

where Kr~Normal(2, 0.022); x stands for the mea-
surement location and ranges from 1 to 100. Sufficient
field realizations can be obtained by generating suffi-
cient random samples of Kr as shown in Fig. 2. Con-
vergence of the mean and variance of the random field
was studied by increasing the number of realizations. It
was found that the mean and variance of the random
field converges to the true values with one hundred
realizations (see Fig. 3a) and five hundred realizations
(see Fig. 3b), respectively. Hence, it is concluded from
this example that about five hundred realizations are

Fig. 2 One thousand random field realizations

(a) Convergence of the mean (b) Convergence of the variance 

Fig. 3 Convergence of the mean
and variance of the random field
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required in order to accurately represent the random
field using existing random field modeling approaches
(e.g., the POD method in Eq. (4)).

In this study only five realizations (see Fig. 4) are assumed
to be available for the random field modeling for demonstra-
tion of the proposed approach with insufficient realizations.
As described in Section 3.1.2, the joint PDF of the random
field was obtained by determining the optimal Copulas be-
tween Θj’ and Θj’+1 where j′ ranges from 1 to 99. Figure 5
shows part of the results where the first line illustrates the
optimal marginal distributions of Θj and the second line
indicates the optimal Copulas between Θj’ and Θj’+1.

MCS was employed to generate sufficient random field
realizations based on the Copula modeling of the random field
according to the step 3 in Section 3.1. It is noted in Fig. 6a that
the generated realization is a little bumpy because of the
sampled randomness from the Copula model. To suppress
the noise, the Savitzky-Golay smoothing filter was used to
smooth the generated realization as shown in Fig. 6a. The
cross entropy ζ was calculated as 0.16 and visual comparison
between the approximate and actual random fields is shown in
Fig. 6b, where only the lower and upper bounds of the actual
random field is plotted. From the fact that the cross entropy ζ
is relatively small and the trend of the sampled random field

matches quite well with the actual one, the proposed method
of the random field modeling represents the actual random
field reasonably well even with insufficient random field
realizations. It is desirable that the approximate random field
has wider field variability than the true one when insufficient
field realizations are provided. However, the proposed ap-
proach is able to generate the random field realizations within
a given CI to reduce the large variability of the approximate
random field as shown in Fig. 6c. In addition, it is worth
noting that bounds of the approximate random field compared
to the true one depend on not only the number of field
realizations but also their specific realization locations.

A comparison study was further conducted by only
performing bivariate Copula modeling between Θ1 and
Θk, where k ranges from 2 to 100, and then generating
sufficient random field realizations based on the condi-
tional PDF f(θk|θ1) and initial random sample generation
for marginal distribution of f(θ1). In this scenario, the
visual comparison between the approximate and actual
random fields is very similar to Fig. 6b because the
marginal distributions of Θj are the same in both cases.
However, the cross entropy ζ was calculated as 0.35
indicating a poor representation of the actual random
field due to the relatively poor joint PDF modeling. The
results indicate that pair modeling with stronger statisti-
cal dependence help produce more accurate random
field realizations.

5 Case study: random field modeling for robust design
of door misalignment reduction in a Two-door
refrigerator assembly process

Many consumers are concerned about door misalignment of a
multi-door refrigerator. The door misalignment is caused by
parametric and field variability in the assembly process of the
refrigerator. Followed by modeling the field variability with

Fig. 4 Five random field realizations

Fig. 5 Joint PDF modeling of the random field
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the random field variables, probability analysis and design can
take care of both random parameters and fields in a parametric
form (Xi et al. 2010). This study incorporates the proposed
random field modeling into robust design optimization (RDO)
that can minimize the door misalignment in the presence of
both random parameters and fields. The RDO problem can be
formulated as

minimize μy d; γð Þ þ 6σy d; γð Þ
subject to Gi X; Θ Vð Þð Þ≤0; i ¼ 1;⋯;NC

dL≤d≤dU; d∈RND and X∈RNP

γL≤γ≤γU; γ∈RMD and Θ∈RM

where μy and σy are the mean and standard deviation of the
objective function, respectively, d is the design vector of
random parameter variables, γ is the design vector of random
field variables,Gi is the i

th constraint function,X is the random
parameter vector, V is the random field variable vector, NC,
ND, NP, MD, and M are the number of constraints, random
parameter design variables, random parameters, random field
design variables, and random fields, respectively.

5.1 Probability analysis of the door misalignment

Let us consider the assembly process of a two-door refriger-
ator, which comprises of the main parts (front-L, inner case,
hinge, freezer and refrigerator sides) as shown inFig. 7.Door
misalignment of a two-door refrigerator can characterize the
performance of the three-stage assembly process, which is

outlined with the process inputs and outputs as shown in
Fig. 8. The objective of this study is to statistically predict
and then minimize the door misalignment by analyzing the
propagation of parametric and field variability in the assem-
bly process through three assembly processes including: 1)
insertion of the front-L component to the inner case in both
freezer and refrigerator sides, 2) foaming process to increase
stiffness of the main frame of the two-door refrigerator, and
3) door hinge installation to the front-L component. These

(a) One realization of random field (b) Comparison of field variability

(c) Comparison of field variability with 95% CI

Fig. 6 Random field modeling
with insufficient field realizations
based on the Copula

Inner Case

Flange

Front-L 

Hinge 

Insertion

direction

Refrigerator side

Freezer side

Fig. 7 A two-door refrigerator and its main parts used in the assembly
process
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assembly processes can produce the deformation field of the
front-L component in a random manner. To demonstrate the
effectiveness of the proposed random field modeling ap-
proach for probability analysis and design, this study was
designed to conduct: 1) probability analysis of the door
misalignment, and 2) robust design optimization of the door
misalignment.

HyperWorks was used to build the insertion model as
shown in Fig. 9a. The simulation model with 128,916° of
freedom is mostly composed of Shell43 except the contact
region between the front-L and the flange where Targe170 and
Conta173 were employed. The edge of the inner case and the
bottom of the front-L were fixed as indicated in Fig. 9a.
ANSYS was then employed to perform the nonlinear contact
analysis for identifying the final balance position between the
front-L and the flange.

As shown in Figs. 8 and 9b, eight random input parameter
variables were defined for the freezer and refrigerator sides.
Table 1 shows the baseline statistical properties of the random
parameter variables for statistical calibration of the front-L
deformation after the insertion process, where the subscripts
R and F indicate the refrigerator and freezer sides, respective-
ly. Given measured data representing the random input pa-
rameters, the statistical properties of the random parameter
variables were determined using the maximum likelihood
estimation (MLE) and goodness-of-fit tests. The means and
standard deviations of the random input parameters were
considered as the design variables in the RDO problem. The
deformation of the front-L (Y1) after the insertion process was
represented by two discrete random fields for the freezer and
refrigerator sides, where each random field is composed of six
measurement locations in two-dimensional space.

Process 1: Insertion 

FEA

Outputs:front-L deformation  

front-L

Process 2: Foaming

Outputs:front-L deformation  

Black-box analysis

Foaming 
tolerance

Process 3: Hinge process 

Output: door misalignment  

Measurements

Rigid assembly analysis 
door hinge

Fig. 8 Assembly process of a
two-door refrigerator

(a) FE model of the insertion process (b) Definition of random parameter variables

Front-L

Flange

Inner case

Front-wheel

Contact region

Fig. 9 FE model of the insertion
process and the input random
parameter variables
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The foaming process further deforms the random de-
formation field (Y1) of the front-L into the new random
deformation field (Y2) as defined in Eq. (18), where
Θfoaming is the front-L deformation caused by the foaming
process. The realizations of the front-L deformation were
made by measuring the actual deformation before and
after the foaming injection process and subtracting the
Y1 from Y2 as shown in Eq. (18). The proposed Bayesian
Copula was used to model the random field (Θfoaming)
with nine realizations as shown in Fig. 10. Given the
sufficient random field realizations sampled from the joint
PDF of the random field, the POD method was then used
to characterize the foaming deformation with six impor-
tant field signatures and random field variables (V1R to
V6R and V1F to V6F) as shown in Table 2. Their statistical
properties were determined using the maximum likelihood
estimation (MLE) and goodness-of-fit tests. The probabil-
ity analysis for the door misalignment involves twelve
random field variables defined in Table 2 and eight ran-
dom parameter variables defined in Table 1. Similar to the
random parameter variables, these random field variables
were also considered as the design variables where their
means and standard deviations were adjustable.

Y 2 ¼ Y 1 þΘfoaming ð18Þ

In the last process, the hinges were installed to the de-
formed front-L (Y2) at both freezer and refrigerator sides as
shown in Fig. 11, where Y3 is the horizontal distance from the
hinge shaft to the hinge edge assembled together with the
deformed front-L (Y2). Difference of the distance Y3 between
the freezer and refrigerator sides causes the door misalignment
Y4 defined in Eq. (19).

Y 4 ¼ Y 3F–Y 3R ð19Þ

The horizontal distance (Y3F and Y3R) were calculated by
Eqs. (20) and (21).

Y 3F ¼ X 5Fcos α Y 2Fð Þð Þ−d Y 2Fð Þ ð20Þ

Y 3R ¼ X 5Rcos α Y 2Rð Þð Þ−d Y 2Rð Þ ð21Þ

where X5 is the distance from the hinge shaft to the edge, α
and d are the tilted hinge angle and thickness respectively
which are determined by the deformed front-L (Y2). Specifi-
cally, X5F~Weibull (52.9525, 105.7080) and X5R~Lognormal
(3.9814, 0.0097) using the goodness-of-fit test with sufficient
sample measurement data.

In summary, to execute the probability analysis of the
door misalignment with a large number of random vari-
ables—ten random parameter variables and twelve ran-
dom field variables, an efficient probability analysis meth-
od must be employed. The EDR method was used with 2
N’+1 eigenvector samples (45 analyses) for probability
analysis of the door misalignment, where N’ indicates the
total number of random variables, i.e. random parameter
and random field variables. As shown in Fig. 12, the
proposed method for random field modeling and proba-
bility analysis accurately predicted the PDF of the door
misalignment compared with the normalized histogram
obtained from MCS.

Table 1 Statistical properties of random parameter variables in the
insertion process

Variable Type Mean Std. Dev.

X1R Gamma 0.383 0.260

X2R Lognormal 0.321 0.387

X3R Beta 0.631 0.431

X4R Weibull 2.000 0.300

X1F Gamma 0.222 0.431

X2F Beta 0.467 0.398

X3F Beta 0.433 0.375

X4F Lognormal 1.897 0.290

Fig. 10 Foaming deformation for both freezer and refrigerator sides
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5.2 Robust design optimization of the door misalignment

This section presents the RDO problem (Youn et al.
2005) to minimize the door misalignment and its vari-
ability in the presence of many random parameter and
field variables in the refrigerator assembly process. The
RDO problem was formulated to minimize the variabil-
ity of the door misalignment (Y4) subject to the expense
constraint ($30,000) for the process design by managing
forty four design variables, composed of the means and
standard deviations of the twenty two random design
variables.

minimize μy4 μX;σX;μV;σVð Þ þ 6σy4 μX;σX;μV;σVð Þ
subject to G μX;σX;μV;σVð Þ≤30; 000

μX
L≤μX≤μX

U;σX
L≤σX≤σX

U

μV
L≤μV≤μV

U;σV
L≤σV≤σV

U

The expense functionG was defined as the sum of the four
expense components to change the means and standard devi-
ations of the random parameter and field variables in Eq. (22).

G μX;σX;μV;σVð Þ ¼ G1 μXð Þ þ G2 μVð Þ þ G3 σXð Þ þ G4 σVð Þ ð22Þ

It was assumed that $1,000 and $3,000 are the expenses to
change each mean value of the random parameter and field
variable, respectively. G1(μx) is thus calculated as the multi-
plication of $1,000 with the number of changed mean values
for the random parameter variable. G2(μV) is calculated as the
multiplication of $3,000 with the number of changed mean
values for the random field variable. For example, $10,000 is
required to change the means of all ten random parameter
variables from the baseline design to the optimal design. It
was assumed that the linear cost functions in Eqs. (23) and
(24) are used to estimate the expenses to change the standard
deviations of the random parameter and field variable,
respectively.

G3 σXð Þ ¼
X
i¼1

10
Ri σX i;0=σX i;new−1
� � ð23Þ

G4 σVð Þ ¼
X
j¼1

12
S j σV j;0=σV j;new−1
� � ð24Þ

where σXi,0 and σXi,new denote the baseline and new stan-
dard deviations of the ith random parameter variable, respec-
tively; σVj,0 and σVj,new stand for the baseline and new standard
deviations of the jth random field variable, respectively; it was
assumed that the coefficients Ri and Sj are $2,000 and $6,000,
respectively.

The EDR method was conducted to evaluate the mean
and standard deviation of the door misalignment at each
design iteration. The sequential quadratic programming was
used as an optimizer in the RDO problem. The objective
function was reduced from 9.837mm to 3.614mm with the
investment of $30,000 budget after eleven design iterations
as shown in Table 3. The PDFs of the door misalignment are
compared for the baseline and optimal designs, as shown in
Fig. 13.

Table 2 Statistical properties of random field variables for the foaming
deformation

Dist. Mean Std. Dev. Lower Bound Upper Bound

V1R Beta 0 0.4608 −1.5408 1.3915

V2R Beta 0 0.4030 −1.2139 1.2191

V3R Beta 0 0.3029 −0.9185 1.1227

V4R Beta 0 0.2527 −0.6938 0.8990

V5R Beta 0 0.1728 −0.7114 0.6856

V6R Beta 0 0.1387 −0.5360 0.5357

V1F Beta 0 0.9400 −3.5811 2.7251

V2F Beta 0 0.7504 −2.3523 2.2264

V3F Beta 0 0.3312 −0.9784 1.0110

V4F Beta 0 0.2333 −0.8149 0.8382

V5F Beta 0 0.1905 −0.5951 0.5284

V6F Beta 0 0.1291 −0.3810 0.4736

Fig. 11 Side view of the hinge installation

Fig. 12 Prediction of the door misalignment considering the random
field and parameter variables
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6 Conclusion

This paper addresses the random field modeling with insuffi-
cient field realizations for probability analysis and design of
engineering problems. The existing random field methods do
not work when random field data are lacking. Random field
modeling essentially becomes a process to identify an n-
dimensional joint probability density function (PDF) of the
random field with insufficient random realizations. This paper
thus proposed the Bayesian Copula based random field
modeling technique for probability analysis and robust design
optimization (RDO). The proposed approach employs a
Bayesian Copula for the joint PDF modeling because the
Copula can model bivariate distributions with various statisti-
cal dependence patterns. The joint PDF modeling can be
conducted in three steps: i) determination of the optimal

marginal distributions, ii) determination of the optimal Cop-
ulas, and iii) joint PDF modeling of the random field. Bayes-
ian statistics is employed to determine the optimal marginal
distribution for the random field realizations at each measure-
ment location. Given the optimal marginal distributions, this
study uses the Bayesian approach for the reliable determina-
tion of the optimal Copula. It is noted that the proposed
approach can handle not only non-Gaussian random field
but also insufficient field realizations. By simulating the joint
PDF of the random field, sufficient random field samples can
be generated out of limited field data. Given the sufficient
random field samples, the existing random field characteriza-
tion methods like the PODmethod can be used to characterize
the random field as a function of a few random field variables
and deterministic field signatures. Two examples including
the mathematical problem and the refrigerator assembly prob-
lem demonstrated that the proposed approach is effective for
probability analysis and design while accounting for insuffi-
ciency of random field realizations.

The proposed approach requires n−1 statistical depen-
dence modeling of random field realizations using two-
dimensional Copulas, where n is the number of the spatial
measurement locations in the random field. As the number of
the measurement locations increases, modeling the joint PDF
of a random field becomes computationally more expensive.
Hence, the proposed approach has a limitation in use when the
random field is characterized with a large amount (n) of spatial
measurement locations. This will be addressed in our future
research.
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