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ABSTRACT 

For the 2014 Prognostics and Health Management (PHM) 
Data Challenge Competition, the PHM Society proposed a 
problem surrounding risk prediction of engineering assets. 
We worked to address this problem by statistically analyzing 
the maintenance records, extracting key data features, and 
proposing an ensemble method for accurate prediction of 
imminent failure of assets. The data analysis of maintenance 
records provided two key pieces of information: 1) parts and 
part replacement reasons were able to be classified into 
corrective and scheduled maintenance actions, and 2) a linear 
relation was found between failure frequency and usage time. 
Based on this information, we proposed two risk-prediction 
methods, namely, a method based on part lifespan calculation 
and a method based on usage classification. Further work 
showed that the ensemble approach, which combined these 
two methods with a risk assignment formulation, provided 
more accurate risk prediction. The score predicted by the 
ensemble approach ranked in the second place in the 2014 
PHM Data Challenge Competition. 

1. INTRODUCTION 

As sensing and data acquisition techniques have advanced, 
the amount of sensory data available from engineered assets 
has increased dramatically. The data are collected for 
different purposes, such as to aid in optimizing operation, 
condition monitoring, and maintenance. Among the data 
sources, maintenance data are of great importance for 
reliability analysis of engineering assets. In principle, 
analysis of the data should help optimize decision making in 
terms of maintenance scheduling and cost. However, in 
reality, it is extremely challenging to extract useful 

information from the maintenance data (Heng, Zhang, Tan, 
& Mathew, 2009). In practice, this process often suffers from 
a lack of relevant techniques, limited budgets, and time 
constraints.  

For the 2014 Prognostics and Health Management (PHM) 
Data Challenge Competition, the PHM Society proposed a 
problem of risk assessment for engineering assets that makes 
use of a maintenance record database. The primary task of the 
problem was to predict the risk of the selected assets with the 
limited information available in the maintenance data. The 
limited data were to be interpreted as maintenance data 
without any description about the type of asset, usage loading, 
failure modes and mechanisms. This extra challenge made it 
even more difficult to predict imminent failure of assets than 
in prior studies. In previous work, and in practice, some of 
this additional information is generally available. 

Health management of engineering assets has received 
significant attention due to its potential value. About two 
decades ago, Crow (1990) developed a Weibull-Poisson 
process model that represents a repairable system’s reliability. 
Lawless, Hu, and Cao (1995) proposed relevant distribution 
models by fitting reliability event data. Even more recently, 
a systematic approach on how to select a relevant model was 
investigated by Louit, Pascual, and Jardine (2009). These 
studies, however, only focused on statistical modeling of 
maintenance data and did not address how to predict the risk. 

Recently, prediction of the future condition of assets started 
to be actively addressed. Zhou (2011) adopted the auto-
regression function to model the failure number of a bus fleet. 
The fitted model can be used to predict the failure number in 
the future. Taghipour, Banjevic, and Jardine (2011) attempted 
to analyze maintenance records of a medical device. The 
authors presented a method that classifies the different types 
of failure including soft and hard failure. Hjartarson and Otal 
(2006) developed techniques that quantify the impact of 
preventative maintenance on health indices and assess future 
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asset conditions. Braglia, Carmignani, Frosolini, and 
Zammori (2012) presented a multivariate statistical approach 
that calculates the mean time between failures. Jahromi, 
Piercy, Cress, Service, and Fan (2009) presented a condition-
based asset management tool that quantifies power 
transformer degradation. Most of the approaches in the 
literature relied on the scheme of statistical modeling and 
machine learning. In actual field applications, the accuracy 
achieved on paper is not guaranteed due to invalidity of the 
assumptions and a lack of sufficient prior knowledge. 

In this competition, we attempted to predict failure with 
extremely limited information; risk prediction in our situation 
involved a large number of unknown parts in the given assets, 
combined with a short span of training datasets. These 
additional challenges were not addressed in any previous 
study. Therefore, the goal of this study was to extract useful 
information utilizing the limited maintenance data offered by 
the PHM Data Challenge Committee and to accurately assess 
the risk of the engineering assets for the near future. To 
effectively present the procedures of achieving this goal, this 
paper is organized as follows. Section 2 provides an overview 
of the original problem described by the PHM Data 
Challenge Committee and the raw datasets (i.e., maintenance 
records). Sections 3 presents the analysis of the datasets to 
find clues related to the health condition of the assets. Section 
4 explains the methods proposed to assess the risk of the 
assets using the features extracted from the analysis in 
Section 3. Section 5 offers conclusions and suggests future 
work. 

2. PROBLEM AND DATASETS 

This section summarizes the problem given by the PHM Data 
Challenge Competition Committee. First, the basic 
information (the engineering assets, reasons for part 
consumption, and objective) of the problem is given to 
provide context for the risk prediction. Second, the training 
and test datasets are described in terms of data types and sizes. 
Finally, the scoring metric is defined to evaluate the risk 
prediction performance of the test instances.  

First, there are approximately 1800 engineering assets in the 
data set, but essential information (i.e., name, type, function 
of the asset) is not provided. Also, each “asset” is composed 
of multiple “parts.” As in the case of the assets, no part 
descriptions are provided. The maintenance records of the 
assets include failure time, part replacement time, 
identification number of the replaced parts, quantity of the 
replaced parts, reason for the part replacement, and asset 
usage.  

Second, the records are composed of two distinct datasets: 
training and test. The training dataset encompasses all 
maintenance records listed above, whereas the test dataset 
excludes the knowledge of failure time from the maintenance 
records. Thus, with the test dataset, the participants need to 
answer if the risk of an asset is high or low at a certain  

 
Number 

of 
records 

Number 
of  

assets 

Number of 
part 

consumption 
reasons 

Number 
of part 
types 

Training 
data 270830 1913 14 3192 

Test data 176509 2076 13 2863 

Sum - 2077 14 3868 

Intersection - 1912 13 2187 

Table 1. Summary of the training and test data 

 

instance defined by the PHM Data Challenge Competition 
Committee. The training and test datasets are briefly 
summarized in Table 1. A test instance for a particular asset 
is given at a specific time. The number of test instances is 
approximately 10,000. The term “high risk” is defined to be 
when a failure occurs within three time units; in other words, 
when a failure is imminent. Otherwise, an asset is considered 
to have “low risk.” 

Third, the performance of a risk prediction method for the test 
cases must be carefully evaluated. The following scoring 
metric is given by the PHM Data Challenge Competition 
Committee and is used for scoring: 

 Score = L / N + H / N (1) 

where N is the number of test instances that are drawn from 
the categories of “high risk” and “low risk;” the total number 
of sampled test instances is 2N; L is the number of test 
instances that the participant answered correctly in the 
category of low risk; and H is the number of test instances 
that the participant answered correctly in the category of high 
risk. With regard to N, it is worth noting that the chance to 
have high or low risk is similarly maintained in the problem. 
However, in real applications, the frequency of the low-risk 
time instances is typically much higher than that of high-risk 
time instances. Using this scoring system, when the risk is 
arbitrarily assigned, the score tends to converge to “one” out 
of two. When the risk is perfectly predicted, the score should 
be “two.” If the risk prediction is completely wrong, the score 
should be “zero.” Using specific knowledge about usage and 
part consumptions after the test time instance should be 
avoided, because this “after the fact” data is not available in 
real field applications. 

3. DATA ANALYSIS 

Based on the fact that none of the asset failure modes, causes, 
and mechanisms were revealed, a data-driven approach was 
determined to be the most suitable for the risk prediction of 
the assets. This section analyzes the given training datasets to 
extract key features in conjunction with the health conditions 
of the assets. 
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3.1. Failure time 

Figure 1 is a histogram that presents the failure time of all the 
assets given in the training dataset. As an initial trial, 
assuming that the amount of failure increases with the 
accumulation of usage, we conducted a linear regression 
between the failure count and time. The number of failures in 
the ranges of one to 365 and 366 to 730 increased to 4329 and 
4870, respectively. This result showed a 10% increase 
between the first and second halves. Curve fitting using high-
order polynomial functions is also possible to minimize the 
residual. However, it is difficult to interpret the physical 
meaning of those functions. 

We calculated the ratio of high to low risk using information 
about failure time of all the assets in the training datasets. The 
calculated relative frequency of high risk is 0.027, which 
indicates that a randomly selected asset is in high risk with 
the probability of 2.7 %. 

3.2. Part consumption 

Fourteen reasons for part consumption exist in the training 
dataset. These reasons can be divided into two groups—
corrective maintenance (CM) and scheduled maintenance 
(SM). CM is the maintenance carried out after detecting 
failure. It aims at restoring an asset so that the asset continues 
to perform its intended function. In contrast, SM is the 
maintenance that is performed to maintain an asset in 
satisfactory operating conditions. SM is conducted on a 
predefined schedule regardless of the health condition of the 
asset. 

As a representative example of the CM group, let us consider 
a part consumption time labeled with the reason of R193. The 
main characteristic of CM is that CM events typically follow 
part failure. Figure 2 is a scatter plot of failure time and R193 
recording time from fifty randomly chosen assets. It can be 
easily observed that most corrective maintenance times 
labeled with R193 are marked right after failure. To quantify 
the degree of coincidence, a time gap between the failure and 
a R193 recording near the failure was calculated. The R193 
recording that followed failure within five time units was 
found to be 4,016 out of the total occurrences of 9,199. The 
rest of the CM group includes R364 and R446. 

As a representative example of the SM group, let us consider 
a part consumption time labeled with the reason of R707. 
Figure 3 shows the time difference for part consumption 
labeled with R707 from fifty randomly chosen assets. It is 
apparent that part consumptions labeled with R707 occur 
periodically. This implies that R707 is related to a scheduled 
maintenance activity. Other reasons (including R119, R417, 
R565, and R783) showed similar behavior, and were thus 
classified into the SM group. 

Table 2 shows the rank of replaced parts for six predominant 
reasons. For example, for R417, the parts 566684, 663583, 
and 102391 ranked first to third, respectively. The part 

 
Figure 1. Count of failure time 

 
Figure 2. Scatter plot of failure time and R193 recording 

time from fifty randomly selected assets 

 
Figure 3. Scheduled maintenance: frequency of R707 time 

difference 

 

566684 also ranked first for R565 and R707. The number of 
times that the part 566684 was replaced was 3192, which is 
about 8% of all replaced parts. For R193 and R446, the part 
953340 ranked first. We were able to draw a conclusion from 
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the observations in the table: replaced parts are distinct 
according to the reason of part consumption. For example, 
the part 566684 can be assumed to be replaced based on 
scheduled maintenance. We assume that the replacements 
suggested by the manufacturer (scheduled maintenance) are 
related to wearout failure. In contrast, the part 953340, which 
was replaced based on corrective maintenance, is an example 
of a part replaced for reasons related to unexpected failure. 

 

Rank 1 2 3 
R193 953340 97048 991287 
R364 738107 357852 953340 
R417 566684 663583 102391 
R446 953340 97048 169319 
R565 566684 102391 738107 
R707 566684 663583 102391 

Table 2. Rank of replaced parts for six major reasons 

a) 

b) 

Figure 4. Relation between failure frequency and usage  
a) scatter plot and b) linear fit of averaged failure frequency 

and its usage 

3.3. Relation between failure frequency and usage 

It is assumed that failure occurs more frequently as usage 
accumulates. To verify this assumption, we plotted the 
relationship between the failure frequency of assets (Nf) and 
their usage in Figure 4 a). It was observed that the failure 
frequencies roughly increase as the usage increases. However, 
the large deviation in Nf makes it difficult to extract a trend. 
To overcome this difficulty, the usage range from 25,000 to 
36,000 was equally divided into 25 subsections. In each 
individual subsection, the mean value of Nf was calculated. 
The mean value of Nf and its usage are shown in Figure 4 b), 
which clearly shows a linear increase. To quantify the degree 
of linearity, Pearson’s correlation coefficient of the mean and 
the usage was calculated to be 0.9589. This indicates that 
there is a strong linear relationship between failure frequency 
and usage. 

3.4. Summary of data analysis 

The features extracted through data analysis of the 
maintenance records can be summarized as follows. First, 
reasons related to part consumption can be divided into two 
categories: CM and SM. The parts related to SM are of 
interest for risk prediction of test assets. Parts related to CM 
have little value for risk prediction. Second, failure occurs 
more frequently with the accumulation of usage. It was found 
that the usage is proportional to the frequency of asset failure.  

4. RISK PREDICTION USING AN ENSEMBLE METHOD 

In the previous section, it was identified that the replacement 
of particular parts and the accumulation of usage are closely 
related to failure occurrence. In this section, two methods are 
proposed to predict future risk based on the results of the 
analysis above. An ensemble approach is also proposed to 
utilize the two different methods more effectively. We 
compare the performance of the three methods in terms of 
prediction accuracy. 

4.1. Method 1: Part lifespan calculation 

The main assumption of the first method is that the event of 
part replacement is followed by an occurrence of failure. 
Time gaps between part replacement events and failure 
occurrences were investigated statistically. First, an 
individual time gap for the part, p, was calculated between 
the replacement instance of the part and the time instance of 
failure occurrence. If a time gap is within three time units 
prior to failure, that time gap is indicated with TH. If not, it is 
indicated with TL. Second, time gaps for TH and TL are plotted 
in individual histograms. Then, the frequency of TH is 
compared to that of TL at each time section. As presented in 
Figure 5, the frequency of TH is higher than that of TL at the 
3rd and 6th time sections indicated by the shade. In other words, 
those sections have a higher probability of failure than other 
sections. 

2.4 2.6 2.8 3 3.2 3.4 3.6 3.8

x 10
4

0

5

10

15

20

Usage

N
 f

2.4 2.6 2.8 3 3.2 3.4 3.6 3.8

x 10
4

0

2

4

6

8

10

Usage

A
ve

ra
ge

 N
 f

 

 
Average Nf

Linear Fitting



INTERNATIONAL JOURNAL OF PROGNOSTICS AND HEALTH MANAGEMENT 
 

5 
 

A systematic approach is required to select time sections that 
have a higher probability of failure. The relative frequency of 
high risk at a time section, k, followed by the replacement of 
the part, p, is defined as: 

 RT
p.k = NT

H,p.k / (NT
H,p.k + NT

L,p,k)  (2) 

where NT
H,p,k and NT

L,p,k are the frequencies of TH and TL in 
the range of the kth section, respectively. As discussed in 
Section 3.1, the probability of high risk at a randomly-chosen 
time instance is 0.027. The time section which has a higher 
relative frequency than the threshold (i.e., 0.027) is assigned 
to be high risk. Otherwise, low risk is assigned.  

As an example, the time gaps between part replacement 
events and high-risk (or low-risk) occurrence were calculated 
using the part 76398. The relative frequency of high risk after 
the replacement of the part 76398 is illustrated in Figure 6. 
The time section that has larger relative risk than this 
threshold is shown shaded in black. 

We had to choose the most dominant parts related to failure 
for risk assessment. The selection rule was determined as 
follows: (1) if the probability mass function (pmf) of RT

p.k 
larger than the threshold is significantly different from the 
pmf of RT

p.k smaller than the threshold, it was determined 

 
Figure 5. Illustration of the concept of the method based on 

part lifespan calculation 

 
Figure 6. Relative frequency of high risk after the 

replacement of part 76398; R76398 

that the part has a clear trend for replacement over time. (2) 
If Rule 1 is not true, the part fails randomly regardless of the 
time instance.  

We expected that the prediction score would increase as more 
parts were employed in this method. We chose the top 10 out 
of a few thousand parts that had a large gap between the pmfs. 
The top 10 parts are shown in Table 3.  Employing more parts 
was possible. However, it was found that considering more 
than 10 parts did not help increase the accuracy of risk 
prediction. 

 

Part 
number 

224501, 318604, 374736, 501319, 632374, 
669023, 692017, 711803, 804669, 844732 

Table 3. Top 10 parts selected in Method 1 

 

4.2. Method 2: Usage classification 

Here, we propose a method based on usage classification 
since the finding in Section 3.3 showed a strong linear 
relationship between the number of failures and part usage.  
A strategy for risk prediction of the assets is herein devised: 
the relative frequency of high risk in a particular usage range 
is calculated; if the usage range has a higher relative 
frequency than the threshold of 0.027, the instance from this 
range is assigned to high risk. To be more specific, this usage 
range was decided using the following steps. 

Step 1: The usage values of all time units in the training data 
(one to 730) from all the assets were calculated. It was 
observed that the usage information was not always available 
since they were recorded intermittently. This difficulty was 
overcome by extrapolating (or interpolating) the existing 
usage data.  

Step 2: The usage values obtained from Step 1 were equally 
divided into n sections. In the example, this usage data ranged 
from 22,257 to 37,272 units was divided into 20 sections. 
Each section had a range of 750 units. The relative 
frequencies of high risk of RU

k were calculated for the 
individual sections: 

 RU
k = NU

H,k / (NU
H,k+ NU

L,k) (3) 

where NU
H ,k and NU

L,k are the frequencies of high and low risk 
that belong to the usage section k, respectively.  

Step 3: Find the section k where RU
k is greater than the 

threshold. 
 
The relative frequencies of the sections are shown in Figure 
7. The threshold for assessing risk of the test assets was 
determined to be the relative frequency of the section with the 
mean usage of 29,800 units or more. The ten sections that 
correspond to the usage of 29,800 to 38,000 units have higher 
relative frequency values than the threshold. Therefore, high  
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Figure 7. Risk assessment based on usage classification 

 
Table 4. Ensemble method using ratio of high-risk frequency 

to low-risk frequency 

Part lifespan 
classification 

Usage 
classification 

Relative 
frequency 

of high risk 

Final 
submission 

High risk High risk 0.0364 High risk 

High risk Low risk 0.0218 High risk 

Low risk High risk 0.0315 High risk 

Low risk Low risk 0.0153 Low risk 

 
risk was assigned to those sections. As the relative 
frequencies of the sections from zero to 29,800 units were 
observed to be lower than the threshold, the risk of those 
sections was assigned to be low. It is worth noting that the 
risk at the instances of the last usage record of the assets was 
assigned to be low. This assignment was based on analysis of 
the training data that showed the absence of usage records 
was correlated with infrequent failure of assets. 

4.3. Ensemble approach 

An ensemble approach, which combines the part lifespan 
calculation and the usage classification methods, is presented 
in this section. The ensemble approach was developed in the 
machine learning community to improve the accuracy and 
robustness of individual methods. The ensemble of different 
methods is accomplished based on the consensus or learning 
strategy (Hu, Youn, & Wang, 2012). More details are 
available in Gao, Fan, and Han (2010). In this paper, we 
adopted the consensus strategy since it is more appropriate 
for use when combining the outcomes from a limited number 
of available methods.   

Table 4 displays four combinations using the outcomes from 
the two methods. Ten parts were selected in the part lifespan 
calculation, while the usage classification method adopted a 
classification boundary of 29,800 units. In each case, the 
relative frequency of high risk was calculated. It is reasonable 

to assign high (or low) risk if both of the outcomes are larger 
(or smaller) than a predefined threshold. Therefore, the 
combination of “high risk” and “high risk” (or “low risk” and 
“low risk”) is assigned to have high (or low) risk. For the two 
cases where the outputs from the two methods were in 
conflict, we assigned high risk if either of the two methods 
determined high risk since the performance evaluation gave 
the best score from that determination. 

5. CONCLUSION 

Two features were identified from statistical analysis of the 
maintenance record database. Those features led us to 
propose two distinct methods for predicting imminent failure 
of engineering assets: a method based on part lifespan 
calculation and a method based on usage classification. 
Finally, an ensemble of the two methods was developed 
based on the scheme of “consensus.” The ensemble method 
achieved higher accuracy for risk prediction compared to 
either single method.  

The ensemble method scored the second highest rank in the 
2014 PHM Data Challenge Competition. Yet, there is still 
room for improvement. The score of 1.1413 achieved (out of 
the perfect score, 2.0000) may not be sufficient for real 
industrial applications in the field. We expect that additional 
methods can be developed if specific knowledge about the 
assets (e.g., asset structure, loading conditions, and physics-
of-failure) is utilized. The ensemble method has flexibility 
that can incorporate additional methods for risk prediction. A 
“learning” strategy for the ensemble can be also considered 
when additional methods become available. Considering the 
performance, it is expected that the ensemble method can 
help reduce maintenance costs and increase availability by 
offering decision makers accurate risk prediction for 
engineering assets. 
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