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Bayesian Reliability Analysis
With Evolving, Insufficient, and
Subjective Data Sets
This paper presents a new paradigm of system reliability prediction that enables the use
of evolving, insufficient, and subjective data sets. The data sets can be acquired from
expert knowledge, customer survey, inspection and testing, and field data throughout a
product life-cycle. In order to handle such data sets, this research integrates probability
encoding methods to a Bayesian updating mechanism. The integrated tool is called
Bayesian Information Toolkit. Subsequently, Bayesian Reliability Toolkit is presented by
incorporating reliability analysis to the Bayesian updating mechanism. A generic defini-
tion of Bayesian reliability is introduced as a function of a predefined confidence level.
This paper also finds that there is no data-sequence effect on the updating results. It is
demonstrated that the proposed Bayesian reliability analysis can predict the reliability of
door closing performance in a vehicle body-door subsystem, where available data sets
are insufficient, subjective, and evolving. �DOI: 10.1115/1.4000251�
Introduction
In the past three decades, engineering analysis and design meth-

ds have advanced to improve reliability of an engineering prod-
ct system while considering uncertainties in the system. How-
ver, little attention has been made to data modeling with
volving, insufficient, and subjective data sets. In this paper, we
efer the data, which are not static but evolve with time as “evolv-
ng data,” refer the data, which are not sufficient to fully charac-
erize random behavior as insufficient data and, similarly, refer the
ata, which pertain to or perceived only by individuals as subjec-
ive data. To be clear, aleatory uncertainty is defined as the uncer-
ainty, which arises because of unpredictable variation in the per-
ormance of the system, whereas epistemic uncertainty is defined
s the uncertainty, which is due to a lack of knowledge about the
ehavior of the system that is conceptually resolvable. More spe-
ifically, aleatory uncertainties are considered to be represented by
tatistical distributions, whereas epistemic uncertainties are con-
idered to be represented by limited data sets in this paper. Most
robabilistic analysis and design approaches still depend on the
ssumed probabilistic models of system inputs without engaging
aw data. The research that predicts product reliability with evolv-
ng, insufficient, and subjective data sets is strongly in demand for
ngineering analysis and design. This has been acknowledged as
ne of the challenging problems in the field of engineering design
nd uncertainty analysis and have not been resolved yet �1�. Also,
he subjective data analysis, for example, customer satisfaction
ata analysis, for engineering design has been identified as one of
he future research directions of engineering design �2�. Insuffi-
ient data have become a major bottleneck in engineering analysis
3�. In addition, subjective data are an essential component to
nderstand the interface between customers and products for
roduct design �4,5�.

Acquiring and modeling uncertainty data are essential for quan-
ifying uncertain behaviors of engineered systems in reliability
nalysis and design optimization process. Subjective data, such as
he opinions from experts and customers, are quite important at an
arly stage of system design. To deal with subjective data, the
xpert opinion approach has been further developed for uncer-
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tainty quantification of engineered systems in a wide range of
engineering problems �6–10�. The expert opinion approach is ba-
sically a data collection scheme, which includes selection of ex-
perts, expert interview session, and probability encoding. In this
approach, the probability encoding technique is a process of ob-
taining statistical information of interested subjective data in the
form of probability density functions or simple probability values
and occurrence rates. Spetzler et al. �11� provided an overview of
different probability encoding methods. These methods will be
further discussed and integrated with a Bayesian updating tech-
nique in Sec. 2. This integration forms a more sophisticated tool
of handling the evolving subjective data sets, referred to as Baye-
sian Information Toolkit �BIT�.

It is common to encounter insufficient data sets in practical
engineering applications. When available data is insufficient, the
classical probability theory may be improper to model uncertain-
ties because it may lead to a result with a relatively low confi-
dence. To deal with insufficient data sets, different methods have
been developed for reliability analysis and design optimization.
Methods are based on various nondeterministic theories: the pos-
sibility theory �12–16�, the evidence theory �17–19�, and Bayes’
theory �20–22�. Although different methods have been developed
to deal with subjective and insufficient data sets, evolving data
sets have little been considered in these methods. Since Bayes
theory provides a systematic framework of aggregating and updat-
ing uncertain information, this paper presents reliability analysis
method based on the Bayes theory, referred to as Bayesian Reli-
ability Toolkit �BRT�.

To ensure the reliability of the product system, diverse design
methodologies have been developed, such as reliability-based de-
sign optimization �RBDO� �23–26�, possibility-based design opti-
mization �PBDO� �27,28�, evidence-based design optimization
�EBDO� �29�, and Bayesian RBDO �22�. Besides, some recent
publications �30–33� delivered rigorous studies to deal with all
kinds of uncertainty �e.g., aleatory/epistemic, discrete/continuous,
and statistical/fuzzy� for system analysis and design. Such re-
search activities have focused on how to assess reliability effec-
tively by simply assuming nondeterministic models of random
system inputs without engaging raw data �24,34,35�. Among these
design methodologies, Bayesian approaches have been widely
used in many engineering and science fields, where data are pro-
gressively accumulated. For example, Bayesian reliability analysis
has been applied to series systems of binomial �safe or fail� sub-

systems and components �36�, to reliability assessment of power
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ystems �37�, to the effectiveness of reliability growth testing �38�,
o robust tolerance control and parameter design in the manufac-
uring process �39�, and to input uncertainty modeling �40�. Two
dvanced Bayesian �maximum likelihood and parsimony� meth-
ds have been compared for molecular biology applications �41�.
ayesian updating has been implemented using the Markov chain
onte Carlo �MCMC� simulation for structural models and reli-

bility assessment �42�. Dynamic object oriented Bayesian net-
orks have been proposed for complex system reliability model-

ng �43�.
Despite numerous efforts, it has been a great challenge to pre-

ict uncertain system performances while considering evolving,
nsufficient, and subjective data sets. The objective of this re-
earch is thus to establish a new paradigm of reliability prediction
hat enables the use of evolving, insufficient, and subjective data
ets. The data sets come from expert knowledge, customer survey,
nspection and testing, and field data over the entire product life-
ycle. In order to handle such data sets, this research integrates
robability encoding methods to a Bayesian updating mechanism.
t is referred to as BIT. Subsequently, BRT is presented by incor-
orating reliability analysis to the Bayesian updating mechanism.
generic definition of Bayesian reliability is introduced as a func-

ion of a predefined confidence level. This paper also investigates
he effect of the sequence of evolving data sets on Bayesian up-
ating and finds that there is no data-sequence effect on the up-
ating results. Integrating with the authors’ earlier work in Baye-
ian reliability-based design optimization �22�, this paper presents
Bayesian Information, Reliability and Design �BIRD� software.
In this paper, the proposed approach is applied for reliability

rediction of door closing performance in a vehicle door system.
he vehicle door system is of special concern due to its frequency
f use and its engineering challenge with respect to design, assem-
ly, and operation. A considerable amount of engineering effort is
pent conducting hardware-based or analytical experiments to
enerate information for supporting engineering decisions during
he vehicle development process. At the conceptual stage, the un-
ertainty characterization of this information is largely based on
xpert judgment and data from current or past designs. As the
esign matures, analysis results and test data are collected to
uantify the uncertainty; however, data are usually of limited
ample size. The door seal design engineer, for example, needs to
now the requirements for a door seal system that isolates the
assenger compartment from the external environment while si-
ultaneously allowing the door to be closed with minimal effort.
door system design must satisfy a multitude of functional and

ngineering requirements. The functional requirements are de-
uced from the voice of the customer and include, for example,
xcellent exterior appearance/fit, interior quietness, protection
rom water leaks and dust intrusion, and an easy to open/close
oor. The functional requirements must be translated into measur-
ble engineering requirements, and the engineering solutions
hould be simple and include manufacturing restrictions. Due to
he inherent uncertainties associated with the voice of the cus-
omer, manufacturing processes, material properties, etc., engi-
eers must seek an appropriate performance evaluation metric and
orresponding method that can incorporate and evaluate the effect
f those uncertainties.

Bayesian Information, Reliability, and Design
oolkit
This section presents the integration of probability encoding
ethods and reliability analysis to the Bayesian updating mecha-

ism.

2.1 Bayesian Updating Techniques. As mentioned earlier,
he evolving, insufficient, and subjective data sets can be obtained
hrough either measurement or survey during the product life-
ycle. To make use of such information for the purposes of prod-

ct performance evaluation and design, BIT employs a Bayesian
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updating technique. This subsection gives an introduction of the
Bayesian updating technique and describes the effect of the se-
quence of the evolving data sets on Bayesian updating.

Let X be a random variable with a probability density function
f�x ,��, ���. From the Bayesian point of view, � is interpreted as
a realization of a random variable � with a probability density
f����. The density function expresses what one thinks about the
occurring frequency of � before any future observation of X is
taken, that is, a prior distribution. Based on Bayes’ theorem, the
posterior distribution of � given a new observation X can be
expressed as

f��X���x� =
fX,��x,��

fX�x�
=

fX���x��� · f����

fX�x�
�1�

The Bayesian approach is used for updating information about
the parameter �. First, a prior distribution of � must be assigned
before any future observation of X is taken. Then, the prior distri-
bution of � is updated to the posterior distribution as the new data
for X is employed. The posterior distribution is set to a new prior
distribution, and this process can be repeated with an evolution of
data sets. This updating process can be briefly illustrated in Fig. 1.

Let us consider a Bayesian normal inference model as the ex-
ample to illustrate the Bayesian updating process. In this example,
a random variable �X� follows a normal distribution with un-
known mean value � and known standard deviation �. The ran-
dom variable is realized with N samples �x1 ,x2 , . . . ,xN�, where N
is small. The Bayesian inference is used to update the prior
knowledge of the mean value � based on the observed data. The
likelihood function for these N observations is expressed as

p�X��� = �
i=1

N
1

�2��
exp�−

1

2�2 �xi − ��2	 �2�

In Bayesian probability theory, a class of prior probability dis-
tributions f���� is said to be conjugate to a class of likelihood
functions fX���x ��� if the resulting posterior distributions f��X
�� �x� are in the same family as f����. For example, if the likeli-
hood function is Gaussian, choosing a Gaussian prior ensures that
the posterior distribution is also Gaussian. In this example, sup-
pose a conjugate prior distribution for �, which is a normal distri-
bution with mean, u, and variance, �2, then due to the conjugate
property, the posterior distribution can be obtained through the
Bayesian updating process, which also follows the normal distri-
bution with the mean and variance as �44�

ũ =
X̄ · N · �−2 + u · �−2

N · �−2 + �−2 , �̃2 =
1

N · �−2 + �−2 �3�

To apply the Bayesian updating technique to the modeling of
evolving data sets, one may be interested in how the sequence of
evolving data sets affects the final updating results. Suppose there
are two sets of data XA and XB with sample sizes NA and NB,
respectively, the effect of the sequence of the data sets on Baye-
sian updating is studied by comparing the final results of different

Fig. 1 Process of Bayesian updating
updating sequences A-B and B-A. First the updating sequence
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-B is considered. When the data set XA is used to update the
rior information of � the result of the first updating can be ob-
ained according to Eq. �3� as

ũ1 =
X̄A · NA · �−2 + u · �−2

NA · �−2 + �−2

�̃1
2 =

1

NA · �−2 + �−2 �4�

By treating the results in Eq. �4� as prior distribution for �, the
pdating process continues as the data set XB is added. The pa-
ameters can be updated as

ũ2 =
X̄B · NB · �−2 + ũ1 · �̃1

−2

NB · �−2 + �̃1
−2 =

�X̄B · NB + X̄A · NA� · �−2 + u · �−2

�NB + NA� · �−2 + �−2

�̃2
2 =

1

NB · �−2 + �̃1
−2 =

1

�NB + NA� · �−2 + �−2 �5�

Following the same procedure for updating sequence B-A, the
ame final results as Eq. �5� will be obtained. Involving k sets of
volving data in the updating process, regardless of the updating
equence, the final updating results are

ũk =

�−2 · 

i=1

k

X̄i · Ni + u · �−2



i=1

k

Ni · �−2 + �−2

�̃k
2 =

1



i=1

k

Ni · �−2 + �−2

�6�

A Bayesian inference model is called a conjugate model if the
onjugate prior distribution is used. For conjugate Bayesian infer-
nce models, the updating results are independent of the sequence
f data sets. Conjugate models of Bayesian updating are quite
seful for uncertainty modeling with evolving data sets, since the
rior and posterior distributions are given in a closed form. How-
ver, it is found that the Bayesian updating results often depend on
he selection of a prior distribution in the conjugate models. Be-
ides, the available conjugate Bayesian models are limited. To
liminate the dependency and the limitation, a nonconjugate
ayesian updating model can be developed using Markov chain
onte Carlo methods. This is, however, more computationally

ntensive.

2.2 Bayesian Information Toolkit. As mentioned earlier, a
reat challenge exists in dealing with evolving, insufficient, and
ubjective data sets while performing reliability analysis. BIT is
eveloped by integrating probability encoding methods with the
ayesian updating technique to systematically elicit subjective
ata from subjects �e.g., experts and customers�, to model the
ubjective data with statistical distributions, and to update the un-
ertainty distributions with evolving subjective data sets. The
robability encoding methods are briefly reviewed and followed
y the integration of probability encoding methods with Bayesian
pdating techniques. One example is used to demonstrate the pro-
osed BIT.

2.2.1 Probability Encoding Methods. To systemically extract
nd quantify subjective information that comes from individual
udgment about uncertain quantities, the probability encoding
11,45,46� methods are employed in BIT. The methods employ an
nterview process, and most are based on questions for which the
nswers can be represented as points on a cumulative distribution

unction. The different encoding methods used vary according to

ournal of Mechanical Design
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whether they ask a subject to assign probabilities �P�, values �V�,
or both. The three basic types of the encoding methods are listed
below.

• P-methods require the subject to respond by specifying
points on the probability scale while the values are fixed.

• V-methods require the subject to respond by specifying
points on the value scale while the probabilities remain
fixed.

• PV-methods ask questions that must be answered on both
scales jointly; the subject essentially describes points on the
cumulative distribution.

The probability encoding methods consist of a set of questions
that the subject responds to either directly by providing numbers
or indirectly by choosing between simple alternatives or bets. In
the direct response mode, the subject is asked questions that re-
quire numbers as answers which will be given in the form of
either values or probabilities depending on the method being used.
In the indirect response mode, the subject is asked to choose be-
tween two or more bets, for example, the probability “wheel”
method �11�. The bets are adjusted until the subject is indifferent
to choosing between them. This indifference can then be trans-
lated into a probability or value assignment. Besides choosing
between bets, another procedure is to ask the subject to choose
between events defined on the value scale for the uncertain quan-
tity, where each event represents a set of possible outcomes for the
uncertain quantity. Subjective data in examples shown in Sec. 3
were obtained using the direct probability encoding procedure.

2.2.2 Integration of Probability Encoding Methods With Baye-
sian Updating Technique. In this study, the probability encoding
methods are used to elicit subjective survey data in the forms of
the probability �P� and subjective response �V�. To apply Baye-
sian updating technique for subjective data modeling, the subjec-
tive survey data �probabilities and subjective responses� need to
be transferred to corresponding statistical parameter data. The in-
verse transformation of a parametric cumulative distribution func-
tion �CDF� maps the subjective survey data into the parameter
data of the CDF. For example, each subjective data point �Zp, P� is
used to fit a parametric CDF and computes corresponding param-
eter data �mean � and standard deviation �� through an inverse
transformation of the CDF. This Bayesian technique updates sub-
jective data by treating all parameter data as a new data set.

The procedure below can be followed for modeling uncertain-
ties with subjective data sets by integrating probability encoding
methods with the Bayesian updating technique.

• Step 1: specify uncertain quantities interested.
• Step 2: choose probability encoding methods and prepare

surveys.
• Step 3: interview subjects and collect subjective data sets.
• Step 4: choose suitable Bayesian updating models.
• Step 5: transfer subjective data to interested model param-

eter data by inverse CDF analysis.
• Step 6: updating the uncertainty model parameters by inte-

grating model parameter data obtained from Step 5 using the
Bayesian updating technique.

2.2.3 One Example for BIT. This section presents the example
of the probability encoding technique using the PV-method. Sup-
pose that the highest temperature in one day is a random variable,
which follows a normal distribution with unknown mean value �
and known standard deviation of 2°C. The interested uncertain
quantity is the mean value of the highest temperature, �. The
PV-method is used in this example, and two subjects are ques-
tioned about tomorrow’s highest temperature value �V� and corre-
sponding probabilities �P�. Results are summarized in Table 1 and
shown in Fig. 2. After this data acquisition process, a Bayesian

updating model should be specified to aggregate these subjective

NOVEMBER 2009, Vol. 131 / 111008-3

5 Terms of Use: http://asme.org/terms



d
c
2
t
u
p
S
c
d

w
t
e
a
r

t
N
t
t
S
N

c
m
g
w
e

T
a

1

Downloaded Fr
ata sets and to update the distribution of �. In this example, a
onjugate Bayesian normal inference model, as discussed in Sec.
.1, is used, and � itself is modeled as a normal distribution. With
he Bayesian updating model, the subjective data sets can then be
sed for inverse CDF analysis to get the corresponding model
arameter data �data for ��. Taking the first data set �22, 0.1� from
ubject I as an example, an inverse transformation of the CDF is
arried out by treating this data set as one point of the normal
istribution CDF curve, which is

p =�
−�

V

f�x,�,��dx �7�

here p equals 0.1, V equals 22, and � equals 2 for this case. As
he only unknown in Eq. �7� is �, the inverse calculation of this
quation can provide a data for � as 24.563. Similar analysis is
pplied on each set of data for both Subjects I and II, which
esults in two sets of data of �, as shown in Table 1.

These two sets of data will then be used by Bayesian updating
o update the distribution of �. For example, if a prior distribution
�26,12� is assumed for � with the first set of data from Subject I,

he posterior distribution is updated to N�26.932,0.26552�, as pos-
erior I shown in Fig. 3. Aggregating the second set of data from
ubject II, the posterior distribution is then updated to
�26.965,0.1922�, as the posterior II shown in Fig. 3.

2.3 Bayesian Reliability Toolkit. In many engineering appli-
ations, outcomes of events from repeated trials can be a binary
anner, such as occurrence or nonoccurrence, success or failure,

ood or bad, etc. In such cases, random behavior can be modeled
ith a discrete probability distribution model. In addition, if the

vents satisfy the additional requirements of a Bernoulli sequence,

able 1 Results of the temperature survey and inverse CDF
nalysis

Subject I Subject II

Temp. Prob. � Temp Prob. �

22 0.100 24.563 23 0.080 25.810
25 0.160 26.989 25 0.100 27.563
26 0.400 26.507 27 0.250 28.349
27 0.550 26.749 28 0.600 27.493
28 0.750 26.651 29 0.850 26.927
29 0.900 26.437 30 0.950 26.710
30 0.950 26.710 31 0.990 26.348
31 0.995 25.850 33 0.999 26.816
Fig. 2 Results of the temperature survey

11008-4 / Vol. 131, NOVEMBER 2009
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that is to say, if the events are statistically independent and the
probability of occurrence or nonoccurrence of events remains con-
stant, they can be mathematically represented by the binomial
distribution �47�. In other words, if the probability of an event
occurrence in each trial is r and the probability of nonoccurrence
is �1−r�, then the probability of x occurrences out of a total of N
trials can be described by the probability mass function �PMF� of
a binomial distribution as

Pr�X = x,N�r� = �N

x
rx�1 − r�N−x, x = 0,1,2, . . . ,N �8�

where the probability of success identified in the previous test, r,
is the parameter of the distribution.

In Eq. �8�, the probability of x /N �x occurrences out of N trials�
can be calculated when a prior distribution on r is provided. This
inference process seeks to update r based on the outcomes of the
trials. Given x occurrences out of a total of N trials, the probability
distribution of r can be calculated using Bayes’ rule as �48�

f�r�x� =
f�x�r�f�r�

�0
1f�x�r�f�r�dr

�9�

where f�r� is the prior distribution of r, f�r �x� is the posterior
distribution of r, and f�x �r� is the likelihood of x for a given r.
The integral in the denominator is a normalizing factor to make
the probability distribution proper. The prior distribution is known
for r, prior to the current trials. In this paper, a uniform prior
distribution is used to model r bounded in �0, 1�. However, it is
possible to obtain a posterior distribution with any type of a prior
distribution.

For Bayesian reliability predictions, both a prior reliability dis-
tribution �r� and the number �x� of safety occurrences out of the
total number of test data sets N must be known. If the prior reli-
ability distribution �r� is unavailable, it will be simply modeled
with a uniform distribution, r�U�a , b�, where a	b and a ,b
� �0, 1�. At an early design stage, it can be modeled using reli-
ability from the previous product designs or expert opinions. Al-
ternatively, if the reliability distribution has been predicted with a
data set in a precedent test, this reliability distribution will be used
as the prior reliability distribution and updated to a posterior reli-
ability distribution with new test data. Bayesian binomial infer-
ence model can be used to update the prior knowledge of reliabil-
ity �r�, which is a parameter of a binomial distribution. In this
inference model, the binomial distribution likelihood function is
used for test data, whereas the conjugate prior distribution of this
likelihood function is used for reliability �r�, which is a beta dis-

Fig. 3 Bayesian updating of the PDF of �
tribution. The PDF of the beta distribution is expressed as
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f�r� =
1

B�
,��
r
−1�1 − r��−1

�B�
,�� =�
0

1

t
−1�1 − t��−1dt �10�

here 
 and � are two parameters. For a simple case, 
=�=1
epresents a uniform distribution over �0, 1�. If this uniform dis-
ribution is used as a prior distribution for r, the likelihood func-
ion f�x �r� can be obtained using Eq. �8� and the posterior distri-
ution f�r �x� using Eq. �9�. It follows a beta distribution with 

x+1 and �=N−x+1. This posterior distribution represents the
robability distribution of reliability, which is a function of x and
. With k sets of evolving testing data sets, the final updating

esult for r is also a beta distribution with


 = 1 + 

i=1

k

xi and � = 1 + 

i=1

k

�Ni − xi� �11�

s it is a conjugate Bayesian inference model, there is also no
ata-sequence effect on updating results.

When only epistemic uncertainties are engaged to assess reli-
bility, its PDF can be modeled using the beta distribution in Eq.
10� by counting the number of safety occurrences, x. In general,
oth aleatory and epistemic uncertainties appear in most engineer-
ng design problems. In such situations, the PDF of reliability can
e similarly obtained through a Bayesian reliability analysis. To
uild the PDF of reliability, reliability analysis must be performed
t every data point for epistemic uncertainties while considering
leatory uncertainties. Different reliability measures, Rk=R�xe,k�,
re obtained at different sample points for epistemic uncertainties.
n Eq. �10�, 
=x+1 and �=N−x+1, where x=�Rk. Then, the
DF of reliability r with a uniform prior distribution is updated to
�Xa ,Xe ;d� as

R�Xa,Xe;d� = f�r�x� =
1

beta�
,��
ra−1�1 − r��−1

where 
 = 1 + x, � = N − x + 1, x = �xe,1, . . . ,xe,N�

x = 
 Rk, and Rk = Pr�g�Xa�  0�xe,k� �12�

is the number of finite data sets for epistemic uncertainties.
For design optimization, Bayesian reliability must satisfy two

equirements: �a� sufficiency and �b� uniqueness. The sufficiency
equirement means that the Bayesian reliability must be no larger
han an exact reliability, when it is realized with a sufficient
mount of data for input uncertainties. The uniqueness require-
ent means that the Bayesian reliability must be uniquely defined

or the purpose of design optimization. To meet these two require-
ents, Bayesian reliability is generally defined with a confidence

evel of reliability prediction where the confidence level CL of
ayesian reliability is defined as

CL = Pr�R � RB� =�
RB

1

f�r�x�dr = 1 − FR�RB� �13�

he confidence level can be defined by system reliability and
esign engineers. With the predefined confidence level CL, Baye-
ian reliability can be defined as

RB = FR
−1�1 − CL� �14�

rom Eq. �14� it is clear that Bayesian reliability is based on the
eliability distribution obtained from Eq. �12� with certain confi-
ence level CL. The reliability distribution might be different if
ifferent samples are used, and this is the fundamental character-
stic of uncertainty modeling when the data employed for reliabil-
ty analysis are only in a small size. Bayesian reliability is desir-

ble since it is defined from the reliability distribution with a

ournal of Mechanical Design
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corresponding confidence level and accounts for reliability mod-
eling error due to the lack of data. Moreover, Bayesian reliability
can be updated as more data are acquired.

In this study, extreme distribution theory for the smallest reli-
ability value is employed to guarantee the sufficiency require-
ment. Then Bayesian reliability is defined as the median value of
this extreme distribution obtained from the Beta distribution in
Eq. �12� based on the extreme distribution theory. The remaining
part of this subsection derives the Bayesian reliability formulation
and its corresponding confidence level.

Based on the extreme distribution theory, the extreme distribu-
tion for the smallest reliability value is constructed from the reli-
ability distribution, beta distribution. For random reliability R,
which follows the beta distribution, FR�r�, let 1R be the smallest
value among N data points for R, the CDF of the smallest reliabil-
ity value, 1R, can be expressed as �49�

1 − F1R�r� = P�1R � r� = P�1R � r, 2R � r, . . . , NR � r� �15�

Since the ith smallest reliability values, iR�i=1, . . . ,N�, are iden-
tically distributed and statistically independent, the CDF of the
smallest reliability value becomes

F1R�r� = 1 − �1 − FR�r��N �16�

Bayesian reliability, RB, is defined as the median value of the
extreme distribution shown in Eq. �16�. Based on this definition,
the formulation of Bayesian reliability can be obtained as the so-
lution of the nonlinear equation, Eq. �16�, by setting its left hand
side to 0.5, which is

RB = FR
−1�1 − �N 1 − F1R�rm�� = FR

−1�1 − �N0.5� �17�

Based on this definition, the confidence level of the Bayesian
reliability in Eq. �17� can be calculated as

CL
B = 1 − FR�RB� = 1 − FR�FR

−1�1 − �N0.5�� = �N0.5 �18�

As shown in the above equation, the confidence level of Bayesian
reliability is a function of the sample size �N� of epistemic uncer-
tainties. Figure 4 shows the relationship between the sample size
�N� and confidence level of the Bayesian reliability.

Based on the discussion above, Bayesian reliability analysis can
be conducted using a numerical procedure as follows.

• Step 1: collect a limited data set for epistemic uncertainties
where the data size is N.

• Step 2: calculate reliabilities �Rk� with consideration of alea-

Fig. 4 Confidence level versus sample size for Bayesian
reliability
tory uncertainties at all epistemic data points.
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• Step 3: build a distribution of reliability using the beta dis-
tribution in Eq. �12� with aleatory and/or epistemic uncer-
tainties.

• Step 4: select an appropriate confidence level, CL, of Baye-
sian reliability.

• Step 5: determine the Bayesian reliability using Eq. �14�.

In this paper, following the general procedure above, the con-
dence level of Bayesian reliability in Step 4 is selected based on
q. �18�, and the corresponding Bayesian reliability can then be
alculated directly by Eq. �17�.

2.4 Bayesian Design Toolkit. The BIRD software is devel-
ped by incorporating both BIT and BRT with Bayesian RBDO
eveloped by the authors �22�. Although this paper is not focused
n Bayesian RBDO, BDT will be reviewed as one of BIRD mod-
les. Knowing that both aleatory and epistemic uncertainties exist
n a system of interest, Bayesian RBDO can be formulated as

minimize C�Xa,Xe;d�

subject to PB�Gi�Xa,Xe;d�  0� � ���ti
�

i = 1, . . . ,np; Xa � Rna, Xe � Rne

dL  d  dU, d � Rnd �19�

here PB�Gi�Xa ,Xe ;d�0�=Ri
B�Xa ,Xe ;d� is the Bayesian reli-

bility, and Gi�Xa ,Xe ;d�0 is defined as a safety event.
�Xa ,Xe ;d� is the objective function; d=��X� is the design vec-

or; X is the random vector; �t is the prescribed reliability target;
nd np, nd, na, and ne are the numbers of probabilistic con-
traints, design variables, aleatory random variables, and
pistemic random variables, respectively. If the parameters de-
cribing a random variable are controllable among all �both alea-
ory and epistemic� random variables, they are considered design
ariables. For instance, a random variable with a normal distribu-
ion may have two design variables, mean and standard deviation.
t will be shown that the result from Bayesian RBDO asymptoti-
ally approaches that from the conventional �or frequentist�
BDO. In other words, frequentist RBDO is a special case of
ayesian RBDO because Bayesian RBDO is able to handle alea-

ory and/or epistemic uncertainties.

Case Studies
Two examples are employed to demonstrate the feasibility of

ayesian reliability analysis with evolving, insufficient, and sub-
ective data sets: �1� a mathematical example and �2� door closing
ffort in the vehicle door system.

3.1 A Mathematical Example. Let G�X1 ,X2�=3−X1
2X2 /20

G0 be an inequality constraint with two random variables,
here X1 is an epistemic random variable and X2 is an aleatory

andom variable, X2�N�2.8,0.22�. Besides, G0 is a random pa-
ameter, which follows a normal distribution N�2.0,0.052� and
epresents the uncertainty of the target performance. In this math-
matical example, the distribution for G0 is known; however, in
ost practical cases, this distribution should be determined by

bservation.
Twenty data values are randomly sampled for X1 from an as-

umed normal distribution N�2.9,0.22�, as shown in Table 2. The
able also shows the corresponding reliabilities Rk=Pr�G�X2�

G0 �X1�k�� for k=1, . . . ,20 that are computed from reliability
nalyses. For example, X1�1�=2.9277, then R1= P�3
2.92772*X2 /20G0�=0.97807. Figure 5 shows the PDFs of

he performance function G�X1=2.9277, X2� and G0. By carrying
ut the probability analysis for all 20 epistemic data, 20 probabil-
ty values are then obtained, as shown in Table 2. From Table 2,

he expected number of safe design points out of the 20 designs
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can be obtained from the sum of all 20 reliabilities, x=�Rk
=17.4408. As discussed in Sec. 2, the reliability can then be mod-
eled with the beta distribution as beta�18.4408, 3.5592� at the
design point, �2.9, 2.8�. This is graphically shown in Fig. 6.

To validate the results, Monte Carlo simulation �MCS� �10,000
random samples� is conducted by assuming X1 to follow
N�2.9,0.22�. It gives the true reliability �0.8345� of the design
point. Figure 6 shows that the reliability distribution gives a quite
feasible estimate of the true reliability with both aleatory and
epistemic uncertainties. In this example, a uniform distribution,
r�U�0,1�, is used as the prior distribution of reliability. There-

Table 2 X1 samples and probabilities

X1 Probability X1 Probability

2.9277 0.97807 3.4741 1.00000
2.7605 0.76836 2.9575 0.98709
2.775 0.80247 2.9029 0.96671
3.1006 0.99929 2.9430 0.98323
2.8175 0.88239 2.8196 0.88559
2.5933 0.24267 2.9706 0.98986
3.1047 0.99936 2.7157 0.64237
2.9604 0.98775 2.6738 0.50406
3.1706 0.99986 2.8869 0.95693
2.9354 0.98082 2.8185 0.88392

Fig. 5 PDFs for G„X1 ,X2… and G0
Fig. 6 Actual reliability and estimated reliability distribution
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ore, the reliability distribution appears to be widely distributed,
ut it becomes narrower if the prior distribution is more precisely
iven.

Using Eq. �20�, the extreme distribution for the smallest reli-
bility value is obtained as

F1R�r� = Pr�1R  r� = 1 − �1 −�
0

r
1

B�18.4408,3.5592�
�17.4408�1

− ��2.5592d�	20

From Eq. �17�, Bayesian reliability is calculated as PB
0.6725. The beta distribution for reliability, its extreme distribu-

ion for the smallest reliability value, and the Bayesian reliability
re shown in Fig. 7.

3.2 Bayesian Reliability Analysis for a Vehicle Door
ystem. The demonstration problem used in this study is the
ody-door system of a passenger vehicle, as illustrated in Fig. 8.
he vehicle door system is of special concern due to its frequency
f use and its engineering challenge with respect to design, assem-
ly, and operation. Variation exists in the compression load de-
ection �CLD� response of the seal, the gap between the body and
oor, as well as in attaching the door to the car body. Besides the
resence of variation, the complexity of the system is high due to
he nonlinear seal behavior and the dynamics of door closing. The
etail of vehicle door system regarding the problem description,
ailure mechanism specification, physical model creation, and re-
ponse surface construction can be found in Ref. �50�. The perfor-
ance measure selected in this study to assess one aspect of door

Fig. 7 Bayesian reliability for the mathematical example

Table 3 Random variables and des

Variable name Des

X1 UHCC—upper hinge lo
X2 LHCC—lower hinge lo
X3 LATCC—latch locat
X4 LATUD—latch locat
X5 Primary seal C
X6 Auxiliary seal C
X7 Cutline seal C
X8–X24 Primary seal ma
X25 Auxiliary
X26 Cutline
ournal of Mechanical Design
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system design is the door closing effort. The measurable quantity
for this performance measure is the door closing velocity. A re-
sponse surface for door closing velocity was created based on
results from physics-based models, and the performance evalua-
tion criteria were deduced from both expert opinions and voice of
the customer information.

For the door system example in this study, 26 random input
variables are used to specify the uncertainty of the system. Within
these 26 random input variables, listed in Table 3, X5, X6, X7, X25,
and X26 are aleatory variables, which, for this example, are as-
signed uniform distributions on different threshold values, as
shown in the table. Except for these 5 random input variables, all
others are epistemic variables with a total of 79 sets of measure-
ment data. For illustrative purpose, these epistemic data are par-
tially listed in Table 4.

In Secs. 3.2.1 and 3.2.2, we describe the modeling of the per-
formance evaluation criteria, i.e., the marginal velocity, using the
Bayesian updating technique introduced in Sec. 2 followed by the
Bayesian reliability analysis carried out for the door closure prob-
lem.

3.2.1 Modeling of the Marginal Velocity. In this subsection,
the marginal velocity, which serves as the criterion of the door
performance evaluation, is modeled by using the Bayesian updat-
ing technique based on expert opinion and the customer data.
From a hypothetical expert, the door closing velocity values for
customer satisfaction should be, for example, within the range of
0 m/s to vmax m/s. Customer survey regarding the door closing
velocity can be carried out by using the direct customer survey
method �11�, and illustrative results, which show the customer
rejection rate �CRR� versus the door closing velocity �normalized
by vmax� are graphically shown in Fig. 9. For the modeling of the
marginal velocity, CRR can be treated as the probability of the
marginal velocity being smaller than a given a or CRR= P�vm

a�, where vm is a random marginal velocity and a is within �0,
vmax� based on expert opinion.

The procedure of marginal velocity modeling can be briefly

Fig. 8 Vehicle door system

ptions for the vehicle door system

tion Variable type

on in cross-car direction Epistemic
on in cross-car direction Epistemic
in cross-car direction Epistemic
in up-down direction Epistemic
property factor U�0.7,1.3�
property factor U�0.7,1.3�

property factor U�0.7,1.3�
n regions 1�17 Epistemic
al margin U�−1,1�
l margin U�−1,1�
cri

crip

cati
cati
ion
ion
LD
LD

LD
rgi
se

sea
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ummarized into three steps. First, based on the customer data,
ne Bayesian inference model should be specified. For example, if
he Bayesian normal inference model is used, the marginal veloc-
ty will be modeled as the mean value of the normal distribution,
hich is the conjugate distribution for this model. Second, based
n the selected model, the CDF analysis can be carried out for the
DF/velocity data. After completing this analysis, the CDF data
re then transferred to parameter data for the distribution. Third,
ith one prior distribution assumed, Bayesian updating can then
e carried out with sets of parameter data.

In this study, the Bayesian normal inference model will be used,
nd the marginal velocity will be modeled as the mean value of a
ormal distribution. As introduced in Sec. 2 of this paper, we
uppose that the marginal velocity also follows a normal distribu-
ion, which is the conjugate distribution of the normal inference

odel. Expert opinion is used in modeling the prior information
n the marginal velocity. To properly model the normal distribu-
ion with the information from the expert, the six sigma region of
he normal distribution is set to the interval, such that ��−3�
0, �+3�=vmax�. Although the domain of the normal distribu-

able 4 Data of epistemic random variables for the vehicle
oor system

ariables

Data

Set 1 Set 2 Set 3 Set 4 Set 5 Set 6 … Set 79

X1 1.62 2.29 1.58 1.58 1.19 1.70 … 2.16
X2 2.82 2.49 1.80 2.10 2.03 1.37 … 1.36
X3 2.56 2.10 1.82 1.67 1.75 1.01 … 1.35
X4 �0.38 �0.35 �0.01 �0.01 0.61 �0.44 … �0.61
X8 1.66 1.24 1.02 0.72 0.71 �0.06 … 0.56
X9 1.078 0.77 0.59 0.28 0.12 �0.31 … 0.40
X10 0.50 0.31 0.17 �0.15 �0.48 �0.57 … 0.24
X11 1.24 0.74 0.43 0.11 �0.23 �0.02 … 0.96
X12 �0.27 �0.31 �0.28 �0.66 �1.29 �0.09 … 0.28
X13 0.03 0.16 �0.205 �0.29 �1.02 �0.31 … 0.11
X14 0.33 0.63 �0.13 0.08 �0.75 �0.53 … �0.05
X15 0.50 0.79 0.06 0.22 �0.76 �0.35 … 0.14
X16 0.89 1.01 0.87 0.27 �0.63 0.02 … 0.24
X17 0.27 0.51 �0.01 �0.21 �1.57 �0.19 … 0.23
X18 �0.35 0.01 �0.89 �0.69 �2.5 �0.39 … 0.23
X19 �0.35 0.01 �0.89 �0.69 �2.5 �0.39 … 0.23
X20 �0.44 �0.53 �1.27 �1.55 �2.93 �0.77 … �0.38
X21 �0.44 �0.53 �1.27 �1.55 �2.93 �0.77 … �0.38
X22 0.16 �0.03 �0.71 �0.86 �1.68 �0.17 … 0.12
X23 0.76 0.47 �0.16 �0.18 �0.44 0.42 … 0.62
X24 1.49 0.91 0.56 0.27 0.91 0.08 … 0.54
Fig. 9 Customer rejection rate
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tion is �−�, +��, the contribution out of the bound �0, vmax� is
negligible. Normalizing by vmax, the distribution N�0.5,0.1667� is
used for the prior distribution of this model.

As an example to show how the CDF analysis is carried out, we
use a set of data, e.g., normalized velocity is 0.43 and customer
satisfaction rate is 91.8%, from clinic A’s customer data shown in
Fig. 9. The 8.2% customer rejection rate will be considered as the
CDF value corresponding to the velocity value 0.43. As we sup-
pose �=0.1667, then based on the CDF data Z0.082=0.43, we can
determine that the mean value of the normal distribution is 0.662.
For each set of customer data, the corresponding parameter data
are determined by the CDF analysis. Three sets of parameter data
are then obtained from the three sets of customer data after the
CDF analysis. The Bayesian normal inference can be expressed as

�1 = ��0

�0
2 +



i=1

N

Xi

�2 �/� 1

�0
2 +

N

�2
�1

2 = � 1

�0
2 +

N

�2−1

where �1 and �1 are parameters for the posterior distribution,
whereas �0 and �0 are parameters for the prior distributions, Xi is
the ith parameter data, and � is the population variance. Based on
the Bayesian normal inference, the PDFs for the marginal velocity
can then be gradually refined by aggregating three different clinic
data sets with the normal prior distribution, shown in Fig. 10.
With the clinic-A data set, the first Bayesian model for the mar-
ginal velocity is the posterior distribution I, N�0.559,0.0682�,
shown in Fig. 10. Then this posterior distribution is treated as the
prior distribution and combined with the clinic-B data set, to ob-
tain the second Bayesian model, posterior distribution II,
N�0.606,0.04452�. Similarly with the clinic-C data set, the final
Bayesian model is obtained as the posterior distribution III,
N�0.5946,0.03552�, as shown in Fig. 10. Figure 11 shows the PDF
and CDF of the final Bayesian model, N�0.5946,0.03552�, for the
marginal velocity.

3.2.2 Bayesian Reliability Analyses for a Vehicle Door
System. Based on the marginal velocity PDF created, Bayesian
reliability analysis is then carried out for the door closing effort
problem with both aleatory and epistemic uncertainties. For a
given set of input values, the performance response can be ob-
tained from the response surface created based on the physical
model �50�. Since Bayesian reliability analysis requires the proba-

Fig. 10 Bayesian updating for the marginal velocity using a
normal distribution
bilistic performance evaluation for each set of epistemic data, two
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ifferent approaches, Monte Carlo simulation and eigenvector di-
ension reduction �EDR� method �35�, are employed in this study

o calculate the reliability for each set of epistemic data. EDR
ethod is an efficient and accurate sensitivity free method for

eliability analysis. Results for the door closing effort problem in
his study from MCS and EDR are compared.

First, for each set of epistemic data, direct MCS is used to carry
ut the reliability analysis. For each aleatory variable �including
he variable of marginal velocity�, 10,000 random samples are
enerated and used for MCS. Table 5 shows the 55 reliabilities
orresponding to the first 55 sets of epistemic data. Based on
able 5, we carried out the Bayesian reliability analysis and ob-

ained the reliability distribution as beta �53.524, 3.476�. Then by
he Bayesian reliability definition described in Sec. 2.3, the ex-
reme distribution of the smallest value for the beta distribution is
onstructed, and the Bayesian reliability is realized as 0.849185.
igure 12 shows the beta distribution, extreme distribution, and

he Bayesian reliability value using MCS. With 24 new data sets
nvolved for the epistemic random variables the Bayesian reliabil-
ty is updated. The updated reliability distribution is beta
77.1869, 3.8131�, and the Bayesian reliability is updated from the
riginal 0.849185 to 0.880935. Table 6 shows the reliabilities cor-
esponding to each set of the new involved data. Figure 13 shows
he updated beta distribution, extreme distribution, and the Baye-
ian reliability using MCS.

As we can see from the Monte Carlo simulation method, the
eliability analysis for each set of epistemic data can require a
arge amount of response performance evaluations depending on
he simulation sample size �in this case 10,000�. In order to make
he calculation of the Bayesian reliability more efficient, the EDR

ig. 11 Bayesian model for the marginal velocity using a nor-
al distribution

able 5 55 reliabilities corresponding to 55 epistemic data
ets „by MCS…

Rel.
�1�11�

Rel.
�12�22�

Rel.
�23�33�

Rel.
�34�44�

Rel.
�45�55�

0.9973 1.0000 0.9987 0.9995 0.9988
1.0000 0.9993 0.9970 0.9998 0.2703
0.9993 1.0000 1.0000 0.9999 0.9987
0.9945 1.0000 0.9951 0.9999 1.0000
0.8265 1.0000 0.9970 0.9974 0.9955
0.9996 0.9999 0.9899 0.9977 0.9937
0.9985 0.9991 0.9998 0.9918 0.9918
1.0000 0.9999 1.0000 0.9007 1.0000
1.0000 0.9993 0.9993 0.9976 0.9994
1.0000 1.0000 1.0000 0.9778 0.2109
1.0000 0.9999 0.9963 0.9730 0.4436
ournal of Mechanical Design
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method is used for the probability calculation for each set of
epistemic data. By using EDR method, the total number of the
response performance evaluation is reduced from 10,000 to 2n
+1=13. Based on the marginal velocity PDF created in Sec. 3.2.1,
the reliability Ri of a certain design �Xa, Xei� can be formulated as
Ri=Pr�V�Xa ,Xei�–Vt0�, where V�Xa ,Xei� is the performance
velocity variable corresponding to a certain design �Xa, Xei�, Xa is
the aleatory variable set and Xei is the ith set of epistemic data,
and Vt is the marginal velocity. Totally 55 different reliabilities
corresponding to 55 different sets of epistemic uncertainties are
realized, as shown in Table 7. Based on these results, the reliabil-

Fig. 12 Bayesian reliability with 55 sets data „by MCS…

Table 6 24 reliabilities corresponding to 24 new data sets „by
MCS…

Rel.
�1�6�

Rel.
�7�12�

Rel.
�13�18�

Rel.
�19�24�

0.9929 0.9996 0.8864 1.0000
0.9999 0.9999 1.0000 0.8973
0.9995 0.9996 0.9963 0.9842
0.9993 0.9989 0.9240 0.9866
0.9993 1.0000 1.0000 0.9998
0.9994 1.0000 1.0000 1.0000

Fig. 13 Updated Bayesian reliability with 24 new data sets „by

MCS…
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ty distribution is obtained as beta �53.5076, 3.4924� from the
ayesian inference. Then by the Bayesian reliability definition,

he extreme distribution of smallest value for the beta distribution
s constructed, and the Bayesian reliability is realized as 0.848752.
igure 14 shows the beta distribution, extreme distribution, and

he Bayesian reliability using the EDR method. With 24 new data
ets involved, the Bayesian reliability is updated. The updated
eliability distribution is beta �77.1567, 3.8433�, and the Bayesian
eliability is updated from the original 0.848752 to 0.880363.
able 8 shows the reliabilities corresponding to each set of the
ew involved data. Figure 15 shows the updated beta distribution,
xtreme distribution, and the Bayesian reliability using the EDR
ethod.
A comparison of the results from using the two different prob-

bility analysis approaches shows that the EDR method maintains
ood accuracy and at the same time provides a higher computa-
ional efficiency compared with MCS. From the analysis results

able 7 55 reliabilities corresponding to 55 epistemic data
ets „by EDR…

Rel.
�1�11�

Rel.
�12�22�

Rel.
�23�33�

Rel.
�34�44�

Rel.
�45�55�

0.9978 1.0000 0.9991 0.9998 0.9993
1.0000 0.9997 0.9976 0.9998 0.2642
0.9996 1.0000 1.0000 1.0000 0.9992
0.9953 1.0000 0.9963 1.0000 1.0000
0.8243 1.0000 0.9977 0.9982 0.9963
0.9998 0.9999 0.9893 0.9984 0.9944
0.9991 0.9995 0.9998 0.9917 0.9915
1.0000 1.0000 1.0000 0.8938 1.0000
1.0000 0.9996 0.9996 0.9984 0.9997
1.0000 1.0000 1.0000 0.9755 0.2070
1.0000 0.9999 0.9971 0.9702 0.4394

Fig. 14 Bayesian reliability with 55 data sets „by EDR…

able 8 24 reliabilities corresponding to 24 new data sets „by
DR…

Rel.
�1�6�

Rel.
�7�12�

Rel.
�13�18�

Rel.
�19�24�

0.9928 0.9998 0.8814 1.0000
0.9999 0.9999 1.0000 0.8915
0.9997 0.9997 0.9969 0.9835
0.9996 0.9993 0.919 0.9867
0.9996 1.0000 1.0000 0.9999
0.9997 1.0000 1.0000 1.0000
11008-10 / Vol. 131, NOVEMBER 2009
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obtained with both MCS and the EDR method, two points are
clear: first, Bayesian reliability increases with the increase in the
reliability value corresponding to each set of epistemic data; sec-
ond, the updated Bayesian reliability increases with the addition
of more epistemic data into the Bayesian reliability analysis. This
is because the Bayesian reliability represents not only the design
uncertainty of the system but also the uncertainty due to the lim-
iting information represented by the epistemic uncertainties. As
more data are involved, a better understanding of the characteris-
tic of epistemic uncertainties can be expected and consequently a
higher Bayesian reliability can be realized. Also, the Bayesian
reliability analysis approach proposed in this paper offers a con-
venient and effective method for the performance evaluation of
the problems involving several different types of uncertainty and
where uncertainty data are continuously collected.

4 Conclusion
This research presented a new paradigm of reliability prediction

that enables the use of evolving, insufficient, and subjective data
sets. Bayes’ theory was employed to deal with the evolving and
insufficient data sets for data and reliability analyses. Moreover,
the integration of the probability encoding methods �P-methods,
V-methods, and PV-methods� to the paradigm enabled the use of
subjective data sets for data and reliability analyses. The tools for
data and reliability analyses are referred to as BIT and BRT, re-
spectively. The generic definition of Bayesian reliability was pre-
sented, which is a function of a predefined confidence level. The
confidence level can be defined as a function of the available
sample size of epistemic uncertainties by reliability analysts or
decision makers. The effect of the sequence of evolving data sets
on Bayesian updating was carefully studied and found that there is
no data-sequence effect on the updating results. Integrating with
the authors’ earlier work in Bayesian RBDO, this paper presents
BIRD software. It was shown that the proposed Bayesian reliabil-
ity analysis can predict the reliability of the door closing perfor-
mance in the vehicle body-door subsystem where available data
sets are insufficient, subjective, and evolving.
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