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a b s t r a c t

Prognostics aims at determining whether a failure of an engineered system (e.g., a nuclear power plant)

is impending and estimating the remaining useful life (RUL) before the failure occurs. The traditional

data-driven prognostic approach is to construct multiple candidate algorithms using a training data set,

evaluate their respective performance using a testing data set, and select the one with the best

performance while discarding all the others. This approach has three shortcomings: (i) the selected

standalone algorithm may not be robust; (ii) it wastes the resources for constructing the algorithms

that are discarded; (iii) it requires the testing data in addition to the training data. To overcome these

drawbacks, this paper proposes an ensemble data-driven prognostic approach which combines

multiple member algorithms with a weighted-sum formulation. Three weighting schemes, namely

the accuracy-based weighting, diversity-based weighting and optimization-based weighting, are

proposed to determine the weights of member algorithms. The k-fold cross validation (CV) is employed

to estimate the prediction error required by the weighting schemes. The results obtained from three

case studies suggest that the ensemble approach with any weighting scheme gives more accurate RUL

predictions compared to any sole algorithm when member algorithms producing diverse RUL

predictions have comparable prediction accuracy and that the optimization-based weighting scheme

gives the best overall performance among the three weighting schemes.

& 2012 Elsevier Ltd. All rights reserved.
1. Introduction

To support critical decision-making processes such as main-
tenance replacement and system design, activities of health
monitoring and life prediction are of great importance to high-
risk engineered systems composed of multiple components,
complex joints, and various materials, such as aerospace systems,
nuclear power plants, chemical plants, advanced military systems
and so on. Stressful conditions (e.g., high pressure, high tempera-
ture and high irradiation field) imposed on these systems are the
direct causes of damage in their integrity and functionality, which
necessitates the continuous monitoring of these systems due to
the health and safety implications [1–3]. Research on real-time
diagnosis and prognosis which interprets data acquired by dis-
tributed sensor networks, and utilizes these data streams in
making critical decisions provides significant advancements
across a wide range of applications. Maintenance and life-cycle
ll rights reserved.
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management of these high-risk engineered systems for minimiz-
ing the cost [4–6], maximizing the availability [7] and extending
the service life [8] is one of the beneficiary application areas
because of the pervasive nature of monitoring and maintenance
activities throughout the manufacturing and service sectors and,
especially, the extremely high failure costs. For instance, in
nuclear power plants, unexpected breakdowns can be prohibi-
tively expensive and disastrous since they immediately result in
lost power production, correct maintenance cost, reduced public
confidence, and, possibly, human injuries and deaths. In order to
reduce and possibly eliminate such problems, it is necessary to
accurately assess current system health condition and precisely
predict the remaining useful lives (RULs) of operating compo-
nents, subsystems, and systems in the high-risk engineered
systems.

In general, prognostic approaches can be categorized into model-
based approaches [9–13], data-driven approaches [14–18] and
hybrid approaches [19–21]. The application of general model-based
prognostic approaches relies on the understanding of system
physics-of-failure and underlying system degradation models. Myo-
tyri et al. [9] proposed the use of a stochastic filtering technique for
real-time RUL prediction in the case of fatigue crack growth while
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considering the uncertainties in both degradation processes and
condition monitoring measures. A similar particle filtering
approach was later applied to condition-based component repla-
cement in the context of fatigue crack growth [10]. Luo et al. [11]
developed a model-based prognostic technique that relies on an
accurate simulation model for system degradation prediction and
applied this technique to a vehicle suspension system. Gebraeel
presented a degradation modeling framework for RUL predictions
of rolling element bearings under time-varying operational con-
ditions [12] or in the absence of prior degradation information
[13]. As high-risk engineered systems generally consist of multi-
ple components with multiple failure modes, understanding all
potential physics-of-failures and their interactions for a complex
system is almost impossible. With the advance of modern sensor
systems as well as data storage and processing technologies, the
data-driven approaches for system health prognostics, which are
mainly based on the massive sensory data with less requirement
of knowing inherent system failure mechanisms, have been
widely used and become popular. A good review of data-driven
prognostic approaches was given in [14]. Data-driven prognostic
approaches generally require the sensory data fusion and feature
extraction, statistical pattern recognition, and for the life predic-
tion, the interpolation [15,16], extrapolation [17], or machine
learning [18] and so on. Hybrid approaches attempt to take
advantage of the strength from data-driven approaches as well
as model-based approaches by fusing the information from both
approaches. Kozlowski et al. [19] described a data fusion
approach where domain knowledge and predictor performance
are used to determine weights for different state-of-charge
predictors. Goebel et al. [20] employed a Dempster–Shafer regres-
sion to fuse a physics-based model and an experience-based
model for prognostics. Saha et al. [21] combined the offline
relevance vector machine (RVM) with the online particle filter
for battery prognostics. Similar to model-based approaches, the
application of hybrid approaches is limited to the cases where
sufficient knowledge on system physics-of-failures is available.

Implicit relationship between the RUL and the sensory signals
makes it difficult to know which prognostic algorithm performs
best in a specific application. Furthermore, there are many factors
that affect the prediction accuracy and robustness, such as
(i) dependency of the algorithm’s accuracy on the number of
units in a training data set, (ii) significant variability in manu-
facturing conditions and large uncertainties in environmental and
operational conditions, (iii) the amount of effective sensory
signals for RUL predictions, and (iv) the form of degradation trend
(e.g., linear, nonlinear, noisy, smooth). Therefore, no single prog-
nostic algorithm works well for all possible situations. Instead of
using an individual prognostic algorithm, it would be beneficial to
combine multiple algorithms to form a hybrid algorithm.

Combining approximate algorithms into an ensemble, i.e.,
ensemble methods, was motivated to improve the robustness
Table 1
Examples of noted ensemble methods.

Combining strategy Ensemble method Description

By consensus Bagging Bagging determines a class label with

Random forest Random forest improves the perform

random feature selection scheme.

By learning Boosting Boosting trains weak classifiers and c

Adaboost Adaboost trains each base classifier w

weighting coefficients are computed

classifiers, and then aggregates the b

Rule ensemble Not only use a basis function as a ba

includes a rule as a base classifier. As

understand the influences of rules on

degree of dependency on each other.
and accuracy of algorithm in the machine learning community.
The methods can be classified by the combining strategy; by
consensus or by learning. Examples of noted ensemble methods
and brief descriptions are arranged below in Tables 1 and 2 [22].

The ensemble method founds its applications in a wide variety of
research fields, such as the development of committees of neural
networks [28,29], the metamodeling for the design of modern
engineered systems [30–32], the discovery of regulatory motifs in
bioinformatics [33], the detection of traffic incidents [34], the
transient identification of nuclear power plant [35], and the devel-
opment of ensemble Kalman filters [36]. However, the utilization of
the ensemble approach for the data-driven prognostics is still in
infancy. The only relevant work we are aware of comes from [37]
where only two data-driven algorithms are employed as member
algorithms and their weights are empirically determined based on a
one-time training error without a systematic scheme for error
estimation and performance validation. Most data-driven prognostic
practices select a single algorithm with the best accuracy from the
algorithm pool while discarding the others. This approach not only
wastes the resource devoted to developing different algorithms, but
also suffers from the lack of robustness.

Estimating the accuracy of a prognostic algorithm is important
not only for evaluating its prediction accuracy but also for
choosing the best algorithm from a given set (algorithm selec-
tion), or combining algorithms. Many data-driven approaches
[14,16] use the so-called holdout method, which divides the
original run-to-failure data set into two mutually exclusive
subsets called a training set and a testing set, or holdout set.
The holdout method is straightforward and computationally
efficient. However, it often produces a large variance of the
resulting estimate and requires the testing data set which
increases the overall expenses.

To overcome the above shortcomings, this study proposes an
ensemble approach that employs the k-fold cross validation (CV)
to estimate the accuracy of a given ensemble and proposes three
weighting schemes to determine the weight values. Assumptions
for this study are listed below:
(1)
maj

ance

omb

ith a

from

ase c

se cla

the

pred
Sensory data from multiple run-to-failure units are available,
either from the computer simulation or field testing.
(2)
 A single failure mode is considered, i.e., the RUL prediction is
exclusively for this failure mode.
(3)
 The underlying physics of the system fault propagation is not
comprehensive or it is too expensive to derive a reliable
physical damage model for a complex engineered system.
Both cases entail the use of the data-driven prognostics.
The rest of the paper is organized as follows. Section 2 gives a
brief introduction to the data-driven prognostic algorithms
selected in this study. Section 3 presents the proposed ensemble
approach with the k-fold CV and three weighting schemes.
Reference

or voting by multiple classifiers. Breiman (1996) [23]

of bagging by combining with Breiman (2001) [24]

ines them into a strong classifier. Schapire (1990) [25]

weighted data set of which

classification errors by the previous

lassifiers into one.

Freund and Schapire (1997) [26]

ssifier, a rule ensemble

rule has a simple form, it is easy to

ictions and the

Friedman and Popescu (2008) [27]
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Applications of the proposed methodology are presented in
Section 4 and the conclusion of this work is given in Section 5.
2. Description of prognostic algorithms

2.1. A general description of member algorithms

This section provides a brief overview of the five selected data-
driven prognostic algorithms: Method 1 – a similarity-based inter-
polation (SBI) approach with the relevance vector machine (RVM) as
the regression technique (RVM–SBI) [15,49], Method 2 – SBI with
the support vector machine (SVM) as the regression technique
(SVM–SBI) [15,47], Method 3 – SBI with the least-square exponen-
tial fitting (Exp–SBI) [15], Method 4 – A Bayesian linear regression
with the least-square quadratic fitting (Quad–BLR) [17], and Method
5 – A recurrent neural network (RNN) approach [18,50]. A data
processing scheme with a generic health index system is used for
the first four algorithms while a data processing scheme with a
simple normalization scheme for the last algorithm.
2.2. Methods 1–3: Similarity-based interpolation approaches

2.2.1. Data processing with a generic health index system

Successful implementations of prognostic algorithms require
the extraction of the health condition signatures and background
health knowledge from massive training/testing sensory signals
from engineered system units. To do so, this study will use a
generic health index system that is composed of two distin-
guished health indices: physics health index (PHI) and virtual
health index (VHI). In general, the PHI uses a dominant physical
signal as a direct health metric and is thus applicable only if
sensory signals are directly related to physics-of-failures. In the
literature, most engineering practices of health prognostics are
based on various PHIs, such as the battery impedance [21], the
magnitude of the vibration signal [45] and the radio frequency
(RF) impedance [46]. In contrast, the virtual health index (VHI) is
applicable even if sensory signals are not directly related to
system physics-of-failures. In this study, the VHI system will be
employed which transforms the multi-dimensional sensory sig-
nals to one-dimensional VHI with a linear data transformation
method [15]. The VHI system will be detailed in what follows.

Suppose there are two multi-dimensional sensory data sets that
represent the system failed and healthy states, Q0 of M0�D matrix
and Q1 of M1�D matrix, respectively, where M0 and M1 are the data
sizes for system failed and healthy states, respectively, and D is the
dimension of each dataset. With these two data matrices, a
transformation matrix T can be obtained to transform the multi-
dimensional sensory signal into the one-dimensional VHI as

T¼ ðQ T Q Þ�1Q T Soff ð1Þ

where Q¼[Q0; Q1], Soff¼[S0, S1]T, S0 is a 1�M0 zero vector and S1 is
a 1�M1 unity vector. This transformation matrix T can transform
any sensory signal from the offline learning or online prediction
process to the normalized VHI as H¼Qoff �T or H¼Qon �T, where Qoff

and Qon are the offline and online multi-dimensional sensory data
sets, respectively, and, if we assume the data sizes for Qoff and Qon

are respectively Mon and Moff (i.e., Qoff of Moff�D matrix and Qon of
Mon�D matrix), H will be a column vector of the size Moff or Mon.
The VHI can also be denoted as h(ti) for i¼1, y, Moff (for the offline
case) or for i¼1, y, Mon (for the online case), varying approximately
between 0 and 1. This VHI can be used to construct background
health knowledge (e.g., predictive health degradation curves) in the
offline training process and to further conduct the online prediction
process.
2.2.2. Training with RVM, SVM, or exponential fitting

Three regression techniques, namely, relevance vector machine
(RVM), support vector machine (SVM), and least-square exponential
fitting, are employed to construct the background health knowledge
using the VHI of offline system units obtained from Section 2.2.1.
These regression techniques can generate different sets of predictive
health degradation curves for offline system units.

2.2.2.1. Relevance vector machine. Suppose we have a training
data set {ti, hi}, i¼1, y, Ms, sampled from a scalar-valued
function with additive zero mean Gaussian noise e with a
variance s2. The RVM is a special case of a sparse linear model
to approximate this data set as

h tð Þ ¼
XMs

i ¼ 1

oifðt,tiÞþo0 ð2Þ

where x¼(o0, y, oMs)
T is a kernel weight vector and f(t, ti) is a

kernel function centered at the training point ti. Assuming the
independence of {hi}, i¼1, y, Ms, we have the likelihood of the
observed data as

pðh9x,s2Þ ¼ ð2ps2Þ
�Ms=2exp �

1

2s2
:h�Ux:2

� �
ð3Þ

where h¼(h1, y, hMs)
T, U is an Ms� (Msþ1) design matrix

constructed the training points t with Uij¼f(ti, tj).
To evaluate the unknown parameters in Eq. (3) from a

Bayesian perspective, a sparse weight prior distribution can be
assigned, in such a way that a different variance parameter is
assigned for each weight, as

p x9a
� �

¼
YMs

i ¼ 0

N oi90, a�1
i

� �
ð4Þ

where a¼(a0, y, aMs) is a vector consisting of Msþ1 hyper-
parameters, which are treated as independent random variables. To
specify this hierarchical Bayesian inference model, prior distributions
for a and the noise variance s2 must be defined. For scale parameters
a and s2, it is common to use Gamma prior distributions as

pðaÞ ¼
YMs

i ¼ 0

Gamma ai9a, b
� �

pðbÞ ¼Gamma b9c, d
� �

ð5Þ

where b¼s�2, Gamma(a9a, b)¼G(a)�1baa a�1e�ba with G(a) being
the gamma function, a, b, c and d are the hyper-parameters and set to
small values to form a flat Gamma prior.

With the prior defined, the posterior distribution over the
weights is given by the Bayesian inference as

p x9h,a,s2
� �

¼ 2pð Þ� Msþ1ð Þ=2 Rj j�1=2exp �1
2 x�l
� �TR�1 x�l

� �� �
ð6Þ

where the posterior mean vector of the weights is l¼s�2RUh,
and the covariance matrix is R¼(s�2UTUþA)�1 with A¼diag
(a0, y, aMs). Appropriate iterative optimization methods [49],
such as marginal likelihood optimization, expectation maximiza-
tion (EM) algorithms or incremental optimization algorithms,
can be employed to find the hyper-parameter posterior modes
or most probable values am and sm

2 that maximize p(a,
s29h)pp(h9a, s2) p(a) p(s2). More detailed descriptions of the
RVM can be found in [49].

2.2.2.2. Support vector machine. Similar to the RVM, the SVM is
also a special case of a sparse linear model that approximates the
data set {ti, hi}, i¼1, y, Ms, as

h tð Þ ¼
XMs

i ¼ 1

oif t,tið Þþo0 ð7Þ
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where the linear or nonlinear kernel function f(t, ti) are centered
at the training point ti. The optimum regression function can be
obtained by solving the following optimization problem

Minimize
1

2
9w92
þC

XMs

i ¼ 1

ðx�i þx
þ

i Þ

Subject to hi�
XMs

j ¼ 1

oifðti,tjÞ�o0reþxþi

XMs

j ¼ 1

oifðti,tjÞþo0�hireþx�i

xþi ,x�i Z0,i¼ 1,:::,Ms ð8Þ

where the regularization parameter C specifies the tradeoff between
the flatness and tolerance; xi

� and xi
þ are slack variables defining

the upper and lower constraints on the predictions with an e-
insensitive loss function. With the Karush–Kuhn–Tucker (KKT)
conditions, the optimization problem can be reformulated as

Maximize � 1
2

XMs

i ¼ 1

XMs

j ¼ 1

ðai�an

i Þðaj�an

j Þfðti,tjÞ�
XMs

i ¼ 1

ðaiþan

i ÞUeþ
XMs

i ¼ 1

ðai�an

i Þyi

Subject to
XMs

i ¼ 1

ðai�an

i Þ ¼ 0,0rai,an

i rC, i¼ 1,. . .,Ms ð9Þ

The weights and bias term can be computed as

wi ¼ ai�an

i , i¼ 1,. . .,Ms

w0 ¼�
1

2

XMs

i ¼ 1

ðai�an

i Þ fðxi,xrÞþfðxi,xsÞ
� 	

ð10Þ

Then, the regression function can be expressed as

hðtÞ ¼
XMs

i ¼ 1

ðai�an

i Þfðt,tiÞþo0 ð11Þ

Detailed information regarding the use of SVM for regression
can be found in [47]. This study used the MATLABs program
developed by Rakotomamonjy [48].

2.2.2.3. Exponential fitting. Compared to the RVM and SVM, an
exponential fitting is much simpler and easier to implement. In
this study, an exponential function was constructed as

hðtÞ ¼ b1½expðb2tÞ�1� ð12Þ

where the optimum coefficients b1 and b2 can be obtained that
minimize the least-square error of the exponential fitting.

2.2.3. RUL prediction using SBI

The RUL prediction process involves two procedures:
(i) determination of an initial health condition and (ii) the RUL
prediction using the similarity-based interpolation (SBI). This
process closely follows the similarity-based approach in [15].

2.2.3.1. Determination of initial health condition. Different online
testing units often exhibit different initial health indices due to
different initial health conditions. Thus, accurate estimations of
initial health conditions for online testing units are of great
importance to precise RUL predictions. Based on the predictive
health degradation curve (hp) from an offline system unit, an
optimum fitting is conducted to determine a time-scale initial
health condition (T0) that minimizes the sum of squared
differences SSD between the online and offline health index
data. The optimum fitting can be formulated as

Minimize SSD¼
XMs

j ¼ 1

ðhrðtjÞ�hpðtjþT0ÞÞ
2

subject to T0A ½0,TS�Dt� ð13Þ

where hr(tj) and hp(tj) are the online and predictive health indices
at tj, respectively, Ms is the length of the online health index data;
T0 is the time-scale initial health condition; Dt is the time span
(¼tMs�t1) of the online health index data; TS is the time span of a
predictive health degradation curve, i.e., the life span of an offline
system unit. It is noted that the predictive health degradation
curve hp built in the offline training process (see Section 2.2.2) is
essentially the regression model in Eqs. (2), (7) or (12). This
optimization process basically moves the online health index data
hr along the time axis of a predictive health degradation curve hp

to find the optimum time-scale initial health state (T0) that best
matches hr with hp with respect to the SSD. Assuming that the
data size of the offline system unit is Moff, it follows that, among
Moff offline data points on the offline health degradation curve, we
only select Ms consecutive data points overlapping with the
online data along the time axis to compute the SSD. Once T0 is
determined, the projected remaining life of an online system unit
based on a given predictive health degradation curve can be
calculated as

LP
¼ TS�Dt�T0 ð14Þ

Repeating the optimum fitting process on K predictive health
degradation curves from K different offline system units gives K

RUL estimates (Li
P for i¼1, y, K).

2.2.3.2. Similarity-based interpolation. In the similarity-based
interpolation (SBI), the predictive RUL is a linear interpolation
function in terms of different projected RULs (Li for i¼1, y, K) of
an online unit as

L¼
1

W

XK

i ¼ 1

WiULið Þ where W ¼
XK

i ¼ 1

Wi ð15Þ

where Li is the projected RUL on the ith predictive health
degradation curve (for simplicity, we use Li instead of Li

P here),
Wi is the ith similarity weight. A similarity weight Wi can be
defined as the inverse of the corresponding SSDi, i.e., Wi¼(SSDi)

�1.
This definition ensures that a greater similarity gives a greater
weight.

2.3. Method 4: Extrapolation-based approach

Unlike the similarity-based interpolation (SBI) approach, the
extrapolation-based approach employs the training data set not
for the comparison with the testing data set but rather for obtaining
prior distributions of the degradation model parameters. The testing
data set is then used to update these prior distributions. An RUL
estimate can be obtained by extrapolating the updated degradation
model to a predefined failure threshold. For the construction and
updating of the degradation model, this study employed the
Bayesian linear regression method used in [17].

2.3.1. Data processing with a generic health index system

This section follows exactly the descriptions in Section 2.2.1
and will not be detailed here.

2.3.2. Training with quadratic fitting

In this study, the least-square quadratic fitting was employed
as the degradation model for both the training and testing units.
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A quadratic function was constructed as

hðtÞ ¼ b1t2þb2tþb3 ð16Þ

where the optimum coefficients b1, b2 and b3 can be obtained
that minimize the least-square error of the quadratic fitting. The
optimum model parameters for a data set {ti, hi}, i¼1, y Ms, are
estimated as

b¼ UTR�1U
� ��1

UTR�1h ð17Þ

where the coefficient vector b¼[b1, b2, b3]T, the design matrix U
is of the size Ms�3 with Uij¼ti

j, the diagonal covariance matrix R
is of the size Ms�Ms with the diagonal elements Rij¼s2 and the
off-diagonal elements being zero, the VHI vector h¼[h1, y, hMs]

T.
For the training process without prior information, the value of s2

does not affect the least-square fitting results and we simply set
s2
¼1.

2.3.3. RUL prediction with Bayesian linear regression

The Bayesian linear regression employs the Bayesian updating
technique to update the prior distributions of the degradation
parameters b and the RUL prediction is then accomplished by
extrapolating the model shown in Eq. (16) with the posterior
distributions of b. The Bayesian linear regression method for RUL
prediction is briefly explained here and a more complete discus-
sion about this method can be found in references [17,53]. The
prior information of b can be obtained from the training data, i.e.,
the prior distribution of bj is represented by a normal distribution,
N(mj, sj

2), with the mean mj and the standard deviation sj, j¼1, 2,
3. The value of sj

2 can be estimated from the training data set as
the root mean square error between predicted and true degrada-
tion curves. In order to include this prior information into the
regression estimation of model parameters b as shown in Eq. (17),
the design matrix U, the VHI vector h, and the diagonal covar-
iance matrix R need to be changed accordingly. As there are three
parameters in total, b1, b2 and b3, the design matrix U constructed
with a testing data set is appended with three additional rows
with U(Msþ j)j¼1, j¼1, 2, 3, and all other elements being zero.
Accordingly the VHI vector h is appended with three additional
rows with hMsþ j¼mj, j¼1, 2, 3, and the covariance matrix R is
augmented with three additional rows and columns with
R(Msþ j)(Msþ j)¼sj

2, j¼1, 2, 3, and all other elements being zero.
With the updated design matrix U, the VHI vector h, and the
diagonal covariance matrix R, the posterior estimate of the
degradation parameters bi can be obtained with Eq. (17), and
the updated quadratic degradation model shown in Eq. (16) can
be extrapolated to the degradation threshold hc¼0 to obtain the
RUL as:

RUL¼ t�t0 : f8tA ½t0,þ1Þ9b1t2þb2tþb3 ¼ 0g ð18Þ

where t0 is the time that the system has been operating until the
RUL prediction is made.

2.4. Method 5: Recurrent neural network approach

2.4.1. Data processing with a normalization scheme

As a standard data processing technique, the normalization
provides a common scale among all the dimensions of a data set.
Suppose that a multi-dimensional sensory data set Q in the form
of a matrix of the size Ms�D comes from the same operation
condition, where Ms is the data size and D is the dimension. The
normalized data set QN of the data set Q can be expressed as

Q N
ij ¼

Q ij�mj

sj
ð19Þ
where Qij
N is the normalized value of Qij, mj and sj are the mean

and standard deviation of the jth dimension of the data set Q,
respectively.
2.4.2. Recurrent neural network

The RNN is capable of learning the nonlinear dynamic tem-
poral behavior due to the use of an internal state and feedback. A
first-order simple RNN is an example of multi-layer perceptron
(MLP) with feedback connections (see Fig. 1). The network is
composed of four layers, namely, the input layer I, recurrent layer
R, context layer C and output layer O. Units of the input layer and
the recurrent layer are fully connected through the weights WRI

while units of the recurrent layer and output layer are fully
connected through the weights WOR. Through the recurrent
weights WRC, the time delay connections link current recurrent
units R(t) with the context units C(t) holding recurrent units R(t–1)

in the previous time step. Let I(t)
¼(I1

(t), y, Ij
(t), y, I9I9

(t)), R(t)
¼(R1

(t),
y, Rj

(t), y, R9R9
(t) ) and O(t)

¼(O1
(t), y, Oj

(t), y, O9O9
(t) ) be the input

patterns, recurrent activities and output activities at the time step
t, respectively, where 9I9, 9R9 and 9O9 denote the numbers of the
input, recurrent and output units, respectively. The net input of
the ith recurrent unit can be computed as

~R
ðtÞ

i ¼
X

j

WRI
ij IðtÞj þ

X
j

WRC
ij Rðt�1Þ

j ð20Þ

Given the logistic sigmoid function as the activation function f,
the output activity of the ith recurrent unit can then be computed as

RðtÞi ¼ f ð ~R
ðtÞ

i Þ ¼ 1þexpð� ~R
ðtÞ

i Þ

h i�1
ð21Þ

The net input and output activity of the ith output unit can be
computed, respectively, as

~O
tð Þ

i ¼
X

j

WOR
ij R tð Þ

j ð22Þ

and

O tð Þ
i ¼ f ~O

tð Þ

i

� �
¼ 1þexp � ~O

tð Þ

i

� �h i�1
ð23Þ

In this study, the inputs to the RNN are the normalized sensory
data set QN and the outputs are the RULs associated with the data
set. We used the MATLABs program developed by Cernansky
[50]. In the RNN training process, the back propagation through
time and extended Kalman filter were used to calculate the
gradients of network weights and to update network weights,
respectively.
3. Ensemble of prognostic algorithms

It is essential to propose a robust prognostic solution that
accurately predicts the RUL using data features extracted from
multi-dimensional sensory degradation signals. For building such
a unified structural health prognostic framework, this paper
proposes (i) a weighted-sum formulation for an ensemble of
prognostic algorithms, (ii) k-fold cross validation (CV) to evaluate
the error metric associated with a candidate ensemble model; and
(iii) three weighting schemes to determine the weight values for
the member algorithms. This section is organized as follows.
Section 3.1 presents the basic weighted-sum formulation for the
RUL prediction. Section 3.2 describes the background of the k-fold
CV and how it can be applied for estimating the accuracy of a
prognostic algorithm. Section 3.3 describes the three proposed
weighting schemes. The overall procedure of the ensemble
approach is described in Section 3.4.
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Fig. 1. Simplified (a) and more detailed representation (b) of Elman’s simple RNN [50].
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3.1. Weighted-sum formulation

A simple average of RUL predictions obtained using the
member algorithms means assigning equal weights to the mem-
ber algorithms used for prognostics. This is acceptable only when
the member algorithms provide the same level of accuracy for a
given problem. However, it is more likely that an algorithm tends
to be more accurate than others. It is ideal to assign a greater
weight to a member algorithm with higher prediction accuracy in
order to enhance its prediction accuracy and robustness. Hence,
member algorithms with different prediction performance should
be multiplied by different weight factors.

Let Y¼{y1, y2, y, yN} be a data set consisting of multi-
dimensional sensory signals (e.g., acceleration, strain, pressure)
from N different run-to-failure units. An ensemble of prognostic
member algorithms for RUL prediction can be expressed in a
weighted-sum formulation as

L̂¼
XM
j ¼ 1

wjL̂j yt ,Y
� �

ð24Þ

where L̂ denotes the ensemble predicted RUL for the testing
data set yt; M denotes the number of algorithm members in the
ensemble; wj denotes the weight assigned to the jth prognostic
algorithm; L̂j(yt, Y) denotes the predicted RUL by the jth prog-
nostic member algorithm trained with the data set Y. Let the
weight vector w¼[w1, y, wM]T and the vector of predicted
RULs by member algorithms L̂¼ ½L̂1,:::,L̂M�

T , the weighted-sum
formulation in Eq. (24) can be expressed in a vector form as
L̂ w,L̂
� �

¼wTL̂.

3.2. K-fold cross validation

The k-fold cross validation is used in the offline process to
evaluate the accuracy of a given ensemble. It randomly divides
the original data set Y into k mutually exclusive subsets (or folds)
Y1, Y2, y, Yk having an approximately equal size [38]. Of the k

subsets, one is used as the test set and the other k�1 subsets are
put together as a training set. The CV process is performed k

times, with each of the k subsets used exactly once as the test set.
Let Im¼{i: yiAYm}, m¼1, 2, y, k denote the index set of the run-
to-failure units whose sensory signals construct the subset Ym.
Then the CV error is computed as the average error over all k trials
and can be expressed as

eCV ¼
1

N

Xk

m ¼ 1

X
iA Im

SðL̂ðw,L̂ðyi,Y\YmÞÞ,L
T
i Þ ð25Þ

where S(�) is a predefined evaluation metric that measures the
accuracy of the ensemble-predicted RUL; N denotes the number
of run-to-failure units for CV; LiT denotes the true RUL of the ith
unit. The above formula indicates that all units in the data set are
used for both training and testing, and each unit is used for
testing exactly once and for training k�1 times. Thus, the
variance of the resulting estimate is likely to be reduced com-
pared to the traditional holdout approach, resulting in superior
performance when employing a small data set. It is important to
note that the disadvantage of the k-fold CV against the holdout
method is greater computational expense because the training
process has to be executed k times. As a commonly used setting
for CV, a 10-fold CV is employed in this study.

3.3. Weighting schemes

This section will introduce three schemes to determine the
weights of member algorithms: the accuracy-based weighting,
diversity-based weighting and optimization-based weighting.

3.3.1. Accuracy-based weighting

The prediction accuracy of the jth member algorithm is
quantified by its CV error, expressed as

ej
CV ¼

1

N

Xk

m ¼ 1

X
iA Im

S L̂j yi,Y\Ym

� �
,LT

i

� �
ð26Þ

The weight wj of the jth member algorithm can then be
defined as the normalization of the corresponding inverse CV
error, expressed as

wj ¼
ðej

CV Þ
�1PM

i ¼ 1 ðei
CV Þ
�1

ð27Þ

This definition indicates that a larger weight is assigned to a
member algorithm with higher prediction accuracy. Thus, a
member algorithm with better prediction accuracy has a larger
influence on the ensemble prediction. This weighting scheme
relies exclusively on the prediction accuracy to determine the
weights of member algorithms.

3.3.2. Diversity-based weighting

The weight formulation in Eq. (27) relies exclusively on the
prediction accuracy to determine the weights. However, the
prediction accuracy of member algorithms is not the only factor
that affects the ensemble performance. The prediction diversity,
which measures the extent to which the predictions by a member
algorithm are distinguishable from those by the others, also has a
significant effect on the ensemble performance, especially on the
robustness. More specifically, a larger weight should generally
be assigned to a member algorithm with higher prediction
diversity because of its larger potential to enhance the ensemble
robustness.
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We begin by formulating an N-dimensional error vector con-
sisting of absolute RUL prediction errors by the jth member
algorithm as

ej ¼ L̂j y1,Y\Y1

� �
�LT

1,:::,L̂j yN ,Y\Ym

� �
�LT

N

h iT
ð28Þ

Repeatedly computing the error vectors for all M member
algorithms gives M error vectors e1, e2, y, eM. The prediction
diversity of the jth member algorithm can then be computed as
the sum of Euclidean distances between the error vector ej and all
the other error vectors, given by

Dj ¼
XM

i ¼ 1;ia j

:ej�ei: ð29Þ

The prediction diversity measures the extent to which the
predictions by a member algorithm are distinguishable from
those by any other. Based on the defined prediction diversity,
the normalized weight wj of the jth member algorithm can then
be calculated as

wj ¼
DjPM

i ¼ 1 Di

ð30Þ

This definition suggests that a member algorithm with higher
prediction diversity will be given a larger weight and thus
contributes more to the ensemble predicted RUL. For example,
if, among all the member algorithms, one algorithm consistently
gives early RUL predictions while any of the others late RUL
predictions, the former will likely be given a larger weight than
the latter. It is also noted that the weight formulation in Eq. (30)
considers the prediction diversity as the only criterion for the
weight determination.
Fig. 2. A flowchart of the ensemble approach.

Table 2
Detailed procedure of the ensemble approach.

STEP 1 Determine sensor configurations and acquire trai

STEP 2a Perform the offline training and testing processes

signals to compute the CV error.

STEP 2b Determine the weights using the accuracy-based

and optimization-based weighting schemes.

STEP 3 Acquire testing sensory signals from online system

STEP 4a Predict RULs using the member algorithms throu

health knowledge obtained from the offline train

STEP 4b Predict the ensemble RULs with the optimum we
3.3.3. Optimization-based weighting

Neither the accuracy-based nor diversity-based weighting
scheme takes into account both the prediction accuracy and
diversity in the weight calculation. Thus, the two schemes cannot
produce an ensemble algorithm to achieve both high prediction
accuracy and robustness. In what follows, an optimization-based
weighting scheme is proposed to maximize the accuracy and
robustness of data-driven prognostics by adaptively synthesizing
the prediction accuracy and diversity of each member algorithm.

In the optimization-based weighting scheme, the weights in
Eq. (24) can be obtained by solving an optimization problem of
the following form

Minimize eCV ¼ eCV ðL̂ðw,L̂ðyiÞÞ, LT
i , i¼ 1,. . .,NÞ

Subject to
XM

j ¼ 1
wj ¼ 1 ð31Þ

After the prediction of RULs using the M member algorithms
through the 10-fold CV, the above optimization problem can
be readily solved with almost negligible computational effort
since the weight optimization process does not require the
execution of member algorithms. Thus, the overall computational
cost mainly comes from the training and testing in the CV process.
We expect that, by solving the optimization problem in Eq. (31),
the resulting ensemble of algorithms will outperform any of the
ensemble’s individual member algorithms in terms of both
accuracy and robustness. The capability of this weighting scheme
to adaptively synthesize the prediction accuracy and diversity of
each member algorithm will be demonstrated in the case study
section.

3.4. Overall procedure

Fig. 2 shows the overall procedure of the proposed ensemble
approach with the k-fold CV and three weighting schemes. This
data-driven prognostic approach is composed of the offline and
online processes. In the offline process, the offline training/testing
process with the k-fold CV is employed to compute the CV error of
an ensemble formulation; the weights of member algorithms are
determined using the accuracy-based weighting, diversity-based
weighting and optimization-based weighting. The online predic-
tion process combines the RUL predictions from all member
algorithms to form an ensemble RUL prediction using the weights
obtained from the offline process. This process enables the
continuous update of the health information and prognostic
results in real-time with new sensory signals. Table 2 details
the proposed ensemble prognostics approach with the five steps.
STEPS 2–4 can be repeated to incorporate new training sensory
signals and to update the weights and RUL predictions. Since the
computationally expensive training process with multiple algo-
rithms is done offline and the online prediction process with
multiple algorithms requires a relatively small amount of com-
putational effort, the ensemble approach raises little concerns in
the computational complexity. Indeed, in many engineered sys-
tems, the prognostic accuracy is treated as of much higher
ning sensory signals from offline system units.

with the k-fold CV with the training sensory

weighting, diversity-based weighting

units.

gh the online prediction process which employs the background

ing process.

ights obtained from STEP 2b.



Table 3
Six different operation regimes.

Regime ID Operating

parameter 1

Operating

parameter 2

Operating

parameter 3

1 0 0 100
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importance compared to the computational complexity since the
occurrence of a catastrophic system failure causes much more
loss than the increase of the computational efforts. Therefore, in
cases where the ensemble approach achieves considerable
improvement in the prediction accuracy over any sole member
algorithm, we should always prefer the use of the former.
2 20 0.25 20

3 20 0.7 0

4 25 0.62 80

5 35 0.84 60

6 42 0.84 40
4. Case studies

In this section, the proposed ensemble of data-driven prog-
nostic algorithms is demonstrated with three PHM case studies:
(i) 2008 IEEE PHM challenge problem, (ii) power transformer
problem, and (iii) electric cooling fan problem. In each case study,
the ensemble approach combines RUL predictions from five
popular data-driven prognostic algorithms, namely, a similarity-
based interpolation (SBI) approach with RVM as the regression
technique (RVM–SBI) [15,49], SBI with SVM (SVM–SBI) [47,15],
SBI with the least-square exponential fitting (Exp–SBI) [15], a
Bayesian linear regression with the least-square quadratic fitting
(Quad–BLR) [17], and a recurrent neural network (RNN) approach
[50,18]. Details regarding the five prognostic algorithms are given
in Section 2.

4.1. 2008 IEEE PHM challenge problem

In an aerospace system (e.g., an airplane, a space shuttle),
system safety plays an important role since failures can lead to
dramatic consequences. In order to meet stringent safety require-
ments as well as minimize the maintenance cost, condition-based
maintenance must be conducted throughout the system’s life-
time, which can be enabled by system health prognostics. This
case study aims at predicting the RULs of aircraft engine systems
in an accurate and robust manner with massive and heteroge-
neous sensory data.

4.1.1. Description of data set

The data set provided by the 2008 IEEE PHM Challenge
problem consists of multivariate time series signals that are
collected from an engine dynamic simulation process. Each time
series signal comes from a different degradation instance of the
dynamic simulation of the same engine system [39]. The data for
each cycle of each unit include the unit ID, cycle index, 3 values
for an operational setting and 21 values for 21 sensor measure-
ments. The sensor data were contaminated with measurement
noise and different engine units start with different initial
health conditions and manufacturing variations which are
unknown. Three operational settings have a substantial effect
on engine degradation behaviors and result in six different
operation regimes as shown in Table 3. The 21 sensory signals
were obtained from 6 different operation regimes. The whole
data set was divided into training and testing subsets, each of
which consists of 218 engine units. In the training data set,
the damage growth in a unit was allowed until the occurrence
of a system failure when one or more limits for safe operation
have been reached. In the testing data set, the time series
signals were pruned some time prior to the occurrence of a
system failure. The objective of the problem is to predict the
number of remaining operational cycles before failure in the
testing data set.

4.1.2. Implementation of ensemble approach

For the CV process, the training data set with 218 units were
divided to 10 data subsets with a similar size. Each data subset
was used for both training and testing and, more specifically, nine
times for training and once for testing. The training data subsets
contain complete degradation information while the testing data
subsets carry only partial degradation information. The latter
were generated by truncating the original data subsets after pre-
assigned RULs. The RUL pre-assigned to each unit in a testing data
subset was randomly generated from a uniform distribution
between its zero and half-remaining life. This range in the
uniform distribution was selected based on the following two
criteria: (i) the pre-assigned RULs should be small enough to
allow the occurrence of substantial degradation; and (ii) the
variation of the pre-assigned RULs should be large enough to test
the robustness of algorithms.

Among the 21 sensory signals, some signals contain no or little
degradation information of an engine unit whereas the others do.
To improve the RUL prediction accuracy, important sensory
signals must be carefully selected to characterize the degradation
behavior of engine units for health prognostics. Following the
work in [15], this study selected 7 sensory signals (2, 3, 4, 7, 11, 12
and 15) among the 21 sensory signals for the use in the member
algorithms: RVM–SBI, SVM–SBI, Exp–SBI and Quad–BLR. A mono-
tonic lifetime trend can be observed from these seven sensory
signals of which the noise levels are relatively low. For the VHI
construction, the system failure matrix Q0 was created with the
sensory data in a system failure condition, 0rLr4, while the
system healthy matrix Q1 with those in a system healthy condi-
tion, L4300. The RVM employed a linear spline kernel function
with the initial most probable hyper-parameter vector for kernel
weights am¼[1�104, y, 1�104] and the initial most probable
noise variance sm

2
¼1�10�4. In the SVM, a Gaussian kernel

function is used with the parameter settings as: the regularization
parameter C¼10 and the parameter of the e-insensitive loss
function e¼0.10. In the RNN training, the 21 normalized sensory
signals together with the regime ID at each cycle were used as the
multi-dimensional inputs of the RNN and the RUL at the corre-
sponding cycle was used as the output. The implementation
details can be found in [18]. In the RNN architecture, the numbers
of the input, recurrent and output units are 9I9¼22, 9R9¼8 and
9O9¼1.

The evaluation metric considered for this example employed
an asymmetric score function around the true RUL such that
heavier penalties are placed on late predictions [39]. The score
evaluation metric S can be expressed as

SðL̂i,L
T
i Þ ¼

expð�di=13Þ�1, dio0 where di ¼ L̂i�LT
i

expðdi=10Þ�1, diZ0

(
ð32Þ

where L̂i and Li
T denote the predicted and true RUL of the ith unit,

respectively. This score function was used to compute the CV
error eCV using Eq. (25) for the accuracy- and optimization-based
weighting schemes. In this study the weight optimization pro-
blem in Eq. (31) was solved using a sequential quadratic optimi-
zation (SQP) method which is a gradient-based optimization
technique.



Table 4
Weighting results, CV and validation errors for 2008 PHM challenge problem.

RS SS ES QB RN RS–SS–ES–QB–RN

AW DW OW

Weight by AW 0.3063 0.3029 0.3137 0.0151 0.0620 – – –

Weight by DW 0.1478 0.1488 0.1488 0.3354 0.2191 – – –

Weight by OW 0.0000 0.0470 0.7462 0.2068 0.0000 – – –

CV error 8.0743 8.1646 7.8834 163.3376 39.8583 6.9159 7.0852 4.8387
Validation error 10.2393 9.3907 10.4710 247.0079 20.1499 8.5544 6.1280 6.1955

Fig. 3. RUL predictions of training units (a) and testing units (b) for 2008 PHM challenge problem (optimization-based weighting).
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4.1.3. Results of ensemble approach

The five selected member algorithms are RVM–SBI (RS),
SVM–SBI (SS), Exp–SBI (ES), Quad–BLR (QB) and RNN (RN). The
three weighting schemes are the accuracy-based weighting (AW),
diversity-based weighting (DW) and optimization-based weight-
ing (OW). Table 4 summarizes the weighting results by the three
weighting schemes as well as compares the CV and validation
errors of the individual and ensemble approaches. It is observed
that the ensemble approaches with all three weighting schemes
outperforms any of the individual member algorithm in terms of
the CV error and that the one with the optimization-based
weighting achieves the smallest CV error of 4.8387 on the training
data set, a 38.62% improvement over the best individual member
algorithm, ES, whose CV error is 7.8834. As expected, the
accuracy-based weighting scheme yields better prediction accu-
racy than the diversity-based weighting. This can be attributed to
the fact that the former assigns larger weights to member
algorithms with better prediction accuracy while the latter does
not consider the prediction accuracy in the weight determination.
To test the robustness of the ensemble approaches, the testing
data set with 218 units were employed to compute the validation
errors. Note that the testing data set is different from the training
data set that was used to determine the weights in the ensemble
approach. It is apparent that the ensemble approaches again
outperform the individual member algorithms and that the one
with the diversity-based weighting performs best, with a 34.7%
improvement over the best individual member algorithm, SS. This
suggests that the diversity-based weighting, compared to the
accuracy-based weighting, provides a more robust ensemble of
the member algorithms. It is noted that the optimization-based
weighting scheme still achieves a comparable validation error to
that of the diversity-based weighting scheme.
Under the optimization-based weighting scheme, the RUL pre-
dictions by two individual algorithms, ES and QB, with the largest
weights and the ensemble approach are plotted for 218 training and
testing units in Fig. 3. The units are sorted by the RULs in an
ascending order. It is seen that ES tends to give consistently early
RUL predictions while QB tends to provide consistently late RUL
predictions. In contrast, the ensemble approach gives RUL predic-
tions closer to the true values while eliminating many outliers
produced by the two individual algorithms. The optimization-based
weighting scheme provides better performance since the scheme
employs an optimum ensemble formulation.
4.1.4. Comparison of different combinations of member algorithms

Out of the five member algorithms, 31 different combinations
can be chosen to formulate an ensemble approach. It would be
interesting to study how a choice of combination affects the
performance of an ensemble approach. Table 5 summarizes the
CV errors for ensemble approaches with all possible combinations
of the member algorithms under the optimization-based weight-
ing scheme. Three important remarks can be derived from the
results. First of all, it is observed that the ES, as the individual
member algorithm with the best performance, always serves as a
member algorithm of the best ensemble approach. We also
observe that the ES, when involved in the ensemble approach,
always had a larger weight than any other. It indicates that the
best member algorithm exhibits good cooperative performance
which can be identified by the optimization-based weighting
scheme. Second, the QB, which gives the worst individual perfor-
mance, was surprisingly selected as an important member of the
best ensemble approach. These results, though counterintuitive,
suggest that the ensemble approach can adaptively synthesize the



Damaged joint

Fig. 4. A power transformer FE model (without the covering wall).

Table 6
Random geometries and material properties for power transformer problem.

Component Physical meaning Distri.

type

Mean Std

x1 Wall thickness Normal 3 0.015

x2 Angular width of support

joints

Normal 15 0.075

x3 Height of support joints Normal 6 0.03

x4 Young’s modulus of support

joint

Normal 2Eþ12 1Eþ10

x5 Young’s modulus of winding Normal 1.28Eþ12 6Eþ8

x6 Poisson ratio of joints Normal 0.27 0.0027

x7 Poisson ratio of winding Normal 0.34 0.0034

x8 Density of joints Normal 7.85 0.000785

x9 Density of windings Normal 8.96 0.0896

Table 5
Comparison of CV errors of different combinations of member algorithms for 2008

PHM challenge problem (optimization-based weighting).

Combination CV error Combination CV error Combination CV error

RS 8.0743 RS–SS 8.0769 RS–SS–ES 7.8834

SS 8.1646 RS–ES 7.8834 RS–SS–QB 4.9123

ES 7.8834 RS–QB 4.9162 RS–SS–RN 6.7983

QB 163.3376 RS–RN 6.8002 RS–ES–QB 4.8391

RN 39.8583 SS–ES 7.8834 RS–ES–RN 6.5194

Mean 45.4636

Stda 67.3188

RS–SS–ES–QB 4.8387 SS–QB 4.9362 RS–QB–RN 4.9162

RS–SS–ES–RN 6.5194 SS–RN 6.8376 SS–ES–QB 4.8387
RS–SS–QB–RN 4.9123 ES–QB 4.8391 SS–ES–RN 6.5194

RS–ES–QB–RN 4.8391 ES–RN 6.5194 SS–QB–RN 4.9362

SS–ES–QB–RN 4.8387 QB–RN 17.5868 ES–QB–RN 4.8391

Mean 5.1896 Mean 7.6279 Mean 5.7002

Std 0.7440 Std 3.7182 Std 1.1234

RS–SS–ES–QB–RN 4.8387

a Standard deviation
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prediction ability and diversity of each individual algorithm to
enhance the accuracy and robustness of RUL predictions. Indeed,
the QB is prone to give late RUL predictions as shown in Fig. 3 and
thus possesses higher prediction diversity. Third, both the mean
and standard deviation of CV errors decrease as the number of
member algorithms increases. The mean and standard deviation
of CV errors of ensemble approaches with a single member
algorithm are 45.4636 and 67.3188, respectively, and they mono-
tonically decrease to 5.1896 and 0.7440, respectively, by the
ensemble approach with four member algorithms. Thus it would
be beneficial to have more member algorithms to enhance the
prediction accuracy and reduce the uncertainty of this accuracy.

4.2. Power transformer problem

The power transformer is a critical power element in nuclear
power plants, since an unexpected breakdown of the transformer
causes plant shut-down and substantial societal expense. So it is
very important to ensure high reliability and safety of the
transformer during its operation. Investigations of the failures
causes have revealed that mechanical breakdowns constitute a
large portion of unexpected breakdowns of transformers in
nuclear power plants [40]. Therefore, health monitoring and
prognostics of the transformer with respect to mechanical failures
is of significant importance to preventing unexpected break-
downs and minimizing interruptions to reliable customer service.
This case study conducts transformer health prognostics with
sensory signals obtained from a finite element (FE) model of a
power transformer.
4.2.1. Model description

The FE model of a power transformer was created in ANSYS 10
as shown in Fig. 4, where one exterior wall is concealed to make
the interior structure visible. The transformer is fixed at the
bottom surface and a vibration load with the frequency of
120 Hz is applied to the magnetic core. The three windings have
a total number of twelve support joints, with each having four
support joints. The random parameters considered in this study
are listed in Table 6, which includes the material properties of
support joints and windings as well the geometries of the
transformer. The uncertainties in vibration responses propagated
from these uncertain parameters will be accounted for when
generating prognostic data.
Since it is very difficult, if not impossible, to obtain direct
measurements of the health condition of transformers, indirect
measurements are most often used to diagnose the health con-
dition and predict the RULs of transformers [41]. In particular, the
vibrations of the magnetic core and of the windings could
characterize transitory overloads and permanent failures before
any irreparable damage occurs [42,43]. Thus, this case study
employs the vibration signals of the magnetic core and of
the windings of a power transformer to predict the RULs of
transformers.

4.2.2. Prognostic data generation

The failure mode considered in this study is the loosening of a
winding support joint (see Fig. 4) induced by the magnetic core
vibration. The joint loosening was realized by reducing the
stiffness of the joint. The failure criterion is defined as a 99%
stiffness reduction of the joint. To model the trajectory of change
in stiffness over time, this study uses a damage propagation
model with an exponential form as [39]

E tð Þ ¼ E0þbE 1�exp aEtð Þð Þ ð33Þ

where E0 is the initial Young’s modulus of the joint; aE and bE are
the model parameters; t is the cycle time. The initial Young’s
modulus E0 follows the same normal distribution with x4 (see
Table 6). The model parameters aE and bE are independent and
normally distributed with means 0.002 and 4Eþ12, each of which
has a 10% coefficient of variation.

Since data-driven prognostic approaches require a large
amount of prognostic data, it is computationally intolerable, if
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not impossible, to simply run the simulation to generate every
data point. To overcome this difficulty, this study employed the
univariate decomposition method that only uses a certain num-
ber of univariate sample points to construct the response surface
for a general multivariate response function while achieving good
accuracy [44]. This study selected five strain gauges (see Fig. 5)
from the optimally designed sensor network consisting of nine
strain gages and thus requires the construction of five responses
surfaces. The data generation process involves four sequentially
executed procedures: (i) Four univariate sample points were
obtained from the harmonic analysis to construct response
surfaces, along the damage propagation path, that approximate
the strain components at five sensor locations as functions of
random variables detailed in Table 6; (ii) 400 randomly generated
samples of E0, aE and bE were used in conjunction with Eq. (33) to
produce 400 damage propagation paths, of which 200 paths were
assigned to the training units and the rest to the testing units; (iii)
the constructed response surfaces were used to interpolate the
strain components at five sensor locations for a given set of
randomly generated geometries and material properties and
damage propagation paths, and repeatedly executing this process
for 400 times gave the training data set with 200 training units
and the testing data set with 200 testing units; (iv) measurement
noise following a zero mean normal distribution was added to
both the training and testing data sets to finalize the data
generation. The cubic spline was used as the numerical scheme
for the response surface construction and interpolation. Simu-
lated measurements by sensors 1 and 5 are plotted against the
adjusted cycle index, defined as the subtraction of the cycle-to-
Fig. 5. strain gauges located on the side wall of power transformer.

Fig. 6. Simulated measurements by sensors 1(a
failure from the actual operational cycle, in Fig. 6 for all 200
training units in the training data set.

4.2.3. Implementation of ensemble approach

The training data set with 200 units were equally and
randomly divided to 10 subsets. Similar to the first example,
when used for the testing in CV, each unit in a subset was
assigned with a randomly generated RUL from a uniform dis-
tribution between its zero and half-remaining life. All the five
member algorithms used the same parameter settings with those
detailed in Section 4.1.2. The score function in Eq. (32) was again
used to compute the CV error eCV for the accuracy- and optimiza-
tion-based weighting schemes.

4.2.4. Results of ensemble approach

Table 7 summarizes the weighting results by the three
weighting schemes as well as compares the CV and validation
errors of the individual and ensemble approaches. Compared to
the first example, similar results can be observed: (i) The
ensemble approaches with all three weighting schemes yield
smaller CV error than any of the individual member algorithm
and the one with the optimization-based weighting gives the
smallest CV error of 2.7258 on the training data set, a 66.48%
improvement over the best individual member algorithm, RN,
whose CV error is 8.1323; (ii) the accuracy-based weighting
scheme yields a comparable CV error to that of the diversity-
based weighting; (iii) the optimization-based weighting scheme
achieves a validation error of 5.6138, which is comparable to the
smallest validation error of 5.6119 by the diversity-based weight-
ing scheme.

Under the optimization-based weighting scheme, the RUL
predictions by two individual algorithms, ES and QB, with the
largest weights and the ensemble approach are plotted for 218
training and testing units in Fig. 7. It can be observed that ES and
QB are prone to produce early and late RUL predictions, respec-
tively, while the ensemble approach gives RUL predictions closer
to the true values with a much smaller number of outliers.

4.2.5. Comparison of different combinations of member algorithms

A comparison study of different combinations of member
algorithms was again carried out using the optimization-based
weighting scheme for the power transformer problem. Table 8
summarizes the comparison results from which several important
remarks similar to those in the first example can be derived. First
of all, the member algorithms ES and QB can always be observed
in the best ensemble approach with more than one member
) and 5 (b) for power transformer problem.



Table 7
Weighting results, CV and validation errors for power transformer problem.

RS SS ES QB RN RS–SS–ES–QB–RN

AW DW OW

Weight by AW 0.2128 0.2265 0.2343 0.0677 0.2588 – – –

Weight by DW 0.1488 0.1486 0.1688 0.3290 0.2048 – – –

Weight by OW 0.0000 0.0000 0.6303 0.2336 0.1361 – – –

CV error 9.8922 9.2945 8.9849 31.0891 8.1323 3.4874 3.4124 2.7258
Validation error 6.5737 6.8847 7.8251 20.0356 15.2265 5.7825 5.6119 5.6138

Fig. 7. RUL predictions of training units (a) and testing units (b) for power transformer problem (optimization-based weighting).

Table 8
Comparison of CV errors of different combinations of member algorithms for

power transformer problem (optimization-based weighting).

Combination CV error Combination CV error Combination CV error

RS 9.8922 RS–SS 9.2945 RS–SS–ES 8.9561

SS 9.2945 RS–ES 8.9849 RS–SS–QB 3.1688

ES 8.9849 RS–QB 3.1764 RS–SS–RN 3.9651

QB 31.0891 RS–RN 3.9744 RS–ES–QB 2.7894

RN 8.1323 SS–ES 8.9561 RS–ES–RN 3.4557

Mean 13.4786

Std 9.8650

RS–SS–ES–QB 2.7894 SS–QB 3.1815 RS–QB–RN 3.1470

RS–SS–ES–RN 3.4557 SS–RN 3.9671 SS–ES–QB 2.7894

RS–SS–QB–RN 3.1433 ES–QB 2.7894 SS–ES–RN 3.4557

RS–ES–QB–RN 2.7258 ES–RN 3.4557 SS–QB–RN 3.1559

SS–ES–QB–RN 2.7258 QB–RN 6.9724 ES–QB–RN 2.7258
Mean 2.9680 Mean 5.4752 Mean 3.7609

Std 0.3232 Std 2.7412 Std 1.8640

RS–SS–ES–QB–RN 2.7258
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algorithms. We also observe that the combination ES and QB,
when involved in the ensemble approach, always had a larger
weight than any other. This result is different from what we
observe in the first example, where the largest weight was
assigned to the best individual member algorithm. This suggests
that the optimization-based weighting scheme makes less use of
or even discarded the best member algorithm that does not
exhibit good cooperative performance with other members.
Second, the QB, which gives the worst individual performance
and is prone to give later RUL predictions (see Fig. 7), was selected
as an important member of the best ensemble approach. This
again suggests that the prediction diversity plays an important
role in the weight determination. Third, as is the case in the first
example, both the mean and standard deviation of CV errors
decrease as the number of member algorithms increases. Thus the
addition of member algorithms tends to enhance the prediction
accuracy and reduce the uncertainty of this accuracy.

4.3. Electric cooling fan problem

In addition to the numerical studies, we also conducted
experimental testing to verify the effectiveness of the ensemble
approach. In this case study, we applied the ensemble approach to
the health prognostics of electronic cooling fan units. Cooling fans
are one of the most critical parts in system thermal solution of
most electronic products [51] and in cooling towers of many
chemical plants [52]. This study aims to demonstrate the pro-
posed ensemble prognostics with 32 electronic cooling fans.
Fig. 8. DC fan degradation test block diagram.
4.3.1. Experimental setup

In this experimental study, thermocouples and accelerometers
were used to measure temperature and vibration signals. To make
time-to-failure testing affordable, the accelerated testing condition
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for the DC fan units was sought with inclusion of a small amount of
tiny metal particles into ball bearings and an unbalanced weight on
one of the fan units. The experiment block diagram of DC fan
accelerated degradation test is shown in Fig. 8. As shown in the
diagram, the DC fan units were tested with 12 V regulated power
supply and three different signals were measured and stored in a PC
through a data acquisition system. Fig. 9(a) shows the test fixture
with four screws at each corner for the DC fan units. As shown in
Fig. 9(b), an unbalanced weight was used and mounted on one blade
for each fan. Sensors were installed at different parts of the fan, as
shown in Fig. 10. In this study, three different signals were
measured: the fan vibration signal by the accelerometer, the Printed
Circuit Board (PCB) block voltage by the voltmeter, and the
temperature measured by the thermocouple. An accelerometer
was mounted to the bottom of the fan with superglue, as shown
in Fig. 10(a). Two wires were connected to the PCB block of the fan
to measure the voltage between two fixed points, as shown in
Fig. 10(b). As shown in Fig. 10(c), a thermocouple was attached to
the bottom of the fan and measures the temperature signal of the
fan. Vibration, voltage, and temperature signals were acquired by
the data acquisition system and stored in PC. The data acquisition
system from National Instruments Corp. (NI USB 6009) and the
signal conditioner from PCB Group, Inc. (PCB 482A18) were used for
the data acquisition system. In total, 32 DC fan units were tested at
the same condition and all fan units run till failure.
Fig. 11. Sample degradation signals from DC fan testing.
4.3.2. Implementation of ensemble approach

The sensory signal screening found that the fan PCB block
voltage and the fan temperature did not show clear degradation
trend, whereas the vibration signal showed health degradation
behavior. This study involved the root mean squares (RMS) of the
vibration spectral responses at the first five resonance frequencies
and defined the RMS of the spectral responses as the PHI for the
Fig. 9. DC fan test fixture (a) and the

Fig. 10. Sensor installations for DC fan test: (a) acce
DC fan prognostics. Fig. 11 shows the RMS signals of three fan
units to demonstrate the health degradation behavior. The RMS
signal gradually increased as the bearing in the fan degraded over
time. It was found that the PHI is highly random and non-
monotonic because of metal particles, sensory signal noise, and
input voltage noise.

Among 32 fan units, the first 20 fan units were used to
construct the training data set for the CV, while the rest were
used to build the testing data set for the validation. Due to the
small amount of training data, this case study employed the
5-fold CV where the training data set with 20 units was equally
and randomly divided to five subsets. Similar to the previous
unbalance weight installation (b).

lerometer, (b) voltmeter and (c) thermocouples.



Table 9
Weighting results, CV and validation errors for electric cooling fan problem.

RS SS ES QB RN RS–SS–ES–QB–RN

AW DW OW

Weight by AW 0.3646 0.3767 0.2552 0.0008 0.0027 – – –

Weight by DW 0.1423 0.1427 0.1496 0.3285 0.2369 – – –

Weight by OW 0.1155 0.8845 0.0000 0.0000 0.0000 – – –

CV error 1.4770 1.4298 2.1100 717.8430 199.0067 1.5188 11.8520 1.4292
Validation error 0.7027 0.9223 0.7037 461.5064 84.3975 0.7185 11.0177 0.6984

Fig. 12. RUL predictions of training units (a) and testing units (b) for electric cooling fan problem (optimization-based weighting).
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examples, when used for the testing in CV, each unit in a subset
was assigned with a randomly generated RUL from a uniform
distribution between its zero and half-remaining life. To expand
the number of testing units, each testing fan unit was assigned
with two randomly generated RUL from a uniform distribution
between its zero and half-remaining life, resulting in totally 24
testing units. The parameter settings detailed in Section 4.1.2 was
again used for the five member algorithms. With one cycle
defined as every ten minutes, the score function in Eq. (32) was
again used to compute the CV error eCV for the accuracy- and
optimization-based weighting schemes.
4.3.3. Results of ensemble approach

The weighting results by the three weighting schemes and the
CV and validation errors of the individual and ensemble
approaches are summarized in Table 9. Compared to the previous
examples, we observed quite different results from which three
important remarks can be derived. First of all, the ensemble
approach with the diversity-based weighting scheme gives con-
siderably larger CV and validation errors than the best individual
member algorithms, RS and ES. This result is due to the fact that
the diversity-based weighting, which relies exclusively on the
prediction diversity for the weight determination, assigned larger
weights to the member algorithms, QB and RN, which produced
very low prediction accuracy due to the random and non-mono-
tonic nature of the PHI (see Fig. 11). Second, compared to the best
individual member algorithms, RS and SS, the ensemble approach
with the optimization-based weighting gave smaller CV and valida-
tion errors. However, the improvement is insignificant. Since non-
zero weights are only assigned to the two member algorithms, RS
and ES, with superb prediction capability, the performance of the
resulting ensemble is totally determined by these two algorithms.
However, RS and ES gave similar RUL predictions and the resulting
ensemble, which is indeed a combination of two algorithms with
similar prediction behavior, cannot achieve significant improvement
in the prediction performance. Therefore, we expect that the
ensemble approach achieves significant improvement in the predic-
tion performance only in cases where member algorithms with
comparable prediction accuracy produce diverse RUL predictions.
Third, although the member algorithms, QB and RN, have larger
prediction diversity, their prediction accuracy is not comparable with
that of the best member algorithms, RS and SS. As a result, these two
algorithms were discarded from the algorithm pool by the optimiza-
tion-based weighting. Under the optimization-based weighting
scheme, the RUL predictions by the ensemble approach are plotted
for the training and testing units in Fig. 12 where we observed very
accurate RUL predictions by the ensemble approach.
5. Conclusion

This paper proposed a novel ensemble approach for the data-
driven prognostics of high-risk engineered systems. By combining
the predictions of all member algorithms, the ensemble approach
achieves better accuracy in RUL predictions compared to any sole
member algorithm. Furthermore, the ensemble approach has an
inherent flexibility to incorporate any advanced prognostic algo-
rithm that will be newly developed. To the best of our knowledge,
this is the first study of an ensemble approach with three weighting
scheme for the data-driven prognostics. Since the computationally
expensive training process is done offline and the online prediction
process requires a small amount of computational effort, the
ensemble approach raises little concerns in the computational
feasibility. Three engineering case studies (2008 PHM challenge
problem, power transformer problem and electric cooling fan
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problem) demonstrated the superb performance of the proposed
ensemble approach for the data-driven prognostics. Among the
three weighting schemes, the optimization-based weighting scheme
showed the capability of adaptively synthesizing the prediction
accuracy and diversity of each member algorithm to enhance the
accuracy of RUL predictions. Considering the enhanced accuracy and
robustness in RUL predictions, the proposed ensemble approach
leads to the possibility of effective condition-based maintenance
practice and risk-informed lifetime management of high-risk engi-
neered systems.
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modeling as a method of detecting winding deformations—Part II:
Experimental verification. IEEE Transactions on Power Delivery 2006;21(1):
164–9.

[44] Xu H, Rahman S. Decomposition methods for structural reliability analysis.
Probabilistic Engineering Mechanics 2005;20(3):239–50.

[45] Gebraeel NZ, Lawley MA, Li R, Ryan JK. Residual-life distributions from
component degradation signals: a Bayesian approach. IIE Transactions on
Reliability 2005;37(6):543–57.

[46] Kwon D, Azarian M, and Pecht M., 2008, Detection of solder joint degradation
using RF impedance analysis, IEEE Electronic Components and Technology
Conference, Lake Buena Vista, FL, 27–30 May, 606–610.

[47] Smola AJ, Schölkopf B. A tutorial on support vector regression. Statistics and
Computing 2004;14(3):199–222.



C. Hu et al. / Reliability Engineering and System Safety 103 (2012) 120–135 135
[48] Canu S, Mary X, Rakotomamonjy A. Functional learning through kernel.
Advances in Learning Theory: Methods, Models and Applications 2003;190:
89–110.

[49] Tipping ME. Sparse Bayesian learning and the relevance vector machine.
Journal of Machine Learning Research 2001;1:211–44.

[50] Cernansky M, Makula M, Cernansky L. Organization of the state space of a
simple recurrent network before and after training on recursive linguistic
structures. Neural Networks 2007;20(2):236–44.
[51] Tian X., 2006, Cooling fan reliability, failure criteria, accelerated life testing,
modeling, and quantification, IEEE Annual Reliability and Maintainability
Symposium, Newport Beach, CA, Jan 23–26.

[52] Burger R. Cooling tower technology – maintenance, updating and rebuilding.
Fairmont Press. 1995.

[53] Lindely DV, Smith AF. Bayes estimates for linear models. Journal of the Royal
Statistical Society (B) 1972;34(1):1–41.


	Ensemble of data-driven prognostic algorithms for robust prediction of remaining useful life
	Introduction
	Description of prognostic algorithms
	A general description of member algorithms
	Methods 1-3: Similarity-based interpolation approaches
	Data processing with a generic health index system
	Training with RVM, SVM, or exponential fitting
	Relevance vector machine
	Support vector machine
	Exponential fitting

	RUL prediction using SBI
	Determination of initial health condition
	Similarity-based interpolation


	Method 4: Extrapolation-based approach
	Data processing with a generic health index system
	Training with quadratic fitting
	RUL prediction with Bayesian linear regression

	Method 5: Recurrent neural network approach
	Data processing with a normalization scheme
	Recurrent neural network


	Ensemble of prognostic algorithms
	Weighted-sum formulation
	K-fold cross validation
	Weighting schemes
	Accuracy-based weighting
	Diversity-based weighting
	Optimization-based weighting

	Overall procedure

	Case studies
	2008 IEEE PHM challenge problem
	Description of data set
	Implementation of ensemble approach
	Results of ensemble approach
	Comparison of different combinations of member algorithms

	Power transformer problem
	Model description
	Prognostic data generation
	Implementation of ensemble approach
	Results of ensemble approach
	Comparison of different combinations of member algorithms

	Electric cooling fan problem
	Experimental setup
	Implementation of ensemble approach
	Results of ensemble approach


	Conclusion
	Acknowledgement
	References




