
Contents lists available at ScienceDirect

Mechanical Systems and Signal Processing

Mechanical Systems and Signal Processing ] (]]]]) ]]]–]]]
http://d
0888-32

n Corr
E-m
1 Cu

Pleas
failu
journal homepage: www.elsevier.com/locate/ymssp
A co-training-based approach for prediction of remaining
useful life utilizing both failure and suspension data

Chao Hu a,1, Byeng D. Youn b,n, Taejin Kim b, Pingfeng Wang c

a Department of Mechanical Engineering, the University of Maryland at College Park, College Park, MD 20742, USA
b School of Mechanical and Aerospace Engineering, the Seoul National University, Seoul 151–742, Korea
c Department of Industrial and Manufacturing Engineering, the Wichita State University, Wichita, KS 67260, USA
a r t i c l e i n f o

Article history:
Received 2 September 2014
Received in revised form
29 December 2014
Accepted 5 March 2015

Keywords:
Co-training
Semi-supervised learning
Suspension data
Data-driven prognostics
RUL prediction
x.doi.org/10.1016/j.ymssp.2015.03.004
70/& 2015 Elsevier Ltd. All rights reserved.

esponding author. Tel.: þ82 2 880 1919; fax
ail addresses: huchaostu@gmail.com (C. Hu),
rrent address: Medtronic Energy and Comp

e cite this article as: C. Hu, et al., A
re and suspension data, Mech. Syst.
a b s t r a c t

Traditional data-driven prognostics often requires some amount of failure data for the
offline training in order to achieve good accuracy for the online prediction. Failure data
refer to condition monitoring data collected from the very beginning of an engineered
system's lifetime till the occurrence of its failure. However, in many engineered systems,
failure data are fairly expensive and time-consuming to obtain while suspension data are
readily available. Suspension data refer to condition monitoring data acquired from the
very beginning of an engineered system's lifetime till planned inspection or maintenance
when the system is taken out of service. In such cases, it becomes essentially critical to
utilize suspension data which may carry rich information regarding the degradation trend
and help achieve more accurate remaining useful life (RUL) prediction. To this end, this
paper proposes a co-training-based data-driven prognostic approach, denoted by
COPROG, which uses two data-driven algorithms with each predicting RULs of suspension
units for the other. After a suspension unit is chosen and its RUL is predicted by an
individual algorithm, it becomes a virtual failure unit that is added to the training data set
of the other individual algorithm. Results obtained from two case studies suggest that
COPROG gives more accurate RUL prediction, as compared to any individual algorithm
with no use of suspension data, and that COPROG can effectively exploit suspension data
to improve the prognostic accuracy.

& 2015 Elsevier Ltd. All rights reserved.
1. Introduction

To support critical decision-making processes such as maintenance replacement and system design, activities of health
monitoring and life prediction are of great importance to engineered systems composed of multiple components, complex
joints, and various materials, such as aerospace systems, nuclear power plants, chemical plants, advanced military systems
and so on. Stressful conditions (e.g., high pressure, high temperature and high irradiation field) imposed on these systems
are the direct causes of damage in their integrity and functionality, which necessitates the continuous monitoring of these
systems due to the health and safety implications [1–5]. Currently, there are mainly three paradigms for health prognostics,
that is, model-based approaches [6–11], data-driven approaches [12–20] and hybrid approaches [21–23]. The application of
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general model-based prognostic approaches relies on the understanding of system physics-of-failure and underlying system
degradation models. Myötyri et al. [6] proposed the use of a stochastic filtering technique for real-time remaining useful life
(RUL) prediction in case of fatigue crack growth while considering the uncertainties in both degradation processes and
condition monitoring measures. A similar particle filtering approach was later applied to condition-based component
replacement in the context of fatigue crack growth [7]. Luo et al. [8] developed a model-based prognostic technique that
relies on an accurate simulation model for system degradation prediction and applied this technique to a vehicle suspension
system. Gebraeel et al. presented a degradation modeling framework for RUL predictions of rolling element bearings under
time-varying operational conditions [9] or in the absence of prior degradation information [10]. Si et al. presented a drift
coefficient model for a nonlinear Wiener degradation process and employed a recursive filter algorithm to derive an
approximate RUL distribution [11]. As complex engineered systems generally consist of multiple components with multiple
failure modes, understanding all potential physics-of-failures and their interactions for a complex system is almost
impossible. With the advance of modern sensor systems as well as data storage and processing technologies, the data-
driven approaches for system health prognostics, which are mainly based on the massive sensory data with less
requirement of knowing inherent system failure mechanisms, have been widely used and become popular. Two good
reviews of data-driven prognostic approaches were given in [12] and [13]. Data-driven prognostic approaches generally
require the sensory data fusion and feature extraction, statistical pattern recognition, and, for the life prediction, the
interpolation [13–16], extrapolation [17], and machine learning [18–20]. Hybrid approaches leverage the strengths of model-
based and data-driven approaches by fusing the information from both approaches. Kozlowski et al. [21] described a data
fusion approach where domain knowledge and predictor performance are used to determine weights for different state-of-
charge predictors. Goebel et al. [22] employed a Dempster–Shafer regression to fuse a physics-based model and an
experience-based model for prognostics. Saha et al. [23] combined an offline relevance vector machine with an online
particle filter for battery prognostics. Similar to model-based approaches, the application of hybrid approaches is limited to
the cases where sufficient knowledge on system physics-of-failures is available.

In the context of machine learning, traditional data-driven prognostic approaches mentioned in the literature survey
above belong to the category of supervised learning which relies on some amount of failure data for the offline training in
order to achieve good accuracy in the online prediction. Here, failure data refer to condition monitoring data collected from
the very beginning of an engineered system's lifetime till the occurrence of its failure. Unfortunately, in many engineered
systems, only very limited failure data are available since running systems to failure can be a fairly expensive and lengthy
process. In contrast, we often can easily obtain a large amount of suspension data. Suspension data refer to condition
monitoring data acquired from the very beginning of an engineered system's lifetime till planned inspection or maintenance
when the system is taken out of service. The lack of failure data and the large amount of suspension data carrying rich
information on the degradation trend make it essentially critical to exploit suspension data in order to improve the accuracy
in RUL prediction. However, the utilization of both failure and suspension data for data-driven prognostics, which can be
treated as semi-supervised learning in the context of machine learning, is still in infancy. The very few relevant works we
are aware of are the survival probability-based approaches [24–26] and life-percentage-based approach [7]. The former
approaches use condition monitoring data as inputs to an artificial neural network (ANN) [24] or relevance vector machine
[25,26] which then produces the survival probability as the output. As pointed out in [27], the drawback of these approaches
lies in the fact that the outputs cannot easily be converted to equivalent RULs for practical use. The latter approach employs
condition monitoring data and an age value as inputs to an ANN which then produces the life percentage as the output.
Although this approach is capable of enhancing the accuracy in RUL prediction, it still suffers from the follows drawbacks: (i)
it simply uses all suspension data regardless of the quality and usefulness; and (ii) the only criteria to determine the RUL of a
suspension unit is the minimization of a validation error in the offline training, which could lead to a largely incorrect RUL
estimate or even a physically unreasonable estimate (i.e., less than or equal to zero) of that unit.

Recently, the co-training regression has been recognized as one of the main paradigms of semi-supervised learning
[28–30], but its usefulness in data-driven prognostics has not been investigated. In this paper, a co-training-based data-
driven prognostic approach, named COPROG (i.e., CO-training PROGnostics), is proposed as the first attempt to derive a semi-
supervised learning framework for data-driven prognostics. This approach employs two individual data-driven algorithms,
each of which predicts the RULs of suspension units iteratively for the other during the training process. After the RUL of a
suspension unit is predicted by an individual algorithm, it becomes a virtual failure unit that is added to the training data
set. In order to choose the appropriate suspension unit to use, COPROG quantifies the confidence of an algorithm in
predicting the RUL of a suspension unit by how much the inclusion of that unit in the training data set reduces the sum of
squared errors (SSE) in RUL prediction on the training data set. The process of iterative training is repeated until there is no
suspension unit that is capable of reducing the SSE of any individual algorithm on the training data set or the maximum
number of co-training iterations is reached. The final RUL prediction is performed by combining the RUL estimates produced
by both individual algorithms. The underlying idea of COPROG is to facilitate an effective exploitation of the degradation
trend information carried by suspension data in order to improve the generalization ability of each individual algorithm and
achieve more accurate RUL prediction.

The remainder of this paper is organized as follows. Section 2 gives a brief introduction to the two data-driven prognostic
algorithms, the feed-forward neural network (FFNN) and the radial basis network (RBN), that are used in this study.
Section 3 presents the proposed co-training approach. Applications of the proposed approach are presented in Section 4.
The paper is concluded in Section 5.
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2. Data-driven prognostic algorithms

An artificial neural network (ANN) can be treated as a non-linear model that establishes a set of interconnected
functional relationships between input patterns and desired outputs where a training process is employed to adjust the
parameters (mainly network weights) of the functional relationships to achieve optimal performance. In recent years, neural
networks have been extensively applied to predicting RULs in various contexts such as machinery prognostics [24,27], flight
control prognostics [31,32] and battery prognostics [33]. In the context of prognostics, a regression algorithm takes the
(processed) sensory signals as the inputs and produces the RUL prediction as the output and can be treated as a data-driven
prognostic algorithm. This section briefly introduces two selected neural network approaches for data-driven prognostics:
the FFNN and the RBN. A validation mechanism with multiple trials is used to train both the FFNN and RBN with an aim to
minimize overfitting as well as to improve generalization.

2.1. Feed-forward neural network

2.1.1. Network structure
The feed-forward neural network (FFNN), also known as the simplest type of ANN, can fit any finite input–output

mapping problem with a sufficient number of neurons in the hidden layer [35]. The network is typically composed of three
layers (see Fig. 1), namely, the input layer I, hidden layer H, and output layer O. The numbers of the input, hidden and output
units are denoted as |I|, |R| and |O|, respectively. Units of the input layer and the hidden layer are fully connected through the
weights WIH while units of the hidden layer and output layer are fully connected through the weights WHO. The activation
functions used in the hidden and output layers are, respectively, the hyperbolic tangent sigmoid transfer function and the
linear transfer function.

For data-driven prognostics, the inputs to the FFNN are the normalized age value of a system unit at the current
measurement point and the normalized sensory measurements at the current and previous measurement points. If we have
Ns sensory measurements (vibration, temperature, voltage, etc.) as the condition monitoring data at each measurement
point, the vector I(t) of network input patterns at a time instance t is denoted by an input vector x¼(x1, x2,…, x2Nsþ1) with x1
being the normalized age value at the current measurement point, x2i and x2iþ1 being the ith sensory measurement at the
current and previous measurement points, respectively, for 1r irNs. The output is the predicted normalized RUL at the
current measurement point, denoted by LP. As pointed out in previous works [27,34], the combined use of two consecutive
measurement sets provides valuable information regarding the rate of change of sensory measurements and thus the rate of
system health degradation. We intend not to use more than two data points due to the following reasons: (i) more out-of-
date information regarding the “trend” of sensory measurements is carried by earlier data points, the addition of which may
lead to the distortion of the most up-to-date information obtained from the two most recent data points; and (ii) an increase
in the number of input patterns causes an increase in the network weights to be trained, which results in a higher chance of
overfitting and deteriorating the generalization performance. It is noted, though, that the two data points method (using
two consecutive data points) employed in this study may be more prone to overfitting than a moving average method using
more than two consecutive data points. As the focus of this paper is on the development and verification of a co-training
prognostic approach, we intend not to investigate whether the addition of a signal preprocessing step using moving average
would improve the prognostic performance of the two prognostic algorithms (FFNN and RBN), even though such an
investigation may be of value to the prognostic community. In order to use the FFNN for RUL prediction, the network
weights need to be determined through the network training which will be detailed in the subsequent section.

2.1.2. Training process
The training of FFNN refers to the adjustment of network parameters (weights) by exposing the network to a set of

training input instances, observing the network outputs, and readjusting the parameters to minimize a training error. With
the improvement of generalization being the main focus of FFNN training, we employ a validation mechanism where the
original training data set is divided into two mutually exclusive subsets called a training set and a validation set. The training
set is used for computing the gradient and updating the network weights with an aim to improve the prediction accuracy on
Fig. 1. Structure of a FFNN with one hidden layer.
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the validation set. The prediction accuracy is quantified using the SSE performance function (or the validation error),
expressed as

SSE¼
XN
k ¼ 1

e2k ¼
XN
k ¼ 1

LPk�LTk
� �2

ð1Þ

where N is the number of input and output instances in the validation set, ek is the prediction error for the kth instance, and
Lk
P
and Lk

T
are the predicted and true normalized RULs for the kth instance. The validation error typically decreases during the

first few training iterations, and as overfitting starts to occur, the error normally starts to increase. The training is stopped
when the increase in the validation error lasts for a specified number of training iterations. The network weights at the
minimum validation error are used for RUL prediction.

2.2. Radial basis network

2.2.1. Network structure
Another ANN approach we employ for data-driven prognostics is the radial basis network (RBN) which was reported to

have important universal approximation properties [36], and whose structure bears a striking resemblance to that of FFNN
in Fig. 1. In an RBN, each unit in the hidden layer is a radial basis function ϕ with its own center, and for each input pattern
x¼(x1, x2,…, x2Nsþ1), it computes the Euclidean distance between x and its center and then applies a polyharmonic basis
function, expressed as

ϕ x; cj
� �¼ ‖x�cj‖kj ; kj ¼ 1;3;5;…

‖x�cj‖kj ln ‖x�cj‖
� �

; kj ¼ 2;4;6;…

(
ð2Þ

where cj and kj are the center and function order of the jth unit in the hidden layer. From the above expression, it can be
observed that each hidden unit in the RBN computes an output that depends on a radially symmetric function. As the input
moves closer to the center of the hidden unit, the output becomes smaller, and when the input overlaps with the center of
the hidden unit, the smallest output (i.e., zero) can be obtained. The network output is the predicted normalized RUL LP,
expressed as a weighted summation of the outputs of hidden units

LP ¼
XM
j ¼ 1

WHO
kj ϕ x; cj

� � ð3Þ

In order to use the RBN for RUL prediction, both the centers of hidden units and network weights need to be determined
through the network training which will be detailed in the subsequent section.

2.2.2. Training process
The training of an RBN can be viewed as a curve-fitting problem in a multidimensional space from the following two

perspectives: (i) the objective of the training is to find an optimal response surface in a multidimensional space that
provides the best fit to the training instances; and (ii) the testing (i.e., the test input data are not seen before) is equivalent to
the use of this multidimensional surface to interpolate the test data. In this study, a two-phase learning scheme [37] is used
to train the RBN with the multivariate polyharmonic basis function as the activation function. This training process is
detailed as follows:

Phase 1: Initialize the centers C of radial basis functions (RBFs) from training input instances randomly selected from the
original training data set, C¼[c1,…, cM] with cj being the jth RBF center. The RBF center cj is of the same format as the
network input pattern x, i.e., cj¼(c1j, c2j,…, c(2Nsþ1) j) with c1j being the current age value of the selected training input
instance, and x2i and x2iþ1 being the (i�1)th sensory measurement of the selected training input instance at the current and
previous measurement points, respectively, for 1r irNs. We note that, besides the random selection of training input
instances, the RBF centers can also be determined by unsupervised clustering or supervised vector quantization [37].

Phase 2: Determine the output layer weights WHO which best approximate the training instances by a matrix pseudo-
inverse technique, expressed as

WHO ¼ ΦTΦ
� ��1ΦTLT ð4Þ

where the target output vector LT¼[L1
T
,…, LN

T
]T, and Φ is an N� (Mþ1) design matrix constructed based on the training

instances and RBF centers withΦij¼ϕ(xi,cj). The gradient-descent error backpropagation learning method is not used in this
study because, compared to the matrix pseudo-inverse technique, it requires much higher computational effort.

3. Co-training prognostics

This section presents the proposed co-training approach for data-driven prognostics. Section 3.1 describes the overall
procedure of this approach. Section 3.2 details the measure to quantify the confidence of an individual data-driven
algorithm in predicting the RUL of a suspension unit. Section 3.3 is dedicated to introducing the weight optimization scheme
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for combining RUL estimates from two algorithms for online prediction. Remarks on how COPROG can help improve the
prognostic performance are given in Section 3.4.

3.1. Overall procedure

In the context of machine learning, the two data-driven prognostic algorithms (FFNN and RBN) detailed in Section 2 can
be treated interchangeably as two regressors whose focus is to model the relationship between the RUL (dependent
variable) and the current age value and sensory measurements (independent variables). Similarly, failure data can be treated
as labeled data since each input instance (age value and sensory measurements) has its corresponding label (RUL), while
suspension data can be named as unlabeled data since the RUL (label) of each input instance is unknown. Then, the process
of estimating the RUL (label) for a suspension unit (unlabeled data) can be treated as the labeling process.

Let ℒ¼{(x1,L1
T
),…, ðxjℒj; L

T
jℒjÞ} and U represent the failure (labeled) and suspension (unlabeled) training data sets,

respectively, where xi is the ith input instance composed of 2Nsþ1 elements, Li
T
is its normalized RUL (label), |ℒ| is the

number of labeled instances, and the RULs (labels) of instances in U are unknown. The pseudo-code of COPROG is shown in
Table 1, where the function TrainFun(ℒ, j) returns the jth trained algorithm (j¼1 for FFNN and j¼2 for RBN) based on the
labeled data set ℒ. Inspired by the co-training regression work [28–30], the training process in COPROG (see Fig. 2) is
designed to work as follows: initially, two algorithms h1 and h2 are trained based on the failure data set ℒ (line 2 of the
pseudo-code) and, during the subsequent iterations, the refinement of each algorithm is executed with the help of
unlabeled instances (from suspension units) labeled by the other algorithm (lines 4–21 of the pseudo-code). During each
Table 1
Pseudo-code of COPROG

Input: ℒ � failure training data set, U � suspension training data set, T – maximum number of co-training iterations, u � suspension pool size
Training Process:
1 ℒ1¼ℒ; ℒ2¼ℒ
2 h1¼TrainFun(ℒ1, 1); h2¼TrainFun(ℒ2, 2);
3 Repeat for T times
4 Create a pool U 0 of u suspension units by random sampling from U
5 for j¼1 to 2
6 for each Xu C U 0

7 Lu
P¼hj(Xu);

8 hj0 ¼TrainFun(ℒj[{Xu, Lu
P
}, j);

9 Δj;xu ¼
P

(Li
T � hj(xi))2 � P

(Li
T � hj0(xi))2

10 end
11 if there exists an Δj;xu 40
12 Xj

n¼arg maxXu � U 0 (Δj;xu ); Lj
n¼hj(Xj

n

);
13 πj¼{(Xj

n

, Lj
n

)}; U 0 ¼U 0\πj;
14 else
15 πj¼Ø;
16 end
17 end
18 if π1 ¼¼ Ø && π2 ¼¼ Ø exit
19 else ℒ1¼ℒ1[π2; ℒ2¼ℒ2[π1;
20 h1¼TrainFun(ℒ1, 1); h2¼TrainFun(ℒ2, 2);
21 end
Testing Process:
22 LP¼w1h1(x)þw2h2(x) for any test data x

Suspension data (unlabeled training data)

Failure data (labeled training data)

Algorithm 1 
(FFNN)

Algorithm 2 
(RBN)

Labeled 
unlabeled data

Labeled 
unlabeled data

Train Train

TrainTrain

Label Label

Fig. 2. Flowchart of training process in COPROG.
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iteration, a set U 0 of u suspension units is randomly sampled from U (line 4 of the pseudo-code). Each trained algorithm hj
then predicts the RULs (labels) of input instances from each suspension unit in U 0 (lines 6–10 of the pseudo-code) and
selects the unit Xj

n
with the highest labeling confidence (lines 11–16 of the pseudo-code). The selection of suspension units

will be discussed in the subsequent section. After an RUL estimate produced by a trained algorithm is assigned to a
suspension unit, all the unlabeled instances (with unknown RULs) from this suspension unit will have their RULs (labels)
identified and thus become the so-called labeled unlabeled instances. The other algorithm is then refined with the labeled
unlabeled instances πj¼{(Xj

n
, Lj

n
)} added to its training data set ℒj (lines 18–21 of the pseudo-code). The process of iterative

training is repeated until the predefined maximum number T of iterations is reached (line 3 of the pseudo-code) or no
suspension unit can be found to be capable of reducing the prediction error of either algorithm on its training data set (line
18 of the pseudo-code). Note that a failure or suspension unit contains multiple input instances and, to distinguish a failure/
suspension unit from an input instance, we use the uppercase notation X to denote the former and the lowercase notation x
to denote the latter. In the testing process, the RUL estimate for an unlabeled input instance is the weighted sum of the RUL
estimates of the input instance by the two individual algorithms that are built after the last COPROG iteration (line 22 of the
pseudo-code).

3.2. Confidence measure

An inappropriate selection of a suspension unit may lead to incorrect RUL estimation (or mislabeling) on that unit by a
prognostic algorithm. The mislabeled suspension unit, if added to the training data set, may negatively affect the
performance of the algorithm. Therefore, it is important to choose an appropriate suspension unit to utilize in each co-
training iteration. In order to identify the appropriate suspension unit, the confidence in labeling a suspension unit should
first be evaluated for all the suspension units and then the one with the highest labeling confidence should be chosen to be
utilized. Intuitively, the most confidently labeled suspension unit by a prognostic algorithm, if utilized by the algorithm,
should reduce the error of the algorithm to the greatest extent. Thus, the confidence in labeling a suspension unit can be
quantified by the extent to which the inclusion of that unit in the training data set reduces the SSE in RUL prediction on the
training data set. Mathematically, the confidence measure of the jth algorithm on a suspension unit Xu can be expressed as

Δj;Xu ¼
X

xi Aℒj

Δxi �Δ0
xi

� �
ð5Þ

The first term, Δxi , in Eq. (5) represents the RUL prediction error for the training input instance xi by the jth prognostic
algorithm before the inclusion of Xu, calculated as

Δxi ¼ LTi �LPj xi;ℒj
� �� �2

¼ LTi �hj xið Þ
� �2

ð6Þ

where Li
T
denotes the true RUL of the input instance xi in the labeled training data setℒj, and Lj

P
(xi,ℒj) denotes the predicted

RUL of the input instance xi by the jth prognostic algorithm trained with the labeled training data set ℒj (or the original jth
prognostic algorithm hj). The second term, Δ0

xi , in Eq. (5) denotes the RUL prediction error by the jth prognostic algorithm
after the inclusion of Xu, together with the predicted RULs Lu

P
of its input instances, in the training data set, expressed as

Δ
0
xi
¼ LTi �LPj xi;ℒj∪ Xu; LPu

n o� �� �2
¼ LTi �h

0

j xið Þ
� �2

ð7Þ

where Lu
P
denotes the predicted RULs of the input instances in the suspension unit Xu and Lu

P¼hj(Xu), and hj0 denotes the RUL
predicted by the refined jth prognostic algorithm that has utilized the information provided by the suspension unit {Xu, Lu

P
}.

With the defined confidence measure, the suspension unit with the highest labeling confidence can be selected by

Xn

j ¼ arg max
Xu∈ U0

Δj;Xu

� � ð8Þ

The selected suspension unit, together with the predicted RULs of its input instances, can then be included in the labeled
training data set to improve the accuracy of the jth prognostic algorithm. The above confidence measure reflects the fact
that the most confidently labeled suspension unit makes the prognostic algorithm most consistent with its existing training
data set.

3.3. Weight optimization

After using two data-driven prognostic algorithms to select and label the unlabeled suspension units during the offline
training, we then obtain two augmented labeled training data setsℒ1 andℒ2, each of which contributes a trained algorithm
for the online prediction. Then, the RUL predictions of these two algorithms are combined in a weighted-sum formulation as
the final prediction. The simplest way to do so is to average the two predictions, which is ideal only when the prognostic
algorithms provide the same level of accuracy. However, it is more likely that an algorithm tends to be more accurate than
the other. In such cases, a greater weight should be assigned to a member algorithmwith higher prediction accuracy so that
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the algorithm makes more contribution to the ensemble prediction. Hence, two individual algorithms with different
prediction performance should be multiplied by different weight factors. In what follows, a weight optimization scheme is
employed to maximize the accuracy in RUL prediction by adaptively synthesizing the prediction accuracy of each individual
algorithm [16]. In this scheme, the optimum weights can be obtained by solving an optimization problem of the following
form

Minimize SSE¼P
xi Aℒ LTi � w1h1 xið Þþw2h1 xið Þð Þ

� �2

Subjectto w1þw2 ¼ 1;0rw1r1;0rw2r1 ð9Þ
whereℒ denotes the labeled training data set. After the prediction of RULs using the two prognostic algorithms, both terms
h1 and h2 in Eq. (9) become known and, since the weight optimization process does not require the re-execution of these
two algorithms, the above optimization problem can be readily solved with almost negligible computational effort. This
study employs sequential quadratic programming (SQP) as a numerical optimization method to solve the optimization
problem in Eq. (9). We expect that, by solving the optimization problem in Eq. (9), the resulting ensemble of the two
algorithms will outperform its counterpart with equal weights in terms of prediction accuracy.

3.4. Rationale for co-training prognostics

In what follows, we intend to elaborate on how COPROG can utilize the suspension data to improve the prognostic
performance from two perspectives: (i) how an individual prognostic algorithm can benefit from the utilization of
suspension data; and (ii) how the combined use of two algorithms can enhance the prognostic accuracy as compared to an
individual algorithm.

3.4.1. Utilization of suspension data
Fig. 3 illustrates, in a prognostic sample space P, that using one prognostic algorithm (FFNN or RBN) to label the

unlabeled instances helps improve the prediction accuracy on the testing data. Here, P consists of all possible prognostic
samples obtained under different testing situations (e.g., manufacturing condition, health condition and degradation rate).
Sparse labeled data (or failure data) and plenty of unlabeled data (or suspension data) can be used for training. A prognostic
algorithm (FFNN or RBN) trained with only the labeled data can generalize sufficiently well to make reasonably accurate
predictions on the testing data in the close vicinity of the labeled data. However, not all predictions made by this algorithm
are accurate: in regions that are sparsely populated by the labeled data, relatively large errors are expected (as is the case in
Fig. 3). In other words, the RUL predictions by the algorithm are expected to contain relatively large errors on the testing
data that fall significantly away from the labeled data. If the unlabeled data can be properly labeled (the data then become
the labeled unlabeled data) and added to the labeled data set, the algorithmwill then be trained with an augmented labeled
data set and the region where the algorithm can make accurate prediction is expected to be expanded to encompass testing
data that are close neighbors of the labeled unlabeled data. We note that the proper labeling is realized by selecting
appropriate unlabeled data through the maximization of the confidence measure in Eq. (5).

3.4.2. Ensemble of prognostic algorithms
The strategy of using two prognostic algorithms produces two unique benefits that are detailed as follows:
Creating diversity: The two algorithms built with different network structures and training procedures lead to the

creation of diversity in RUL prediction. Based on the created diversity, the ensemble obtains better predictive performance
than could be obtained by any individual algorithm. In addition, the suspension unit chosen by h1 during each iteration will
not be chosen by h2, and vice versa. Thus, the suspension units that the two algorithms label for each other are different,
which can be treated as another mechanism for encouraging the diversity.

Reducing overfitting: If the labeled training data set contains noise, the use of two prognostic algorithms can be helpful to
reducing overfitting [28]. Let N denote the set of noisy data in ℒ. For a suspension (unlabeled) unit Xu, either of the two
Π

Labeled data

Unlabeled data

Testing data

Fig. 3. Prognostic space with labeled, unlabeled and testing data.
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algorithms h1 and h2 labels this unit based on the input–output relationship that is learned through a set of neighboring
labeled data of this unit. Here, the neighboring labeled data refer to the labeled training instances whose inputs exhibit high
similarity to those of the unlabeled training instances from the suspension unit. Assume the sets of neighboring labeled data
for h1 and h2 areΩ1 andΩ2, respectively, and the two sets are usually different. First, Xu is labeled by h1. Then, {Xu,h1(Xu)} is
added to ℒ1, where the labels h1(Xu) suffers from the noisy data inΩ1\N . For another suspension (unlabeled) unit Xv that
we assume is very close to Xu, the neighboring labeled data for labeling Xv will be approximately Ω1[{Xu,h1(Xu)}. Thus,
h1(Xv) will be roughly affected by (Ω1\N )[{Xu,h1(Xu)}. Note that {Xu,h1(Xu)} has already suffered from the noisy data in
Ω1\N . Thus, h1(Xv) will be affected by Ω1\N more seriously than h1(Xu) does. As we label more suspension units, the
effect of noise continues to propagate and becomes more severe. Whereas if the unit Xu is labeled by h2 and {Xu,h2(Xu)} is
put into ℒ1, then h1(Xv) will suffer from Ω1\N only once, thereby preventing the effect of noise from propagating.

4. Case studies

In this section, the proposed COPROG approach for data-driven prognostics is demonstrated with two PHM case studies:
(i) rolling-element bearing problem (simulation), and (ii) electric cooling fan problem (experiment). To study how the
exploitation of suspension data affects the prognostic performance, we compared the prognostic performance of the co-
training approach to that of the FFNN and RBN with no use of suspension data.

4.1. Rolling-element bearing problem

The rolling-element bearing is a critical component in rotating machines, since an unexpected failure of the bearing leads
to machine shut-down and catastrophic damage. Thus, it is very important to ensure high reliability and safety of the
bearing during its operation. This case study conducts bearing health prognostics with sensory signals obtained from a
vibration model of the rolling-element bearing.

4.1.1. Bearing defect simulation
We employed an existing vibration model [38,39] to simulate the vibration signal produced by a single point defect on

the inner race of a rolling-element bearing under constant radial load. The model takes into account the effects of the single
point defect, shaft speed, bearing load distribution, the exponential decay of vibration, and the measurement noise present
in a practical measurement system. The simulation assumes the following parameters: pitch angle θ¼0o, pitch diameter
dp¼23 mm, roller diameter dr¼8 mm and number of rollers nr¼9, shaft rotational speed vr¼100 rpm corresponding to
shaft rotational frequency frE1.67 Hz, bearing-induced resonant frequency fs¼5000 Hz, sampling frequency fs¼15000 Hz,
and measurement duration Ts¼2 s. The characteristic defective frequency corresponding to an inner race fault can be
computed as

f IRF ¼
nrf r
2

1þdr
dp

cos θ
� �� �

� 10:11 Hz ð10Þ

Fig. 4(a) plots the simulated vibration signal of a bearing with an inner race fault in the time domain. Using the fast
Fourier transform (FFT), we converted this signal to the frequency domain and obtained its frequency spectrum in Fig. 4(b)
where the spectrum is dominated by high-frequency resonant signals. Through band-pass filtering and rectifying the raw
vibration signal, we excluded the resonant signals by other parts of the rotating machine and derived a demodulated signal
as shown in Fig. 4(c). The frequency domain plot of the demodulated signal in Fig. 4(d) indicates the presence of a defect
with the characteristic frequency of 10.13 Hz which exhibits good consistency with the calculated inner race fault frequency
in Eq. (10).

The defect progression was realized by increasing the amplitude of the impulse due to the defect. To model the trajectory
of the amplitude of the impulse over time, this study uses a damage propagation model of an exponential form, expressed
as [16,40]

D tð Þ ¼D0þbD 1�exp aDtð Þð Þ ð11Þ
where D0 is the initial amplitude of the impulse, aD and bD are the model parameters that determine the rates of the defect
progression, and t is the time instance (in cycles). This study considers the model parameters D0, aD and bD as independent
random variables whose statistical information is summarized in Table 2. The failure criterion is defined as the amplitude of
the impulse D being 1. The vibration signals were repeatedly generated based on the defect amplitudes at different time
instances that exponentially and randomly increases according to Eq. (11). The data generation process for one bearing unit
involves three sequentially executed steps: (i) one set of samples for D0, aD and bD are randomly generated according to the
statistical information in Table 2; (ii) the set of randomly generated samples are used in conjunction with Eq. (11) to produce
a damage propagation path that is then corrupted with random noise following a zero mean normal distribution; and (iii)
the vibration signals are simulated by using the vibration model [38,39] for each time instance along the damage
propagation path.

The lifecycle evolution of vibration spectra of an example bearing unit is plotted in Fig. 5(a) where we can observe that,
as degradation progresses over time, the defect amplitude at harmonic defective frequencies (positive integer multiples of
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Table 2
Statistical information of random variables for defect progression.

Random variable Distribution type Mean Standard deviation Parameters for non-normal distributions

D0 Normal 0.010 0.001 –

aD Lognormal 0.100 0.020 μ¼�2.322, σ¼0.198
bD Normal 0.025 0.005 –
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the characteristic defective frequency) begin to appear and increase exponentially. The feature we employed as the input to
the FFNN and RBN for prognostics is the entropy (see Fig. 5(b)) which is a statistical measure of randomness used to quantify
the uncertainty of the noisy signal [41]. It can be observed from both figures that the degradation undergoes two distinct
stages. The first stage is referred to as normal operation period that is characterized by a relatively flat region. In this stage,
no obvious defect can be found in the bearing. In the second stage, the degradation of the bearing begins and the signal is
characterized by exponentially increasing defect amplitudes. This two-stage degradation behavior is consistent with
previous works on bearing prognostics [9,10,42].

4.1.2. Construction of prognostic data sets
For the training process, we generated a training data set that consists of 100 failure (labeled) units and 100 suspension

(unlabeled) units. As shown in Fig. 5(b), the failure data contain complete degradation information while the suspension
data carry only partial degradation information. The latter were generated by truncating the original failure data after pre-
assigned suspension times. The suspension time pre-assigned to each suspension unit was randomly generated from a
uniform distribution between 90 and 100 percentile lives. This range was selected based on the assumption that the
suspension unit is taken out of service when it approaches its end of life. For the testing process, we first generated a testing
data set consisting of 100 testing (failure) units and then produced multiple testing input instances from each testing unit by
truncating the failure trajectory of the unit after pre-assigned RULs. The RULs pre-assigned to each testing unit were a series
of successive positive integers in the interval [1, Z] where the integer Z was randomly generated from a uniform distribution
between 1 and the unit's half-life. In other words, each testing unit was used to produce multiple testing input instances in
the second half of the unit's lifetime. A truncated failure trajectory (testing input instance) of a testing unit is plotted in Fig. 5
(b), where we can observe only a portion of the degradation pathway as opposed to the complete degradation pathway in
the failure data.

4.1.3. Implementation of COPROG
To investigate the effect of the amount of failure data on the performance improvement by COPROG, we evaluated

algorithms under two different settings: Setting 1 (lack of failure data) – 3 failure units and 10 suspension units (i.e., 3L-10U)
and Setting 2 (plenty of failure data) – 10 failure units and 10 suspension units (i.e., 10L-10U). To comprehensively test the
performance of the algorithms with various training sets of failure and suspension data as well as account for the
randomness in the training of FFNN and RBN, we repeatedly executed the training and testing processes 50 times, each with
a training set of failure and suspension units with the predefined quantities (3L-10U or 10L-10U), and computed the mean
(accuracy) and standard deviation (robustness) of root mean square errors (RMSEs) on the testing data set. During each
repetition, the failure and suspension units in the training set were randomly selected from the training data set consisting
of 100 failure units (labeled) and 100 suspension units (unlabeled). Mathematically, the mean RMSE can be expressed as

μRMSE ¼
1
50

X
1rkr50

RMSEk

¼ 1
50

X
1rkr50

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiP
xAT LT xð Þ�LPk xð Þ

� �2

Nt

vuut
ð12Þ

where LT(x) denotes the true RUL of the testing input instance x, LP(x) denotes the predicted RUL by an algorithm, and Nt

denotes the number of input instances in the testing data set T . As described in Section 4.1.2, the true RUL of a testing input
instance is a pre-assigned integer that was used to produce this input instance during the construction of the testing data
set. Since the RUL prediction at a late stage exerts a larger influence on maintenance decision-making than that at an early
stage, we intended to separately investigate the prognostic accuracy when a bearing approaches its end of life. For this
purpose, we defined a special time period, namely the critical time, as the last 5 time instances of each testing trajectory,
extracted 5 testing input instances in this time period for each testing trajectory and computed a critical-time RMSE using
Eq. (12).

For the implementation of COPROG, the normalized age value of a bearing unit at the current time instance and the
normalized entropy feature at the current and previous time instances were used as the inputs to the FFNN and RBN and the
output is the normalized RUL at the current time instance. In the FFNN structure, the numbers of the input, hidden and
output units are |I|¼3, |R|¼8 and |O|¼1. The FFNN training used 60% of the original data set as the training data set and the
rest as the validation set. The network structure and the ratios of the training and validation sets were empirically
determined based on the modeling and generalization performance of the trained FFNN model. It was observed that this
setting results in a trained FFNN model with good modeling and generalization performance. The backpropagation training
with an adaptive learning rate [35] was employed to obtain the optimal weights of the FFNN. The training epochs were set
to 100. Since the training algorithm is random, resulting in slightly different SSE values produced by different training
executions, we trained the FFNN 10 times to obtain 10 trained FFNNs among which the one with the lowest SSE was selected
as the trained model. In the RBN structure, the numbers of the input and output units are 3 and 1, respectively, and the
hidden layer consists of 20 RBF centers with first-order polyharmonic functions. The RBN training employed the matrix
pseudo-inverse technique [37] to calculate the weights of the output layer in Eq. (4). With an aim to improve the
generalization performance of the RBN, we divided the original training data set into the mutually exclusive training set
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(60% of the original set) and validation set (40% of the original set), trained the RBN with randomly selected RBF centers and
evaluated the validation error of the trained RBF 10 times, and selected the one with the lowest validation error as the
trained model. In COPROG, both the maximum number of co-training iterations T and the suspension pool size u were set to
5. It is noted that a large suspension pool size (u) could incur high computational cost required by the co-training process
(since a large number of suspension units need to be evaluated in each co-training iteration), while a small size may result in
a low chance of the suspension data pool containing at least one usable suspension unit. We found that a pool size of 5
achieves a good balance between the computational cost and the data coverage.
4.1.4. Results of COPROG
Table 3 summarizes the RMSE results of supervised (FFNN, RBN, Ensemble) and semi-supervised (COPROG) learning.

Here, FFNN and RBN refer to initial algorithms before utilizing any suspension data and Ensemble refers to the ensemble of
the two initial algorithms, FFNN and RBN. In what follows, we intend to interpret the results from the following two
perspectives:

Prognostic accuracy: It can be observed from Table 3 that the COPROG algorithm under any setting always outperforms
either of the two initial algorithms and their ensemble in terms of the life- and critical-time mean RMSEs, which verifies
that COPROG is capable of exploiting the suspension data to improve the prognostic accuracy. Under the setting with the
lack of failure data (i.e., 3L-10U), COPROG achieves the life- and critical-time mean RMSEs of 5.2674 and 4.5505 on the
testing data set, 16.26% and 15.19% improvements over the best initial algorithm, RBN, whose mean RMSEs are 6.2905 and
5.3654, respectively, and 12.76% and 11.48% improvements over Ensemble whose mean RMSEs are 6.0379 and 5.1405,
respectively. The accuracy improvements over the best initial algorithm can be attributed to (i) the effective utilization of
valuable degradation information that is only carried by the suspension data and (ii) the creation of diversity in RUL
prediction through the ensemble prediction (see the remarks in Section 3.4). The observation that COPROG achieves less
accuracy improvements over Ensemble than over the best initial algorithm suggests that the ensemble prediction, in
addition to the exploitation of suspension data, also enhances the accuracy in RUL prediction. As expected, the accuracy
improvements become less significant when we have more failure data (i.e., 10L-10U). This is due to the fact that a larger
amount of failure data captures more information regarding the degradation trend and leads to a reduced amount of
information gained by utilizing the suspension data.

Prognostic robustness: In addition to the prognostic accuracy, we also evaluated the algorithms in terms of the prognostic
robustness, that is, the extent to which the performance of an algorithm is insensitive to the variation in the training data.
Here, the prognostic robustness was quantified using the standard deviation of RMSEs obtained from 50 random sets of
training data. As shown in Table 3, COPROG always performs better than the two initial algorithms and Ensemble, and the
performance improvements over the two initial algorithms are less significant than those over Ensemble. The results
suggest that the utilization of suspension data and the ensemble prediction by COPROG improve the prediction robustness.
The improved performance by COPROG can be attributed to (i) the enrichment of degradation information by exploiting the
suspension data and (ii) the creation of diversity in RUL prediction by combining the predictions of the two individual
algorithms.

To illustrate the accuracy improvements obtained by exploiting suspension data, the RUL predictions by the initial
algorithms (that is, FFNN and RBN trained without the utilization of any suspension data) and final algorithms (that is, FFNN
and RBN after the co-training process) under the setting of 3L-10U are plotted for the testing data set in Fig. 6. The testing
input instances are sorted by the RULs in an ascending order. Note that, since a testing unit was used to produce multiple
testing input instances in the second half of the unit's lifetime, the number (42000) of testing inputs instances is larger
than the number (100) of testing units. The relatively large scatter of RUL predictions around the true curve can be
attributed to the lack of failure units (only 3 in this case) as well as the large noise in the entropy feature data (see Fig. 5(b)).
It can be observed that, compared to the two initial algorithms, the final algorithms yield RUL predictions that are closer to
the true values while eliminating many outliers produced by the initial algorithms. Overall speaking, the final RBN produces
slightly better prognostic accuracy than the final FFNN. For example, the life-time mean RMSE (i.e., 5.4018 cycles) of the final
RBN is slightly smaller than that (i.e., 5.8384 cycles) of the final FFNN.
Table 3
RMSE results of supervised (FFNN, RBN and Ensemble) and semi-supervised (COPROG) learning for rolling-element bearing problem.

Training data Statistics Life-time RMSE (cycles) Critical-time RMSE (cycles)

FFNN RBN Ensemble COPROG FFNN RBN Ensemble COPROG

3L-10U Mean 6.3119 6.2905 6.0379 5.2674 5.5487 5.3654 5.1405 4.5505
Stda 1.2980 1.2593 1.0903 0.4851 1.5794 1.3378 1.2105 0.7659

10L-10U Mean 5.2051 5.0116 4.9382 4.7928 4.5234 4.2165 4.0789 4.0406
Std 0.3501 0.4143 0.3075 0.2637 0.6504 0.6291 0.5585 0.5108

a Standard deviation.
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Fig. 7. DC fan degradation test block diagram.

Fig. 6. RUL predictions by initial and final FFNNs (a) and RBNs (b) for rolling-element bearing problem (3L-10U).
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Finally, we note that, in this case study, bearing health prognostics is conducted with the consideration of only one
failure cause (i.e., an inner race fault). Multiple nominally identical bearings, if being used in practical applications, could fail
due to Nfc different failure causes (e.g., inner race fault, outer race fault and ball damage). Although, in such cases, frequency-
domain analysis can be used to identify the failure cause for a specific bearing, data-driven prognostics still requires training
data (i.e., failure and suspension data) for training the two prognostic algorithms (FFNN and RBN). In fact, it requires Nfc

training data sets, each of which captures the bearing degradation behavior for a specific failure cause, and co-training can
be executed on each of the Nfc training data sets, resulting in Nfc sets of co-trained prognostic algorithms. Thus, the benefits
that co-training provides in the case of only one failure cause still hold in the case of multiple failure causes.

4.2. Electric cooling fan problem

In addition to the simulation studies, we also conducted experimental studies to verify the effectiveness of COPROG. In
this case study, we applied COPROG to the health prognostics of electronic cooling fan units. Cooling fans are one of the
most critical parts in system thermal solution of most electronic products [43] and in cooling towers of many chemical
plants [44].

4.2.1. Experimental setup
In this experimental study, thermocouples and accelerometers were used to measure temperature and vibration signals.

To make time-to-failure testing affordable, the accelerated testing condition for the DC fan units was sought with inclusion
of a small amount of tiny metal particles into ball bearings and an unbalanced weight on one of the fan units. The
experiment block diagram of DC fan accelerated degradation test is shown in Fig. 7. As shown in the diagram, the DC fan
units were tested with 12 V regulated power supply and three different signals were measured and stored in a PC through a
data acquisition system. Fig. 8(a) shows the test fixture with 4 screws at each corner for the DC fan units. As shown in Fig. 8
(b), an unbalanced weight was used and mounted on one blade for each fan. Sensors were installed at different parts of the
fan, as shown in Fig. 9. In this study, three different signals were measured: the fan vibration signal by the accelerometer, the
Printed Circuit Board (PCB) block voltage by the voltmeter, and the temperature measured by the thermocouple. An
accelerometer was mounted to the bottom of the fan with superglue, as shown in Fig. 9(a). Two wires were connected to the
PCB block of the fan to measure the voltage between two fixed points, as shown in Fig. 9(b). As shown in Fig. 9(c), a
thermocouple was attached to the bottom of the fan and measures the temperature signal of the fan. Vibration, voltage, and
temperature signals were acquired by the data acquisition system and stored in PC. The data acquisition system from
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Fig. 9. Sensor installations for DC fan test: (a) accelerometer, (b) voltmeter and (c) thermocouples.

Fig. 8. DC fan test fixture (a) and the unbalance weight installation (b).
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National Instruments Corp. (NI USB 6009) and the signal conditioner from PCB Group, Inc. (PCB 482A18) were used for the
data acquisition system. In total, 32 DC fan units were tested at the same condition and all fan units run till failure.

4.2.2. Construction of prognostic data sets
The sensory signal screening found that the fan PCB block voltage and the fan temperature did not show clear

degradation trend, whereas the vibration signal showed health degradation behavior. This study involved the root mean
squares (RMS) of the vibration spectral responses at the first five resonance frequencies and defined the RMS of the spectral
responses as the input signal to FFNN and RBN for the DC fan prognostics. Fig. 10 shows the RMS signals of three fan units to
demonstrate the health degradation behavior. The RMS signal gradually increased as the bearing in the fan degraded over
time. It was found that the RMS signal is highly random and non-monotonic because of metal particles, sensory signal noise,
and input voltage noise.

Among 32 fan units, 20 fan units were used to construct the training data set consisting of 10 failure (labeled) units and
10 suspension (unlabeled) units, while the rest were used to build the testing data set for the performance evaluation. In this
case study, one cycle is defined as every ten minutes. The suspension data were generated by truncating the original failure
data after pre-assigned suspension times (in cycles) that were randomly generated from a uniform distribution between 90
and 100 percentile lives (in cycles). The testing data were produced by truncating the failure trajectory of each testing unit
after pre-assigned RULs (in cycles). The RULs pre-assigned to each testing unit were a series of successive positive integers
between Z and the unit's life (in cycles) where the integer Z was randomly generated from a uniform distribution between 1
and the unit's 20 percentile lives (in cycles).

4.2.3. Implementation of COPROG
The algorithms were evaluated under two different settings: Setting 1 (lack of failure data) – 3 failure units and 10

suspension units (i.e., 3L-10U) and Setting 2 (plenty of failure data) – 10 failure units and 10 suspension units (i.e., 10L-10U).
We repeatedly executed the evaluation process 20 times under both settings and computed the mean (accuracy) and
standard deviation (robustness) of RMSEs on the testing data set. For the first setting, each execution employs a different set
of 3 failure units that were randomly selected from the 10 failure units in the training data set. Mathematically, the mean
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Table 4
RMSE results of supervised (FFNN, RBN and Ensemble) and semi-supervised (COPROG) learning for electric cooling fan problem.

Training data Statistics Life-time RMSE (cycles) Critical-time RMSE (cycles)

FFNN RBN Ensemble COPROG FFNN RBN Ensemble COPROG

3L-10U Mean 19.0431 19.4701 18.5584 12.9755 23.6213 20.5593 19.5372 13.8701
Std 3.4209 4.3246 3.2867 3.1942 6.0836 7.1387 4.4735 2.9440

10L-10U Mean 17.1744 16.2880 16.0987 9.7529 17.8188 17.1557 16.8067 10.1301
Std 2.3004 2.4111 2.1980 1.3414 4.2386 4.1784 3.7390 1.4219

Fig. 10. Sample degradation signals from DC fan testing.
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RMSE can be expressed as

μRMSE ¼
1
20

X
1rkr20

RMSEk

¼ 1
20

X
1rkr20

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiP
xAT LT xð Þ�LPk xð Þ

� �2

Nt

vuut
ð13Þ

where LT(x) denotes the true RUL of the testing input instance x, LP(x) denotes the predicted RUL by an algorithm, and Nt

denotes the number of input instances in the testing data set T . As described in Section 4.2.2, the true RUL of a testing input
instance is a pre-assigned integer that was used to produce this input instance during the construction of the testing data
set. Since the RUL prediction at a late stage exerts a larger influence on maintenance decision-making than that at an early
stage, we intended to separately investigate the prognostic accuracy when a DC fan unit approaches its end of life. For this
purpose, we extracted the testing input instances at the last 30 cycles of each testing trajectory and computed a critical-time
RMSE using Eq. (13). The parameter settings detailed in Section 4.1.3 were again used for FFNN and RBN training.

4.2.4. Results of COPROG
The RMSE results of the initial algorithms (that is, FFNN and RBN trained before utilizing any suspension data), their

ensemble (Ensemble) and COPROG are summarized in Table 4, where we can observe significantly better performance of
COPROG than any initial algorithm and their ensemble in terms of both prognostic accuracy and robustness. The results
suggest that the exploitation of the suspension data using the co-training approach can help achieve more accurate and
stable RUL predictions. It can also be observed that the critical-time RMSEs are larger than the life-time RMSEs under both
experimental settings. This counter-intuitive observation can be attributed to the fact that, when a bearing approaches its
end of life, the RMS signal exhibits a non-monotonic behavior (see Fig. 10), thereby making accurate RUL prediction more
challenging. Under the experimental setting of 3L-10U, the RUL predictions for a sample testing fan unit by COPROG are
plotted in Fig. 11 where good accuracy in RUL predictions can be observed.

5. Conclusion

This paper proposed a co-training-based prognostic approach (COPROG), which, to the best of our knowledge, is one of
the earliest efforts on semi-supervised learning for data-driven prognostics. By utilizing the suspension data, COPROG
achieves better accuracy and robustness in RUL predictions compared to any individual algorithm without utilizing the
suspension data. Results from two engineering case studies (rolling element bearing problem and electric cooling fan
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Fig. 11. RUL predictions for a testing fan unit by COPROG (3L-10U).
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problem) suggested that COPROG is capable of effectively exploiting the suspension data to improve the prognostic
performance and that the improvement becomes more pronounced when we have lack of failure data for the offline
training.

In this study, the suspension data are defined as unlabeled condition monitoring data, i.e., the label (RUL) of each input
combination in the suspension data is unknown. However, this definition could be generalized beyond the concept of
“unlabeled” to the concept of “partially labeled” where the suspension data are supplemented by the health conditions
estimated by maintenance personnel (through visual and/or non-visual inspections). It would be interesting to investigate
how to utilize the health conditions to improve the performance of semi-supervised prognostics in our future study.

It is noted that the suspension data may be obtained at multiple stages throughout the lifetime of a system unit. This
study only considers the suspension data obtained at the last stage of the unit's lifetime, since, intuitively speaking, the
degradation trend captured by the suspension data at the last stage most closely resembles the trend during the rest of the
lifetime. However, the scope of the suspension data under consideration could be broadened to coverMs earlier stages of the
unit's lifetime, which would effectively expand the suspension training data set by Ms times. It would be interesting to
investigate how to appropriately select the additional stages for suspension data expansion.

We also note that a validation approach (e.g., the k-fold cross validation with a training set, and the holdout approach
with a training set and an independent validation set), if used to evaluate the accuracy of a given weight combination in the
weight optimization, can produce a more representative error measure as compared to the non-validation approach used in
this study. Since the weight optimization is not the primary focus of this study, we intend to investigate in our future study
how the definition of an error measure affects the performance of the resulting ensemble.

Currently, there are several semi-supervised regression approaches that have recently been developed in the machine
learning society. It would be also interesting to investigate the similarity between regression and data-driven prognostics
and develop other types of semi-supervised approaches for data-driven prognostics. Furthermore, we observed in our
experiments that utilizing unlabeled data does not always help improve performance. Similar phenomena have also been
reported by researchers in the machine learning society [28,45]. However, no rigorous guidelines on the exploitation of
unlabeled data have yet been established. Future research efforts should be devoted to deriving such guidelines for semi-
supervised data-driven prognostics.
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