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a b s t r a c t

Relevant classification of the stationary operating conditions of wind turbines (WTs) aids in the selection
of an optimal condition monitoring technique. This paper presents a general method that can be used to
classify the operating conditions of WTs in terms of rotor speed and power. In this study, the ideal
probability density functions (PDFs) of rotor speed and power are calculated using an analytic WT model
and a wind speed profile. To estimate the PDFs of rotor speed and power with field data, two methods are
employed: (1) empirical PDF-based and (2) Gaussian mixture model (GMM)-based. The individual PDFs
estimated by the two methods are used to quantitatively define the range of the stationary WT operating
conditions. The proposed methods and the range of stationary operating conditions established by the
methods were evaluated using data from an analytical WT model and an actual 2.5 megawatt WT in the
field. In addition, the paper presents the evaluation of the performance of the proposed class-wise
condition monitoring strategy when used with vibration signals acquired from a two kilowatt WT
testbed. In summary, the proposed strategy and methods are promising for effective condition moni-
toring of WTs.

© 2016 Elsevier Ltd. All rights reserved.
1. Introduction

Wind turbines (WTs) often suffer from high maintenance costs
and downtime due to undesired failures. Condition-based main-
tenance can effectively prevent many of these undesired failures
and thereby reduce the maintenance costs of WTs [1e3]. However,
it is often challenging to evaluate the conditions of WTs using
readily-available signal processing techniques (e.g., fast Fourier
transform) since condition monitoring signals (e.g., vibration) are
inhomogeneous and non-stationary [4]. Due to the uncertain na-
ture of wind profiles, highly variable operating conditions are
prevalent during the operation of WTs. Several attempts have been
made to use the currently available signal processing techniques for
robust condition monitoring of WTs by adaptively using homoge-
neous condition monitoring signals across a limited range of WT
operating conditions. For example, the International Electro-
technical Commission (IEC), an organization that proposes inter-
national standards forWTconditionmonitoring, has recommended
@snu.ac.kr (B.D. Youn).
that “active power bins” should be used to classify the range of
power so that the vibration signals in a particular bin are more
homogeneous and exhibit only small variations [5]. Thus, it would
be expected that a condition monitoring technique could be
effectively used with each bin due to the homogeneous nature of
the vibration signals in that “bin.” However, it is well known that
vibration characteristics are also dependent on rotational speed
[6,7]. Therefore, the IEC's recommendation of using “active power
bins” is not appropriate when rotational speed fluctuates. Another
organization, DNV GL, proposed a renewables certification that
divides the operating conditions ofWTs into two parts based on the
amount of variation of the WT's speed [8]. In this strategy,
computationally efficient signal processing techniques (such as fast
Fourier transform) are used only when WTs operate with minimal
speed variation. When the WTs operate with frequent speed vari-
ation, it is recommended that more advanced conditionmonitoring
techniques be employed [8].

To effectively monitor WTs, some commercial condition moni-
toring systems also try to use the existing signal processing tech-
niques only when the WTs are operating in a pre-defined narrow
range of operating conditions [9]. For example, “Windcon,” devel-
oped by SKF, uses the concept of an “active range.” This strategy
performs active condition monitoring only while rotor speed and
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power remain in the “active range” [10]. The “Oneprod Wind Sys-
tem,” developed by Oneprod, uses wind speed as an additional
variable for defining the “active” range for WT monitoring [11].
Although a variety of condition monitoring strategies like these
have been proposed that attempt to fully utilize currently available
signal processing techniques, it should be noted that to do this, the
criteria for the operating conditions of interest for a WT (e.g., the
criteria for the “active range” of the “WindCon” method) must be
pre-defined by the users. Thus, implementation of the guidelines
and options specified by IEC [5], DNV GL [8], SKF [10] and Oneprod
[11] is not feasible unless the quantitative criteria for the operating
conditions of WTs are given. To the best of our knowledge, there is
no practical guideline that quantitatively classifies WT operating
conditions to provide an effective range for an optimal WT condi-
tion monitoring strategy.

In response to this need, this paper proposes a general method
for classification of the operating conditions of WTs in terms of
rotor speed and power. The ultimate goal is to use these classifi-
cations to establish an optimal strategy for condition monitoring
of WTs. Section 2 introduces an analytical WT model that calcu-
lates the relationship between input wind speed and power or
rotor speed based on a generic control logic for variable-speed
WTs. In Section 3, the probability density functions (PDFs) of po-
wer and rotor speed are mathematically derived from the
analytical WT model to provide a theoretical rationale for the
classification method and the criteria for the operating conditions.
In Section 4, five distinct classes are developed in such a way that
WTs in a particular class have unique operating characteristics,
thus leading to homogeneous condition monitoring signals in each
class. In particular, to produce the most valuable vibration signal
for condition monitoring of WTs, quantitative criteria for the sta-
tionary operating condition of WTs are defined, while considering
inherent randomness in the performance of WTs. Section 5 pre-
sents two case studies: (1) a WT model with various levels of
average wind speed and (2) an actual 2.5 megawatt WT in the
field. Section 6 discusses the applicability of the proposed
classification-based condition monitoring strategy to the industry
and presents condition monitoring results for a two kilowatt WT
testbed under various operating conditions. This paper concludes
with a summary and suggestions for future work, outlined in
Section 7.

2. Analytical modeling of WT performance

Different control logic strategies are implemented to
achieve optimal performance in variable-speed WTs [12]. As
illustrated in Fig. 1, in Region 1, the wind speed is less than the
Fig. 1. Region of wind speed for control of WTs. (a) wind speed-p
“cut-in” wind speed (vcut-in). In this region, the wind energy is
considered to be insufficient to produce power. Consequently, the
WT is directed not to generate power, and instead stays in an idle
mode. When the wind speed exceeds the cut-in wind speed, the
rotor starts to rotate at the cut-in rotor speed (wcut-in). In Region
2, the output power of the WT can be characterized as being
proportional to the cube of the wind speed [13]. The rotor speed
is controlled to maximize the efficiency of the WT's energy
production in such a way that the rotor speed can be approxi-
mated as being linearly proportional to the wind speed [14].
When the wind speed becomes high enough to generate the
rated power (Prated) and the rated rotor speed (wrated) of the WT,
the blade pitch is controlled to maintain the power and rotor
speed at constant levels (Region 3). Based on the WT control logic
outlined here, the relationship between the wind speed (v) and
normalized power (P), or normalized rotor speed (w), can be
represented as:

P ¼
8<
:

0 v< vcut�in
ðv=vratedÞ3 vcut�in � v< vrated

1 vrated � v

(1)

w ¼
8<
:

0 v< vcut�in
v=vrated vcut�in � v< vrated

1 vrated � v
(2)

On the other hand, it has been reported that any engineered
system includingWTs has considerable uncertainties due to several
issues, such as randomness in geometry, material property and
loading (e.g., stochastic nature of the wind property) [15,16]. Based
on the work of Tondan and Zhigang, power and rotor speed with
random noise can be defined by incorporating Gaussian noise as
[17]:

Pn ¼ P þ εP (3)

wn ¼ wþ εw (4)

where εp and εw represent the Gaussian noise with a mean of
zero and a standard deviation of s (i.e., εp ~ N(0, sP2), and εw ~ N(0,
sw
2 )).
To calculate the power and rotor speed using the WT model,

wind speed (v) must be known. Prior research recommends that
wind distribution should be assumed to follow a Rayleigh distri-
bution whose CDF (Fv) and PDF (fv) can be defined as [18,19]:
ower relationship. (b) wind speed-rotor speed relationship.
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Fvðv; vÞ ¼ 1� e
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v
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; v � 0 (6)

where v stands for average wind speed. The IEC 61400-1 certifica-
tion provides three representative average wind speeds (i.e., v¼7.5,
8.5, and 10 m/s) that should be considered for Eqs. (5) and (6) to
explain the general behavior of wind at different sites [20]. Rayleigh
distributions with average wind speeds of 7.5 m/s, 8.5 m/s, and
10 m/s are compared in Fig. 2.

3. Mathematical derivation of the PDF of power and rotor
speed

This section proposes a two-step procedure to derive the sta-
tistical description (i.e., PDF) of WT performance in terms of power
and rotor speed. This procedure consists of (1) a uncertainty
propagation technique to consider propagation of uncertainty in
wind speed and (2) convolution of two main sources of the
randomness, such as uncertain system performance and Gaussian
noise. Detailed procedures for determining the PDFs of the power
and the rotor speed are provided in Sections 3.1 and 3.2,
respectively.

3.1. The PDF of power

In this work, a random variable transformation technique was
employed to show the PDF of power in terms of the PDF of wind
speed. Mathematically, when y (e.g., power) is a function of a
random variable x (e.g., wind speed) with a relationship of y ¼ g(x),
the uncertainty of x is propagated to the one of y, formulating a
cumulative distribution function (CDF), (FY) as [21]:

FY ðyÞ ¼ PðY � yÞ ¼ PðgðxÞ � yÞ ¼ P
�
X2By

�
; (7)

where

By ¼ fx2IR : gðxÞ � yg (8)

Using the randomvariable transformation technique, the CDF of
the power from Eq. (1) becomes:
FPðPÞ ¼

8>>>>>>>>>>><
>>>>>>>>>>>:

0 P <0

Pðv � vcut�inÞ ¼ 1� e
�p

4

�
vcut�in

v

�2

0 � P < ðvcut�in=vratedÞ3

P
�
v � P1=3vrated

�
¼ 1� e

�p
4

 
P1=3vrated

v

!2

ðvcut�in=vratedÞ3 � P <1

1 1 � P

(9)
In (9), jump discontinuities exist for C0 (when P ¼ 0) and C1
(when P ¼ 1):

C0 ¼ FPð0Þ � lim
P/0�

FPðPÞ ¼ 1� e
�p

4

�
vcut�in

v

�2

(10)
B �p
4

�
vrated

v

�2C �p
4

�
vrated

v

�2
C1 ¼ FPð1Þ � lim
P/1�

FPðPÞ ¼ 1�

0
@1� e

1
A ¼ e

(11)

The differentiation of (9) with respect to P becomes:

~f PðPÞ ¼

8>>>><
>>>>:
p

6

�vrated
v

�2
P�1=3e

�p
4

 
P1=3vrated

v

!2

ðvcut�in=vratedÞ3<P<1

0 otherwise

(12)

The PDF of the power (fp) is obtained by combining Eq. (12) with
Eqs. (10) and (11):

fPðPÞ ¼ C0dðPÞ þ C1dðP � 1Þ þ ~f PðPÞ (13)

Next, the Gaussian noise term (εP) is added to Eq. (13) to
incorporate the effect of the inherent randomness in WTs. The PDF
of a sum of two random variables is calculated by convolution [21].
The PDF of the power with the noise term is presented as:

fPnðPÞ ¼ ðfP*εPÞðPÞ ¼
Z∞
�∞

fPðyÞ � εPðP � yÞdy

¼
Z∞
�∞

fPðyÞ �
1

sP
ffiffiffiffiffiffi
2p

p e
�ðP�yÞ2

2s2
P dy

¼ C0
sP

ffiffiffiffiffiffi
2p

p e
� P2

2s2
P þ C1

sP
ffiffiffiffiffiffi
2p

p e
�ðP�1Þ2

2s2
P þ ~f PnðPÞ;

(14)

where ~f PnðPÞ is calculated through the following equation:

~f PnðPÞ ¼
Z∞
�∞

~f PðyÞ �
1

sP
ffiffiffiffiffiffi
2p

p e
�ðP�yÞ2

2s2
P dy

¼
Z1

ðvcut�in=vratedÞ3

p

6

�vrated
v

�2
y�1=3e

�p
4

 
y1=3vrated

v

!2

� 1
sP

ffiffiffiffiffiffi
2p

p e
�ðP�yÞ2

2s2
P dy

(15)
In Eq. (14), the PDF was defined as the sum of three terms. The
first two terms were derived from the impulse function with the
magnitudes of C0 and C1 near zero and the rated power, respec-
tively. The power in the mid-range is dominated by the third term
in Eq. (14), which cannot be calculated analytically. Several



Fig. 2. The probability density functions (PDFs) of wind speeds modeled by Rayleigh
distribution with the average wind speeds of 7.5 m/s, 8.5 m/s, and 10 m/s.
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numerical integration methods can be used, such as the Trape-
zoidal rule and adaptive Gauss-Kronrod quadrature [20, 22]. Fig. 3
(a) and (b) respectively show the CDF and PDF of the power where
the noise term is not considered. It is noteworthy that C0 and C1,
which are generated from the idle and pitch control mode of the
WT, are represented as discontinuities of the CDF (C0 and C1) in
Fig. 3 (a) and as impulse functions with magnitude of C0 and C1 in
Fig. 3 (b). The PDF of the power subjected to uncertainties is shown
in Fig. 3 (c). The standard deviation of the Gaussian noise was set to
be 2.5% of the rated operating condition (i.e., sp ¼ 0.025) for the
study [23]. The discontinuities were reconstructed as clusters
around zero and rated power, as shown in Fig. 3 (c).

3.2. The PDF of rotor speed

Identical procedures were used in our study to define the PDF of
rotor speed. Using the random variable transformation technique,
the CDF of the rotor speed becomes:

FwðwÞ ¼

8>>>>>>>>><
>>>>>>>>>:

0 w<0

Pðv� vcut�inÞ ¼ 1� e
�p

4

�
vcut�in

v

�2

0�w<vcut�in=vrated

Pðv�wvratedÞ ¼ 1� e
�p

4

�
wvrated

v

�2

vcut�in=vrated �w<1

1 1�w

(16)
The PDF of the rotor speed (fw) is presented as:
Fig. 3. The CDF and PDF of power. (a) the CDF of power. (b) th
fwðwÞ ¼ C0dðwÞ þ C1dðw� 1Þ þ ~f wðwÞ (17)

where C0 at w ¼ 0 and C1 at w ¼ 1 are as defined in Eqs. (10) and
(11). The third term is obtained by differentiating Fw with respect
to w.

~f wðwÞ ¼

8>><
>>:

p

2

�vrated
v

�2
we

�p
4

�
wvrated

v

�2

vcut�in=vrated <w<1

0 otherwise

(18)

The PDF of the rotor speed with uncertainties then becomes:

fwnðwÞ ¼ ðfw*εwÞðwÞ ¼ C0
sw

ffiffiffiffiffiffi
2p

p e
� w2

2s2w þ C1
sw

ffiffiffiffiffiffi
2p

p e
�ðw�1Þ2

2s2w þ ~f wnðwÞ

(19)

where ~f wnðwÞ is calculated using the following equation.

~f wnðwÞ ¼
Z1

vcut�in=vrated

p

2

�vrated
v

�2
ye

�p
4

�
yvrated

v

�2

� 1
sw

ffiffiffiffiffiffi
2p

p e
�ðw�yÞ2

2s2w dy

(20)

The CDF and PDF of the rotor speed, and the PDF of the rotor
speed with uncertainties are shown in Fig. 4 (a)-(c).

4. Classification of the operating conditions of a WT

This section proposes a method for classification of WT oper-
ating conditions. Then, quantitative criteria for the stationary
operating condition are defined by using the properties of distri-
bution of power and rotor speed, which were outlined in Section 3.
Empirical PDF and Gaussian mixture model (GMM) techniques are
employed to enable practical use of the proposed method in the
field where exact PDF equations are not provided.

4.1. A classification method for operating conditions of a WT

As illustrated in Fig. 5, the proposed methods aim to classify the
operating conditions of WTs into five classes in terms of the rotor
speed and the output power. Boundaries between the stationary
and non-stationary operating conditions for power and rotor speed
are represented as Cp and Cw, respectively. When both the power
and the rotor speed are greater than Cp and Cw simultaneously, the
data collected for this operating regime is assigned to Class I. In this
e PDF of power. (c) the PDF of power with uncertainties.



Fig. 4. The CDF and PDF of rotor speed. (a) the CDF of rotor speed. (b) the PDF of rotor speed. (c) the PDF of rotor speed with uncertainties.
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class, power and rotor speed should remain nominally constant at
their rated values due to the pitch control of the WT. For this class,
cost-effective signal processing techniques, such as fast Fourier
transform and order analysis can serve as efficient tools for con-
dition monitoring of the WT, since the condition monitoring signal
is stationary and homogeneous. In Class II, WTs operate in a quasi-
stationary operating condition with varying power production,
despite the nominally constant rotor speed. This scenario can occur
due to rapidly varying wind properties or through pitch and yaw
error in the WT [19]. In this case, the energy contained in the
measured condition monitoring signal can be dependent to the
varying power profile [24,25]. Next, non-stationary operating
conditions of WTs were defined as Class III where both the rotor
speed and the power were significantly varying below Cp and Cw. In
this case, the condition monitoring signal requires an advanced
signal processing technique applicable to the varying operating
conditions. The operating conditions of WTs in idle mode were
defined as Class V, where the rotor speed and power are zero. Class
IV is assigned for transient operating conditions between Class III
and Class V, where rotor speed varies below the cut-in rotor speed,
and power is zero. In Class IV and Class V, the condition monitoring
signal is not likely to include meaningful information with respect
to condition monitoring of the WTs. Fig. 6 shows an illustrative
example of the operating conditions of a WT for each class, where
Cp and Cw were set to be equal for simplified representation.
4.2. Definition of quantitative classification criteria

This section defines quantitative criteria that define boundaries
Fig. 5. The proposed classification rule for operating conditions of a WT.
between stationary and non-stationary operating conditions of
WTs (i.e., Cp and Cw). These boundaries are required for accurate
classification. As shown in Figs. 3 (c) and 4 (c), clusters are formed
around the rated operating condition due to the pitch control used
by WTs when there is enough wind speed to warrant such control.
The boundaries between the stationary and non-stationary oper-
ating conditions of WTs (i.e., Cp and Cw) can be defined as values
that separate the clusters formed around the rated power and rotor
speed. This section proposes twomethods to define the appropriate
values of Cp and Cw that satisfy the following conditions: (1) Cp and
Cw should be small enough to obtain as much data as possible in
Class I, and (2) Cp and Cw should not be excessively small such that
they guarantee stationary operating conditions in Class I.
4.2.1. Method 1: identification of minimum probability density
using an empirical PDF

Boundaries between stationary and non-stationary operating
conditions can be defined based on the properties of the distribu-
tion of power and rotor speed. As the power (P) and the rotor speed
(w) approach to the rated values, their probability densities (i.e., fp
and fw) decreasewhere the noise term is not incorporated as shown
in Figs. 3 (b) and 4 (b). When the PDFs of the power and the rotor
speed incorporate inherent randomness, clusters are formed
around the rated values by convolution of the noise term and the
impulse function with the magnitude of C1, eventually increasing
probability densities (See “Total” lines in Figs. 3 (c) and 4 (c)). As a
result, the PDFs of power and rotor speed should have a concave
form around the rated operating condition. Theoretical boundaries
between stationary and non-stationary operating conditions can be
defined as the point where the PDFs of power and rotor speed are
minimized around the rated operating condition. Although it seems
to be straightforward to find the minimum of the PDF around the
rated operating condition, it is challenging to do this in field set-
tings where the exact equations for the PDFs of power and rotor
speed are not given. To solve this challenge, this study employed an
empirical PDF. The empirical PDF is a data-oriented empirical
measure of the probability distribution of a random variable, which
is widely used in real field because of easy implementation and a
general convergence property as a non-parametric density esti-
mator [26]. The empirical PDF can be derived by numerical differ-
entiation of an empirical CDF as:

f ðxÞ ¼ Fðxþ DxÞ � FðxÞ
Dx

(21)

where F(x) and x represent the empirical CDF andWT performance,
respectively; and Dx is the difference between two adjacent values.
The empirical CDF (F(x)) can be defined as [27]:



Fig. 6. Sample results of the proposed method for classification of operating conditions of a WT.
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FðxÞ ¼ 1
Ns

XNs

i¼1

1fxi � xg (22)

where Ns is the number of samples; xi is the measured WT per-
formance at the ith sample point (i ¼ 1, …, Ns); and 1{A} is the
indicator function that computes one only if the logic A is satisfied.

Fig. 7 represents the relative histogram and the empirical PDFs
for power and rotor speed around the rated operating condition
that were calculated from the analytical WTmodel with an average
wind speed of 7.5 m/s. The sampling rate was assumed to be one
sample per second, and one-year of data was used. From the figure,
it can be seen that Cp and Cw could be quantitatively defined by
employing the empirical PDF.

Empirical PDFs, non-parametric density estimator, have been
widely used in actual applications due to easy implementation and
low computational cost compared to other density estimators.
Theoretically, with the infinite number of data points, an empirical
PDF will converge to the PDF of a populationwhile having a general
property as a density estimator [26]. In reality, it is infeasible to
Fig. 7. The PDF for the operating conditions of the WT model around the rated condit
collect the infinite number of data points. Thus, a general guideline
should be given to define the appropriate number of data points for
Method 1. The issue was addressed in several studies [33]. As an
example, the ASME international standard suggests that the mini-
mum number of data points should be calculated by Ref. [34]:

n ¼
�
3so
E

�2
(23)

where so is the estimate of the standard deviation of the population
and E is the maximum acceptable difference between the true
mean and the sample mean. When so is assumed to be 0.025
(difference between sp and sw in Eqs. (14) and (19)) and E is set to
be 1% of the operating condition for an accurate estimation, the
minimum number of data points required for Method 1 is 56.25.
This amount of data corresponds to about 0.4 days of WT operation
if a single data point is collected every 10 min [35].

Most of the guidelines for the determination of the appropriate
number of data points including Eq. (23) assume that the proba-
bility distribution of the population follows a single-modal
ion where an average wind speed of 7.5 m/s was used. (a) power. (b) rotor speed.
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Gaussian distribution. However, the probability distribution of the
operating data of WTs generally follows a multi-modal Gaussian
distribution. As shown in Section 5, at least, five Gaussian distri-
butions were needed for a proper fitting of the probability distri-
bution of the WT operating data. Consequently, the empirical PDFs
require much longer period of time (e.g., 4 days ¼ 0.4 days � 10
safety factor).
4.2.2. Method 2: deconvolution of stationary data using a Gaussian
mixture model (GMM)

Criteria for the stationary operating condition of power and
rotor speed (Cp and Cw) can be defined based on statistical moments
(e.g., mean and standard deviation) of the clusters around the rated
operating conditions of the WTs. A statistical moment of the clus-
ters can be approximated by using a Gaussian mixture model
(GMM) as it is widely used to fit multi-modal distributions [28]. A
GMM can be expressed as a combination of multiple Gaussian
distributions:

f ðx; qÞ ¼
XK
k¼1

wkNðx;mk;skÞ (24)

where K is the number of Gaussian distributions used to fit the
given distribution; wk is the weight of the kth Gaussian distribu-
tion; and N(x; mk, sk) is the kth Gaussian distributionwith the mean
of mk and the standard deviation of sk,. The PDF of a Gaussian dis-
tribution with the mean of mk and the standard deviation of sk is
defined as:

Nðx;mk; skÞ ¼
1

sk
ffiffiffiffiffiffi
2p

p e
�ðx�mkÞ2

2s2
k (25)

This study estimated the optimal Gaussian mixture parameters
(i.e., wk, mk, and sk, where i ¼ 1, …, K) to achieve the maximum
likelihood function by employing an expectation andmaximization
(EM) algorithm, as is commonly used for the GMM [29]. Fig. 8
represents an example of the power and rotor speed of the
analytical WT model fitted using the GMM with four Gaussian
distributions (i.e., K ¼ 4). It can be seen that the clusters located
around the rated power and rotor speed were appropriately fitted
by the last Gaussian distribution of the GMM. This is marked as ‘#4’
in Fig. 8.

The more distributions employed, the better the fitting capa-
bility of the GMM. However, one limitation of the GMM with EM is
that the convergence can be extremely slow as the number of
distributions (K) increases [29]. Moreover, an extremely large
number of distributions can cause a single-modal distribution to
be fitted by two or more distributions of the GMM to achieve
better fitting results. This is an undesirable case because the
purpose of employing the GMM in this study is to fit the clusters
formed around the rated power and rotor speed with a single
Gaussian distribution to estimate the statistical moments of data
in the stationary operating condition. Thus, this paper recom-
mends the use of the minimum number of distributions as long as
the clusters formed around the rated operating condition are
properly fitted.

To define the criteria for the stationary operating condition (Cp
and Cw) based on the statistical moments of the last distribution of
the GMM, the three sigma rule was employed. The three sigma rule
is that 99.87% of data is within three standard deviations of the
mean. Because the desired situation is to secure as much data as
possible in Class I, the three sigma rule can be used for defining the
conservative criteria for the stationary operating condition. Based
on the three sigma rule, Cp and Cw can be defined as:
Cp ¼ mK;p � 3sK;p (26)

Cw ¼ mK;w � 3sK;w (27)

where mK,p and mK,w are the means of the last Gaussian distribution
for power and rotor speed, respectively; and sK,p and sK,w are the
standard deviations of the last Gaussian distribution for power and
rotor speed, respectively.

5. Case studies

This paper presents two case studies to demonstrate the pro-
posed classification method. First, classification of operating con-
ditions was demonstrated using data calculated from an analytical
WT model with various levels of wind speed. Second, field data
measured from a 2.5 megawatt WT was used for classification.

5.1. Case study with data calculated from the analytical WT model

This paper considers WTmodels with different levels of average
wind speeds (i.e., v¼ 7.5, 8.5, and 10 m/s). Fig. 9 presents results
corresponding to the empirical PDF of power and rotor speed. Solid
vertical lines and dashed vertical lines represent the results from
Methods 1 and 2, respectively. As the average level of wind speed
increases, clusters around the rated operating condition of the WT
showed a dense distributionwith large populations due to the high
wind speed. Table 1 summarizes the criteria for the stationary
operating condition as defined by Methods 1 and 2. The criteria
derived by Method 1 were unstable while having large standard
deviations over three wind speeds. On the other hand, the criteria
defined by Method 2 were in proportional to the level of wind
speed while having small standard deviations.

Because it is beneficial for condition monitoring to obtain as
many stationary vibration signals as possible, the criteria for the
stationary operating condition can be defined as the minimum
value between the results from Methods 1 and 2. However, the
stationary operating condition is not likely to be guaranteed if the
range of the stationary operating condition is set to be too large. In
this case study, Method 1 required more data defined as Classes I
and II than Method 2 does. Nevertheless, homogeneity of the vi-
bration signals in Classes I and II defined using Method I should be
carefully checked for ensuring the effective conditionmonitoring. A
homogeneity evaluation method will be described in Section 6.1.

5.2. Case study with data measured from a 2.5 megawatt WT

This paper used data from a 2.5 megawatt WT in the Yeong-
heungwind farm, which is in thewest side of the Republic of Korea.
For the second case study, operating data from the WT (e.g., wind
speed, rotor speed, and output power) were collected for one year
at a one-Hz sampling rate. Collected data are represented in Fig. 10
(a) and (b) as three dimensional histograms describing rotor speed
and power. The principal operating mode of the WT was the idle
control mode, which can be seen in the notable peak in Fig. 10 (a)
where both the power and rotor speed are around zero. When the
data in the idle control mode was excluded, an additional cluster
appeared around the rated power and rotor speed, as shown in
Fig. 10 (b). This cluster can be regarded as the data in the stationary
operating condition, which was defined as Class I.

Fig. 11 (a) and (b) represent histograms for power and rotor
speed data measured from the WT, respectively; Table 2 summa-
rizes criteria for the stationary operating condition (i.e., Cp and Cw)
as defined using Methods 1 and 2, respectively. Using the second



Fig. 8. The PDF for operating conditions using a WT model fitted by a Gaussian mixture model with four Gaussian distributions where average wind speed of 7.5 m/s was used. (a)
power. (b) rotor speed.

Fig. 9. Criteria for the stationary operating condition where solid vertical lines represent the results from Method 1 and dashed vertical lines represent the results from Method 2.
(a)e(c) power with average wind speed of 7.5, 8.5, and 10 m/s, respectively. (d)e(f) rotor speed with average wind speed of 7.5, 8.5, and 10 m/s, respectively.
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method, it was found that at least five and four Gaussian distri-
butions should be employed for the GMM to successfully fit the
clusters formed around the rated power and rated rotor speed,
respectively. In this case, results from the first methodwere smaller
Table 1
Classification criteria defined using Methods 1 and 2 for the WT model with different le

Criteria

Cp v ¼ 7.5 m/s
v ¼ 8.5 m/s
v ¼ 10 m/s
Mean
Standard deviation

Cw v ¼ 7.5 m/s
v ¼ 8.5 m/s
v ¼ 10 m/s
Mean
Standard deviation
than those from the second method. Method 1 was thus used to
define the criteria for the stationary operating condition to obtain
the greatest amount of possible homogeneous signals for condition
monitoring. Note that if the homogeneity of the condition
vels of uncertainties.

Method 1 (Empirical PDF) Method 2 (GMM)

0.910 0.915
0.890 0.918
0.905 0.920
0.902 0.918
0.010 0.003

0.920 0.907
0.915 0.912
0.895 0.916
0.910 0.912
0.013 0.005



Fig. 10. A three-dimensional histogram of power and rotor speed of the on-shore WT for one year. (a) full data. (b): data in which power is zero are filtered out.

Fig. 11. A relative histogram of the operating conditions of a WT for one year. Data in which power is equal to zero are filtered out for graphically tidy representation. (a) power. (b)
rotor speed.
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monitoring signals is not guaranteed, the classification criteria
should be altered to use the results from Method 2.

The ratios of data observed for each of the defined classes are
shown in Fig.12. It turned out that 2.85% of datawere classified into
Class I, which is thought to be most effective for condition moni-
toring. This amount of data corresponds to 41 min per day, on
average. Class II, the quasi-stationary operating condition, consists
of 5.65% of data, which corresponds to 81 min per day, on average.
The WT operates in a nominally stationary rotational speed in both
Class I and Class II. Thus, condition monitoring can be performed
with a readily available, cost-effective signal processing techniques
for data from about 122 min on average per day, without much
concern about speed variation. However, power variation should
also be considered for Class II data if the energy variation of the
condition monitoring signal is evaluated and found to be large. It is
also worth noting that Class IV and Class V, which may be trivial for
condition monitoring of WTs, comprised an extremely large pro-
portion of data (i.e., about 31% and 26% for Classes IV and V,
respectively). This implies that unnecessary computational cost can
Table 2
The criteria for defining the stationary operating condition of the on-shore WT, as
defined based on the two proposed methods.

Criteria Method 1 (Empirical PDF) Method 2 (GMM)

Cp 0.915 0.920
Cw 0.890 0.920
be saved by excluding Class IV and Class V from the datasets to be
processed for condition monitoring. Likewise, Class III, which has
large variations in rotational speed and power, accounted for 34% of
data.
6. Validation study for classification of stationary operating
conditions

To discuss the applicability of the proposed classification-based
condition monitoring strategy, it is worth performing fault di-
agnostics under the various operating conditions that were defined
Fig. 12. Classification results of the WT data.



Fig. 13. Overview of testbed operation.
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in this paper (i.e., Class I and II). However, it was not easy to gather
condition monitoring signals from anomaly conditions from actual
WTs. As an alternative, the research described in this paper
employed a two kilowatt WT testbed. This testbed helps analyze
the effect of the operating conditions on condition monitoring
performance. An overview of the testbed is shown in Fig.13. Among
the two gearboxes available, condition monitoring was performed
for the one-stage planetary gearbox, which has gear ratio of 4.06.
The one-stage planetary gearbox contains three planet gears with
31 teeth on each. The sun gear and the ring gear of the gearbox have
31 teeth and 95 teeth, respectively. For testbed operation, three
representative operating conditions, representing Class I, Class II
and Class III were measured for the 2.5 megawatt WT, as shown in
Fig. 14. Next, rotor speed and scaled torque were used for a control
profile of the WT testbed. The vibration signal was measured using
an accelerometer attached to the top of the gearbox with a sam-
pling ratio of 25.6 kHz. The vibration signal from 100 min of
operation was divided into 100 datasets for vibration-based fault
diagnostics with 1-min vibration signals in each dataset. After the
tests, the homogeneity of the vibration signals in each class was
evaluated using a similarity test with a cross-correlation function.
Fig. 14. Representative operating conditions for control o
Finally, vibration-based condition monitoring was performed for
each class.

6.1. Homogeneity evaluation of the vibration signals

Provided that the vibration signal in a class is homogeneous, the
vibration signal should have a similar vibration pattern and energy
as long as the meshing condition of the gearbox remains identical.
In this research, the homogeneity of the vibration signals in each
class was evaluated by investigating the level of similarity of the
vibration signals across datasets by means of a cross-correlation
metric. Homogeneity of vibration signals was obtained by an
average of similarities evaluated from the number of the possible
combinations of 100 datasets in each class, 100C2 (¼4950). Fig. 15
compares the level of homogeneity of vibration signals for each
class. For readability, vibration signals corresponding to only 10
datasets are aligned in Fig. 15. As can be seen from the figure, the
level of homogeneity of vibration signals in Classes I and II was
greater than the level observed for vibration signals under Class III.
Interestingly, the level of homogeneity of vibration signals in
Classes I and II was similar despite the power variation in Class II.
f the WT testbed: (a) Class I, (b) Class II, (c) Class III.



Fig. 15. Homogeneity evaluation results of the vibration signals: (a) Class I, (b) Class II, (c) Class III.

Fig. 16. FM0 obtained from normal and anomaly conditions of the planetary gearbox: (a) Class I, (b) Class II, (c) Class III.
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From these results, it can be concluded that variations in speed
more significantly affect the level of homogeneity of vibration
signals than do variations in power.
6.2. Vibration-based condition monitoring

To simulate an anomaly condition of the gearbox, a planet gear
with spalling was manufactured as shown in the right side of
Fig. 13. For fault diagnostics of the gearbox, fast Fourier transform
analysis was employed along with autocorrelation-based time
synchronous averaging (ATSA) [30]. Among various available con-
dition indicators, FM0 was used to evaluate the performance of the
fault diagnostics results. FM0, which has been traditionally used for
real-time condition monitoring of gearboxes, can be defined as
[31]:

FM0i ¼
PPðATSAiÞPN
k¼1 AiðfkÞ

(28)

where ATSAi represents the vibration signal in the ith dataset (vi)
processed with ATSA, PP(ATSAi) calculates the maximum peak-to-
peak value of ATSAi, and Ai(fk) denotes the amplitude of kth har-
monic of the gear mesh frequency of ATSAi.

Fig. 16 (a)~(c) compares the histograms of FM0 values derived
from the tests performed during both normal and anomaly condi-
tions of the gearbox under the Class I, Class II, and Class III,
respectively. To quantify the degree of separability, Fig. 16 indicates
the probability of separation (POS), which gives one for perfect
separation and zero for perfect overlap of PDFs from two classes
[32]. In Class I and Class II, FM0 from both the normal and anomaly
conditions was clearly differentiated. This means that condition
monitoring of the gearbox in Class I and Class II was feasible. In this
case, the variation of the condition indicator in Class II was not
large, despite the power variation. In Class III, FM0 results from the
normal and anomaly conditions were not perfectly separable,
although there was some differentiation of overall magnitude be-
tween them.
7. Conclusions

Techniques for monitoring the condition of WTs have tradi-
tionally relied on the use of either stationary or non-stationary
signals. However, to date, there has been no practical guideline
outlining how to classify the operating condition of WTs for a class-
wise condition monitoring purpose, and how to quantitatively
define the ranges of the stationary operating condition of WTs. To
address these challenges, this study devised a novel strategy to
categorize the operating conditions of WTs using the empirical PDF
and Gaussian mixture model (GMM).

An analytical WT model with a generic control logic is adopted
to analyze the fundamental characteristics of operating conditions.
This strategy was used because information about real-world
control logic algorithms is proprietary and seldom released to the
public. If available, a particular control logic for a real WT can be
incorporated into the proposed method with only minor modifi-
cations. For example, for the case study using the WT in the field
(See Fig. 11 (b)), the classification method and criteria could be
revised to consider the considerable amount of the data around the
cut-in rotor speed.

Based on the analysis of fundamental characteristics of oper-
ating conditions identified by the analytic WT model, a strategy is
proposed to classify the operation condition of WTs into five clas-
ses. WTs are expected to have distinct operating properties at each
class. Furthermore, quantitative classification criteria are defined
using the empirical PDF-based method (Method 1) and a Gaussian
mixture model (GMM)-based method (Method 2). Class I and II
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data were extracted from WT signals using the proposed classifi-
cation technique. For Class I and II data, the anomalous conditions
of a gearbox in a WT testbed were clearly separated from the
normal conditions through use of a low-cost signal processing
technique (i.e., fast Fourier transform analysis with time synchro-
nous averaging). With Class III data, there was overlap between the
anomalous and normal conditions.

Method 2 requires considerable computational power for
approximation of the optimal parameters for the GMM. The
computational complexity of GMM is O(KNs

2) where K is the num-
ber of Gaussian distributions and Ns is the number of data points
[36]. This challenge makes it difficult to update the classification
criteria in real-time as more useful operating data are obtained. If
the WT requires a real-time update of the classification criteria
using big data while a high-power CPU is not available, thus,
Method 1 would be more suitable for on-site utilization.

It is worth noting that the classification results of usingMethods
1 and 2 can be inconsistent for different datasets. If both of Method
1 and 2 are available, it is recommended to adapt the method
providing a lower level of criteria (Cp and Cw) to obtain the greatest
data size used for the purpose of fault diagnostics, as long as the
homogeneity of the signal is guaranteed.

From the case study, about 34% of data were classified into non-
stationary operating condition classes, in which cost-efficient
signal processing techniques cannot be effectively used for condi-
tion monitoring. It is worth noting that real data measured from a
WT, about 120 min of data under the (quasi) stationary operating
conditions (Class I and II) could be measured per day, on average.
Thus, on average, 120 min of homogeneous condition monitoring
signals are available for condition monitoring per day. Therefore,
sufficient data exists such that, through the proposed method, an
effective condition monitoring strategy can be implemented to
support long-term operation and maintenance plans for WTs.
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