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Some anomaly states of journal bearing rotor systems are direction-oriented (e.g., rubbing,
misalignment). In these situations, vibration signals vary according to the direction of the
sensors and the health state. This makes diagnosis difficult with traditional diagnosis
methods. This paper proposes an omnidirectional regeneration method to develop a robust
diagnosis algorithm for rotor systems. The proposed method can generate vibration signals
in arbitrary directions without using extra sensors. In this method, signals are generated
around the entire circumference of the rotor to consider all possible directions. Then, the
directionality of each state is proved by mathematically and is evaluated using a proposed
metric. When a directional state is determined, the classification is carried out on all of the
generated signals. When a non-directional state is found, the classification is performed on
only one of the generated signals to minimize computational load without sacrificing accu-
racy. The proposed ODR method was validated using experimental data. The classification
results show that the proposed method generally outperforms the conventional classifica-
tion method. The results support the proposed concept of using ODR signals in diagnosis
procedures for journal bearing systems.

� 2016 Elsevier Ltd. All rights reserved.
1. Introduction

Journal bearing rotor systems are frequently used in industrial machines that require safe and reliable operation. For
example, turbines and pumps in power plants use journal bearings to maintain system safety even in heavy load and
high-speed conditions. Because the fluid in the bearings supports the rotors, stable operation is possible without direct con-
tact between the rotor and the stator. Although a particular rotor system may satisfy all design requirements, uncertainties
in operation can cause the system to operate in an unexpected way. Sometimes, improper maintenance can cause a sudden
failure or an accident; this can result in disastrous consequences. Thus, to prevent catastrophic events, large rotor systems
require an anomaly diagnosis system.

Diagnosis systems for rotors frequently use data-driven methods [1–7]. These methods follow three steps: data acquisi-
tion, feature generation, and classification. First, in the data acquisition step, signals from each health state are obtained.
Most rotor diagnosis systems use vibration signals, because vibration signals can accurately represent the health state of
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Nomenclature

C regularization parameter of the optimization problem for support vector machine
D directionality metric of health states
N number of possible ODR signals by h
Sðf Þ power spectrum
SNðf Þ set of the power spectrum from N ODR signals
V time signal
V mean of the time signal
Xi-Yi Cartesian coordinate system by Xi and Yi axes
b bias of the hyper-plane
d dimension of the feature vector
ui label of the ith feature vector
vi ith feature vector
w normal vector to the hyper-plane
h angle of rotation
ni slack variable of ith feature data
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the system. Next, the feature generation step is composed of two sub-steps: feature extraction and selection. The acquired
data are used to generate key features that should distinguish the health states of the rotor system. Various signal processing
techniques have been developed to extract features from the data. Noise reduction, such as time synchronous averaging, can
be performed [8,9]. Angular resampling can also reduce the noise, as well as produce an equal number of data points per
cycle [10,11]. After these preprocessing techniques are applied, features are extracted. Time- and frequency-domain analysis
are widely used methods for feature extraction [12–14]. Time-frequency analysis is another technique specifically for tran-
sient signals [15,16]. Hilbert-Huang transform [17], empirical mode decomposition (EMD) [18], and wavelet transform [19]
are used to extract features from various rotor systems. After the candidate features are extracted, key features must be
selected for robust anomaly detection. Through the feature selection process, the optimal feature subset can be obtained
[20–23]. Finally, the classification is performed using machine learning algorithms focused on the selected optimal features.
Artificial neural networks (ANN) [14,24], support vector machine (SVM) methods [25–29], linear discriminant analysis (LDA)
[25,30], and related techniques can be used for the classification.

Normally, two vibration signals are acquired from two fixed sensors at an axial position in the journal bearing system.
However, employing two sensors at fixed orientations may not detect direction-oriented anomalies. For example, an impact
rubbing in an arbitrary direction may not be detected by fixed sensors. A simple mathematical model of the rubbing confirms
dependency on the orientation of sensors. This underscores the need for the use of omnidirectional signals for robust
diagnosis.

Some prior research efforts have tried to consider direction in rotor diagnosis by using the orbit shape and the full-
spectrum of vibration signals. Yan et al. [31] modified the orbit into seven different features to identify the state of the steam
turbine generator. Wang et al. [32] quantified the orbit information with isometric feature mapping to identify faults in
rotors. Other researchers also tried to quantify the orbit shape to make more accurate diagnosis of rotors [33–36]. However,
in the process of quantifying the orbit shape, detailed physical interpretation of vibration signals may be diminished. In other
work, the full-spectrum of vibration signals was used to see forward and backward whirling frequency components by using
x- and y- signals [37–40]; however, the method could not consider vibration signals in all directions.

Thus, to overcome these problems with existing methods, we propose an omnidirectional regeneration (ODR) method
that can robustly diagnose rotor health states. The proposed method considers omnidirectional vibration signals without
installing extra sensors. While ODR makes use of the basic concepts of conventional, data-driven diagnosis steps, the clas-
sification and the feature generation steps are revised. As a result, the ODR method outperforms the conventional method of
using signals from fixed sensors. The effectiveness of our proposed approach of considering the directionality of the health
state using the ODR method was validated using experimental data from a testbed.

This paper is organized as follows. Section 2 briefly states the experimental setup and provides an overview of conven-
tional, data-driven diagnosis steps. Section 3 presents the proposed ODR-based method with physical interpretation and its
procedure. Section 4 shows that the ODR-based method outperforms the conventional one for anomaly diagnosis. A sum-
mary of the research is provided in Section 5.
2. Overview of journal bearing rotor diagnosis systems

Supervised-learning methods are the most popular methods used for diagnosis of journal bearing rotor systems. Vibration
signals in the rotor systems are commonly used for supervised diagnosis methods. This section provides an overview of
supervised-learning methods and our research testbed. Section 2.1 describes the configuration of the testbed and the vibra-
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tion signals from the proximity sensors. Section 2.2 provides a brief overview of the overall diagnosis processes used for
supervised-learning methods.
2.1. Vibration signals

This research employed vibration signals obtained from an RK4 testbed. The testbed is a journal bearing rotor system pro-
duct of GE Bently-Nevada. We tested normal conditions and four anomaly conditions, specifically: (1) normal, (2) rubbing,
(3) rubbing with unbalance, (4) misalignment, and (5) oil whirl. Section 2.1.1 describes the configuration of the RK4 testbed
and the experimental setup for the five health states. Section 2.1.2 presents the acquisition of vibration signals via proximity
sensors.
2.1.1. Testbed setup for each health state
The configuration of the RK4 is presented in Fig. 1a. Two shafts of 10 mm diameter—one long shaft and the other short—

are supported by three journal bearings. The two shafts are connected by a flexible coupling. The motor and the short shaft
are connected by another flexible coupling. The long shaft is supported by two bearings with an 800-gram disc attached to
the shaft. Despite the effort to balance the rotor system, a bit of unbalance exists. For the normal state, the amplitude of the
vibration signals was set at a 10 lm root-mean squares (rms) level, which was determined from ISO 7919-2 [41]. The
misalignment was tested by shifting the shorter shaft 20 lm horizontally. The special jig shown in Fig. 1b was used to con-
trol the exact amount of the shift. The rubbing state, precisely impact rubbing, was obtained by adding a rubbing screw to
the normal state, as presented in Fig. 1c. Direct contact with the shaft was controlled using the accelerometer attached to the
jig. The rubbing was controlled within a 2.0 ± 0.3 m/s2 range. In addition to the rubbing, rubbing with unbalance was tested
as a separate health state. A direct contact was made during an unbalanced state, where a 15 g�mm weight was added to the
normal state configuration. The oil whirl state used an additional tool kit for oil whirl, as presented in Fig. 1d. Spring tension
and oil pressure were controlled. The oil whirl data were acquired at an oil pressure of 35 kPa.

All health states were tested in a 3600-rpm steady-state condition. For each test, vibration signals were measured
through Bently-Nevada 3300 proximity sensors. The sensors were placed in pairs at locations near the 2nd and 3rd bearings,
as shown in Fig. 2. In addition, another proximity sensor was mounted at the motor coupling, and the signals obtained from
this sensor were used as the keyphasor signal. All proximity signals were measured in a voltage form, where the AC com-
ponent represents the relative vibration of the shaft and the DC component represents the motion of the centerline of the
shaft. The sampling rate was set at 8500 Hz. Three 60-s tests were executed for each health state.

The health states can be grouped into directional and non-directional states. A non-directional health state is defined as a
state that possesses signal characteristics irrespective to the orientation of the sensor. In contrast, a directional health state is
Short Shaft Journal Bearings Long ShaftCoupling

(c) Rubbing(b) Misalignment (d) Oil Whirl 

(a) Normal

Fig. 1. RK4 testbed setup.



192 J.H. Jung et al. /Mechanical Systems and Signal Processing 90 (2017) 189–207
a state with signal characteristics dissimilar to those described for the non-directional state. Normal and oil whirl states are
non-directional health states. Misalignment, rubbing, and rubbing with unbalance are directional health states. Section 3.2
will discuss quantitative evaluation of directionality.

2.1.2. Measurement of vibration signals via proximity sensors
In journal bearing rotor diagnosis systems, vibration signals are measured through proximity sensors. The sensors directly

measure the motion of the rotating shaft. The vibration signals thus preserve the physical characteristics of the system. These
vibration signals are obtained in a voltage form, which is proportional to the gap between the rotor and the sensors. Most
journal bearing rotors use proximity sensors in pairs. The paired sensors are installed in a right angle to acquire two inde-
pendent signals, as shown in Fig. 3. The vibration signal acquired from one sensor can be denoted as the x-signal, while the
signal from the other sensor can be denoted as the y-signal. Since x- and y-sensors are placed in a right angle, the orbit of the
shaft centerline position can be determined using the two signals.

2.2. Diagnosis process based on Supervised-Learning

A supervised learning method is often used for health diagnosis of journal bearing rotor systems. Supervised learning
methods train classifiers using labeled data acquired from known states of the system. Then, unknown health states of
the system can be predicted using the class (label) of the data. Section 2.2.1 describes the feature generation process; Sec-
tion 2.2.2 states the SVM algorithm as a classifier used to train and predict the labels.

2.2.1. Feature generation
The feature generation process transforms vibration signals into quantified features. Generally, features that have high

separation ability lead to better overall performance of the diagnosis algorithm. To acquire optimal features for the diagnosis
system, the feature generation process is separated into three sub-processes—preprocessing, feature extraction, and feature
selection.

First, preprocessing reduces the uncertainties of raw vibration signals. The rpm of journal bearing rotors has a slight vari-
ation even in steady-state conditions. This variation of rpm causes inconsistency in feature extraction. To reduce the rpm
variance, the raw vibration signals are resampled. The angular resampling [42] technique can make the signals have an equal
number of points per rotation with reference to the keyphasor signals. The keyphasor signal has one peak per rotation, so the
peaks can be regarded as the reference point for each rotation. Within a rotation, raw signals are resampled based on the
uniformly distributed phase points.

Second, feature extraction quantifies characteristics of health states. As this research targets a system in a steady-state
condition, time- and frequency-domain features are used rather than time-frequency domain features. Eight time-domain
and eleven frequency-domain features were chosen, as shown in Table 1 [43]. The eight time-domain features include
energy-related features, sinusoidal wave shape related features, and statistical moments of vibration signals. The eleven
frequency-domain features contain the change of the main frequency of the vibration and the magnitudes of certain fre-
quency ranges. One-cycle based datum units are used for extracting time-domain features, while sixty-cycle based datum
units are used for extracting frequency-domain features [43].

Finally, feature selection determines the optimal subset of the features that leads to enhanced diagnostic performance.
Not all of the features have good separation ability, and some features may be redundant. To improve the performance of
the diagnosis algorithm, a probability-of-separation (PoS)-based genetic algorithm is used to obtain the optimal set of fea-
tures [43,44].
Proximity 
Sensors

Proximity 
Sensors

Keyphasor 
Sensor
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Fig. 2. Location of the sensors.
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2.2.2. Support vector machine (SVM) classification
The classification process involves two steps: training and prediction. In this research, the support vector machine (SVM)

algorithm was used for the classification. SVM is a widely used machine learning technique that minimizes structural risk
through optimization. Specifically, the decision hyper-plane is found by maximizing the distance between the closest data
points from the two classes. The unlabeled data can then be classified using the trained hyper-plane.

For a two-class SVM problem, the training step requires solving a minimization of structural risk problem to obtain a
hyper-plane that separates the two classes. The labeled data set, {(vi,ui)}, is used for training the hyper-plane, where vi 2 Rn

and ui 2 {1,�1}. vi is the d feature vector of ith data, and ui is the corresponding label. Then, the optimization problem to find
the hyper-plane can be defined as follows:
Table 1
(a) Tim

Ener

Stati

Wav
minimize w2

2 þ C
Xl

i¼1

ni

subject to uiðw � v i � bÞ P 1� ni; i ¼ 1; . . . ; l
ni P 0; i ¼ 1; . . . ; l

ð1Þ
where w is the normal vector to the hyper-plane, b is the bias of the hyper-plane, C is the regularization parameter, ni is the
ith slack variable, and l is the number of training vectors. Then, the classes of unlabeled data are predicted using the decision
function as follows:
sgnðw � v þ bÞ ð2Þ
where v denotes the feature vector of unlabeled test data. To solve the multi-class problem, a one-against-all method [45]
was used in this research. The SVM problems were solved using the LIBSVM code [46].
3. Omnidirectional regeneration (ODR) for diagnosis of directional faults

This section introduces a newly proposed diagnosis algorithm that overcomes the fixed orientations of the sensors. Sec-
tion 3.1 defines the omnidirectional regeneration (ODR) of the vibration signals, validates the ODR signals, and provides the
physical interpretation of the ODR method. In Section 3.2, a metric for directionality evaluation is proposed to categorize the
health states as either directional or non-directional. Section 3.3 presents how ODR signals are used in the diagnosis process.
e-domain features and (b) frequency-domain features.
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3.1. Omnidirectional regeneration (ODR) of vibration signals

The concept of ODR involves introducing virtual sensors to acquire vibration signals from any arbitrary direction. In most
engineering rotor systems, two perpendicular fixed sensors are implemented, as presented in Fig. 3. However, the two
acquired signals from the two fixed sensors may not accurately represent the state of the rotor system because an anomaly
can happen in a direction that is not line with the sensors. Adding extra sensors often requires the structure of system to be
modified and may not always be possible. In contrast, virtual sensors can be placed at any orientation without any physical
change to the structure of the system. These virtual sensors can then be used to obtain ODR signals. The ODR signals can then
be used to improve the performance of the diagnosis system. Section 3.1.1 defines ODR and Section 3.1.2 explains how ODR
signals are validated. In Section 3.1.3, the physical description upon health states of rotors is provided to emphasize the sig-
nificance of ODR signals.

3.1.1. Definition of ODR
The acquired signals are obtained as a voltage that is inversely proportional to the gap between the sensor and the rotor.

The voltage values are transformed into the exact distance by multiplying them by a scale factor, and eliminating the DC
component of the voltage returned by the vibration signals. As the shaft rotates, as shown in Fig. 4, the centerline moves
from point 1 to point 3, and the distance between the rotor and the actual sensor (c) increases. Accordingly, the vibration
signal acquired by the actual sensor (c) moves from point 1 to 3. Signals can also be obtained by the virtual sensors (b)
and (d).

The omnidirectional regeneration (ODR) of vibration signals can be regarded as the signals obtained from many virtual
sensors placed at any orientation. The ODR signals are actually obtained by transforming the coordinates of the signals from
the actual sensors. The rotation about the origin of the Cartesian coordinate system gives a signal at the rotated orientation.
In Fig. 4, the virtual sensors are rotated 45 degrees counter-clockwise from the actual sensors. Other virtual sensors can be
placed at an orientation of interest by adjusting the rotation angle. This shows that the ODR signals are not new, but are
instead hidden signals that may give critical information on the health state of the rotor system.

The principle of ODR is to apply the coordinate rotation in the Cartesian system in a two-dimensional plane. For example,
a data point A can be presented in a Cartesian coordinate, as in Fig. 5. The original coordinates, X0-Y0, denote the x-position of
point A as x0, and the y-position as y0. However, the point can be addressed differently when other coordinate systems are
used. For example, point A can be denoted as x1, y1 from the X1-Y1 coordinates in Fig. 5. The coordinates X1-Y1 are rotated
from the coordinates X0-Y0. The relation between the two representations, (x0,y0) and (x1,y1), can be described as follows:
x1
y1

� �
¼ cos h sin h

� sin h cos h

� �
� x0

y0

� �
ð3Þ
where h is the angle between the two coordinate systems in a counter-clockwise rotation. We can apply this principle to a set
of scalar values in a time domain. The scalar values xi and yi can be replaced by vectors xi and yi, where xi = [xi(1),xi(2), . . . ,
xi(n)] and yi = [yi(1),yi(2), . . . ,yi(n)]. The scalar values xi(k) and yi(k) denote the x- and y-position of the point at time sequence
k in the Xi–Yi coordinate system, respectively. The set of scalar values can describe various types of signals, including vibra-
tion. Thus, the vibration signals obtained via proximity sensors can be regarded as x0 and y0. Then, the ODR signals from the
nth virtual sensors, xn and yn, can be defined as:
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Fig. 4. Actual sensors, (a) and (c), and their signals; virtual sensors, (b) and (d).
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xn ¼ cosðnDhÞx0 þ sinðnDhÞy0

yn ¼ � sinðnDhÞx0 þ cosðnDhÞy0

ðn ¼ 1;2; . . . ;NÞ
ð4Þ
where x0 and y0 are the vibration signals from actual sensors, Dh is the increment of the rotation angle, and N (= p=Dh) is the
maximum number of the ODR signals that can be generated.

The ODR can generate vibration signals from any arbitrary direction. Vibration signals around the rotor can be obtained
through coordinate transformation by using the incremental angle, Dh. For robust diagnosis of the system health state, Dh
must be carefully determined. However, if Dh is too small, the computational load will increase due to the increased number
of ODR signals (N). Section 3.3 will thus discuss optimal determination of an incremental angle, Dh. In addition, the vibration
signals are symmetric about the centerline, so ODR signals within the range of a p rotation angle can be generated. Likewise,
there is no need to use both xn and yn, because the xn signal is equal to yn+N/2, which is the 90� rotated signal of yn. Thus, xn
covers all yn if the ODR covers more than a half of a rotation.

3.1.2. Validation of ODR signals
The ODR signals are acquired through virtual sensors, as described in Section 3.1.1. To use the ODR signals in the diagnosis

process, the ODR signals must be validated. Here, an example using experimental data is provided to validate the ODR
method. The two actual sensors and N virtual sensors are placed around half of the circumference, using a constant incre-
mental angle, as shown in Fig. 6. The signal from the ith virtual sensor is denoted as xi, and the signals from actual sensors
1 and 2 are denoted as x0 and y0, respectively.

First, the ODR signal, xN/2, should exactly match the actual signal, y0. As shown in Fig. 6, the direction of N/2th virtual sen-
sor is equal to that of actual sensor 2, so the signals from the two sensors should be identical. The two vibration signals, xN/2
and y0, shown in Fig. 7 prove that they are exactly the same. Second, the direction of the Nth virtual sensor is opposite from
the direction of actual sensor 1, so signal xN should be the inverse of x0. This is also confirmed by the signals shown in Fig. 7.
The last evidence is that the orbit formed by the ODR signals, xn and xn+N/2, should retain the same shape as that formed by
the actual sensor signals. Using vibration signals from both the actual sensors and the virtual sensors, the orbit shapes are
compared in Fig. 8. Although the vibration signals change over the rotation angle, the orbit shape remains the same. From
these facts, the ODR signals can be regarded as vibration signals in other directions.

3.1.3. Physical interpretation of the ODR signals
The value of the ODR signals lies within providing the physical information about the health state of rotors in all direc-

tions. Some health states such as rubbing and misalignment present inconsistent vibration signal patterns due to the direc-
tional nature of rubbing and misalignment. To verify such states being oriented in a certain direction, a simple lumped model
for each state is studied. The model consists of a shaft with a disc supported by two journal bearings. To make the model
simple, it is assumed that the damping and stiffness only exist at the bearing. In addition, the mass of the shaft as well as
the gyroscopic effect of the disc is ignored.

This research views the normal state as the configuration with a bit unbalance. A basic model of isotropic unbalanced
rotor is frequently described as follows:
M€xþ C _xþ Kx ¼ mrx2 cosðxt þ dÞ ð5Þ

M€yþ C _yþ Ky ¼ mrx2 sinðxt þ dÞ ð6Þ

where M, C, K are mass, damping, and stiffness respectively, m, r, and d are unbalance mass, radius, and angular orientation
respectively,x is rotational speed, x and y are lateral displacements of the disc in orthogonal directions as a function of time
t [47].

The oil whirl model considers tangential force by fluid. The basic model of oil whirl can be stated as follows:
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M€xþ ðC þ Cf Þ _xþ Kxþ Cf kxy ¼ mrx2 cosðxt þ dÞ ð7Þ

M€yþ ðC þ Cf Þ _yþ Ky� Cf kxx ¼ mrx2 sinðxt þ dÞ ð8Þ

where M, C, K, m, r, d, x, x, y denote identical meaning as in Eqs. (5) and (6), Cf is the damping coefficient due to fluid, and k
denotes the ratio between rotor speed and oil circumferential average velocity [47].

The models of rubbing and misalignment states are altered from that of normal and unbalance states. The basic model of
partial rubbing is expressed as:
M€xþ C _xþ Kx ¼ mrx2 cosðxt þ dÞ � FNðcos h� lsinhÞ ð9Þ

M€yþ C _yþ Ky ¼ mrx2 sinðxt þ dÞ � FNðl cos hþ sin hÞ ð10Þ

whereM, C, K,m, r, d,x, x, y denote the identical meaning as in Eqs. (5) and (6), FN indicates the normal force, l is the friction
coefficient, and h is the direction angle of the rubbing part [47].
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Similar physical characteristic can be observed in the basic misalignment model, described as:
M€xþ C _xþ Kxþ Kxx2 ¼ mrx2 cosðxt þ dÞ þ P cos c ð11Þ
M€yþ C _yþ Kyþ Kyy2 ¼ mrx2 sinðxt þ dÞ þ P sin c ð12Þ
whereM, C, K,m, r, d,x, x, y denote the identical meaning as in Eqs. (5) and (6), Kx and Ky are nonlinear stiffness coefficients, P
is a radial force due to misaligned rotor, and c is misaligned direction angle [47]. Using the example system data from [48],
the responses are obtained as in Figs. 9–12.

The responses of the normal rotor model, x and y, displays the same vibration signals with a p/2 phase difference, which
indicates that the vibration signals are not direction oriented as in Fig. 9. The behavior of oil whirl also shows little difference
between x and y in Fig. 10, but the sub-harmonic frequency component appears due to oil instability. The responses of the
rubbing model in Fig. 11 are affected by the direction of rubbing (h). The misalignment case in Fig. 12 shows different behav-
ior upon the direction of misalignment (c) as well.

The above stated mathematical models indicate that the external forces of rubbing and misalignment have directional
nature, h and c. Thus the responses of the two health states depend upon the direction of external forces. Overall, the direc-
tional nature in some health states hinders one from correct diagnosis using two gap signals, and this leads to the signifi-
cance of the ODR signals for robust diagnosis of journal bearing rotor systems.

3.2. Diagnosis of directional faults

Each health state of the rotor system has its own vibration signal characteristics. Among various anomaly states, some
states show substantial differences among ODR signals. These states are referred to as directional anomaly states. This
implies that vibration signals acquired from the directional anomaly states show remarkable variation over the directional
coordinates of the sensors. As stated in Section 3.1.3, the physical characteristics of misalignment and rubbing imply that
they can be regarded as directional anomaly states. A misalignment state may exist along two different directional coordi-
nates. An example is shown in Fig. 13. It shows two signal sets of interest for a misalignment state: (xN/4,x3N/4) and (x2N/4,xN).
The conventional method, which uses only the measured signals, may give conflicting diagnosis results for the two cases. The
variation of the signals due to the directional anomaly states may hurt the robustness of the diagnostic results. Through the
directionality check, vibration signals can be classified into directional health states and non-directional anomaly states. The
ODR signals can help improve the robustness of diagnostic performance for directional anomaly states because the ODR sig-
nals can uncover hidden directional features. On the other hand, non-directional health states have similar vibration signals
over rotation angles, as presented in Fig. 14. Since the diagnostic result is independent of the direction of the sensors, the two
measured signals can be used for diagnosis, instead of the ODR signals.

For robust diagnosis of directional anomaly states, it is of great importance to correctly determine the directionality of the
health states. This metric will work regardless of vibration level and health state. Thus, we propose a directionality metric by
making use of the spectral responses of the ODR signals as:
D � MaxðSNðf 1xÞÞ �MinðSNðf 1xÞÞ
MinðSNðf 1xÞÞ

ð13Þ
where SN(f) is the power spectrum set from N ODR signals and f1x is the frequency of the rotating speed. The numerator of the
metric (D) is the difference between the maximum and the minimum of the power spectrums at the fundamental frequency
among N ODR signals. The denominator is a normalizing constant such that the metric works regardless of different vibration
levels and anomaly states. A greater D value indicates a ‘directional’ anomaly state. Our empirical study finds that a unit
value can be used as a threshold to classify ‘directional’ and ‘non-directional’ states. This makes sense because the non-
directional health states have negligible variation over the directional coordinates of the sensors. Fig. 15 shows the validation
study of the metric (D) and the directionality threshold with normal and misalignment health states. As shown in Fig. 15, the
metric (D) works well; the directionality of the health states is correctly determined for each of the ten different tests.
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3.3. Health classification using ODR signals

The directionality metric is used to define whether rotor systems experience directional or non-directional health states.
Subject to the result of direction evaluation, one of two different diagnosis procedures can be applied, as shown in Fig. 16. For
directional health states, all ODR signals are used for feature generation because the characteristics of a directional health
state appear in a certain direction. For every ODR signal, features are generated as described in Section 2.2.1, and then clas-
sification is performed using the generated features. Consequently, the class prediction gives N number of results for a unit
time of the health state. To transform the N number of results into a single class prediction, a majority voting scheme is
implemented for the final classification procedure.

Here, an example of the majority voting scheme is applied to a misalignment state. The number of virtual sensors, N, is set
to sixteen, as shown in Fig. 6. The class is predicted for each of sixteen ODR signals, which gives sixteen predictions, as shown
in Table 2. Among the sixteen results, the misalignment outnumbers the others, thus the final state is predicted as
misalignment.
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Fig. 15. Example of a direction evaluation result.
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In contrast to the directional health states, non-directional ones follow the approach used in conventional supervised
learning methods, as presented in Fig. 16. Since the non-directional health states show similar vibration signals over rotation
angles, a signal from the actual sensor is used for the feature generation and classification procedures.
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4. Validation for ODR-based diagnosis

The objective of this section is to show the validation process used to demonstrate the effectiveness of the ODR signals for
robust diagnosis of journal bearing rotor system health states. This validation study was conducted using the RK4 testbed, as
described in Section 2.1.1. Section 4.1 describes the configuration of the testbed and the signals of each health state. Sec-
tion 4.2 includes the results of directionality evaluation using the metric, D. In Sections 4.3 and 4.4, the signals of non-
directional and directional health states are analyzed, respectively. Finally, the robustness of ODR-based diagnosis is vali-
dated by classification in Section 4.5.

4.1. Description of health states

This section describes the health states that were used to validate the robustness of ODR-based diagnosis. As stated in
Section 2.1.1, five health states—normal, oil whirl, misalignment, rubbing, and rubbing with unbalance—were tested. Each
test was performed for sixty seconds and was repeated. To consider the uncertainty of test settings, all test-bed parts were
reassembled before every test was conducted. A total of three data sets, each set comprising five health states, were used for
the validation.

The normal health state is defined as a system with only a small amount of unbalance. Through the balancing procedure,
the rms of the 2nd bearing signal was set as 10 lm at 3600 rpm. The measured signals follow a simple sinusoidal wave
shape. Also, the vibration signals from actual gap sensors are similar to each other in terms of the shape and amplitude. This
indicates that the normal state is a non-directional health state. The oil whirl state is another non-directional health, state
since the oil in the bearings affects the rotor system around the entire circumference of the rotor. The instability of the oil
was introduced in the testbed by using the oil whirl kit of the RK4, which controls the pressure of the oil supply. At the tran-
Table 2
Example of predicted class using ODR signals.

ODR signals Predicted class ODR signals Predicted class

x1 Misalignment x9 Misalignment
x2 Misalignment x10 Misalignment
x3 Misalignment x11 Misalignment
x4 Misalignment x12 Misalignment
x5 Misalignment x13 Rubbing
x6 Normal x14 Rubbing
x7 Normal x15 Misalignment
x8 Normal x16 Rubbing with Unbalance
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sient states, the pressure was raised to a certain level to prevent oil whip. Only at the 3600 rpm steady-state, was the pres-
sure dropped and the oil whirl anomaly state was created. The signals in Fig. 17b were acquired from the gap sensors in the
oil whirl kit. The misalignment state was tested by shifting the shorter shaft downwards using a customized jig. Since the
shaft was shifted in one direction, this state can be grouped as a directional health state. The measured signals shown in
Fig. 17c also indicate that shaft rotation is affected by the direction of the shift. The two signals are very different in terms
of the shape and amplitude. Each test was performed after a balancing procedure, and was run at a 3600 rpm steady-state.
The rubbing state, precisely impact-rubbing, is another directional health state. The testbed setting was exactly same as that
of the normal state, but the rubbing was implemented by forcing the rubbing screw to contact the shaft near the 2nd bearing.
The screw partially contacts during a cycle of rotation, which can be viewed as an impact. The two measured signals show
difference in shape and amplitude, and the rubbing effect is reflected as the cut at the peak. The rubbing test was also done
after the balancing procedure. In addition to the rubbing state, a ‘‘rubbing with unbalance” test was performed indepen-
dently. The rubbing with unbalance test is the same as the rubbing test except a greater unbalance weight is attached to
the disc. After balancing the rotor system to the normal state defined above, 15 g�mm of unbalance weight was added.
The rubbing was then implemented at the steady state of 3600 rpm. The measured signals show similar shape to those of
the rubbing state, but the rubbing with unbalance case shows a greater amplitude. Thus, this state can also be viewed as
a directional health state.

Overall, the test configurations define the normal and the oil whirl as non-directional health states, while the other three
states were defined as directional health states. This was mathematically confirmed in Section 3.1.3. In Section 4.2, the direc-
tionality of each health state is evaluated by the metric defined in Section 3.2.
4.2. Directionality of health states

The effectiveness of the directionality evaluation metric, D, was validated using the test-bed data. D was evaluated for
every sixty cycles (one second) of vibration signal, as stated in Section 2.2.1. Each test was sixty-seconds long, so sixty data
were evaluated for each test, as shown in Fig. 18. The evaluation results of three data sets are shown in Fig. 18a, b, and c. The
dotted line is the unit value, which splits directional and non-directional states.

The test results of all three sets validate the effectiveness of directionality. The D values of the normal and the oil whirl
states are less than one, which indicates a non-directional health state. In contrast, the D values of the other health states are
Fig. 17. Signals of health states from actual sensors.
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greater than one, which implies a directional health state. These results confirm that the directionality evaluation metric (D),
and its threshold, can define the directionality of health states.

4.3. Measured signals of non-directional health states

This section analyzes the vibration signals of the non-directional health states studied: normal and oil whirl. The mea-
sured signals of normal and oil whirl health states from the actual sensors are shown in Fig. 19a and b, respectively. In
the frequency domain, the time signals are transformed by Fast Fourier Transform (FFT). The FFT plots of the normal state
confirm that a 1X fundamental frequency is dominant. The total orbit shape also confirms the normal state. In addition, the
directionality can be roughly estimated by the 1X orbit shape, since the difference between the length of major and minor
axes is not large. From these facts, the normal state can be estimated as a non-directional health state.

The oil whirl health state shows fluctuating time signals, but its FFT plots point out the typical oil whirl characteristic,
which is the harmonic component under the fundamental frequency. Theoretically, 0.42–0.48X the fundamental frequency
is sensed, as shown in Fig. 19b [49–51]. Though the time signals look very different from each other, the FFT plots have sim-
ilar responses. Additionally, the orbit of 1X signals is close to a circle, which indicates a non-directional health state.

The two non-directional health states can be diagnosed using any of the measured or ODR signals because the signals do
not vary much over the rotation. Thus, rather than using multiple ODR signals, which produce redundant features, only the
measured signals are used for classification of the non-directional health states. This will be discussed further in Section 4.5.

4.4. ODR signals of directional health states

The vibration signals of directional health states are analyzed in this section. First, in the misalignment health state, there
is a large difference between the x0 and y0 signals, as shown in Fig. 20. Both the time and FFT plots in Fig. 20a denote sig-
nificant variation. This is mainly due to the shifted shaft in the horizontal direction, which leads to the increase in horizontal
stiffness of the bearing. The directional dependency is clearly recognizable in the 1X orbit plot. The difference between the
major and minor axes is substantial, which leads to a significant value of the directionality metric, D. In addition, the 1X orbit
ODR signals, as well as the y0 signal, were affected by the directional nature, as shown in Fig. 21a.

For the rubbing health state, signals change greatly over the rotation angle. Among the four signals, x0, y0, xN/4, and x3N/4
shown in Figs. 20b and 21b, only y0 and xN/4 have relatively large harmonics of fundamental frequency in FFT plots, which
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can be regarded as a rubbing state. The sinusoidal signals of y0 and xN/4 in time plots are obviously trimmed due to impact-
rubbing. However, the effect of impact-rubbing is weakly observed in the other signals. Moreover, the time plots are all dif-
ferent from each other, which explicitly shows directional dependency.

The signals of the ‘‘rubbing with unbalance” state are similar to those of the rubbing state. The amplitude of the 1X com-
ponent in FFT was increased, as compared to that of the rubbing state. This is revealed in the time plots as well. It is observed
in the orbit plot of the 1X component in FFT that the difference between major and minor axes is decreased due to the imbal-
ance added to the rubbing state. The D value thus becomes smaller than that of the rubbing states.

4.5. Classification

To validate the effectiveness of ODR signals on directional health states, the class prediction result using ODR signals was
compared to that without using ODR signals. In addition, the results for the non-directional health state are also included.

The five health states were grouped into either directional or non-directional states. For the directional state group, the
features were extracted from all ODR signals. Using the extracted features, the classifier was trained, and prediction was per-
formed for the unlabeled data. Since N results were obtained for each sixty-cycle data, the final prediction result was
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obtained by a majority voting process. For the non-directional state group, the features were extracted from one of the mea-
sured signals. The ODR signals were not used for this group because the time and frequency features do not change much as
compared to those found in directional states. Using the extracted features, the training and prediction processes were then
performed.

First, the effectiveness of the ODR method can be validated by examining the results shown in Fig. 22 for directional
health states. The class prediction accuracy of ODR and non-ODR signals is compared in the figure. The lines marked by cir-
cles represent the results from the proposed ODR method, while the lines marked by upward- and downward-triangles rep-
resent the results obtained using non-ODR signals. For both cases, the optimal number of features (n) for the feature
selection process (as described in Section 2.2.1), was increased from two to nineteen. Each line represents an average of three
cross validation cases by three data sets. The results obtained by using ODR signals are based on the majority voting scores of
sixteen ODR signals (Dh = 11.25�), as described in Section 3.3. In contrast to these results, the other lines show the results of
the use of non-ODR signals, where only the measured signals, x0 and y0, where used for training and prediction.

The classification results clearly show that the ODR method outperforms the conventional method that uses the x0 and y0
signals separately. When six or more features are used, the ODR method classifies the given data with prediction accuracy
greater than 98%. In contrast, the results from using only x0 and y0 signals show less than fifty-percent accuracy for most of
the feature numbers. These results indicate that x0 and y0 cannot fully characterize directional health states. In addition, the
class prediction results derived using xn signals are presented in Fig. 23. To consider the uncertainty of directions, all possible
combinations of signals for prediction were used with x0 and y0 training. Since N signals were generated by ODR, N3 com-
binations for three health states were used for the prediction. The average of N3 results are presented as lines marked by
triangles.

As expected, the prediction accuracies of the ODR method are substantially higher than those of the non-ODR method.
Most of the predictions by the ODR method reach an accuracy of one hundred percent when the number of optimal features
was larger than five. In contrast, the average accuracy of the non-ODR method remains less than fifty percent, irrespective of
optimal features. The ODR method, when five or less optimal features are used, shows about a seventy percent accuracy due
to misclassification of the ‘‘rubbing with unbalance” case. This misclassification is eliminated after amplitude-related fea-
tures were included in the optimal features. Finally, as shown in Fig. 23, accuracies of the non-ODR combinations had accu-
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racies between zero and one hundred percent. This means that prediction accuracy heavily depends on the direction of the
abnormality and the sensors.

Second, the class prediction results for non-directional health states are shown in Fig. 24. The class prediction accuracy of
ODR and non-ODR is also presented in the figure. Similar to the directional case, the ODR method uses N ODR signals for
training and prediction, whereas the non-ODR method uses only one signal. The non-ODR results are the average prediction
accuracy of N3 combinations. The results indicate that both the ODR method and the non-ODR method are valid for classi-
fication of non-directional health states. Not much difference exists between the ODR method and the non-ODR method
because signals do not vary with respect to direction. Thus, if the health states are grouped as non-directional by the eval-
uation metric, a signal from any direction can be used for the training and prediction processes.
5. Conclusion

The main goal of this research was to enhance the performance of diagnosis algorithms for journal bearing rotor systems
by considering the direction of the sensors and the anomaly sources. Little research to date has tried to determine the direc-
tion of anomaly states by quantifying orbit shape and using full-spectrum analysis. However, neither of the previous meth-
ods were robust to characterize the physical interpretations of the rotors. In contrast, the ODR signal based method proposed
here considers vibration signals in all directions; this method has sufficient physical interpretations for accurate health pre-
diction. Also, the proposed ODR method follows a general supervised learning process, which makes it easier to apply to
other systems as well.

In this research, the proposed ODR method was demonstrated using data acquired from a testbed. Five health states from
the testbed were grouped into either directional or non-directional states using a directionality metric. The presence of
directionality of each health state was shown with mathematical models. By applying a supervised learning based ODR
method to the directional group, health states were accurately diagnosed. However, when the traditional method was used
and the ODR method was not applied, the classification results were inconsistent. Overall, accuracies varied from zero per-
cent to one hundred percent because the direction of the sensors and the anomaly sources did not always match. These
results clearly show that for robust diagnosis of journal bearing rotor systems, the direction of the health state must be
considered.

For non-directional states, the conventional method that only uses acquired signals also achieved high accuracy. The nor-
mal and oil whirl states had less variations in features over ODR rotations, as compared to those of directional states. Thus,
applying the ODR method to non-directional states will only increase the computational load while achieving the same clas-
sification accuracy. Therefore, the directionality metric of the health state should be first evaluated and the ODR method
should be used when the metric indicates a directional health state (e.g., D > 1). To enable use of the proposed diagnosis algo-
rithm with less computational load for practical use, directionality evaluation is of great importance.

In this study, the proposed ODR method was demonstrated using experimental data. Due to the limited configurations of
the testbed, five health states in steady-state conditions were examined. Additional health states such as crack and seal rub-
bing, may be considered in future work. Also for further research, the number of ODR signals, N, can be optimized consid-
ering the prediction accuracy and the computational load.
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