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Abstract In recent years, virtual testing has played an in-
creasingly important role in the design and evaluation of
engineered products. However, it is challenging to build the
highly accurate computational models for virtual testing.
Blind and recognized uncertainties are often unintentionally
incorporated. These uncertainties consequently decrease the
predictive capability of the models. To this end, this paper
proposes a systematic approach for model refinement that
minimizes the impact of unrecognized blind and recognized
epistemic uncertainties in computational modeling. The ap-
proach consists of three steps: model invalidity analysis
(MIA), development of an invalidity reasoning tree (IRT),
and invalidity sensitivity analysis (ISA). First, in the MIA,
possible causes that lead to discrepancies between the exper-
imental and simulation responses are identified through brain-
storming. Next, the IRT is built using the affinity diagram. It
sequentially lists and screens potential candidate issues for
model refinement at the stages of conceptual, mathematical,
and computational modeling. Finally, the ISA quantifies the
effect of incorporating updates in the model to address poten-
tial candidate issues with the goal of reducing the impact of
the blind and recognized uncertainties. The most critical can-
didates are determined by using a weighted decision matrix.
To demonstrate the effectiveness of the proposed approach, a
case study examining a smartphone liquid crystal display frac-
ture is presented.

Keywords Model refinement . Uncertainty characterization .

Blind uncertainty . Recognized uncertainty . Virtual testing

1 Introduction

The role of “virtual testing” has been increasing throughout
the product development process. Nevertheless, it is still chal-
lenging to build a highly accurate computational model that
emulates the behavior of real products. To improve the accu-
racy of computational models and thus improve their predic-
tive capability, model verification and validation (V&V) have
received significant research attention. Pioneering papers and
industry standards have outlined the concepts and definitions
of model V&V (AIAA 1998; ASME 2006; Thacker et al.
2004). According to the ASME guide (ASME 2006), model
verification is the process of determining whether a computa-
tional model accurately represents the underlying mathemati-
cal model and its solution, while model validation is the pro-
cess of determining whether a computational model is an ex-
act representation of the real world from the perspective of the
intended uses of the model. In recent years, the model valida-
tion is not only the quantification of the accuracy of a compu-
tational model, but also the improvement of the accuracy of
the numerical solutions provided by the computational model.

Key components of the model validation are model
updating, validity check, and model refinement as shown in
Fig. 1 (Youn et al. 2011). The model updating utilizes math-
ematical means to maximize the agreement between outputs
from simulations and physical observations (Xiong et al.
2009). Subsequently, the validity check can be used to quan-
tify the degree of the agreement, and determines whether or
not the updated model is appropriate for predicting the perfor-
mance of interest (POI) of the real system. Model validation
ends if it is determined that the model is valid. If not,
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improvement of the model can be performed to remove the
major cause of the disagreement through “model refinement”.
The model refinement involves “changing the physical prin-
ciples in modeling” or using other means to elaborate the
invalid model (Xiong et al. 2009). For example, a model can
be refined by revisiting the physical behavior of the
engineered product and then changing the conceptual, math-
ematical, and computational models, accordingly. If a problem
is found with the test, the test should be revised.

Themodel updating can be practical and useful. If it is done
correctly, an accurate computational model with reliable pre-
dictive capability can be built in engineering product develop-
ment. With this in mind, numerous studies have proposed
systematic approaches on how to efficiently conduct model
updating and validity checks. In the study by Oden et al.
(2013), a virtual statistical validation process was proposed
as an aid to the design of experiments for complex multiscale
systems, such as elastomeric solids. Farrell et al. presented a
Bayesian framework that addresses uncertainties in parame-
ters, data, and model selection for coarse-grained models of
atomistic systems (Farrell et al. 2015). Jung et al. proposed a
model validation framework for virtual testing with limited
experimental data, while model refinement was not addressed
(Jung et al. 2015). Ferson et al. introduced a general metric for
validity checks by comparing probability density functions
(PDFs) from the simulation results with experimental data in
the thermal challenge problem (Ferson et al. 2008). Lin et al.
reviewed the state-of-the-art regarding validation metrics, pur-
suing the development of a unified one (Liu et al. 2011).
Several metrics, such as confidence-interval based (Chen
et al. 2004), Bayesian (Zhang and Mahadevan 2003), mean-
based (Oberkampf and Barone 2006), and U-pooling methods
(Ferson et al. 2008) have been developed to quantify the

degree of agreement for the validity check. However, there
has been little discussion about systematic approaches for
model refinement. When an existing computational model
turns out to be unacceptable during the validity check, current
practice relies on personal experience (Xiong et al. 2009),
which can delay the use of computational models for product
development. Therefore, this paper attempts to develop a sys-
tematic approach for model refinement that includes model
invalidity analysis, invalidity reasoning tree development,
and invalidity sensitivity analysis.

Note that this study assumes that experimental results from
testing are free from any error, although, in practice, failure of
the validity check can be caused by errors in modeling, test-
ing, or both. When results do not agree, the experiment may
need to be revisited. Several well-known V&V papers (Hills
and Leslie 2003; Oberkampf and Trucano 2002; Trucano et al.
2006) presented guidelines for designing and executing “val-
idation” experiments in such a way that undesired random and
bias errors can be reduced during model validation activities.
This study focuses exclusively on modeling and assumes that
experimental errors (e.g., blind uncertainty in experiments) are
negligible. Correcting experimental errors is beyond the scope
of this paper and should be examined in future work.

This paper is organized as follows. Section 2 overviews the
types of uncertainties and their role in the model refinement
activity of V&V. Section 3 presents the systematic approach
for model refinement proposed in this study. In Section 4, a
real-world problem predicting fracture failure of smartphone
liquid crystal display (LCD) is used to demonstrate the effec-
tiveness of the proposed approach.

2 Types of uncertainty considered in model
verification and validation

It is generally accepted that uncertainty is divided into aleatory
and epistemic uncertainty. Aleatory uncertainty is attributed to
inherent randomness, e.g., variability in material property,
geometric dimension, loading conditions, boundary condi-
tions, and other physical properties (Oberkampf and Roy
2010). The inherent randomness implies deviations between
samples in a population. It can exist spatially or temporally.
For example, the exact value of a particular physical property
of a product varies from site to site in space, or from moment
to moment in time. Aleatory uncertainty is typically treated
with probability theory. In principle, the randomness can be
reduced with the improved control of a random process.
However, if it is reduced, the nature of physical properties is
fundamentally changed. When the inherent randomness is
perfectly characterized with a sufficient amount of experimen-
tal data, the randomness cannot be reduced further.

Epistemic uncertainty refers to uncertainty owing to the lack
of knowledge. The lack of knowledge about the system of
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Fig. 1 Validation activities with model improvement (Youn et al. 2011)
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interest can be associated with several modeling issues (e.g.,
physical process in a system, mathematical model form, and
numerical solution approximation, etc.) (Oberkampf and Roy
2010). The degree of epistemic uncertainty can be reduced
when additional information becomes available, while that of
aleatory uncertainty cannot. Depending on the awareness of the
existence, epistemic uncertainty is further divided into recog-
nized (or acknowledged) uncertainty and blind (or unrecog-
nized, unacknowledged) uncertainty (Ayyub 2001), as follows:

& Recognized uncertainty comes from conscious decision
making. In building a computational model, this type of
uncertainty can be ignored for practical reasons, or han-
dled in various ways. Representative examples include (1)
error caused by the use of limited significant digits, (2)
assumptions or approximations in modeling, and (3) use
of expert opinion in the absence of experimental data.
Some mathematical theories were developed to quantify
recognized uncertainty (Bai et al. 2013), including convex
models, fuzzy sets, possibility theory, evidence theory,
and random sets.

& Alternatively, blind uncertainty originates from being in-
cognizant of incomplete knowledge or of the amount of
knowledge needed to accurately model the system of in-
terest. The most common reasons for blind uncertainty
include mistakes, blunders, errors, and misunderstanding.
A typical example of blind uncertainty in the development
of engineered products is inadequate communication be-
tween individuals, for instance, between those providing
expert opinion and those interpreting the information for
input to the modeling. The predictive capability of a com-
putational model can be degraded if this type of uncertain-
ty is not properly addressed. Keeping the effect of blind
uncertainty minimal is important to the success of model
validation. According to Oberkampf and Roy (Oberkampf
and Roy 2010), “there are no reliable methods for estimat-
ing or bounding the magnitude of blind uncertainties, their
impact on a model, its simulation, or on the system’s re-
sponse.” The critical nature of blind uncertainty (i.e., un-
known unknowns) started to be recognized and studied
first in fields of study other than model V&V, such as risk
management of a LNG plant (Haugen and Vinnem 2015)
examination of the swine flu (Aven 2015), molecular dy-
namic simulations (Romo and Grossfield 2014), project
management (Ramasesh and Browning 2014), risk analy-
sis in complex systems (Blockley 2013), and hypersonic
flight (Bertin and Cummings 2003).

Theoretically, the impact of epistemic uncertainty can be
reduced by adding knowledge. In practice, however, it is al-
most infeasible to determine what kind of knowledge needs be
added to reduce epistemic uncertainty in the development of a
high-fidelity computational model. For example, there are

numerous recognized and blind uncertainties assumed in the
development of a crash model of full vehicles. As shown in
Fig. 2, two types of uncertainty-reducing activities can be
considered: (1) recognized uncertainty can evolve to certainty
or aleatory uncertainty and (2) blind uncertainty can evolve to
certainty, aleatory uncertainty, or recognized uncertainty.
Through this process, agreement between simulation re-
sponses and experimental results can be enhanced. If the va-
lidity check determines that a calibrated model is valid, the
model can be used for product evaluation and design.
Otherwise, the model should be improved. At this step, every-
thing from conceptual modeling to computational modeling
should be fundamentally reconsidered tomake amore realistic
model. To this end, the proposed model refinement approach
aims to identify recognized and blind uncertainties and correct
them through a series of activities.

3 A model refinement procedure

The ideal response of an engineered product (ytrue) can be re-
lated to the response predicted from a simulation model (ypre)
as:

ytrue ¼ ypre xð Þ þ ε; xєΩl ð1Þ

where x is the known variable vector; and ε is the error be-
tween the ideal and simulation responses.

The ideal response of an engineered product (ytrue) can be
approximated to the experimental response (yexp), when ex-
perimental errors are negligible:

ytrue≈yexp ð2Þ

The response predicted from the simulation model can be
identical to the one observed from an experiment by proper
adjustment of an unknown variable vector.

yexp ¼ ypre x; θð Þ; xєΩl; yєΩk ð3Þ

where θ is the unknown variable vector. In reality, however,
both predicted and observed responses can be significantly
different from the experimental responses due to the blind
and recognized uncertainty. When they exist in the model,
even after model calibration in the calibration domain, the
predicted response may not emulate the experimental re-
sponses in the validation domain. Then, (3) becomes,

yexp ¼ ŷpre x; θð Þ þ e; xєΩl; yєΩk ð4Þ

where e is the error due to blind and recognized uncertainty;
and ŷpre is the responses from the invalid simulation model. To
construct a valid model, the effect of the blind and recognized
uncertainty must be removed or minimized.
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Root causes for those uncertainties are various. Identifying
root causes is not trivial since there are so many possible
causes that lead to invalid modeling. It is challenging to build
an accurate computational model when it turns out that a cal-
ibrated model is invalid. As a computational model becomes
more complex to increase accuracy, there is more chance of
mistakes, blunders, and errors that eventually lead to de-
creased accuracy. This underscores the need to develop a sys-
tematic approach. By identifying the root causes of model
invalidity, uncertainties can be addressed. This can enhance
the predictive capability of the computational model. To this
end, this section presents a procedure for model refinement.
The three core steps are: (1) model invalidity analysis, (2)
development of an invalidity reasoning tree, and (3) invalidity
sensitivity analysis.

3.1 Model invalidity analysis

Failure in the validity check implies that blind and recognized
uncertainties in a calibrated computational model have signif-
icant impact on the predictive capability of the model. An
invalid computational model should be refined. As a first step,
model invalidity analysis (MIA) is used to identify possible
causes of deficient knowledge. Here, we employ a brainstorm-
ing approach for MIA.

Brainstorming is defined as a solution-finding tech-
nique that generates ideas in a nonthreatening atmosphere.

In MIA, the objective of brainstorming is to produce the
greatest number of possible invalidity causes for the blind
and recognized uncertainties. The group for brainstorming
consists of simulation (and/or validation) engineers, de-
sign engineers, and test engineers. Simulation engineers
not only include personnel in charge of refinement of the
simulation model of interest, but also include individuals
with expertise in modeling of similar products. It is help-
ful to have a moderator to direct brainstorming activities.
The brainstorming activity for MIA starts with a clear,
specific written statement of the issue. At this stage, back-
ground information should be provided to the group, in-
cluding (1) the simulation model and experiments, (2) a
comparison of simulation and experimental results, (3)
critical factors identified in designing, modeling, and test-
ing, (4) known limitations of the existing simulation mod-
el, (5) a review of simulation development history, and (6)
benchmarking of similar simulation models. Next, the
group is given a few minutes to collect their own
thoughts. A moderator should provide individual partici-
pants ample opportunity to express their ideas and make
contributions. No questions, discussion, or criticism of
ideas are allowed, to encourage the collective creativity
of the group. When ideas are exhausted, the brainstorming
session can stop. The final outcome of the brainstorming
is an affinity diagram.

The affinity diagram identifies inherent similarities be-
tween multiple ideas suggested from the brainstorming ac-
tivity. It aims at grouping ideas, thoughts, and opinions into
major categories. Through the process of building the af-
finity diagram, new ideas may occur to the participants and
poor ideas can be abandoned. At the same time, the level of
understanding about individual ideas can be also enhanced.
The building of an affinity diagram starts by recording ideas
on sticky memo notes or file cards. The notes (or cards) are
randomly placed on a board. Next, each note is explained
by the team member who suggested the idea and is subse-
quently discussed by all team members. After group discus-
sion, a note is related to other notes that have similar ideas.
When a note keeps being moved between two categories
due to its similarity, another note that duplicates the original
note is prepared so that the idea can be placed in both cat-
egories. If a note is determined to be worthless for further
consideration, it is moved to the category of “irrelevant”
and separated from other notes, but not discarded. In this
way, none of ideas suggested in brainstorming are lost.
Table 1 shows an example of an affinity diagram developed
to uncover blind uncertainty in an invalid computational
model created for a liquid crystal display (LCD) module
of a smartphone. In the affinity diagram, three possible
causes in materials, constraint, and boundary conditions
are listed, while two non-critical items are also shown.
The affinity diagram is the final outcome of MIA.

(a) 

(b) 

Uncertainty

Epistemic uncertainty Changing to aleatory 

uncertainty

Aleatory uncertainty

No uncertainty

Changing to certainty

Blind uncertainty

Recognized uncertainty

Uncertainty

Epistemic uncertainty

Recognized uncertainty

Uncovering unrecognized 

aleatory uncertainty

Aleatory uncertainty

Uncovering unrecognized 

manageable uncertainty

No uncertainty

Uncovering unrecognized 

certainty

Blind uncertainty

Fig. 2 Two types of uncertainty-reducing activities in model refinement:
a minimizing the impact of recognized uncertainty and b uncovering
blind uncertainty
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3.2 Development of an invalidity reasoning tree

In the previous section, possible invalidity causes were iden-
tified. This section presents a tool called the invalidity reason-
ing tree (IRT) to identify potential candidates for model re-
finement. As shown in Fig. 3, the IRT searches for potential
candidates for refinement in conjunction with possible causes
identified in the affinity diagram of MIA. Potential candidates
are identified by sequentially reviewing items in the concep-
tual, mathematical, and computational modeling. The final
outcome of the IRT activity is a specific plan for model
refinement.

3.2.1 Using an IRT for conceptual modeling

The conceptual model is defined as the ideal representation of
the behavior of a real physical system. In conceptual

modeling, assumptions are inevitable in order to simplify the
physical behavior found in the real world. When the model is
shown to be invalid, the conceptual modeling should be
checked first. For refinement of an invalid model, we have
provided here a checklist with seven specification categories
to be considered.

(1) Physics – The complexity of the actual physical
behavior of a real-world system should be suffi-
ciently incorporated in the specification of the
physics in the model. As an example, a model
must be refined by turning a single-disciplinary
problem (e.g., structural analysis) into a multi-
disciplinary problem (e.g., structural analysis
coupled with fluid dynamics analysis) provided that
fluid–structure interaction is no longer ignorable.

(2) Geometry – More detailed features of the product’s ge-
ometry may need to be included. The degree of simpli-
fication for small holes or fillets of a chassis can be crit-
ical in calculating the stress intensity factor.

(3) Material behavior – Blind and recognized uncertainties
in modeling material behaviors can be a possible source
for producing an invalid model. A linear model (e.g.,
elastic) can be substituted for a nonlinear one (e.g., plas-
tic and viscoplastic) to describe material behaviors.

(4) Output – Simulation outputs are the response of a com-
putational model with given inputs. The selection of an
inappropriate output can lead to undesired consequences.
For example, the use of maximum stress in calculating
solder joint fatigue life can force the process to rely on a
stress-based life model rather than using an energy-
density-based life model.

(5) Constraints – Sufficient details in constraints have to be
incorporated in the model. For example, in structural
analysis, the stiffness or damping coefficients of welds
are commonly assumed to be equivalent to the parent
metal, thus ignoring residual stress. Excessive simplifi-
cations of constraints should be avoided for joints, welds,
bonds, contacts, and friction conditions.

(6) Initial and loading conditions – Initial values for dis-
placement, velocity, and acceleration must be carefully
revisited. Distributed loads over a space are commonly
replaced with a lumped load at a single point. This sim-
plification should be checked with care.

3.2.2 Using the IRT for mathematical modeling

During the stage of mathematical modeling, building of the
IRT is primarily aimed at correcting inadequate equations and
incorrect mathematical statements. The revision of equations
and statements begins by fully understanding any wrong spec-
ifications and/or incorrect assumptions identified in the

Table 1 Affinity diagram for the MIA of an LCD module in a
smartphone

Material behavior

The use of a linear model is not proper to model the stress–strain curve
of sheets and plates of the LCD module.

Constraint

The tied contact condition between the LCD chassis and LCD panel
does not reflect reality.

Loading condition

The load path of the LCDmodule in the three-point bending tests is not
considered properly.

Irrelevant

The thickness of the layers in the LCD module is not incorporated
correctly.

The details of the LED lights are not modeled sufficiently.

Conceptual model

• Physics specification

• Geometry specification

• Material behavior specification

• Output specification

• Constraint specification 

• Initial condition specification

• Loading condition specification

Mathematical model

• Governing equation

• Geometry modeling

• Constitutive equation

• Constraint modeling

• Initial condition modeling

• Loading condition modeling

Computational model

• Element type specification

• Temporal discretization 

• Spatial discretization

• Solution algorithms

• Convergence criteria

• Boundary condition discretization

• Initial condition discretization

• Loading condition discretization

Fig. 3 Checklist for building the invalidity reasoning tree
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conceptual modeling. The specifications modified in the con-
ceptual modeling are translated into equations and mathemat-
ical statements at this stage. The user should also check
whether input values in equations are correct. The mathemat-
ical modeling step in Fig. 3 lists the items to be considered
during this step, including:

(1) Governing equation – A new governing equation can be
considered to reflect the physics of the actual system of
interest, based on the assumptions used in developing the
conceptual model. Relevant partial or ordinary differen-
tial forms identified by examining the invalid model
should be considered to remove blind and recognized
uncertainty.

(2) Geometry modeling – The geometry of a system should
be formulated into equations with a proper functional
form. As an example, drawing functions such as a simple
straight line or curve (e.g., Hermite and B-spline) must
be carefully reselected if the use of a drawing function is
expected to produce an unacceptable amount of errors.

(3) Constitutive equation – The use of a more relevant con-
stitutive equation can be considered to better define the
relationship between physical quantities. For example, a
nonlinear curve can be substituted for a linear curve
based on Hooke’s law to define the force-displacement
relation of elastomers subjected to elevated temperatures.

(4) Constraint, initial and loading condition modeling – If
the conceptual modeling includes modification of con-
straints, as well as initial and loading conditions, the
conceptual model specifications should be translated into
appropriate mathematical model specifications.

3.2.3 Using the IRT for computational modeling

A computational model is the numerical implementation of a
mathematical model. As shown in Fig. 3, the last step in
building the IRT is to review the checklist for computational
modeling: element type, temporal and spatial discretization,
initial and loading conditions, and convergence criteria. In this
step, the level of temporal and spatial discretization for
governing equations can be improved by considering the
tradeoffs between computational cost and anticipated accura-
cy. Initial and loading conditions can be updated, if necessary.
Convergence criteria and solution algorithms can also be
checked.

Figure 4 presents an example of an IRT for the case study
of the liquid crystal display (LCD) of a smartphone. The pro-
cess started by identifying the invalidity causes related to the
blind uncertainty. Then, potential candidates were screened
during the three processes of model development: conceptual,
mathematical, and computational modeling. In the conceptual
modeling, it was found that the materials and constraints were
the potential candidates, which were related to the ideas in the
affinity diagram developed during the brainstorming activity.
The IRT – when used for mathematical modeling – identified
potential candidates for model refinement, which were the
constitutive equation, constraints, and loading conditions.
After reviewing them carefully, improved inputs to address
these candidate issues enabled improvements in the computa-
tional modeling of the LCD module.

Used in this manner, the IRT technique provides a step-by-
step procedure to discover potential candidates for model re-
finement by revising an invalid computational model. The
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modeling

Computational 

modeling

Revisit the “material behavior”

Revisit the “loading condition”

Constraint:
Modify the number of tied 

contacts between the LCD 

chassis and the LCD panel 

Revise tie constraint 

modeling.
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Modify loading conditions

in model calibration and 

validity check.

Loading condition 
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discretization to the 

modified loading.
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Constitutive equation: 

Replace the elasticity 

model with the elasticity-

plasticity model for PC, 

PMMA, and PET.

Spatial discretization
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curve fit for the elasticity-

plasticity model.

Boundary condition 
discretization:
Add or remove the tied 

contacts.

Fig. 4 IRT for model refinement –
the case study of the LCD module
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purpose is to enhance the prediction accuracy of the compu-
tational model in a systematic manner, while minimizing the
time and effort required for model refinement.

3.3 Invalidity sensitivity analysis

The IRT lists model refinement candidates related to possible
invalidity causes. However, it is not practical to address all of
the candidate issues due to limited resources (e.g., time and
budget). Thus, the degree of significance of model refinement
candidates needs to be evaluated. The most critical candidates
should be addressed during the model refinement phase,
whereas insignificant candidates can be ignored. In this sec-
tion, to achieve this goal, we introduce a technique for inval-
idity sensitivity analysis based on the weighted decision ma-
trix method, which quantitatively assesses the degree of im-
portance of each potential candidate.

The decision matrix was originally developed to evaluate
competing design concepts (Dieter and Schimidt 2009). We
devised a modified decision matrix-based approach to select
the most significant candidates for model refinement.
Building a decision matrix starts with defining various criteria
and determining their weight values. To achieve this, three
methods can be used: direct assignment, an objective tree, or
an analytic hierarchy process (AHP) (Forman and Gass 2001).
In this study, the objective tree method is employed since it
balances the objectivity and the computational cost. By build-
ing an objective tree in accordance with the hierarchy, a better
decision can be made for assigning weight values since the
comparisons are made at the same level in the hierarchy.
Figure 5 presents an example of a hierarchical objective tree.
Figure 5a depicts the tree hierarchy that defines the criteria in
evaluating the impact of potential candidates for model refine-
ment. At the first level, two criteria including performance

improvement and additional cost incurrence were considered.
In a similar manner, at the second level, four criteria were
assigned. Figure 5b weighs the criteria in order of importance
to determine the most significant candidates for the model
refinement activity. At the first level, a larger weight (i.e.,
0.7) was assigned to the performance criterion than that (i.e.,
0.3) of the cost since the degree in the improvement of the
model validity is the most critical. It should be noted that
determining weight values for criteria is an inexact process,
although the sum of weighting values should be one at each
level. To reduce the arbitrariness further, the AHP can be
considered with the expense of high computational costs.
The weights for individual criteria are determined by multi-
plying the weights at each of the hierarchical levels. As an
example, the weight for the computational cost is 0.28 (=
O1×O12×O121). The second step, building of the decision
matrix, is to assign scores for potential candidates. Scores
are assigned based on what degree of improvement is
achieved. They can be quantitatively determined using the
leave-one-out method (Kocaguneli andMenzies 2013), expert
evaluation (Li and Li 2009), or sensitivity analysis (Fu 2008).
As the final step in building the decision matrix, the weighted
sums of the scores of all candidates are calculated. The candi-
dates having the highest weighted sum are considered for
model refinement.

Table 2 presents an example of a decisionmatrix developed
to select model refinement candidates for the computational
model of LCDmodules (our case study). The criteria and their
weights from Fig. 5 were put into the first and second col-
umns. When an invalid computational model is revised by
incorporating each candidate, a corresponding score is
assigned. For example, the score of Candidate 1 was assigned
to “five” for “Correctness” because the validity check metric
in model validation was significantly improved after updating
the model. On the other hand, the score of Candidate 2 was
assigned to “one” when a negligible change was found after
updating the model. In this way, the ratings are calculated. The
sum of the ratings for Candidate 1 is the highest, followed by
Candidate 3. Considering the impact of potential candidates
on the success in the validity check, final candidates are
determined.

Upon completion of the model refinement process, the
model is calibrated using the experimental data in the calibra-
tion domain, as shown in Fig. 1. The statistical model calibra-
tion determines unknown model variables in a computational
model to maximize the agreement between the simulation and
experimental results. A validity check is then conducted for
the calibrated model. This check determines whether the cal-
ibrated model appropriately predicts the performance of the
engineered product. If it is concluded that the calibrated model
is valid, the model refinement procedures are terminated, and
blind and recognized uncertainties are considered to have been
identified and their impact is minimized. Otherwise, the model

(a) 

(b) 

Potential candidate

tsoCPerformance

ComputationalCorrectness Robustness Implementation

O1 = 1.0

O11 O7.0= 12 = 0.3

O111 O8.0= 121 = 0.7O112 O2.0= 122 = 0.3

Fig. 5 An example of an objective tree for invalidity sensitivity analysis:
a to define selection criteria for model refinement candidates and b with
weight values
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refinement procedure must be revisited until a valid model is
obtained.

4 Case study: refining a computational model
for a smartphone LCD module

Fracture failure of smartphones is a primary concern of man-
ufacturers as smartphones are designed to be larger and thin-
ner to meet customer expectations. In the current competitive
market, ensuring the reliability of a smartphone against glass
fracture failure is of great importance. To accomplish this goal,
the industry heavily relies on both virtual testing and physical
testing.

Figure 6 shows the LCD module for smartphones, and
includes depictions of: (a) the actual specimen, (b) a compu-
tational model, and (c) the multi-layer structure of the model.
The LCD module consists of a chassis, mold, multilayer
sheets, LED backlight unit, polarizers, and LCD panels. The
LCD panels have a sandwich-like structure with liquid crystal
filled between two glass plates. As presented in Fig. 6c, sim-
ulation engineers in the industry built a high-fidelity compu-
tational model that consists of 22 electronic components with
careful consideration of contact conditions between individual
layers. The number of nodes and elements of the computation-
al model is 449,477 and 403,893, respectively. The degree of
freedom is over 1.5 million.

During the development of a computational model for
smartphones, the simulation engineers wanted to ensure the
predictive capability of the computational model for the
smartphone LCD module subjected to drop and shock load-
ings. Statistical model validationwas adopted for this purpose.
However, even after the model was calibrated, it turned out
that the computational model failed to predict the experimen-
tal results under different loading conditions. This necessitated
further improvement of the original model, as outlined in our
case study. This section starts with the description of the prob-
lem we encountered and, subsequently, presents the use of the
proposed model refinement approach to resolve the problem.

Table 2 Weighted decision matrix to select model refinement candidates for the computational model of the LCD module

Criteria Weight Unit Candidate 1: material model
change

Candidate 2: contact condition
change

Candidate 3: domain
redefinition

Magnitude Score* Rating Magnitude Score* Rating Magnitude Score* Rating

Correctness 0.56 P-value 0.498 5 2.80 0.001 1 0.56 0.165 2 1.12
Robustness 0.14 Experience Satisfactory 3 0.42 Satisfactory 3 0.42 Satisfactory 3 0.42
Computational cost 0.21 Hour +10 2 0.42 0 5 1.05 0 5 1.05
Implementation cost 0.09 Hour +3 2 0.18 +0.5 3 0.27 +0.5 3 0.27
Sum of rating 3.82 2.30 2.86

* A five-point scale is used; excellent (5), good (4), satisfactory (3), tolerable (2), and inadequate (1)
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Fig. 6 Thin film transistor (TFT) – liquid crystal display (LCD) module:
a actual specimen b computational model c multi-layer structure of the
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4.1 Problem description

An overview of the model validation activities for the
smartphone LCD fracture problem is shown in Fig. 7.
Model validation was planned by employing a top-down ap-
proach: (1) model decomposition planning, (2) statistical
model calibration planning, and (3) experiment planning for
model variable characterization. With close collaboration be-
tween experts from academia and industry, the smartphone
system was broken down into with the hierarchy of the LCD
module (i.e., subsystem) and the LCD panel (i.e., component).
For computational modeling, as the model complexity in-
creases, the uncertainty found in the computational model also
inevitably increases. Through expert knowledge and sensitiv-
ity analysis, four variables (among many) were found to be
unknown. At the component level, two unknown variables
were identified: the Young’s moduli of the glass (Eg) and the
polarizer in the y-axis direction (EPY). The cellphone manu-
facturer purchases the LCD panels from multiple first-tier
suppliers. The suppliers examine the quality of the glass when
they receive the glass from second-tier suppliers. However,
the first-tier suppliers only check if the Young’s modulus of
the glass meets or exceeds the requirement. We were not able
to receive the exact value of the Young’s modulus of the glass
from the first-tier suppliers. Therefore, we decided to put it as
an unknown variable after discussing it with test and simula-
tion engineers in the cellphone manufacturer. At the subsys-
tem level, two unknown variables were identified: yield
strength of the chassis (Sc) and its thickness (t).

A three-point bending test was suggested to emulate poten-
tial fracture modes of the LCD panel and the LCD module.
The displacements in the three-point bending test were treated
as the input, while the failure forces were considered to be the
response. The tests with the alignments of Top-X and Top-Y
were designed for model calibration, while the test with the
alignment of Bottom-X was to check the validity.1 The align-
ment of Bottom-Ywas not considered because this is the most
resistant to fracture. Three-point bending tests were conducted
ten times in total for each alignment. A commercial software
package, LS-DYNA 971, was used to find a solution of the
computational model.

Validation planning was followed by validation execution,
which was performed using a bottom-up approach. At the
component level, the statistical distribution of the two un-
known variables was assumed to follow a lognormal distribu-
tion since they cannot have a negative value. The model cal-
ibration determined the distribution parameters of the two un-
known variables: Eg ~ lognormal (72.13, 2.86) and

EPY~ lognormal (3.40, 1.29). As shown in Fig. 8a, b, a good
agreement was observed between the results from the simula-
tion and experiments in the calibration domain. In the valida-
tion domain, a good agreement was observed from visual
inspection. To quantify the degree of the agreement, the area
metric was employed (Ferson et al. 2008). Physically, the area
metric measures the mismatch between two curves, i.e., cu-
mulative distribution function of computational responses and
empirical distribution function of experimental data. When
epistemic uncertainty due to insufficient experimental data is
incorporated in the original concept of the area metric, a mod-
ified area metrics is defined:

D ¼
Z þ∞

−∞
G xð Þ−uij jdx ð5Þ

where G (x) is the CDF of a uniform distribution; ui is the
transformation of every datum xi into the CDF of responses
from a computational model (ui=F (xi)). The modified area
metric can be useful in validity check. If a value of the metric
(D) is smaller than a threshold (Dm,α; m is the size of experi-
mental data; α is the significance level), a computational mod-
el is determined to be valid. Otherwise, invalid. For more
details about how to calculate the threshold, see the study by
Jung et al. (2015). As shown in Fig. 9, the area metric of
0.0732 was smaller than the threshold (0.1805 with the num-
ber of experimental data of 10 and the significance level of
0.05). Therefore, it was concluded that the calibrated model at
the component level was valid.

At the subsystem level, other unknown variables (i.e., chas-
sis yield strength and chassis thickness) in the LCD module
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Fig. 7 Overview of model validation activities for the LCD fracture
problem

1 The “Top” (or “Bottom”) indicates that the driver IC in the LCD panel
or the LCD module faces upwards (or downwards). The “X” (or “Y”)
implies that the LCD panel or the LCDmodule is aligned to the x- (or y-)
direction of the jig.
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were calibrated. The statistical distributions of Sc and t were
assumed to follow lognormal and normal distributions. The
initial values used for the unknown variables were:
Sc~ lognormal (6.617, 0.0772) and t~N (0.2, 0.0156). The
variables calibrated at the component level (Eg and EPY) were
incorporated in the model as the known variables. After model
calibration, the simulation response had a good agreement
with the experimental results, as shown in Fig. 10. However,
in the validation domain, it was found that the computational
model failed to predict the actual failure force measured by
experiments (see Fig. 11). In Fig. 12, the value of the modified
area metric was 0.4705, whereas the threshold was 0.1805 for

the sample size of 10 and the significance level of 0.05. The P-
value that corresponds to the metric value of 0.4705 was
0.001, which is almost negligible. Therefore, the small P-
value indicated that the model was invalid, even after model
calibration. From the quantitative result of the modified area
metric – as well as the qualitative result of the visual inspec-
tion of the PDF and the histogram – it was concluded that the
calibrated model was invalid in the validation domain. In light
of the above observations, the model warranted refinement so
that the computational model could be used to predict the
fracture failure of the LCD module in real applications.
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4.2 Model refinement: model invalidity analysis

The goal of the proposed model refinement approach was to
find and remove blind and recognized uncertainties in the
invalid computational model and, ultimately, to maximize
the model’s predictive capability in the design domain. As
discussed in Section 3, the model refinement approach con-
sists of three main components: MIA, IRT, and ISA. MIA is
designed to identify possible causes that lead to failure of the
validity check.

In this case study, multiple possible causes were suggested
by simulation engineers from the CAE (Computer-Aided
Engineering) team, test engineers from the Q&A (Quality &
Assurance) team, experts from academia, and Ph.D.-level stu-
dents. The ideas proposed from the brainstorming included:
(1) invalid modeling of material behavior, (2) inappropriate
boundary conditions between the LCD chassis and the LCD
panel, (3) careless selection of loading conditions for model
calibration and validation, (4) wrong thickness values for in-
dividual layers, and (5) insufficient details for modeling the
LED lights.

First, the use of a linear model for plastic materials was
suspected to be a dominant cause. As mentioned in
Section 3.1, the background information of the computational
model was revisited in the brainstorming: comparison of sim-
ulation and experimental results. As shown in Fig. 13, the
computational model produced a curve that does not emulate
the actual force-displacement curve from the experiments.
After passing the point around the displacement of 3.5 mm,
they do not follow a similar trajectory any more. The gap
between the two curves becomes large as the displacement
increases. This gave a clue that the LCD module in the com-
putational model was not properly modeled and that blind
uncertainty may be affecting the modeling of the physical
behavior of materials.

Second, it was speculated that the tied contact condition
utilized improper constraints between the LCD chassis and
the LCD panel. We attempted to find any “known limitations
of the existing simulation model,” as specified in Section 3.1.

It was well known that the LCD panel and other components
were assembled through various bonding technologies, such
as ultraviolet (UV)-curable resin and optical-clear-adhesive
(OCA) tape. Nevertheless, the bonding strength of the bonds
has large uncertainty. The spatial distribution of actual bond-
ing strength cannot be modeled accurately, while the tied con-
tact where the six degrees of freedom are constrained is widely
accepted in computational modeling. Insufficient constraints
can make the computational model of the LCD module be-
have differently from reality in the three-point bending tests.
Therefore, it was suggested that another blind uncertainty was
the insufficient constraints related to tying the plates in the
LCD panel.

Third, it was proposed that the load path of the LCDmodule
in the three-point bending test was not considered properly. We
focused on the guidance in Section 3.1: “critical factors in de-
signing, modeling, and testing.” Suppose that three-point bend-
ing tests of LCD modules were conducted along the alignment
Top-X, Top-Y, and Bottom-X. As shown in Fig. 14, the load
path observed from the tests with the Top-X and Top-Y align-
ments is different from that with the Bottom-X alignment. With
the Top-X and Top-Yalignment, the mechanical load is directly
applied to the glass layer and transferred to the other parts due
to the different stiffness of the layer materials of the LCD mod-
ule. For example, the glass in the LCD panel is stiff, whereas
the chassis is complaint. Due to this reason, with the Bottom-X
alignment, a computational model calibrated with the Top X
and Top Y alignments was invalid since the effect of different
load paths was not reflected in the calibration of the computa-
tional model. Consequently, the simulation results may have
exhibited an incorrect magnitude of stress on the failure site.
Therefore, it was suspected that the blind uncertainty of
unrecognizing the different load path in experiments was
neglected in the computational modeling.

Through the group discussion in building the affinity
diagram, two ideas were determined to be irrelevant.
The final outcome of the MIA, i.e., the affinity diagram,
is shown in Fig. 15.
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4.3 Model refinement: development of the invalidity
reasoning tree

The IRT is used to identify what should be corrected in a
computational model to remove blind and recognized uncer-
tainty. In the previous section, three possible causes (Ideas 1,
2, and 3) of blind uncertainty were identified. As shown in

Fig. 4, the three ideas were sequentially revisited during the
stages of conceptual, mathematical, and computationalmodel-
ing. During the stage of conceptual modeling, first, material
behavior specifications in the LCD module were revisited,
followed by the reconsideration of the constraint and loading
condition specifications.

To correct potential blind uncertainty at the stage of math-
ematical modeling, the specifications were updated. First, the
material behavior was updated by substituting an elastic–plas-
tic model (i.e., stepwise linear curve fit) for the elastic model
(i.e., linear curve fit) in the selected materials of the module.
These materials are polycarbonate (PC), polymethyl methac-
rylate (PMMA), and polyesters (PET). Their material proper-
ties are very sensitive to environmental temperature. The
strain–stress curves of these materials can be approximated
to be linear at low temperature such as 4 °C whereas they tend
to have more plasticity at room temperature, such as 27 °C
(Callister 2003). The details are shown in Fig. 16. The yield
strengths of PC, PMMA, and PET are 40.5, 42.6, and
55.0 MPa, respectively. Their tangent moduli are 64.6, 74.4,
and 60.0 MPa, respectively. The use of the elasticity-plasticity
model was valid in this study since the experimental work was
conducted under laboratory conditions.

Second, the number of tied contacts between the LCD
chassis and the LCD panel was increased. The LCD panel is
mounted on the LCD chassis with epoxy adhesive. Additional
tied contacts were modeled to the bonding area between the
chassis and the panel in such a way that the six degrees of the
freedom of the bonding area were constrained.
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Last, the domains for model calibration and model valida-
tion were redefined. The Top-X and Bottom-X alignments
were selected for model calibration, whereas the Top-Yalign-
ment was selected for model validation. This change was ex-
pected to reflect the actual load path in the computational
model.

The checklist at the stage of computational modeling
shown in Fig. 3 was verified, including: (1) spatial
discretization of the elasticity-plasticity model, (2) boundary
condition discretization of the tied contacts, (3) loading con-
dition discretization. After building the IRT, the three potential
candidates were prepared with specific instructions for model
refinement.

4.4 Model refinement: invalidity sensitivity analysis

The potential candidates for model refinement were selected
as: material model change, constraint change, and loading
condition redefinition. As presented in Table 2, an ISA with
the three candidates was conducted to examine the impact of
the identified candidates. As described in Section 3.3, the
weights are determined by the objective tree method (also
see Fig. 5). The score for each criterion was determined by a
five-point scale for the magnitude of the unit. For example, the
validity of the model was improved from 0.001 to 0.498 in
terms of P-value after model refinement with Candidate 1,
whereas no improvement was found with the employment of
Candidate 2. Therefore, the score for Candidate 1 for the “cor-
rectness” criterion was assigned to be 5 (“excellent”), whereas
that for Candidate 2 was 1 (“inadequate”). It is worth noting
that Candidate 1 is related to the change of material models for

the three materials. Through detailed investigation, the yield
strength of the PC and PMMAwere shown to have significant
impact on the variability of the output response, while that of
the PET does not, as shown in Table 3. Therefore, it was
confirmed that the change of the material models from the
elastic to the elastic–plastic is relevant for PC and PMMA.
As another example, incorporating Candidate 1 incurred ad-
ditional 10 hours of “computational time” since the use of the
elastic–plastic material model in the refined model required
longer computational time. The addition of 10 hours was eval-
uated to be tolerable whose score was 2 (“tolerable”).
Implementing additional tie contacts (Candidate 2) and chang-
ing the domain (Candidate 3) did not add any computational
time. Therefore, the scores were assigned to be 5. It was iden-
tified that Candidate 1 has the most significant impact for
improving model validity, followed by Candidate 3 and then
Candidate 2. The sum of the rating for Candidate 2 is below
those of Candidates 1 and 3. Therefore, we determined to
incorporate only the two relevant candidates (1 and 3) for
model refinement.

The computational model was refined using the informa-
tion from MIA, IRT, and ISA. As discussed in Section 4.1, at
the component level, the two unknown variables (i.e.,
Young’s moduli of the glass and polarizer in the y-axis di-
rection) already calibrated and validated. Then, at the subsys-
tem level, model calibration was executed to adjust the var-
iability of another two unknown variables (i.e., yield strength
of the chassis and its thickness). A good agreement between
simulation responses and experimental results was observed
in the calibration domain, as shown in Fig. 17. The optimal
values of the unknown variables were determined to be
Sc~ lognormal (5.415, 0.0547) and t~N (0.2, 0.00244). In
the validation domain, the PDF predicted by the refined mod-
el showed a good agreement with the experimental results.
Subsequently, a validity check was performed to determine
whether the model was valid. As shown in Fig. 18, the area
metric (i.e., 0.0805) was smaller than the threshold (i.e.,
0.1805) with the sample size of 10 and significance level of
5 %. The P-value for the area metric of 0.0805 is 0.612.
When compared to the results in Fig. 12, the P-value that
shows the validity of the model was improved from 0.1 % to
61.2 %. Therefore, it was concluded that the model is valid
for future use. The response of the three-point bending test
can be virtually assessed using the computational model,
which helps ensure the reliability of the LCD panel against
fracture failure.
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Table 3 Invalidity sensitivity
analysis for three candidate
materials

Material (Xi) Y (Xi); Newton Y (Xi+ΔXi); Newton ΔXi;MPa Sensitivity; [Y (Xi+ΔXi)-Y (Xi)]/ΔXi

PC (X1) 72.95 72.27 0.405 −1.679
PMMA (X2) 72.95 72.36 0.426 1.385

PET (X3) 72.95 72.95 0.505 0
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5 Conclusions

Several prior studies have proposed systematic approaches for
efficiently conducting model calibration and validity checks.
However, there has been little discussion to date about sys-
tematic methods of model refinement. This study proposed a
systematic approach for finding and minimizing the impact of
blind and recognized uncertainties in the development of a
computational model for engineered products. The proposed
approach consists of three main components. First, model in-
validity analysis (MIA) is used to identify possible

invalidity causes through building of an affinity diagram
to determine areas of deficient knowledge that can be
supplemented. Then, an invalidity reasoning tree (IRT)
is used to identify potential candidates for model refine-
ment in conjunction with the items in the affinity dia-
gram. The IRT determines what specific changes have
to be made in an invalid computational model to re-
move the uncertainties. Finally, invalidity sensitivity
analysis (ISA) is used to quantify the effect of improv-
ing each potential candidate issue with the goal of re-
moving the uncertainties. The ISA aims to determine
the most significant candidates for model refinement.

The benefit of the proposed approach was demonstrated
using a real-world problem in the electronics industry: virtual
testing of smartphone LCD modules against fracture failure.
Possible causes for the invalidity in the computational model
were identified, including: incorrect material behavior model-
ing and invalid boundary condition selection. Through the
model refinement process, it was shown that the refined model
was appropriate to predict LCD fracture failure over different
loading conditions. In the validity check, the validity (i.e., P-
value) was significantly improved, moving from 0.1 % to
61.2 %. The impact of blind uncertainty on the computational
model could be minimized by uncovering and handling them.
We believe that the proposed approach can promote the de-
velopment of a standard guideline for engineers to build more
realistic models when the calibration approach for model ver-
ification and validation fails.

Future work is suggested to build a more accurate compu-
tational model of engineered products. In this study, the LCD
module was broken down into a hierarchy of system, subsys-
tem, and components for model calibration and validation. As
the complexity of engineered products becomes greater, this
strategy may not be the most effective. Series-decomposition,
parallel-decomposition, or a combination of those decompo-
sition strategies can be considered in future work. Another
issue is how to uncover and remove blind uncertainty in ex-
periments; this study considered only blind and recognized
uncertainties in computational models. Current practice typi-
cally relies on personal experience, which delays rapid devel-
opment of accurate computational models. A successful solu-
tion for those issues will enhance accurate prediction of
engineered product performance in virtual testing.
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