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Abstract 

 

Minimization of Multi-Axis Interference for Fault Detection 

of Industrial Robots Based on Blind Source Separation 

 

YUAN HAO 

School of Mechanical and Aerospace Engineering 

The Graduate School 

Seoul National University 

As smart factory is becoming popular, industrial robots are highly demanding 

in many manufacturing fields for factory automation. Unpredictable faults in the 

industrial robot could bring about interruptions in the whole manufacturing process. 

Therefore, many methods have been developed for fault detection of the industrial 

robots. Because gearboxes are the main parts in the power transmission system of 

industrial robots, fault detection of the gearboxes has been widely investigated. 

Especially, vibration analysis is a well-established technique for fault detection of 

the industrial robot gearbox.  

However, the vibration signals from the gearboxes are mixed convolutively and 

linearly at each axes, which makes it difficult to locate a damaged gearbox, and 

reduce fault detection performance. Thus, this paper develops a vibration signal 

separation technique for fault detection of industrial robot gearboxes under multi-

axis interference. The developed method includes two steps, frequency domain 

independent component analysis (ICA-FD) and time domain independent 

component analysis (ICA-TD). ICA-FD is aimed at separating convolutive mixture 
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of signals, and ICA-TD is aimed at eliminating the residual mixed components.  

The experiment is performed to demonstrate the effectiveness of the proposed 

method. The results show that the proposed method could successfully separate the 

mixed signals by obtaining vibration signals from each gearbox, and enhance fault 

detection performance for the industrial robot gearboxes. 

Keyword: Fault detection 

     Industrial robot 

     Multi-Axis Interference 

     Signal separation 

     Independent component analysis 

Student Number: 2017-22579 
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Chapter 1. Introduction 

 
 

1.1 Background and Motivation 

With the development of Industrial 4.0, smart factory becomes popular all over 

the world. And industrial robots play a significant role in the automation of 

manufacturing processes in smart factory [1]. The industrial robots have larger 

bearing capacity than human workers, and can operate in complex environment [2]. 

The global industrial robotics market is expected to achieve $70.7 billion in 2023, 

and it grew from $37.9 billion with a compound annual growth rate (CAGR) of 9.4% 

from 2017 to 2023 [3]. However, nowadays, there are huge amount of downtime loss 

in manufacturing processes due to unexpected faults of industrial robots. One survey 

estimated downtime cost in the automotive industry at an average of $22,000 per 

minute [4, 5]. Therefore, many fault detection techniques have been developed for 

industrial robots to solve the problem [6].  

1.2 Scope of Research 

Failures in industrial robots are resulting from both electronic [7] and 

mechanical components [8]. Approximately 45% of failures are from mechanical 

problems [9]. And gearbox is an important composition of the mechanical 

components in industrial robots. Fault detection of gearboxes have also been 

investigated [10-12]. Especially, vibration analysis is a well-established technique 

for fault detection of the industrial robot gearbox. Erik Olsson et al. [13] used 

acoustic signals and case-based reasoning to diagnose the faults in industrial robot, 

which initiated the vibration analysis in industrial robot. Ikbal Eski et al. [14] applied 

artificial neural networks to detect faults on robot manipulators.  
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However, the vibration signals from each gearbox can be mixed each other in 

the diagnostic methods because industrial robots usually have multiple axes. The 

mixed signals make it difficult to locate a damaged gearbox, and reduces fault 

detection performance. Thus, it is important to separate the mixed signals for fault 

detection of gearboxes in industrial robots. Gelle et al. [15] developed blind source 

separation (BSS) into acoustical and vibration analysis of rotating machines. The 

experiments were based on simple mechanism. Xinhao Tian et al. [16] utilized 

independent component analysis (ICA) in the frequency domain and wavelet 

filtering to do gearbox fault diagnosis, which took ICA into complex mechanism 

fault detection. Leng et al. [17] combined ensemble empirical mode decomposition 

(EEMD) and constrained independent component analysis (CICA), which can 

extract fault features based on single-channel signal. However, those studies were 

only limited to vibration separation of different components in a single gearbox, and 

have not been applied to multiple gearboxes in industrial robots.   

Independent component analysis (ICA) is one of the blind source separation 

techniques that has been used for feature extraction and signal separation in speech 

recognition [18], medical signal processing [19] and machinery condition 

monitoring [20].  Lisa J. Stifelman [21] first introduced the cocktail party effect in 

auditory interfaces, which took blind source separation into research field. Then, a 

fast fixed-point algorithm for independent component analysis (FastICA) was 

introduced by Aapo Hyvärinen and Erkki Oja [22, 23]. FastICA can separate linearly 

mixed time series with low accuracy. E. Bingham and A. Hyvärinen [24] proposed a 

fast fixed-point algorithm for independent component analysis of complex valued 

signals (c-FastICA). To separate the signals in reverberant condition, Tsu Nishikawa 

et al. [25] proposed multistage ICA (MSICA) method for blind source separation. It 

used frequency domain ICA method (ICA-FD) to solve convolutive BSS problems. 

In addition, time domain ICA method (ICA-TD) was used to solve residual crosstalk 
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components problem. The basic structure of MSICA method are demonstrate in 

Figure 1-2. 

 

 

 

 

 

 

 

Figure 1-1 Market Revenue for Industrial Robot in USA 

 

In this paper, we develop MSICA method into fault detection of gearboxes in 

industrial robots. In industrial robots, because the distances between gearboxes are 

different, and the size of gearboxes are various. If the distance between two 

gearboxes is small and the two gearboxes are large which makes the distance is 

resembling to the size of gearboxes, the vibration signals from gearboxes will be 

convolutively and linearly mixed. Because the largest and shortest distance between 

gearbox components are quite different. And convolutive signal mixing problems 

arise when there is time delay between signals from large distance signal propagation 

or reflections [26]. Linear mixing problems arise when the time delay approach to 

zero. Therefore, some vibration signal in the industrial robot are convolutively mixed, 

and some are linearly mixed.  
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Thus, multistage ICA method is efficient to separate the mixed signals in the 

industrial robots. The first stage is ICA-FD, which can separate convolutive mixed 

vibration signals and the second stage is ICA-TD, which can separate linearly mixed 

signals, and also deal with residual mixed components. After the separation of 

vibration signals, root mean square (RMS) is calculated by extracting constant speed 

parts of the measured vibration signals to quantify the fault severity. The diagnosis 

results are obtained from from RMS feature calculation.  

 

 

 

 

 

 

Figure 1-2 Structure of Multi-Stage Independent Component Analysis (MSICA) 
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1.3 Structure of the Thesis 

The rest of the paper is structured as follows. The structure of industrial robot 

is introduced in Chapter 2. The analytical theories of ICA-TD, ICA-FD and MSICA 

are introduced firstly in Chapter 3. In Chapter 4, the performance of the developed 

technique is then experimentally evaluated on the base of using industrial robot 

vibration data signals measured from gearboxes of an industrial robot. And 

conclusions and future work are summarized in Chapter 5. 
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Chapter 2. Structure of Industrial Robot 

 
 

2.1 Structure of Experimental Robot 

Figure 2-1(a) shows a six-axis industrial robot and Figure 2-1(b) shows its 4th 

axis and 5th axis. Six gearboxes and motors are located in each axis to drive the 

movements. Every axis can rotate by 360°. Vibration arises from gear mesh and 

bearing rotation in gearboxes when axes have movements. Because the weights and 

scales are different in arms, the amplitudes of vibration in each gearbox are different.  

To detect vibration signals from gearboxes, six vibration sensors are attached 

on each gearbox. The sensors can observe vibration signals by relative displacements 

between the inertia mass and the shell in sensors. As shown in Figure 2-1(b), two 

vibration sensors are attached on 4th gearbox and 5th gearbox. The vibration signals 

detected from sensors are used to calculate features for fault diagnosis. The distance 

between two gearboxes is small and the sizes of gearboxes are large. Therefore, the 

vibration can influence each other in these axes.  

Thus, the vibration signals detected from sensors are mixed signals. In robot 

fault detection process, measured signals are need to calculate diagnosis features. 

The detected vibration signals cannot be used if they are mixed signals. Therefore, 

the mixed vibration signals should be separated into source signals. After separation, 

the correct information can be obtained from the source signals. 
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(a) 

 

(b) 

Figure 2-1 (a) Experiment industrial robot, and (b) its 4th axis and 5th axis 
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2.2 Problem in Industrial Robot Fault Detection 

As shown in Figure 2-2, in the industrial robot, especially 4th axis and 5th axis. 

Two vibration sensors are attached on both gearboxes separately. When using sensors 

to obtain signals, the signals from the 4th and 5th gearbox will be mixed into sensors. 

Also, the root mean square (RMS) is calculated from detected vibration signals. As 

shown in Figure 2-2, the faulty component exists in 4th gearbox. However, if RMS 

is calculated in 4th gearbox single motion mode when there is only 4th axis rotating, 

RMS result shows that 4th gearbox is faulty. And RMS result in 5th gearbox single 

motion mode shows that 5th gearbox is in normal condition. But when calculating 

RMS feature in multi-axis motion, RMS result shows that both 4th gearbox and 5th 

gearbox are faulty. Thus, this signal mixing problem can influence the fault detection 

results. This vibration signal mixing problem in industrial robot fault detection can 

be defined as multi-axis interference. Therefore, to separate the sensor signals, blind 

source separation method can be applied into vibration signals mixing problem. 

The multi-axis interference is disparate in different industrial robots, because 

the lengths of arms are variable and also the weight varies. Furthermore, in 

experimental industrial robot, due to the longer length between 4th and 5th axes, the 

vibration signals are convolutively and linearly mixed. Therefore, the mixed signals 

should be separated in frequency domain firstly. And because the distances of the 

components of 4th gearbox and 5th gearbox are different, there can be residual mixed 

components after separation in frequency domain. Then time domain separation can 

be applied in order to deal with the residual mixed components. 

 



 

 9 

 

F
ig

u
re

 2
-2

 S
ig

n
al

 m
ix

in
g
 p

ro
b
le

m
 i

n
 i

n
d
u
st

ri
al

 r
o
b
o
ts

 



 

 10 

Chapter 3. Methodology 

 
 

3.1. Time Domain Independent Component Analysis (ICA-TD) 

Time domain independent component analysis (ICA-TD) is a method that can 

find underlying signals from a set of mixed signals in time domain. ICA-TD is 

suitable to separate linear signal mixtures. It considers measured multi-channel 

signals as a mixture of independent component signals. In ICA-TD, preprocessing is 

needed which includes centering and whitening. Centering process is responsible for 

transferring the vibration data into the zero mean valued signals. And whitening 

process is to making the signals have unity variances. After preprocess, separation 

process is introduced below.  

If we define 𝑠𝑗(𝑡) the independent component signals and define 𝑥𝑖(𝑡) the 

measured mixed signals. The measured signals can be expressed as below 

 𝑥𝑖(𝑡) = ∑ 𝑎𝑖𝑗 ∗ 𝑠𝑗(𝑡)𝑁
𝑗=1  (3.1) 

where 𝑗 is the serial number of the independent component signals (1 ≤ 𝑗 ≤ 𝑁), 𝑖 

is the serial number of the measured multi-channel signals (1 ≤ 𝑖 ≤ 𝑀) and 𝑎𝑖𝑗 is 

the unknown coefficient from  𝑠𝑗(𝑡)  to 𝑥𝑖(𝑡) . Let 𝑠 = [𝑠1, 𝑠2, 𝑠3, … 𝑠𝑁]  be a 

vector of independent component signals, 𝑥 = [𝑥1, 𝑥2, 𝑥3, … 𝑥𝑀]  be a vector of 

measured multi-channel signals, then 

 𝑥 = 𝐴 ∗ 𝑠 (3.2) 

where 𝐴  is the mixing matrix, which should be estimated in signal separation 

process. Define 𝑦 = [𝑦1, 𝑦2, 𝑦3, … 𝑦𝑁] the vector of estimation of the independent 

component signals 𝑠, then 
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 𝑦 = 𝑊 ∗ 𝑥 (3.3) 

where 𝑊 is the separating matrix, and 𝑊 = 𝐴−1. 

The fast fixed-point ICA (FastICA) algorithm assumes that when a set of non-

Gaussian signals get into mixtures, it is closer to following a Gaussian distribution. 

Therefore, the non-Gaussianization can separate the mixtures into independent 

component signals. To measure the non-Gaussianity of signals, negentropy is always 

used in ICA. [22, 23] 

 𝐽(𝑦) = 𝐻(𝑦𝐺𝑎𝑢𝑠𝑠) − 𝐻(𝑦) (3.4) 

where 𝑦𝐺𝑎𝑢𝑠𝑠  is a Gaussian random variable which has same covariance matrix 

with 𝑦. And 𝐻(𝑦) is the differential entropy with the definition 

 𝐻(𝑦) = − ∫ 𝑝𝑦(𝜂)𝑙𝑜𝑔𝑝𝑦(𝜂)𝑑𝜂 (3.5) 

In FastICA algorithm, the approximation of negentropy is defined as [22, 23] 

 𝐽(𝑦) ∝ [𝐸{𝐺(𝑦)} − 𝐸{𝐺(𝑣)}]2 (3.6) 

where the mean of 𝑦, 𝑣 are zero and 𝑦, 𝑣 are unit variance. And 𝐺 can be any 

non-quadratic function. In FastICA, 𝐺 is suggested to be  

 𝐺1(𝑦) =
1

𝑎1
𝑙𝑜𝑔 𝑐𝑜𝑠ℎ(𝑎1𝑦), 𝐺2(𝑦) = −𝑒𝑥𝑝 (

−𝑦2

2
) (3.7)  

where 1 ≤ 𝑎1 ≤ 2, and it is usually selected to be 1. 

In FastICA algorithm, the separating matrix 𝑤  is obtained in an iterative 

process. In fixed-point update process, the update function is 

 𝑤 ← 𝐸{𝑧𝑔(𝑤𝑇𝑧)} − 𝐸{𝑔′(𝑤𝑇𝑧)}𝑤 (3.7)  
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where 𝑔(𝑦) can be  

 𝑔1(𝑦) = 𝑡𝑎𝑛ℎ(𝑎1𝑦), 𝑔2(𝑦) = 𝑒𝑥𝑝 (−𝑦2/2), 𝑔3(𝑦) = 𝑦3 (3.8)  

 

3.2. Frequency Domain Independent Component Analysis 

(ICA-FD) 

Frequency domain independent component analysis (ICA-FD) is used to deal 

with convolutive signal mixing problem, which arises when there is a time delay 

resulting from large distance signal transmission or reflections. In ICA-FD method, 

the signals are separated in frequency domain. Therefore, there are several steps. 

Firstly, the signals are transferred into frequency domain. After that, the signals are 

separated in each frequency bin. Because separation is done in each frequency bin 

independently, the permutations in each frequency bin are different. However, the 

separating vectors should have same order. Thus, permutation indeterminacy and 

scaling ambiguity are solved in next step.  

3.2.1 Separation 

In convolutive signal mixing problem, if we define  ℎ𝑖𝑗(𝜏)  the impulse 

response from source 𝑗  to sensor 𝑖 , the measured multi-channel signals can be 

expressed by [23, 24] 

 𝑥𝑖(𝑡) = ∑ ∑ ℎ𝑖𝑗(𝜏)𝑠𝑗(𝑡 − 𝜏)𝜏
𝑁
𝑗=1  (3.9)  

where 𝑗 is the serial number of the independent source signals (1 ≤ 𝑗 ≤ 2), 𝑖 is the 

serial number of the measured multi-channel signals ( 1 ≤ 𝑖 ≤ 𝑀 ). Let  𝑠 =

[𝑠1, 𝑠2, 𝑠3, … 𝑠𝑁]  is a vector of independent component signals, 𝑥 =

[𝑥1, 𝑥2, 𝑥3, … 𝑥𝑀] is a vector of measured multi-channel signals, then 
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 𝑥(𝑡) = ∑ ℎ(𝜏)𝑠(𝑡 − 𝜏)𝜏  (3.10)  

where ℎ(𝜏)  is the mixing matrix. Define  𝑦 = [𝑦1, 𝑦2, 𝑦3, … 𝑦𝑁]  the vector of 

estimation of the independent component signals 𝑠, 𝑦𝑗(𝑡) can be expressed by 

 𝑦𝑗(𝑡) = ∑ ∑ 𝑏𝑗𝑖(𝜏)𝑥𝑖(𝑡 − 𝜏)𝜏
𝑀
𝑖=1  (3.11)  

where 𝑏𝑗𝑖(𝜏) is the impulse response in separation process. 

In ICA-FD, 𝑦 is estimated in frequency domain. Therefore 

 𝑥𝑖(𝑛, 𝑓) = ∑ ℎ𝑖𝑗(𝑓)𝑠𝑗(𝑛, 𝑓)𝑁
𝑗=1  (3.12) 

where 𝑥𝑖(𝑛, 𝑓) is the short-time Fourier transform (STFT) result of 𝑥𝑖(𝑡), 𝑠𝑗(𝑛, 𝑓) 

is STFT result of 𝑠𝑗(𝑡). 𝑓 = 1, … , 𝐹 is the frequency bin index and 𝑛 = 1, … , 𝑁 

is the frame index. And ℎ𝑖𝑗(𝑓) is the impulse response in frequency domain.  

In frequency domain, the measured multi-channel signals can be written by  

 𝑋(𝑘, 𝑓) = 𝐻(𝑓)𝑆(𝑘, 𝑓) (3.13) 

Separation process can be applied in each frequency bin, and 

 𝑌(𝑘, 𝑓) = 𝑊(𝑓)𝑋(𝑘, 𝑓) (3.14) 

where 𝑌(𝑘, 𝑓) is the estimation of independent component signals and 𝑊(𝑓) is 

the separation matrix in each frequency bin. 

In frequency domain, the signals are complex valued, so complex-valued ICA 

is applied in ICA-FD. One of the most popular method is complex-valued FastICA 

algorithm (c-FastICA). In complex value signal separation, kurtosis of the signals 

can be used as a measure of non-Gaussianity. Kurtosis is defined by [23, 24] 
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 𝑘𝑢𝑟𝑡(𝑦) = 𝐸{|𝑦|4} − 2(𝐸{|𝑦|2}) − |𝐸{𝑦2}|2 = 𝐸{|𝑦|4} − 2 (3.15) 

In c-FastICA, the approximation of kurtosis is defined as [23, 24] 

 𝐽(𝑤) = 𝐸{𝐺(|𝑤𝐻𝑥|2)} (3.16) 

where 𝐺 is a smooth even function and ‖𝑤‖ = 1. In c-FastICA, 𝐺 is suggested to 

be  

 𝐺1(𝑦) = √𝑎1 + 𝑦, 𝐺2(𝑦) = 𝑙𝑜𝑔(𝑎2 + 𝑦), 𝐺3(𝑦) =
1

2
𝑦2 (3.17) 

where 𝑎1 and 𝑎2 can be any constant value. They are usually selected to be 0.01. 

The separating matrix 𝑤 is obtained in an iterative process. In fixed-point update 

process, the update function is 

 𝑤 ← 𝐸{𝑦(𝑤𝐻𝑥)∗𝑔(|𝑤𝐻𝑥|2)} − 𝐸{𝑔(|𝑤𝐻𝑥|2) + |𝑤𝐻𝑥|2𝑔′(|𝑤𝐻𝑥|2)}𝑤(3.18) 

where 𝑦 = 𝑤𝐻𝑥. And  

 𝑔(𝑡) =
1

(0.01+𝑡2)
 , 𝑔′(𝑡) =

0.5

(0.01+𝑡2)2 (3.19) 

After each iteration, there is a decorrelate process 

 𝑊 = 𝑊(𝑊𝐻𝑊)−1/2, 𝑊(𝑓) = 𝑊(𝑓)𝑈(𝑓) (3.20) 

3.2.2 Permutation 

In ICA-FD, the signals are separated in each frequency bin independently. Thus 

after separation, the signals will be placed randomly. However, the separating vectors 

should have same order. Therefore, permutation indeterminacy problem occurs after 

that. In this part, power ratio method is applied to solve permutation indeterminacy 

problem. 



 

 15 

The power ratio between the 𝑖-th separated signal and the power sum of all 

separated signals [27]: 

 𝑝𝑜𝑤𝑅𝑎𝑡𝑖𝑜𝑖(𝑛, 𝑓) =
‖𝑎𝑖(𝑓)𝑦𝑖(𝑛,𝑓)‖2

∑ ‖𝑎𝑘(𝑓)𝑦𝑘(𝑛,𝑓)‖2𝑁
𝑘=1

 (3.21) 

where 0 ≤ 𝑝𝑜𝑤𝑅𝑎𝑡𝑖𝑜𝑖 ≤ 1. If the 𝑖-th signal is dominant, it will be closer to 1. And 

in frequency domain signal separation process, there is always one separated signal 

is dominant. 

The correlation coefficient 𝜌 between two real-valued sequences is 

 𝜌(𝑣𝑖, 𝑣𝑗) =
𝑟𝑖𝑗−𝜇𝑖𝜇𝑗

𝜎𝑖𝜎𝑗
 (3.22) 

where 𝑣𝑖  and 𝑣𝑗  are two real-valued sequences and 𝑟𝑖𝑗 = 𝐸{𝑣𝑖𝑣𝑗} , 𝜇𝑖 = 𝐸{𝑣𝑖} , 

𝜎𝑖 = √𝐸{𝑣𝑖
2} − 𝜇𝑖

2. 

In this paper, the correlation coefficients of power ratios should be calculated. 

Therefore, the two real-valued sequences are defined by power ratios: 

 𝑣𝑖
𝑓(𝑛) = 𝑝𝑜𝑤𝑅𝑎𝑡𝑖𝑜𝑖(𝑛, 𝑓) (3.23) 

[28] introduced two optimization techniques: global optimization and local 

optimization. This research applies global optimization method in permutation 

process. In global optimization, the cost function can be maximized: 

 𝛤({𝑐𝑘}, {𝛱𝑓}) = ∑ ∑ 𝜌(𝑣𝑖
𝑓

, 𝑐𝑘)|𝑖=𝛱𝑓(𝑘)
𝑁
𝑘=1𝑓∈𝐹  (3.24) 

where 𝑐𝑘(𝑛) ←
1

|𝐹|
∑ 𝑣𝑖

𝑓(𝑛)|𝑖=𝛱𝑓(𝑘)𝑓∈𝐹 , ∀𝑘, 𝑛 , 𝛱𝑓 ←

𝑎𝑟𝑔 𝑚𝑎𝑥
𝛱

∑ 𝜌(𝑣𝑖
𝑓

, 𝑐𝑘)|𝑖=𝛱𝑓(𝑘)
𝑁
𝑘=1 , ∀𝑓 ∈ 𝐹. And these two equations are iterated until 

convergence. 
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3.2.3 Scaling 

In ICA-FD, scaling ambiguity always occurs after separation. If 𝑊(𝑓) is the 

mixing matrix, when the rows of it are exchanged or multiplied by a constant, it is 

still a mixing matrix. In this case, permutation matrix is denoted by 𝑃(𝑓) , and 

scaling matrix is denoted by a diagonal matrix 𝛬(𝑓). 

With the permutation problem, the mixing matrix can be updated by [28] 

 𝑊(𝑓) ← 𝑃(𝑓)𝑊(𝑓) (3.25) 

If 𝐻(𝑓) is the unknown mixing matrix, then 

 𝛬(𝑓)𝑊(𝑓)𝐻(𝑓) = 𝑑𝑖𝑎𝑔[𝐻(𝑓)] (3.26) 

We define 𝑊(𝑓)𝐻(𝑓) = 𝐷(𝑓) where 𝐷(𝑓) is a diagonal matrix. Thus  

 𝐻(𝑓) = 𝑊−1(𝑓)𝐷(𝑓) (3.27) 

With all equations, the updating process is expressed by 

 𝑊(𝑓) ← 𝑑𝑖𝑎𝑔[𝑊−1(𝑓)]𝑊(𝑓) (3.28) 

Therefore, scaling ambiguity problem is solved with applying inverse DFT 

to 𝑊𝑖𝑗(𝑓). 

3.3. Multi-stage Independent Component Analysis (MSICA) 

As mentioned before, MSICA contains ICA-FD and ICA-TD [25]. The first 

stage is ICA-FD, which separates measured signals in frequency domain. ICA-FD is 

a high-stability method that can deal with convolutive mixing problem which results 

from large distance signal propagation or reflections.  
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The outputs of first stage are regarded as the input of second stage. The second 

stage is ICA-TD, which separates signals in time domain. ICA-TD is an efficient 

method which can remove the residual mixed components. 

 

Figure 3-2 Overall procedures for vibration signal separation for the industrial 

robot gearboxes 
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Chapter 4. Experiment Evaluation 

 
 

4.1 Experiment with MSICA 

4.1.1 Experiment Process 

To experimentally evaluate the multi-stage independent component analysis 

(MSICA), vibration signals measured on Hyundai industrial robot are analyzed. The 

industrial robot and its two gearboxes are shown in Figure 2-1. The closest axis to 

robot basement is named as 1st axis which is the heaviest axis. The 4th and 5th axis 

are close to the robot gripper, which are lighter axes. Two vibration sensors are 

attached on 4th gearbox and 5th gearbox for detecting vibration signals from gearbox 

shell. The vibration signals contain the signals from bearings, gears and so on. 

Therefore, the vibration signals measured from sensors can be used to diagnosis the 

faults of gearbox components. 

Due to small weights, the vibration amplitudes of 4th and 5th gearbox are large. 

And because of short distance between two axes, the vibration can influent each other. 

From Figure 2-1(b), it can be found that the distance between two gearboxes is 

resembling to the size of gearboxes. So the distances between components of 

gearboxes are different. Therefore, there can be convolutive vibration signal 

mixtures.  

In the experiment, two vibration sensors are attached on 4th and 5th gearbox to 

obtain vibration signals. The sampling rate of sensors is 25,600 Hz. Four comparison 

experiments are conducted in this subsection. The first experiment is conducted with 

normal bearings and gears. But in the second experiment, the faulty bearing is in 4th 

gearbox. And in the third and four experiments, only 4th axis and 5th axis have 
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motions. The third and four experiment modes are defined as single motion. And 

vibration signals are extracted from corresponding gearboxes, which are defined as 

single motion signals. The single motion signals are regarded as reference signals in 

this experiment, because there is no multi-axis interference participating in the single 

motion mode experiment. 

 

Figure 4-1 Four experiment modes 

 

Figure 4-2 demonstrates the rotation speed profiles of two axes. The maximum 

rotation speed is 2 revolutions per second (RPS). The vibration signals acquired from 

two sensors in the faulty mode are shown in Figure 4-3. The measured signals have 

constant speed components and varying speed components. However, variable speed 

will influence the diagnosis results. Therefore, only constant speed vibration signals 

are analyzed in experiment. Separation process and features extraction should be 

conducted in constant speed components of measured vibration signals. 

Figure 4-4 shows the constant speed signals and their frequency domain 

spectrums. The first row represents 4th gearbox and the second row is 5th gearbox. 

As shown in 4-4(b), both signals have high amplitude at 300Hz. And 4th gearbox 



 

 21 

signal also shows high amplitude at 2,500Hz and 4,000Hz. 5th gearbox signal has 

high amplitude at 1,800Hz, 3,000Hz, 3,800Hz, 4,800Hz and 5,000Hz. 

 

 

 

Figure 4-2 Speed profile of 4th axis and 5th axis 

 

Figure 4-3 Vibration signals measured from 4th axis and 5th axis 
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(a) 

 

 

(b) 

Figure 4-4 (a) Constant speed vibration signals, and (b) their spectrums 
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In the 1st stage, the signals are transferred into time-frequency domain by 

using short-time Fourier transform (STFT). The time-frequency spectrums of 

original measured signals are shown in Figure 4-5. X axis is time, and Y axis is 

frequency. The amplitude can be recognized by colors. The certain components of 

two signals are same in same time-frequency bins due to the signal mixing 

problem, especially at 300Hz, which show high amplitude in same time-frequency 

bins. 

In the first stage, ICA-FD is applied in each frequency bin. ICA-FD divides 

signals into 8,192 frequency bins. Signal separation, permutation and scaling 

process are conducted in each frequency bin. Figure 4-6 shows the time-frequency 

spectrums of separated signals after 1st stage. Traces of separation are clearly 

shown in the plots. The accuracy of this separation process cannot be 

demonstrated clearly in the spectrums, because the signals are extremely complex. 

But the accuracy of the method will be analyzed in next step. 

After separation in time-frequency domain, the separated signals are 

transferred back to time domain by using inverse short time Fourier transform 

(ISTFT). The estimated time domain signals after 1st stage are shown in Figure 

4-6(a).  

In the 2nd stage, ICA-TD is applied in time domain. Because the output of 

the 1st stage is the input of 2nd stage. Therefore, Figure 4-7(a) is also regard as 

the input of ICA-TD. And the estimated signals after 2nd stage are shown in 

Figure 4-7(b). Thus, Figure 4-7(b) is the final estimated signals after MSICA 

method. Features should be extracted in this final estimated signals. Figure 4-8 

shows the whole separation process of MSICA in this experiment. 
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(a) 

 

 

(b) 

Figure 4-5 Measured vibration signals in time-frequency domain: (a) 4th 

gearbox, (b) 5th gearbox 
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 (a) 

 

 

(b) 

Figure 4-6 Estimated independent source signals in time-frequency domain: (a) 

4th gearbox, (b) 5th gearbox 
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(a) 

 

  

(b) 

Figure 4-7 (a) Estimated independent source signals after ICA-FD, (b)  

Estimated independent source signals after MSICA 
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4.1.2 Result Analysis 

To confirm the validity and accuracy of MSICA method, the frequency 

spectrums of vibration signals are drawn. The frequency spectrums of final estimated 

vibration signals are shown in Figure 4-9. And because there is no multi-axis 

interference in the single motion experiments. Therefore, single motion signals can 

be regarded as correct vibration signals. The frequency spectrum of single motion 

signals can be used to compared with final estimated signals to confirm the validity 

of MSICA in industrial robot fault detection. Figure 4-10 shows the frequency 

spectrums of single motion signals. The comparison of estimated signals and single 

motion signals is shown in Figure 4-11. 

As shown in Figure 4-9 and Figure 4-11, the estimated signals have same trend 

with single motion signals for both axes. Especially, the high amplitude components 

are located in same frequencies. For instance, the high amplitude in 300Hz is 

eliminated in 4th gearbox vibration signal but still remains in 5th gearbox signal, 

which is same with single motion vibration signals. Therefore, MSICA can restore 

the vibration signals and can separate the signals correctly in 300Hz frequency bin. 

To confirm the performance of MSICA in industrial robot fault diagnosis, RMS 

features are extracted in the 1st experiment and the 2nd experiment which are 

performed in normal mode and faulty mode. The comparison of root mean square 

(RMS) and the comparison of RMS ratio of two experiments are shown in Figure 4-

12 and Figure 4-13. In RMS feature calculation, more than 8 constant speed intervals 

of vibration signals are analyzed, where the results are convincing. 

RMS reflects energy of vibration signals in time domain [29]. Therefore, when 

RMS feature increase a lot, the mechanism component can be defined as a faulty 

component. Thus, RMS ratio can show the results more clearly, which is the ratio 
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between RMS in faulty mode and RMS in normal mode. When RMS ratio is close 

to 1, the component can be defined in normal condition. 

As demonstrated in Figure 4-12 and Figure 4-13, the diagnosis results show that 

both gearboxes are faulty from measured signals without MSICA method. However, 

with MSICA technique separating the measured signals, RMS ratio of 5th gearbox 

becomes close to 1 which is same with real situation. And 4th gearbox is still a faulty 

gearbox with MSICA method. Therefore, from this result, it can be found that 

MSICA method is effective in separating the vibration signals for gearbox diagnosis 

in industrial robots.   

 

 

 

Figure 4-9 The spectrum of final estimated independent source signals 

 

 

Figure 4-10 The spectrum of single motion signals 
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(a) 

 

 

(b) 

Figure 4-12 Comparison of RMS: (a) 4th gearbox, (b) 5th gearbox  

Before - before the method; After - After the method; Fault(4th) - 

when 4th gearbox is faulty  
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(a) 

 

 

(b) 

Figure 4-13 Comparison of RMS ratio: (a) 4th gearbox, (b) 5th gearbox 

Before - before the method; After - After the method; Fault(4th) - 

when 4th gearbox is faulty  
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4.2 Comparison Experiment Using Basic ICA Method 

The comparison experiment is conducted in this research. The experiment is 

designed to compare the efficiency of MSICA method and basic ICA method in fault 

detection of gearboxes in industrial robots. The basic ICA is the method which 

separates the signals in time domain using FastICA algorithm. In this experiment, 

the same vibration signals are selected to do analysis. Thus, the faulty bearing is still 

in 4th gearbox, and 5th gearbox is in normal condition. And experiments in four 

experiment modes are conducted in this subsection. The separation process of basic 

ICA method is drawn in Figure 4-14. 

 

Figure 4-14 Separation process of basic ICA method 

The observed vibration signals are shown in Figure 4-15(a) and estimated 

vibration signals using ICA method are shown in Figure 4-15(b). The spectrums of 

measured and estimated vibration signals using ICA are shown in Figure 4-16.  

As shown in Figure 4-16(b), the estimated vibration signal of 4th gearbox has 

high amplitude at 4,500Hz and 4,800Hz, which is not correct separation result. 

Because the measured 4th gearbox signal does not have high amplitude at 4,500Hz 

and 4,800Hz. And also the estimated vibration signal of 4th gearbox has high 

amplitude at 300Hz, which is different with the single motion signals. And the 

estimated vibration signal of 5th gearbox has wrong amplitude at 300Hz. Therefore, 

basic ICA method cannot separate the vibration signals correctly. 
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(a) 

 

 

(b) 

Figure 4-15 (a) Observed vibration signals, (b) Estimated vibration signals using 

ICA method 
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(a) 

 

 

(b) 

Figure 4-16 (a) Spectrums of observed signals, (b) Spectrums of estimated 

signals using ICA method 
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To further confirm the results, the comparison of RMS of 4th gearbox and 5th 

gearbox using ICA method are shown in Figure 4-17 and Figure 4-18. As 

demonstrated in Figure 4-17 and Figure 4-18, the diagnosis results show that both 

gearboxes are faulty from measured signals without any separation method. However, 

with basic ICA, both of them are still faulty, which is different from the real situation. 

The figure also shows that basic ICA method cannot correctly separate the vibration 

signals for gearbox diagnosis in industrial robots. 

 

 

 

(a) 

 

 

(b) 

Figure 4-17 Comparison of RMS using ICA method: (a) 4th gearbox, (b) 5th 

gearbox 
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(a) 

 

 

(b) 

Figure 4-18 Comparison of RMS ratio using ICA method: (a) 4th gearbox, (b) 

5th gearbox  
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4.3 Comparison Experiment Using ICA-FD Method 

The experiment is designed to compare the efficiency of ICA-FD and MSICA 

in fault detection of gearboxes in industrial robots. The ICA-FD is the method which 

separates signals in frequency domain. In this experiment, the same vibration signals 

are selected to be analyzed. Therefore, the faulty bearing is still in 4th gearbox, and 

5th gearbox is still in normal condition. And experiments in four experiment modes 

are conducted in this subsection. The separation process of ICA-FD method in shown 

in Figure 4-19. 

 

Figure 4-19 Separation process of ICA-FD method 

 The measured vibration signals are shown in Figure 4-20(a) and estimated 

vibration signals using ICA-FD method are shown in Figure 4-20(b). The spectrums 

of measured signals and estimated signals using ICA-FD method are shown in Figure 

4-21. In Figure 4-21(b), the estimated signals using ICA-FD have same spectrums 

with single motion signals, which are shown in Figure 4-10. Therefore, the effect of 

ICA-FD method cannot be easily distinguished in the spectrums due to the complex 

vibration signals. In this case, RMS feature calculation results can be used to 

examine the effect differences between ICA-FD and MSICA. 
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(a) 

 

 

(b) 

Figure 4-20 (a) Observed vibration signals, (b) Estimated vibration signals using 

ICA-FD method 
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(a) 

 

 

(b) 

Figure 4-21 (a) Spectrums of observed signals, (b) Spectrums of estimated 

signals using ICA-FD method 
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The comparisons of RMS and RMS ratio between 4th axis gearbox and 5th axis 

gearbox after ICA-FD method are shown in Figure 4-22 and Figure 4-23. As shown 

in the figures, ICA-FD could separate the vibration signals correctly in this 

experiment. RMS feature calculation results show that both gearboxes are faulty 

from original measured signals. However, with ICA-FD method, the result shows 

4th gearbox is faulty and 5th gearbox is in normal situation, which is same with the 

real situation. 

Figure 4-24 shows the comparison of RMS ratio in 5th axis gearbox using ICA-

FD and MSICA method. As demonstrated in Figure 4-24, ICA-FD could eliminate 

partial multi-axis interference. However, compared with MSICA, ICA-FD is less 

efficient in vibration signal separation in industrial robots. And MSICA can eliminate 

more interference from 4th gearbox since RMS feature of MSICA shows better 

results. Because the 2nd stage of MSICA method can eliminate the residual mixed 

components. Therefore, compared with ICA-FD, the efficiency of MSICA is better 

when applied into industrial robots. 
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(a) 

 

 

(b) 

Figure 4-22 Comparison of RMS using ICA-FD method: (a) 4th gearbox, (b) 5th 

gearbox 
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(a) 

 

 

(b) 

Figure 4-23 Comparison of RMS ratio using ICA-FD method: (a) 4th gearbox, 

(b) 5th gearbox 
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(a)  

 

 

(b) 

Figure 4-24 Comparison of RMS ratio in 5th axis gearbox using (a) FDICA and 

(b) MSICA method 
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Chapter 5. Discussion and Conclusion 

 
 

5.1 Conclusions and Contributions 

A vibration signal separation method for gearbox fault diagnosis in industrial 

robots was presented in this research by using multi-stage independent component 

analysis technique which has two stages. The first stage is frequency domain 

independent component analysis, which is aiming to separate the convolutive 

mixture. The second stage is time domain independent component analysis, which is 

aiming to separate linear mixture and remove the residual mixed components.  

The experiment results showed the efficiency of this method in robot fault 

diagnosis. In the experiment, the faulty gear is in 4th gearbox. However, without 

MSICA method, the vibration signals from 4th gearbox and 5th gearbox are mixed 

with each other. The fault detection results show that both gearboxes are faulty. But 

in the experiment, MSICA separates the mixed vibration signals. And it shows that 

only 4th gearbox is faulty but 5th gearbox is normal case, which is correct result and 

same with the real situation. And also, as shown from the frequency spectrums of 

measured signals and estimated signals, MSICA method separates vibration signals 

correctly. Thus, MSICA is a suitable technique in industrial robot fault detection. 

Therefore, from the experiment results, the following conclusions can be drawn: 

(1) MSICA method can separate the vibration signals successfully in industrial 

robot from mixed signals, which are measured from vibration sensors attached on 

4th axis and 5th axis.  

(2) The technique can correctly get the diagnosis result, which is same with the 

real condition.  
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(3) Compared with basic ICA method and ICA-FD method, MSICA method is 

more suitable when applied into industrial robots. 

5.2 Future Work 

1)  Combine machine learning with time-frequency domain mask, to improve the 

efficiency of vibration signal separation. [30] 

In speech separation, there is a more efficient method to separate speech 

signals. time-frequency domain mask is a mask multiplied to time-frequency 

spectrum of original measured signals. The separation process is extremely 

efficient due to the simple calculation process. However, the limitation of time-

frequency domain mask is that there must be a train set for machine learning 

which includes single motion signals and measured mixed signals. But this 

issue will bring more difficulties for experiments. Because the time series of 

single motion signals should be simultaneous with measured mixed signals. 

With this problem solved, time-frequency domain mask will be an efficient 

method to eliminate multi-axis interference in industrial robot fault detection. 

2)  Application of this technique into general motions. 

The experiment is conducted with 4th gearbox and 5th gearbox, and it is 

confirmed that the multi-axis interference and separation process cannot 

influence other gearboxes. Therefore, this method can be applied into general 

motions and real manufacturing process where all axes have motions.  
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