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Abstract

Minimization of Multi-Axis Interference for Fault Detection

of Industrial Robots Based on Blind Source Separation

YUAN HAO

School of Mechanical and Aerospace Engineering
The Graduate School

Seoul National University

As smart factory is becoming popular, industrial robots are highly demanding
in many manufacturing fields for factory automation. Unpredictable faults in the
industrial robot could bring about interruptions in the whole manufacturing process.
Therefore, many methods have been developed for fault detection of the industrial
robots. Because gearboxes are the main parts in the power transmission system of
industrial robots, fault detection of the gearboxes has been widely investigated.
Especially, vibration analysis is a well-established technique for fault detection of

the industrial robot gearbox.

However, the vibration signals from the gearboxes are mixed convolutively and
linearly at each axes, which makes it difficult to locate a damaged gearbox, and
reduce fault detection performance. Thus, this paper develops a vibration signal
separation technique for fault detection of industrial robot gearboxes under multi-
axis interference. The developed method includes two steps, frequency domain
independent component analysis (ICA-FD) and time domain independent

component analysis (ICA-TD). ICA-FD is aimed at separating convolutive mixture
b _‘; B ;:



of signals, and ICA-TD is aimed at eliminating the residual mixed components.

The experiment is performed to demonstrate the effectiveness of the proposed
method. The results show that the proposed method could successfully separate the
mixed signals by obtaining vibration signals from each gearbox, and enhance fault

detection performance for the industrial robot gearboxes.
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Chapter 1. Introduction

1.1 Background and Motivation

With the development of Industrial 4.0, smart factory becomes popular all over
the world. And industrial robots play a significant role in the automation of
manufacturing processes in smart factory [1]. The industrial robots have larger
bearing capacity than human workers, and can operate in complex environment [2].
The global industrial robotics market is expected to achieve $70.7 billion in 2023,
and it grew from $37.9 billion with a compound annual growth rate (CAGR) of 9.4%
from 2017 to 2023 [3]. However, nowadays, there are huge amount of downtime loss
in manufacturing processes due to unexpected faults of industrial robots. One survey
estimated downtime cost in the automotive industry at an average of $22,000 per
minute [4, 5]. Therefore, many fault detection techniques have been developed for

industrial robots to solve the problem [6].
1.2 Scope of Research

Failures in industrial robots are resulting from both electronic [7] and
mechanical components [8]. Approximately 45% of failures are from mechanical
problems [9]. And gearbox is an important composition of the mechanical
components in industrial robots. Fault detection of gearboxes have also been
investigated [10-12]. Especially, vibration analysis is a well-established technique
for fault detection of the industrial robot gearbox. Erik Olsson et al. [13] used
acoustic signals and case-based reasoning to diagnose the faults in industrial robot,
which initiated the vibration analysis in industrial robot. Ikbal Eski et al. [14] applied

artificial neural networks to detect faults on robot manipulators.



However, the vibration signals from each gearbox can be mixed each other in
the diagnostic methods because industrial robots usually have multiple axes. The
mixed signals make it difficult to locate a damaged gearbox, and reduces fault
detection performance. Thus, it is important to separate the mixed signals for fault
detection of gearboxes in industrial robots. Gelle et al. [15] developed blind source
separation (BSS) into acoustical and vibration analysis of rotating machines. The
experiments were based on simple mechanism. Xinhao Tian et al. [16] utilized
independent component analysis (ICA) in the frequency domain and wavelet
filtering to do gearbox fault diagnosis, which took ICA into complex mechanism
fault detection. Leng et al. [17] combined ensemble empirical mode decomposition
(EEMD) and constrained independent component analysis (CICA), which can
extract fault features based on single-channel signal. However, those studies were
only limited to vibration separation of different components in a single gearbox, and

have not been applied to multiple gearboxes in industrial robots.

Independent component analysis (ICA) is one of the blind source separation
techniques that has been used for feature extraction and signal separation in speech
recognition [18], medical signal processing [19] and machinery condition
monitoring [20]. Lisa J. Stifelman [21] first introduced the cocktail party effect in
auditory interfaces, which took blind source separation into research field. Then, a
fast fixed-point algorithm for independent component analysis (FastICA) was
introduced by Aapo Hyvérinen and Erkki Oja [22, 23]. FastICA can separate linearly
mixed time series with low accuracy. E. Bingham and A. Hyvérinen [24] proposed a
fast fixed-point algorithm for independent component analysis of complex valued
signals (c-FastICA). To separate the signals in reverberant condition, Tsu Nishikawa
et al. [25] proposed multistage ICA (MSICA) method for blind source separation. It

used frequency domain ICA method (ICA-FD) to solve convolutive BSS problems.

In addition, time domain ICA method (ICA-TD) was used to solve resid_l_@; crosstalk]| =

2



components problem. The basic structure of MSICA method are demonstrate in

Figure 1-2.

Market Revenue for Industrial
Robot in USA

Industrial robot market in USA
from 2016 to 2020 (Billion $)
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Figure 1-1 Market Revenue for Industrial Robot in USA

In this paper, we develop MSICA method into fault detection of gearboxes in
industrial robots. In industrial robots, because the distances between gearboxes are
different, and the size of gearboxes are various. If the distance between two
gearboxes is small and the two gearboxes are large which makes the distance is
resembling to the size of gearboxes, the vibration signals from gearboxes will be
convolutively and linearly mixed. Because the largest and shortest distance between
gearbox components are quite different. And convolutive signal mixing problems
arise when there is time delay between signals from large distance signal propagation
or reflections [26]. Linear mixing problems arise when the time delay approach to
zero. Therefore, some vibration signal in the industrial robot are convolutively mixed,
and some are linearly mixed.

5 A=t 8t
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Thus, multistage [CA method is efficient to separate the mixed signals in the
industrial robots. The first stage is ICA-FD, which can separate convolutive mixed
vibration signals and the second stage is [CA-TD, which can separate linearly mixed
signals, and also deal with residual mixed components. After the separation of
vibration signals, root mean square (RMS) is calculated by extracting constant speed
parts of the measured vibration signals to quantify the fault severity. The diagnosis

results are obtained from from RMS feature calculation.

[ Observed Signals ]

ICA-FD  [------ -

!/ [ Separated Signals ]

residual crosstalk
ICA-TD  [r~ components

Final Separated
Signals

Figure 1-2 Structure of Multi-Stage Independent Component Analysis (MSICA)



1.3 Structure of the Thesis

The rest of the paper is structured as follows. The structure of industrial robot
is introduced in Chapter 2. The analytical theories of ICA-TD, ICA-FD and MSICA
are introduced firstly in Chapter 3. In Chapter 4, the performance of the developed
technique is then experimentally evaluated on the base of using industrial robot
vibration data signals measured from gearboxes of an industrial robot. And

conclusions and future work are summarized in Chapter 5.



Chapter 2. Structure of Industrial Robot

2.1 Structure of Experimental Robot

Figure 2-1(a) shows a six-axis industrial robot and Figure 2-1(b) shows its 4th
axis and 5th axis. Six gearboxes and motors are located in each axis to drive the
movements. Every axis can rotate by 360°. Vibration arises from gear mesh and
bearing rotation in gearboxes when axes have movements. Because the weights and

scales are different in arms, the amplitudes of vibration in each gearbox are different.

To detect vibration signals from gearboxes, six vibration sensors are attached
on each gearbox. The sensors can observe vibration signals by relative displacements
between the inertia mass and the shell in sensors. As shown in Figure 2-1(b), two
vibration sensors are attached on 4th gearbox and 5th gearbox. The vibration signals
detected from sensors are used to calculate features for fault diagnosis. The distance
between two gearboxes is small and the sizes of gearboxes are large. Therefore, the

vibration can influence each other in these axes.

Thus, the vibration signals detected from sensors are mixed signals. In robot
fault detection process, measured signals are need to calculate diagnosis features.
The detected vibration signals cannot be used if they are mixed signals. Therefore,
the mixed vibration signals should be separated into source signals. After separation,

the correct information can be obtained from the source signals.



(b)

Figure 2-1 (a) Experiment industrial robot, and (b) its 4th axis and 5Sth axis
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2.2 Problem in Industrial Robot Fault Detection

As shown in Figure 2-2, in the industrial robot, especially 4th axis and 5th axis.
Two vibration sensors are attached on both gearboxes separately. When using sensors
to obtain signals, the signals from the 4th and 5th gearbox will be mixed into sensors.
Also, the root mean square (RMS) is calculated from detected vibration signals. As
shown in Figure 2-2, the faulty component exists in 4th gearbox. However, if RMS
is calculated in 4th gearbox single motion mode when there is only 4th axis rotating,
RMS result shows that 4th gearbox is faulty. And RMS result in 5th gearbox single
motion mode shows that 5th gearbox is in normal condition. But when calculating
RMS feature in multi-axis motion, RMS result shows that both 4th gearbox and 5th
gearbox are faulty. Thus, this signal mixing problem can influence the fault detection
results. This vibration signal mixing problem in industrial robot fault detection can
be defined as multi-axis interference. Therefore, to separate the sensor signals, blind

source separation method can be applied into vibration signals mixing problem.

The multi-axis interference is disparate in different industrial robots, because
the lengths of arms are variable and also the weight varies. Furthermore, in
experimental industrial robot, due to the longer length between 4th and Sth axes, the
vibration signals are convolutively and linearly mixed. Therefore, the mixed signals
should be separated in frequency domain firstly. And because the distances of the
components of 4th gearbox and 5th gearbox are different, there can be residual mixed
components after separation in frequency domain. Then time domain separation can

be applied in order to deal with the residual mixed components.
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Chapter 3. Methodology

3.1. Time Domain Independent Component Analysis (ICA-TD)

Time domain independent component analysis (ICA-TD) is a method that can
find underlying signals from a set of mixed signals in time domain. ICA-TD is
suitable to separate linear signal mixtures. It considers measured multi-channel
signals as a mixture of independent component signals. In ICA-TD, preprocessing is
needed which includes centering and whitening. Centering process is responsible for
transferring the vibration data into the zero mean valued signals. And whitening
process is to making the signals have unity variances. After preprocess, separation

process is introduced below.

If we define s;(t) the independent component signals and define x;(t) the

measured mixed signals. The measured signals can be expressed as below

x;(1) = Yoy aij * 55(0) (3.1)

where j is the serial number of the independent component signals (1 < j < N), i
is the serial number of the measured multi-channel signals (1 < i < M) and q;; is
the unknown coefficient from s;(t) to x;(t). Let s =[sq,5;,83,..5y] be a
vector of independent component signals, x = [xq,x,,X3,...Xy] be a vector of

measured multi-channel signals, then
X=Ax*s (3.2)

where A is the mixing matrix, which should be estimated in signal separation
process. Define y = [yq,¥2, V3, -..Yn] the vector of estimation of the independent

component signals s, then

10



y=W=*x (3.3)
where W is the separating matrix, and W = A1,

The fast fixed-point ICA (FastICA) algorithm assumes that when a set of non-
Gaussian signals get into mixtures, it is closer to following a Gaussian distribution.
Therefore, the non-Gaussianization can separate the mixtures into independent
component signals. To measure the non-Gaussianity of signals, negentropy is always

used in ICA. [22, 23]

J) = HWgauss) — HQY) (3.4)

where Ygquss 18 @ Gaussian random variable which has same covariance matrix

with y. And H(y) is the differential entropy with the definition
H(y) = — [ py(Mlogpy (m)dn (35)
In FastICA algorithm, the approximation of negentropy is defined as [22, 23]
J@) < [E{G()} — E{G(v)}]? (3.6)

where the mean of y, v are zero and y, v are unit variance. And G can be any

non-quadratic function. In FastICA, G is suggested to be
1 a2
G, (y) = .- log cosh(a,y), G,(¥) = —exp(5-) (3.7)
where 1 < a; < 2, and it is usually selected to be 1.

In FastICA algorithm, the separating matrix w is obtained in an iterative

process. In fixed-point update process, the update function is

w < E{zgw'2)} — E{g'Ww"2)}w 3.7)

11



where g(y) canbe

9:1) = tanh(a,y), g.() = exp(=y?/2), gs(y) = y> (3.8)

3.2. Frequency Domain Independent Component Analysis
(ICA-FD)

Frequency domain independent component analysis (ICA-FD) is used to deal
with convolutive signal mixing problem, which arises when there is a time delay
resulting from large distance signal transmission or reflections. In ICA-FD method,
the signals are separated in frequency domain. Therefore, there are several steps.
Firstly, the signals are transferred into frequency domain. After that, the signals are
separated in each frequency bin. Because separation is done in each frequency bin
independently, the permutations in each frequency bin are different. However, the
separating vectors should have same order. Thus, permutation indeterminacy and

scaling ambiguity are solved in next step.
3.2.1 Separation

In convolutive signal mixing problem, if we define h;;(7) the impulse
response from source j to sensor I, the measured multi-channel signals can be

expressed by [23, 24]

x;i(8) = XN X by (D)s;(t — T) (3.9)

where j isthe serial number of the independent source signals (1 < j < 2), i isthe
serial number of the measured multi-channel signals (1 <i<M). Let s =
[S1,52,83,...Sy] is a vector of independent component signals, x =

-

[x1, %2, X3, ... Xy] is a vector of measured multi-channel signals, then 9 +1]
A = LH

12



x(t) = Y h(r)s(t —1) (3.10)

where h(r) is the mixing matrix. Define y = [y;,¥2,V3,...Yn] the vector of

estimation of the independent component signals s, y;(t) can be expressed by
yi(®) = X, Yo byi(0)x(t — 1) (3.11)
where bj;(7) is the impulse response in separation process.

In ICA-FD, y is estimated in frequency domain. Therefore

x;(n, f) =21 hij(F)si(n, f) (3.12)

where x;(n, f) is the short-time Fourier transform (STFT) result of x;(t), s;j(n, f)
is STFT result of s;(t). f =1,...,F is the frequency bin index and n =1, ...,N

is the frame index. And h;;(f) is the impulse response in frequency domain.

In frequency domain, the measured multi-channel signals can be written by

X(k, f) = H(f)S(k, f) (3.13)

Separation process can be applied in each frequency bin, and

Y(k,f) =W)Xk, f) (3.14)

where Y (k, f) is the estimation of independent component signals and W (f) is

the separation matrix in each frequency bin.

In frequency domain, the signals are complex valued, so complex-valued ICA
is applied in ICA-FD. One of the most popular method is complex-valued FastICA
algorithm (c-FastICA). In complex value signal separation, kurtosis of the signals

can be used as a measure of non-Gaussianity. Kurtosis is defined by [23, 24]



kurt(y) = E{ly|*} - 2(E{lyI’) — [E{y*}1? = E{ly|*} -2 (3.15)
In c-FastICA, the approximation of kurtosis is defined as [23, 24]
Jw) = E{G(Iw"x|*)} (3.16)

where G is a smooth even function and ||w|| = 1. In c-FastICA, G is suggested to

be

1

G (V) = a1 +y, G(¥) =log(az +¥), Gz(») =5y? (3.17)

where a; and a, can be any constant value. They are usually selected to be 0.01.
The separating matrix w is obtained in an iterative process. In fixed-point update

process, the update function is
w < E{y(w"x) g(Iw"x|%)} — E{g(Iw"x|?) + w"x|?g'(Iw" x|*)}w(3.18)

where y = w¥x. And

— 1 ’ _ 0.5
g(t) - (0.01+t2) ! g (t) - (0-01+t2)2 (319)

After each iteration, there is a decorrelate process
W =wWHw)=2, W(f) = W(HU() (3.20)
3.2.2 Permutation

In ICA-FD, the signals are separated in each frequency bin independently. Thus
after separation, the signals will be placed randomly. However, the separating vectors
should have same order. Therefore, permutation indeterminacy problem occurs after
that. In this part, power ratio method is applied to solve permutation indeterminacy

problem.

14



The power ratio between the i-th separated signal and the power sum of all

separated signals [27]:

lai(Hyim.II?
21
= illar(NyremOI? (3.21)

powRatio;(n, f) = 5

where 0 < powRatio; < 1. Ifthe i-th signal is dominant, it will be closer to 1. And
in frequency domain signal separation process, there is always one separated signal

is dominant.
The correlation coefficient p between two real-valued sequences is

p(vivy) = "o (3.22)

JiO'j

where v; and v; are two real-valued sequences and 1;; = E{v;v;}, u; = E{v;},

0; = VE{v;?} — %

In this paper, the correlation coefficients of power ratios should be calculated.

Therefore, the two real-valued sequences are defined by power ratios:
vif(n) = powRatio;(n, f) (3.23)

[28] introduced two optimization techniques: global optimization and local
optimization. This research applies global optimization method in permutation

process. In global optimization, the cost function can be maximized:
F({ced {11r}) = Trer Xh=1 p(vifrck)li=17f(k) (3.24)
1
where cr(n) « mzfep vif(n)li=nf(k) ,Vk,n , Iy «

arg max N4 p(vif ,Ci) li=n k)Y f € F.And these two equations are iterated until

convergence.

15
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3.2.3 Scaling

In ICA-FD, scaling ambiguity always occurs after separation. If W (f) is the
mixing matrix, when the rows of it are exchanged or multiplied by a constant, it is
still a mixing matrix. In this case, permutation matrix is denoted by P(f), and

scaling matrix is denoted by a diagonal matrix A(f).
With the permutation problem, the mixing matrix can be updated by [28]
W(f) « P(OW() (3.25)
If H(f) is the unknown mixing matrix, then
AOW(HH(f) = diag[H(f)] (3.26)
We define W(f)H(f) = D(f) where D(f) is a diagonal matrix. Thus
H(f) =W~ (HD() 3.27)
With all equations, the updating process is expressed by

W(f) « diag[W= (NIW () (3.28)

Therefore, scaling ambiguity problem is solved with applying inverse DFT

to Wi;(f).
3.3. Multi-stage Independent Component Analysis (MSICA)

As mentioned before, MSICA contains ICA-FD and ICA-TD [25]. The first
stage is ICA-FD, which separates measured signals in frequency domain. ICA-FD is
a high-stability method that can deal with convolutive mixing problem which results

from large distance signal propagation or reflections.
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The outputs of first stage are regarded as the input of second stage. The second
stage is ICA-TD, which separates signals in time domain. I[CA-TD is an efficient

method which can remove the residual mixed components.

[ Observed Signals ]

@il [ Estimated Signals ]

Separation | Decorrelation

- a
< |- Permutation | Separation | —
o i Q)
= |z
L —
Scaling Whiten <

El

Center

L

ist

Figure 3-2 Overall procedures for vibration signal separation for the industrial

robot gearboxes
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Chapter 4. Experiment Evaluation

4.1 Experiment with MSICA
4.1.1 Experiment Process

To experimentally evaluate the multi-stage independent component analysis
(MSICA), vibration signals measured on Hyundai industrial robot are analyzed. The
industrial robot and its two gearboxes are shown in Figure 2-1. The closest axis to
robot basement is named as 1st axis which is the heaviest axis. The 4th and 5th axis
are close to the robot gripper, which are lighter axes. Two vibration sensors are
attached on 4th gearbox and 5th gearbox for detecting vibration signals from gearbox
shell. The vibration signals contain the signals from bearings, gears and so on.
Therefore, the vibration signals measured from sensors can be used to diagnosis the

faults of gearbox components.

Due to small weights, the vibration amplitudes of 4th and 5th gearbox are large.
And because of short distance between two axes, the vibration can influent each other.
From Figure 2-1(b), it can be found that the distance between two gearboxes is
resembling to the size of gearboxes. So the distances between components of
gearboxes are different. Therefore, there can be convolutive vibration signal

mixtures.

In the experiment, two vibration sensors are attached on 4th and 5th gearbox to
obtain vibration signals. The sampling rate of sensors is 25,600 Hz. Four comparison
experiments are conducted in this subsection. The first experiment is conducted with
normal bearings and gears. But in the second experiment, the faulty bearing is in 4th
gearbox. And in the third and four experiments, only 4th axis and 5th axis have

:l b

-
|
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motions. The third and four experiment modes are defined as single motion. And
vibration signals are extracted from corresponding gearboxes, which are defined as
single motion signals. The single motion signals are regarded as reference signals in
this experiment, because there is no multi-axis interference participating in the single

motion mode experiment.

1st 2nd 3rd 4th
Experiment Experiment Experiment Experiment
Normal Faulty Single Motion Single Motion
Mode Mode Mode (4™ Axis) Mode (5™ Axis)
4™ Gearbox 5™ Gearbox 4™ Gearbox 5™ Gearbox 4™ Gearbox 5% Gearbox
Normal Normal Faulty Normal Faulty Normal
Y lScparation “* Separation . - ‘
‘ Y
3 4th Gearbox (From Sensors) 3 4th Gearbox (From Sensors) v

| e R 4th Gearbox (Single) 2—oth Gearbox (Single)
Qo e 005 01 015 02 035 03

5th Gearbox (From Sensors) 5th Gearbox (From Sensors) o5 o
e Tl 3—— T v Time(s)

L b i | et

Figure 4-1 Four experiment modes

Figure 4-2 demonstrates the rotation speed profiles of two axes. The maximum
rotation speed is 2 revolutions per second (RPS). The vibration signals acquired from
two sensors in the faulty mode are shown in Figure 4-3. The measured signals have
constant speed components and varying speed components. However, variable speed
will influence the diagnosis results. Therefore, only constant speed vibration signals
are analyzed in experiment. Separation process and features extraction should be

conducted in constant speed components of measured vibration signals.

Figure 4-4 shows the constant speed signals and their frequency domain

spectrums. The first row represents 4th gearbox and the second row is 5th gearbox.

As shown in 4-4(b), both signals have high amplitude at 300Hz. And i‘%. gﬁrb?x”
# ’ = L
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signal also shows high amplitude at 2,500Hz and 4,000Hz. 5th gearbox signal has
high amplitude at 1,800Hz, 3,000Hz, 3,800Hz, 4,800Hz and 5,000Hz.

4th Axis Speed Profile

: T MWW\‘
JllHJHI]JHR)‘fuu)\/s HJ

o 40 60 80
Time(s)

S5th Axis Speed Profile
Istoin AL
"l J L JIJ JJN WWNWW 1l IH

0 20 60 80
Tlmc(s)

RPS
=

RPS
°

Figure 4-2 Speed profile of 4th axis and 5th axis

Measured Signal: 4th Gearbox

2 - ‘ >
0 5 10 15 20 25 30

Time(s)
Measured Signal: Sth Gearbox

Amp.
(=]

'
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2 | 4
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< J ¢
-2
0 S 10 15 20 25 30
Time(s)

Figure 4-3 Vibration signals measured from 4th axis and 5th axis
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To0 005 01 015 02 025 03
Time(s)
Measured Signal: Sth Gearbox
2

0 005 01 015 02 025 03
Time(s)

(@)

1 Measured Signal: 4th Gearbox

0.
="
£ 0.05
<
0

0 5000 10000 15000
Frequency(Hz)

Measured Signal: 5th Gearbox

0.1
£ 0.05
< :

0 Ladhiaad Ll 4

0 5000 10000 15000
Frequency(Hz)

(b)

Figure 4-4 (a) Constant speed vibration signals, and (b) their spectrums
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In the 1st stage, the signals are transferred into time-frequency domain by
using short-time Fourier transform (STFT). The time-frequency spectrums of
original measured signals are shown in Figure 4-5. X axis is time, and Y axis is
frequency. The amplitude can be recognized by colors. The certain components of
two signals are same in same time-frequency bins due to the signal mixing
problem, especially at 300Hz, which show high amplitude in same time-frequency

bins.

In the first stage, ICA-FD is applied in each frequency bin. ICA-FD divides
signals into 8,192 frequency bins. Signal separation, permutation and scaling
process are conducted in each frequency bin. Figure 4-6 shows the time-frequency
spectrums of separated signals after 1st stage. Traces of separation are clearly
shown in the plots. The accuracy of this separation process cannot be
demonstrated clearly in the spectrums, because the signals are extremely complex.

But the accuracy of the method will be analyzed in next step.

After separation in time-frequency domain, the separated signals are
transferred back to time domain by using inverse short time Fourier transform
(ISTFT). The estimated time domain signals after 1st stage are shown in Figure

4-6(a).

In the 2nd stage, ICA-TD is applied in time domain. Because the output of
the 1st stage is the input of 2nd stage. Therefore, Figure 4-7(a) is also regard as
the input of ICA-TD. And the estimated signals after 2nd stage are shown in
Figure 4-7(b). Thus, Figure 4-7(b) is the final estimated signals after MSICA
method. Features should be extracted in this final estimated signals. Figure 4-8

shows the whole separation process of MSICA in this experiment.
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Figure 4-5 Measured vibration signals in time-frequency domain: (a) 4th
gearbox, (b) 5th gearbox
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Figure 4-6 Estimated independent source signals in time-frequency domain: (a)
4th gearbox, (b) 5th gearbox
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Figure 4-7 (a) Estimated independent source signals after ICA-FD, (b)

Estimated independent source signals after MSICA
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4.1.2 Result Analysis

To confirm the validity and accuracy of MSICA method, the frequency
spectrums of vibration signals are drawn. The frequency spectrums of final estimated
vibration signals are shown in Figure 4-9. And because there is no multi-axis
interference in the single motion experiments. Therefore, single motion signals can
be regarded as correct vibration signals. The frequency spectrum of single motion
signals can be used to compared with final estimated signals to confirm the validity
of MSICA in industrial robot fault detection. Figure 4-10 shows the frequency
spectrums of single motion signals. The comparison of estimated signals and single

motion signals is shown in Figure 4-11.

As shown in Figure 4-9 and Figure 4-11, the estimated signals have same trend
with single motion signals for both axes. Especially, the high amplitude components
are located in same frequencies. For instance, the high amplitude in 300Hz is
eliminated in 4th gearbox vibration signal but still remains in 5th gearbox signal,
which is same with single motion vibration signals. Therefore, MSICA can restore

the vibration signals and can separate the signals correctly in 300Hz frequency bin.

To confirm the performance of MSICA in industrial robot fault diagnosis, RMS
features are extracted in the 1st experiment and the 2nd experiment which are
performed in normal mode and faulty mode. The comparison of root mean square
(RMS) and the comparison of RMS ratio of two experiments are shown in Figure 4-
12 and Figure 4-13. In RMS feature calculation, more than 8 constant speed intervals

of vibration signals are analyzed, where the results are convincing.

RMS reflects energy of vibration signals in time domain [29]. Therefore, when

RMS feature increase a lot, the mechanism component can be defined as a faulty

component. Thus, RMS ratio can show the results more clearly, which is the ratio_.
b ) 11 ==
A -;_-1_.. O
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between RMS in faulty mode and RMS in normal mode. When RMS ratio is close

to 1, the component can be defined in normal condition.

As demonstrated in Figure 4-12 and Figure 4-13, the diagnosis results show that
both gearboxes are faulty from measured signals without MSICA method. However,
with MSICA technique separating the measured signals, RMS ratio of 5th gearbox
becomes close to 1 which is same with real situation. And 4th gearbox is still a faulty
gearbox with MSICA method. Therefore, from this result, it can be found that
MSICA method is effective in separating the vibration signals for gearbox diagnosis

in industrial robots.

Estimated Signal: 4th Gearbox

0.05[
0

0 5000 10000 15000
Frequency(Hz)

Estimated Signal: Sth Gearbox

0.05
0 \ A i i A

0 5000 10000
Frequency(Hz)

Amp.

Amp.

15000

Figure 4-9 The spectrum of final estimated independent source signals
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< |
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Figure 4-10 The spectrum of single motion signals
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Figure 4-12 Comparison of RMS: (a) 4th gearbox, (b) 5th gearbox

Before - before the method; After - After the method; Fault(4th) -
when 4th gearbox is faulty
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4.2 Comparison Experiment Using Basic ICA Method

The comparison experiment is conducted in this research. The experiment is
designed to compare the efficiency of MSICA method and basic ICA method in fault
detection of gearboxes in industrial robots. The basic ICA is the method which
separates the signals in time domain using FastICA algorithm. In this experiment,
the same vibration signals are selected to do analysis. Thus, the faulty bearing is still
in 4th gearbox, and 5th gearbox is in normal condition. And experiments in four
experiment modes are conducted in this subsection. The separation process of basic

ICA method is drawn in Figure 4-14.

[ Observed Signals ] [ Estimated Signals ]

Center Decorrelation

Whiten ‘ Separation

Figure 4-14 Separation process of basic ICA method

e
[]#

The observed vibration signals are shown in Figure 4-15(a) and estimated
vibration signals using ICA method are shown in Figure 4-15(b). The spectrums of

measured and estimated vibration signals using ICA are shown in Figure 4-16.

As shown in Figure 4-16(Db), the estimated vibration signal of 4th gearbox has
high amplitude at 4,500Hz and 4,800Hz, which is not correct separation result.
Because the measured 4th gearbox signal does not have high amplitude at 4,500Hz
and 4,800Hz. And also the estimated vibration signal of 4th gearbox has high
amplitude at 300Hz, which is different with the single motion signals. And the
estimated vibration signal of 5th gearbox has wrong amplitude at 300Hz. Therefore,

basic ICA method cannot separate the vibration signals correctly.
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Figure 4-15 (a) Observed vibration signals, (b) Estimated vibration signals using

ICA method
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Figure 4-16 (a) Spectrums of observed signals, (b) Spectrums of estimated
signals using ICA method
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To further confirm the results, the comparison of RMS of 4th gearbox and 5th
gearbox using ICA method are shown in Figure 4-17 and Figure 4-18. As
demonstrated in Figure 4-17 and Figure 4-18, the diagnosis results show that both
gearboxes are faulty from measured signals without any separation method. However,
with basic ICA, both of them are still faulty, which is different from the real situation.
The figure also shows that basic ICA method cannot correctly separate the vibration

signals for gearbox diagnosis in industrial robots.

4th Gearbox
0.4 : .
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(b)
Figure 4-17 Comparison of RMS using ICA method: (a) 4th gearbox, (b) 5th

gearbox
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Figure 4-18 Comparison of RMS ratio using ICA method: (a) 4th gearbox, (b)
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4.3 Comparison Experiment Using ICA-FD Method

The experiment is designed to compare the efficiency of ICA-FD and MSICA
in fault detection of gearboxes in industrial robots. The ICA-FD is the method which
separates signals in frequency domain. In this experiment, the same vibration signals
are selected to be analyzed. Therefore, the faulty bearing is still in 4th gearbox, and
Sth gearbox is still in normal condition. And experiments in four experiment modes
are conducted in this subsection. The separation process of ICA-FD method in shown

in Figure 4-19.

[ Observed Signals ]

STFT | Estimated Signals |

Separation ISTFT

Permutation » Scaling

Figure 4-19 Separation process of ICA-FD method
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The measured vibration signals are shown in Figure 4-20(a) and estimated
vibration signals using ICA-FD method are shown in Figure 4-20(b). The spectrums
of measured signals and estimated signals using ICA-FD method are shown in Figure
4-21. In Figure 4-21(b), the estimated signals using ICA-FD have same spectrums
with single motion signals, which are shown in Figure 4-10. Therefore, the effect of
ICA-FD method cannot be easily distinguished in the spectrums due to the complex
vibration signals. In this case, RMS feature calculation results can be used to

examine the effect differences between ICA-FD and MSICA.
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Figure 4-20 (a) Observed vibration signals, (b) Estimated vibration signals using
ICA-FD method
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Figure 4-21 (a) Spectrums of observed signals, (b) Spectrums of estimated
signals using ICA-FD method
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The comparisons of RMS and RMS ratio between 4th axis gearbox and 5th axis
gearbox after ICA-FD method are shown in Figure 4-22 and Figure 4-23. As shown
in the figures, ICA-FD could separate the vibration signals correctly in this
experiment. RMS feature calculation results show that both gearboxes are faulty
from original measured signals. However, with ICA-FD method, the result shows
4th gearbox is faulty and 5th gearbox is in normal situation, which is same with the

real situation.

Figure 4-24 shows the comparison of RMS ratio in 5th axis gearbox using ICA-
FD and MSICA method. As demonstrated in Figure 4-24, ICA-FD could eliminate
partial multi-axis interference. However, compared with MSICA, ICA-FD is less
efficient in vibration signal separation in industrial robots. And MSICA can eliminate
more interference from 4th gearbox since RMS feature of MSICA shows better
results. Because the 2nd stage of MSICA method can eliminate the residual mixed
components. Therefore, compared with ICA-FD, the efficiency of MSICA is better

when applied into industrial robots.
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Figure 4-22 Comparison of RMS using ICA-FD method: (a) 4th gearbox, (b) 5th

gearbox
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Figure 4-23 Comparison of RMS ratio using ICA-FD method: (a) 4th gearbox,
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Chapter 5. Discussion and Conclusion

5.1 Conclusions and Contributions

A vibration signal separation method for gearbox fault diagnosis in industrial
robots was presented in this research by using multi-stage independent component
analysis technique which has two stages. The first stage is frequency domain
independent component analysis, which is aiming to separate the convolutive
mixture. The second stage is time domain independent component analysis, which is

aiming to separate linear mixture and remove the residual mixed components.

The experiment results showed the efficiency of this method in robot fault
diagnosis. In the experiment, the faulty gear is in 4th gearbox. However, without
MSICA method, the vibration signals from 4th gearbox and 5th gearbox are mixed
with each other. The fault detection results show that both gearboxes are faulty. But
in the experiment, MSICA separates the mixed vibration signals. And it shows that
only 4th gearbox is faulty but 5th gearbox is normal case, which is correct result and
same with the real situation. And also, as shown from the frequency spectrums of
measured signals and estimated signals, MSICA method separates vibration signals

correctly. Thus, MSICA is a suitable technique in industrial robot fault detection.

Therefore, from the experiment results, the following conclusions can be drawn:

(1) MSICA method can separate the vibration signals successfully in industrial
robot from mixed signals, which are measured from vibration sensors attached on

4th axis and 5th axis.

(2) The technique can correctly get the diagnosis result, which is same with the

real condition.
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(3) Compared with basic ICA method and ICA-FD method, MSICA method is

more suitable when applied into industrial robots.

5.2 Future Work

)]

2)

Combine machine learning with time-frequency domain mask, to improve the
efficiency of vibration signal separation. [30]

In speech separation, there is a more efficient method to separate speech
signals. time-frequency domain mask is a mask multiplied to time-frequency
spectrum of original measured signals. The separation process is extremely
efficient due to the simple calculation process. However, the limitation of time-
frequency domain mask is that there must be a train set for machine learning
which includes single motion signals and measured mixed signals. But this
issue will bring more difficulties for experiments. Because the time series of
single motion signals should be simultaneous with measured mixed signals.
With this problem solved, time-frequency domain mask will be an efficient

method to eliminate multi-axis interference in industrial robot fault detection.

Application of this technique into general motions.

The experiment is conducted with 4™ gearbox and 5" gearbox, and it is
confirmed that the multi-axis interference and separation process cannot
influence other gearboxes. Therefore, this method can be applied into general

motions and real manufacturing process where all axes have motions.
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