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The failure of an engineered system not only results in an enormous property loss, but 

also causes a substantial societal loss. The discipline of prognostics and health 

management (PHM) recently has received great attention as a solution to prevent 

unexpected failures of engineered systems. The goal of PHM is to detect anomaly states, 

to predict potential failures of a system, and to plan an optimal management schedule. 

PHM is composed of five essential functions: 1) sensing, 2) reasoning, 3) diagnostics, 4) 

prognostics, and 5) management. The sensing function, in which sensory data is acquired 

from the system of interest, is a core element needed for cost-effective execution of PHM. 

The success of the remaining functions in PHM highly depends on the quality of the data 

obtained by the sensing function. 
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The research described herein describes the investigation of two original ideas of 

optimal sensor placement (OSP) for the PHM sensing function. These ideas are aimed to 

enable cost-effective and robust sensor data acquisition from the system. The first idea is 

a stochastic effective independence (EFI) method, referred to as an energy-based stochastic 

EFI method; the proposed method overcomes the drawbacks of existing OSP methods in 

the sensing function. In Research Thrust 1, the stochastic sensor network design is 

proposed. It takes the uncertainty of the system into consideration to give more accurate 

representation of the system than the deterministic sensor network design in the mean sense. 

Also, the explicit form of the proposed method has the benefit of lower computational 

requirements, as compared to the sampling-based stochastic approach. In Research Thrust 

2, a robust sensor network design that considers the latent failure of the sensor is introduced. 

The proposed robust sensor network is designed to tolerate the partial failure of the sensor; 

thus, it contributes to the safety of the sensor network. The proposed method is validated 

to have accuracy that is comparable to the optimal sensor network design in normal 

conditions, and higher accuracy for situations in which there is a partial failure of the given 

sensor network. 
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Effective independence (EFI) method  

EigenMap method 
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Robust sensor network design 

Student Number: 2011-20702 



 

iii 

 

Contents 

Abstract ................................................................................................ i 

Contents ............................................................................................. iii 

List of Tables ....................................................................................... v 

List of Figures .................................................................................... vi 

Nomenclature ..................................................................................... ix 

Chapter 1. Introduction ..................................................................... 1 

1.1 Background and Motivation ............................................................................ 1 

1.2 Research Objectives and Scopes ...................................................................... 3 

1.3 Dissertation Overview ..................................................................................... 5 

Chapter 2. Literature Review ........................................................... 7 

2.1 Linear Independence of a System .................................................................... 7 

2.2 Model-based Sensor Placement Method: Effective Independence Method .. 10 

2.3 Energy-Based Sensor Placement Method ...................................................... 14 

2.4 Data-Based Sensor Placement Method: EigenMap Method .......................... 15 

Chapter 3. Stochastic Sensor Network Design .............................. 18 

3.1 Stochastic Finite Element Method ................................................................. 18 

3.1.1 Principle of Stochastic Perturbation .................................................... 18 

3.1.2 Stochastic Eigenvalue Problem ........................................................... 19 

3.2 Stochastic Effective Independence Method ................................................... 21 



 

iv 

 

3.3 Energy-Based Stochastic EFI Method ........................................................... 30 

3.4 Case Study ..................................................................................................... 31 

3.4.1 Truss Bridge Structure ........................................................................ 32 

3.4.2 Sensor Placement Under Uncertainty ................................................. 34 

3.4.2.1 Monte Carlo Simulation .............................................................. 34 

3.4.2.2 SEFI Method................................................................................ 38 

3.5 Conclusion ..................................................................................................... 53 

Chapter 4. Robust Sensor Network Design ................................... 55 

4.1 Battery System ............................................................................................... 55 

4.1.1 Battery Pack Overview ....................................................................... 55 

4.1.2 Heat Generation Model ....................................................................... 58 

4.1.3 Model Calibration and Validation ....................................................... 62 

4.2 Robust Sensor Network Design ..................................................................... 65 

4.3 Case Study ..................................................................................................... 72 

4.3.1 Case 1: Different Heat Generation for the Cells ................................. 72 

4.3.2 Case 2: Forced Convection ................................................................. 76 

4.4 Conclusion ..................................................................................................... 83 

Chapter 5. Contributions and Future Work ................................. 86 

5.1 Contributions and Impacts ............................................................................. 86 

5.2 Suggestions for Future Research ................................................................... 88 

References ......................................................................................... 90 

Abstract (Korean) ............................................................................ 90 

 



 

v 

 

List of Tables 

Table 1-1 Challenges, objectives, and benefits of this research ......................................... 6 

Table 2-1 Pseudo-code for the effective independence method ....................................... 13 

Table 3-1 The set of 10 sensors selected by EFI using the deterministic EFI, MCS, and 

stochastic EFI ........................................................................................................... 40 

Table 3-2 The average estimation error of MCS and SFEM for given cases ................... 45 

Table 3-3 The set of 10 sensors selected by strain-energy-based EFI using the 

deterministic EFI, MCS, and stochastic EFI ............................................................ 47 

Table 3-4 The set of 10 sensors selected by kinetic-energy-based EFI using the 

deterministic EFI, MCS, and stochastic EFI ............................................................ 50 

Table 3-5 The simulation time of MCS with 1,000 simulations and stochastic EFI for a 2-

D truss bridge ........................................................................................................... 52 

Table 4-1 The RMS error of OSP and ROSP methods for case 1 .................................... 75 

Table 4-2 The RMS error of OSP and ROSP methods for case 2 .................................... 78 

Table 4-3 Sensor placement corresponding to the number of sensors and estimation 

accuracy ................................................................................................................... 80 

Table 4-4 Sensor locations and the estimation accuracy for different mode shapes ........ 82 



 

vi 

 

List of Figures 

Figure 2-1 Linear independence of the system according to the sensor locations: (a) If the 

data is measurable in every DOF, the mode shapes are linearly independent, (b) if 

the data is partially measurable, the mode shapes could be linearly dependent, 

depending on the measured DOFs. ............................................................................ 9 

Figure 2-2 Schematic performance comparison of EFI and the EigenMap method. ....... 17 

Figure 3-1 Transformation of the row of the mode shape matrix (Φm) to the absolute 

identification space. ................................................................................................. 24 

Figure 3-2 Example of the transformation of the row of the mode shape matrix (Φm) to 

the absolute identification space. The arrow indicates the deterministic 

transformation and the point cluster indicates the probabilistic transformation 

generated by the MCS method. ................................................................................ 29 

Figure 3-3 Two-dimensional truss bridge. ....................................................................... 33 

Figure 3-4 Target mode representation with mean and standard deviation: (a) 1st mode, 

(b) 2nd mode, (c) 3rd mode, and (d) 4th mode. ....................................................... 33 

Figure 3-5 Histograms of 1,000 EFI simulations with stochastic Young’s modulus with 

the mean 70 GPa: (a) the standard deviation 0.05×70 GPa, (b) the standard deviation 

0.1×70 GPa, and (c) 0.15×70 GPa. .......................................................................... 35 

Figure 3-6 Histograms of 1,000 strain energy EFI simulations with stochastic Young’s 

modulus with the mean 70 GPa: (a) the standard deviation 0.05×70 GPa, (b) the 

standard deviation 0.1×70 GPa, and (c) 0.15×70 GPa. ............................................ 37 

file:///C:/Users/TJ/Dropbox/kimtj_thesis_v14.docx%23_Toc473586046
file:///C:/Users/TJ/Dropbox/kimtj_thesis_v14.docx%23_Toc473586046
file:///C:/Users/TJ/Dropbox/kimtj_thesis_v14.docx%23_Toc473586046
file:///C:/Users/TJ/Dropbox/kimtj_thesis_v14.docx%23_Toc473586046
file:///C:/Users/TJ/Dropbox/kimtj_thesis_v14.docx%23_Toc473586047
file:///C:/Users/TJ/Dropbox/kimtj_thesis_v14.docx%23_Toc473586048
file:///C:/Users/TJ/Dropbox/kimtj_thesis_v14.docx%23_Toc473586048
file:///C:/Users/TJ/Dropbox/kimtj_thesis_v14.docx%23_Toc473586049
file:///C:/Users/TJ/Dropbox/kimtj_thesis_v14.docx%23_Toc473586049
file:///C:/Users/TJ/Dropbox/kimtj_thesis_v14.docx%23_Toc473586049
file:///C:/Users/TJ/Dropbox/kimtj_thesis_v14.docx%23_Toc473586049
file:///C:/Users/TJ/Dropbox/kimtj_thesis_v14.docx%23_Toc473586050
file:///C:/Users/TJ/Dropbox/kimtj_thesis_v14.docx%23_Toc473586051
file:///C:/Users/TJ/Dropbox/kimtj_thesis_v14.docx%23_Toc473586051
file:///C:/Users/TJ/Dropbox/kimtj_thesis_v14.docx%23_Toc473586052
file:///C:/Users/TJ/Dropbox/kimtj_thesis_v14.docx%23_Toc473586052
file:///C:/Users/TJ/Dropbox/kimtj_thesis_v14.docx%23_Toc473586052
file:///C:/Users/TJ/Dropbox/kimtj_thesis_v14.docx%23_Toc473586053
file:///C:/Users/TJ/Dropbox/kimtj_thesis_v14.docx%23_Toc473586053
file:///C:/Users/TJ/Dropbox/kimtj_thesis_v14.docx%23_Toc473586053


 

vii 

 

Figure 3-7 Determinant of the Fisher information matrix by (a) EFI with standard 

deviation of 0.05×70 GPa , (b) MCS with standard deviation of 0.05×70 GPa , (c) 

stochastic EFI with standard deviation of 0.05×70 GPa , (d) EFI with standard 

deviation of 0.1×70 GPa , (e) MCS with standard deviation of 0.1×70 GPa , (f) 

stochastic EFI with standard deviation of 0.1×70 GPa , (g) EFI with standard 

deviation of 0.15×70 GPa , (h) MCS with standard deviation of 0.15×70 GPa , and 

(i) stochastic EFI with standard deviation of 0.15×70 GPa. .................................... 41 

Figure 3-8 The target deflections of a truss bridge with the mean Young’s modulus ...... 44 

Figure 3-9 The estimated deflection for a randomly generated truss bridge generated by: 

(a) MCS for case 1, (b) MCS for case 2, (c) SFEM for case 1, and (d) SFEM for 

case 2 ........................................................................................................................ 44 

Figure 3-10 Determinant of the Fisher information matrix by (a) energy-based EFI with 

standard deviation of 0.05×70 GPa , (b) MCS with standard deviation of 0.05×70 

GPa , (c) stochastic EFI with standard deviation of 0.05×70 GPa , (d) energy-based 

EFI with standard deviation of 0.1×70 GPa , (e) MCS with standard deviation of 

0.1×70 GPa , (f) stochastic EFI with standard deviation of 0.1×70 GPa , (g) energy-

based EFI with standard deviation of 0.15×70 GPa , (h) MCS with standard 

deviation of 0.15×70 GPa , and (i) stochastic EFI with standard deviation of 

0.15×70 GPa. ........................................................................................................... 48 

Figure 4-1 (a) Battery pack geometry, and (b) the lumped parameter model. ................. 57 

Figure 4-2 (a) HPPC test profile, and (b) impedance values at SOC levels. ................... 60 

Figure 4-3 (a) Entropic heat test profile and (b) dVocv/dT. ............................................... 61 

Figure 4-4 The measured and simulated temperatures under 1C (=2.6A) discharge 

current. ..................................................................................................................... 63 

file:///C:/Users/TJ/Dropbox/kimtj_thesis_v14.docx%23_Toc473586057
file:///C:/Users/TJ/Dropbox/kimtj_thesis_v14.docx%23_Toc473586057
file:///C:/Users/TJ/Dropbox/kimtj_thesis_v14.docx%23_Toc473586057
file:///C:/Users/TJ/Dropbox/kimtj_thesis_v14.docx%23_Toc473586057
file:///C:/Users/TJ/Dropbox/kimtj_thesis_v14.docx%23_Toc473586057
file:///C:/Users/TJ/Dropbox/kimtj_thesis_v14.docx%23_Toc473586057
file:///C:/Users/TJ/Dropbox/kimtj_thesis_v14.docx%23_Toc473586057
file:///C:/Users/TJ/Dropbox/kimtj_thesis_v14.docx%23_Toc473586057
file:///C:/Users/TJ/Dropbox/kimtj_thesis_v14.docx%23_Toc473586058
file:///C:/Users/TJ/Dropbox/kimtj_thesis_v14.docx%23_Toc473586059
file:///C:/Users/TJ/Dropbox/kimtj_thesis_v14.docx%23_Toc473586060
file:///C:/Users/TJ/Dropbox/kimtj_thesis_v14.docx%23_Toc473586061
file:///C:/Users/TJ/Dropbox/kimtj_thesis_v14.docx%23_Toc473586061


 

viii 

 

Figure 4-5 UDDS test results: (a) UDDS current profile, and (b) the measured and the 

simulated temperature. ............................................................................................. 64 

Figure 4-6 The temperature distribution of a battery pack under constant current: (a) 

temperature change across time, and (b) the temperature distribution at 83 min. ... 66 

Figure 4-7 The first four eigenvectors of the training data set: (a) 1st mode, (b) 2nd 

mode, (c) 3rd mode, and (d) 4th mode. .................................................................... 67 

Figure 4-8 The sensor locations: (a) Optimal sensor placement (OSP), and (b) the robust 

optimal sensor placement. ........................................................................................ 71 

Figure 4-9 The temperature distribution of the battery pack under a constant current 

realized from the random distribution: (a) temperature change across time, and (b) 

the temperature distribution at 83 min. .................................................................... 74 

Figure 4-10 The temperature distribution of a battery pack under forced convection: (a) 

temperature change across time, and (b) the temperature distribution at 83 min. ... 77 

file:///C:/Users/TJ/Dropbox/kimtj_thesis_v14.docx%23_Toc473586062
file:///C:/Users/TJ/Dropbox/kimtj_thesis_v14.docx%23_Toc473586062
file:///C:/Users/TJ/Dropbox/kimtj_thesis_v14.docx%23_Toc473586063
file:///C:/Users/TJ/Dropbox/kimtj_thesis_v14.docx%23_Toc473586063
file:///C:/Users/TJ/Dropbox/kimtj_thesis_v14.docx%23_Toc473586064
file:///C:/Users/TJ/Dropbox/kimtj_thesis_v14.docx%23_Toc473586064
file:///C:/Users/TJ/Dropbox/kimtj_thesis_v14.docx%23_Toc473586065
file:///C:/Users/TJ/Dropbox/kimtj_thesis_v14.docx%23_Toc473586065
file:///C:/Users/TJ/Dropbox/kimtj_thesis_v14.docx%23_Toc473586066
file:///C:/Users/TJ/Dropbox/kimtj_thesis_v14.docx%23_Toc473586066
file:///C:/Users/TJ/Dropbox/kimtj_thesis_v14.docx%23_Toc473586066
file:///C:/Users/TJ/Dropbox/kimtj_thesis_v14.docx%23_Toc473586067
file:///C:/Users/TJ/Dropbox/kimtj_thesis_v14.docx%23_Toc473586067


 

ix 

 

Nomenclature 

 

DOF = Degree of Freedom 

EFI = Effective Independence Method 

FE model = Finite Element model 

FIM = Fisher Information Matrix 

OSP = Optimal Sensor Placement 

PHM = Prognostics and Health Management 

RMS = Root Mean Square 

ROSP = Robust Optimal Sensor Placement 

RUL = Remaining Useful Life 

SFEM = Stochastic Finite Element Method 

UDDS = Urban Dynamometer Driving Schedule 

b = random variable 

b0 = expectation of random variable b 

C = covariance matrix 

ED = effective independence distribution 

FE = fractional eigenvalue matrix 

f = state function 

f0 = function value evaluated at expectation 

K = stiffness matrix of the FE model 

k = number of sensors 



 

x 

 

M = mass matrix of the FE model 

M = number of data sets 

n = dimension of the finite element model 

p = probability density function 

q = amplitude corresponding to basis vector of the FE model 

𝐪̂ = estimated amplitude corresponding to basis vector of the FE model 

Q = redefined Fisher information matrix 

Q0 = Fisher information matrix 

QKE = kinetic energy 

Qs = stochastic Fisher information matrix 

QSE = strain energy 

Q0
s = Fisher information matrix evaluated at the expectation of the random variable 

W = weight matrix 

w = Gaussian white noise in the signal 

y = arbitrary mechanical signal 

ys = measured signal  

𝐲̂ = regenerated signal 

ε = perturbation 

λ = eigenvalue 

μ = mean 

σ = variance of signal noise 

Φ = mode shape matrix 



 

xi 

 

ΦE = basis matrix from the covariance matrix 

Φm = mean mode shape matrix 

Φr = mode shape matrix with measured DOF 

Φs = mode shape matrix with measured DOF and selected basis 

Φv = residual mode shape matrix 

ψ = eigenvectors of the Fisher information matrix 

 



 

 

1 

 

 

Chapter 1.  Introduction 

 

1.1 Background and Motivation 

The failure of a system not only results in enormous damage to the system itself, 

such as the downtime cost and the restoration cost, failure also causes societal costs, 

including injury or even loss of human life. As a solution to prevent system failures, 

recently the field of prognostics and health management (PHM) is getting wide 

attention [1-5]. The purpose of the PHM is to avoid any kind of failure, and to plan 

optimal management schedules by estimating the current status, and predicting the 

remaining useful life (RUL) of a system. 

The PHM is composed of four functions; specifically, the sensing, reasoning, 

prognostics, and management functions. In the sensing function, sensors are placed 

on the system to obtain the proper data that gives relevant information for the 

reasoning function. In the following stage of reasoning, the obtained data is analyzed 

to verify the current conditions of the system. Then, the prognostics function predicts 

the RUL based on the past and current conditions that were verified during the 

reasoning function. Finally, using all the information up to the prognostics function, 

proper decisions about the operation and maintenance are made as part of the 

management function. 
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As seen in the overall process of PHM, sensing is the beginning step of the whole 

process. Each subsequent step depends on the sensing step. Therefore, proper 

sensing is very important for successful PHM. If successful implementation of this 

step is possible, the following diagnostics steps can be achieved much more 

efficiently, or with very simple algorithms. That is, if the sensors can be set up to 

accurately reveal the difference between normal and abnormal conditions, there is 

no need for expensive algorithms. In contrast, if the measured data is not relevant to 

the target failure, even complicated and expensive algorithms may not work. 

Good sensing can be determined by answering two questions: What should be 

measured? and how should this data be measured? There are many signals coming 

out of a system, such as the vibration, pressure, temperature, and so on. Among these 

signals, what should be measured must be the signal(s) that best represent(s) the 

health conditions of the system. For example, in a battery system, vibration gives 

very little information about the system’s health; however, the open circuit voltage 

is a good indicator of health [6-8]. In contrast, in a structural system, vibration does 

work as a good indicator of health [9-11]; however, voltage is not a health indicator 

at all. This example reveals that the type of signal that should be measured is highly 

dependent on the system. Since the choice of signal type is system dependent, it must 

be studied individually for each system. Likewise, it is out of the scope of this study 

to consider any general approach for sensor placement. Once the relevant type of 
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signal is determined, then the locations of the sensors must be chosen. The sensors 

must be placed to extract the maximum information from the system. Maximizing 

information also means avoiding duplication of information from sensors. One 

obvious example of duplicated information is to put sensors on the same spot, so that 

they measure the exactly the same information. However, duplicated information is 

not just limited to this type of case, it also can occur in the case of sensors that are 

not in close proximity. These concepts will be discussed in the following chapter. 

Based on this measure of information, the various approaches for sensor placement 

will be discussed. 

 

1.2 Research Objectives and Scopes 

The research described in this work involves two research objectives, as follows. 

Objective 1 – Stochastic sensor placement 

Uncertainty always exists in the real world, and it affects the results of sensor 

placement in PHM. However, most of the sensor placement methods available to 

date are focused on the deterministic aspects of the system. To enhance the 

performance of the sensor network design, sensors must be placed to maximize the 

information that contains uncertainty. To this end, this research explores a sensor 
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placement method for a system with random properties. The existing sensor 

placement method, called the effective independence method (EFI), is modified in 

this research to its stochastic version. Through this method, more information can be 

obtained (on average) than can be obtained by the deterministic approach.  

Objective 2 – Robust sensor placement 

In spite of the importance of the sensing system to PHM, the robustness of the 

sensor network design has not yet been seriously considered by researchers. The 

failure of one sensor could collapse the overall estimation algorithm or result in very 

poor estimation. Accordingly, a sensor network design that can deal with a possible 

malfunction is required. The redundant use of sensors has so far been considered the 

only possible option for enhancing robustness. However, this approach is not cost-

effective, and does not help obtain more information, despite the use of additional 

sensors. In this study, we propose a sensor network design that improves both the 

robustness and the amount of information gathered. The proposed method is applied 

to and validated with a battery pack system where knowledge of the temperature 

distribution is of importance for safety and system management. The proposed 

sensor network design gives an accurate estimation of the thermal map as well as the 

robustness.  
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1.3 Dissertation Overview 

This dissertation is organized as follows. Chapter 2 reviews the current sensor 

network design methods related to the research topics, including the effective 

independence method, the energy-based method, and the eigenmap method. Chapter 

3 presents the proposed stochastic sensor placement method that expands the 

effective independence method to a stochastic version. In Chapter 4, the sensor 

network design that considers the failure of the sensor is explained. A battery pack 

study is employed to demonstrate the robustness of the proposed sensor network 

design. Finally, Chapter 5 discusses the contributions of the studies and potential 

future research directions. The challenges, objectives, and expected benefits of the 

proposed research are summarized in Table 1-1. 
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Table 1-1 Challenges, objectives, and benefits of this research 

Challenges 

 No available analytic approach for stochastic sensor network 

design 

 Failure of a sensor collapses the performance of the whole 

sensor network  

 Low detectability for fault conditions 

Objectives 

 Develop an analytic solution for stochastic sensor network 

design 

 Develop a robust sensor network design that considers sensor 

malfunctions 

 Sensor network design for diagnostics by enhancing the 

detectability of the fault conditions 

Expected 

benefits 

 Analytic solution for stochastic sensor network design 

 Computational cost savings through the new method 

 A relevant solution for practical use 

 Enhancement of the robustness of the sensor network, making 

it compatible with improved failure detection 

 Securing the buffering time before maintenance of the system 

 Enhanced detectability for a specific fault condition 

 Reduced work in the following PHM steps by obtaining 

abundant information 
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Chapter 2.  Literature Review 

This chapter provides a background on the associated knowledge related to this 

dissertation. Section 2.1 introduces the linear independence of a system as a measure 

of the information. The following sections discuss how to maximize the linear 

independence, or the amount of information, and introduce a solution of the EFI 

method. The EFI method is used to measure the raw signal from sensors, and it can 

be modified for energy-based sensor placement, which is described in Section 2.3. 

In the last section, the eigenmap method is introduced. Unlike the EFI method, which 

is based on the finite element (FE) model, the eigenmap method utilizes the data. 

 

2.1 Linear Independence of a System 

As described in Chapter 1, the performance of PHM largely depends on the 

quality of the information measured. In this section, a measure of the information is 

introduced, and using this measure, sensor locations are found such that there will 

be no duplicated information. First, to see how the information is measured, let’s 

assume that the behavior of the whole system is in question. In this case, we try to 

estimate the system state based on the given number of sensors, or given data at 

specific locations. 
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To get an idea on estimating the whole system, let’s first look at how an arbitrary 

signal is made up. An arbitrary mechanical signal can be decomposed into the mode 

shapes and the corresponding amplitudes, as in Eq.(1) [12]. 

  y Φq w  (1) 

where y is an arbitrary mechanical signal described by an n×1 vector, Φ is an n×n 

mode shape matrix obtained from the stiffness matrix of an FE model, q is an n×1 

target modal coordinate or amplitude corresponding to the mode shape, and w is the 

Gaussian white noise with variance σ. If each degree-of-freedom (DOF) of the FE 

model is known or measurable, the mode shapes are linearly independent, as shown 

in Figure 2-1(a). However, if the sensors are placed only in limited locations, which 

is the usual case, only the measured DOFs are known, and they could be linearly 

dependent, as shown in Figure 2-1(b). In this case, these reduced mode shapes 

contain the duplicated information to reconstruct the signal. Thus, the sensors must 

be placed to avoid these linear dependences, and to maximize the linear 

independence. The details to accomplish this are explained in the following section.  
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(a) 

 

(b) 

Figure 2-1 Linear independence of the system according to the sensor locations: 

(a) If the data is measurable in every DOF, the mode shapes are 

linearly independent, (b) if the data is partially measurable, the mode 

shapes could be linearly dependent, depending on the measured 

DOFs. 
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2.2 Model-based Sensor Placement Method: Effective Independence 

Method 

Since the mode shape matrix in Eq.(1) reflects the characteristics of the system 

itself, it is obtainable once the system is defined. Then it is the amplitude, q that 

determines a specific signal, y. That is, knowing the signal y is equivalent to knowing 

amplitude, q. Therefore, estimation of the entire y from the limited information of y 

is identical with estimation of q. From the best linear unbiased estimator, we have 

the estimation of q as follows [13, 14]: 

  
1

T Tˆ
s s s s



q Φ Φ Φ y  (2) 

where ys is a k×1 (k<n) vector that has partial elements of the target signal y, that is, 

the measured signal, and Φs is the reduced k×k mode shape matrix. Then the target 

signal is estimated using 𝐪̂ and Φr, an n×k mode shape matrix. The estimated signal 

𝐲̂ is a signal regenerated with some of the mode shapes and the corresponding 

estimated amplitude. 

 ˆˆ
ry Φ q .  (3) 

Eq.(3) describes how to estimate the target signal when the partial signal is 

measured. Now the problem is how to select the measured locations for the best 
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estimation of q. The answer to this is attained by minimizing the variance of the 

estimation, which is given by 

 

1

1

02

1
ˆ ˆ[( )( ) ]T TE





 
     

 
P q q q q Φ Φ Q . (4) 

In this equation, the quadratic form of Φ or, in other words, Q0 is called the Fisher 

information matrix (FIM). If the measurement noise is uncorrelated and identical, 

the Fisher information matrix can be equivalently expressed as Q = ΦTΦ. The 

minimization of the covariance matrix is equivalent to maximizing the Fisher 

information matrix. The proper norm to measure the Fisher information matrix is its 

determinant, because the determinant of the Fisher information matrix is largest for 

the best linear estimation [14, 15]. 

If the determinant of the FIM is zero, the mode shape vectors are linearly 

dependent. Conversely, to have the maximum linear independence, the determinant 

of the FIM should be maximized. To this end, the fractional eigenvalue matrix is 

calculated as  

     1

E

 F Φψ Φψ λ  (5) 

where ψ are the eigenvectors of Q; λ are the associated eigenvalues; and ⊗ is the 

term-by-term matrix multiplication. The component in the ith row and the jth column 
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of the matrix FE is the contribution of the ith DOF to the jth eigenvalue. Then, the 

summation of each column gives the effective independence distribution, ED  

     1

D

  E Φψ Φψ λ 1  (6) 

where 1 is the vector where the vector’s elements are all ones. The ith entity of ED 

is the contribution of the corresponding DOF to the linear independence of the modal 

shape matrix. For each iteration, the DOF that has the lowest value of ED is 

eliminated, and the process is repeated until the desired number of DOFs remains. 

The algorithm is summarized in Table 2-1 as a pseudo-code.  
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Table 2-1 Pseudo-code for the effective independence method 

Step Pseudo code 

1 

2 

3 

4 

5 

6 

7 

8 

 

9 

10 

11 

initialize B = {1, …, N}, D = {1, …, K} 

repeat 

Set Φr ← Φ[B, D] 

Q = Φr
TΦr 

Find eigenvalues λ and eigenvectors ψ of Q 

Calculate FE = [Φrψ]⊗[Φrψ] λ-1 

Calculate ED = [Φrψ]⊗[Φrψ] λ-1
1 

B ← B∩{n}c : Remove nth DOF corresponding 

to the least value of ED from B. 

until |B| = K 

return B 

end 
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2.3 Energy-Based Sensor Placement Method 

In the previous section, the quantity we tried to reconstruct was the raw signal 

that is directly measured by the sensors. However, sometimes the energy of the 

system is a useful quantity to determine the status of the system [16-18]. Here, we 

introduce an energy-based sensor placement method that maximizes the energy of 

the measured mode shape. It is nothing but a small modification of the EFI method.  

The kinetic energy of the system is expressed as  

 T T

KE  Q Φ MΦ ξ ξ  (7) 

where M is the mass matrix. In the above equation, the kinetic energy equation is 

modified as ξTξ to have the same quadratic form with the FIM, so the same procedure 

used in the EFI method can be applied for energy-based sensor placement. In Eq. 

(7), the form of ξ is defined by decomposing the mass matrix. One way of 

decomposition is to use the Cholesky decomposition; in this case, ξ is defined as ξ = 

DΦ where M = DTD, and D is the lower triangular matrix. For other decompositions 

and their effects, one can refer to [19].  

In the same way, the strain energy-based sensor placement is possible by 

replacing the mass matrix with the stiffness matrix [20, 21]. 
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 T T

SE  Q Φ KΦ ξ ξ  (8) 

Here K is the stiffness matrix. As mentioned, the K is also decomposed in various 

ways.  

 

2.4 Data-Based Sensor Placement Method: EigenMap Method 

In the EFI method, the mode shapes that are the basic building blocks for any 

signal are used to find the sensor locations. Since the mode shapes are obtained as 

the eigenvectors of the stiffness matrix from the FE physical model, it was called the 

model-based approach. As known from linear algebra, there also exist other forms 

of basis vectors. This section introduces the EigenMap method that attains the basis 

vectors from the data set [22-24], so it can be called the data-based method in 

comparison to the model-based EFI method. The only difference between the 

EigenMap method and the EFI method is that they are using different basis vectors; 

this difference characterizes each method. 

The basis vectors in the EigenMap method are obtained from the covariance 

matrix, C, of the M data set 𝑦𝑚}𝑚=1
𝑀 . The ith row and jth column component of C 

are defined as 

 [ , ] Cov( , ) E[( )( )]i j i i j ji j y y y y    C   (9) 
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where μi is the mean of the ith component of ym. Then, the matrix ΦE where the ith 

column corresponds to the ith largest eigenvector of the covariance matrix plays the 

role of the mode shape matrix, as in the EFI method. The rest of the procedure to 

find the DOFs that have the highest contribution to the linear independence is the 

same as in the EFI method. 

Since both the EFI method and the EigenMap method are based on the basis 

vectors of the system, they can estimate any kind of signal to some extent. However, 

the difference is that the EFI method shows good estimation capability in general, 

while the EigenMap method shows very accurate results for system behavior similar 

to the training data, but is less accurate for other cases. This difference is 

schematically shown in Figure 2-2. The choice of the methods could be determined 

according to the operating condition of the system. If the system is operating under 

restricted conditions, the EigenMap method could give accurate estimation results 

with a smaller number of sensors. On the other hand, if the operating conditions are 

not restricted to particular operating conditions, the use of the EFI method will give 

better results. 
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Figure 2-2 Schematic performance comparison of EFI and the EigenMap 

method. 
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Chapter 3. Stochastic Sensor Network Design 

This Chapter discusses optimal sensor placement under parametric uncertainties. 

The EFI method is reformulated from the stochastic view. The resultant formula for 

stochastic EFI contains the deterministic term, which has the same form with the 

deterministic EFI, and an additional stochastic term. The stochastic term can be 

calculated with the help of the stochastic finite element method (SFEM). The 

developed method is expanded to the energy-based OSP method. 

 

3.1 Stochastic Finite Element Method 

3.1.1 Principle of Stochastic Perturbation 

The uncertainty of the OSP problem can be quantified with probabilistic moments 

using SFEM. In this research, the perturbation-based method is adapted to calculate 

the probabilistic moments [25-28]. The perturbation-based method finds the 

stochastic moments of the target function by expanding the state function of the 

random variables using the Taylor series. That is, for a random variable, b, the Taylor 

series expansion of state function f(b) is 

 0

1

1 ( )
( ) ( )

!

n
n n

n
n

f b
f b f b

n b







  


  (10) 
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where f 0 denotes the function value evaluated at the expectation b0; ɛ∆b = ɛ (b - b0) 

is the first variation of b for a perturbation with a given small parameter ɛ. The 

expectation of the target function with the probability density p(b) is 

 
0

1

[ ( ); ] ( ) ( )d

1 ( )
( )

!

n
n

nn
n

E f b b f b p b b

f b
f b

n b
 












 






 (11) 

In the last equation, the mth central moment, μm is 

 ( ( ); ) ( ( ) ) ( )dm

m f b b f b E p b b



  . (12) 

For example, the second-order central moment, also called variance, up to fourth 

order accuracy is 

 

22 2 3
2 4

2 42 3

1 1
Var( ( )) ( ) ( )

4 3

f f f f
f b b b

b bb b
   

       
     

       

 (13) 

For the higher-order moments up to higher-order accuracy, refer to [26]. The nth 

order partial derivatives in the expectation and the moment equation are obtained by 

numerically solving the variational formulation of the linear structural system 

equation. 

3.1.2 Stochastic Eigenvalue Problem 
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The stochastic characteristics of the mode shape matrix are obtained by solving 

the eigenproblem of the mass and stiffness matrix. The expanded mass and stiffness 

matrix by the Talyor series is substituted into the variational formulation and the 

same order of perturbation ɛ is equated to have the following eigenvalue problem 

[25, 29]: 

Zeroth order: 

 0 0 0 0 0 0 0 0( ) ( ) ( ) ( ) 0K b b M b b              (14) 

First order: 

 

0 0 0 0 0 0 , 0 , 0 , 0 0 0 0 0 , 0 0 0( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )K b b M b b K b b M b b M b b   

                                 

   (15) 

where M and K are the mass and stiffness matrix; λβ and ϕβ are the system eigenvalue 

and the corresponding eigenvector; and the superscript (·),ρ indicates the first-order 

derivative with respect to the random variable bρ. To know the statistics of the 

eigenvalue and eigenvector, refer to [25]. Then, the first-order accurate cross-

covariance for the α-th component of the αp-th eigenvector and the β-th component 

of the βp-th eigenvector is calculated as 



 

 

21 

 

 

 
0 0 , ,

( ) ( ) ( ) ( )Cov( , ) Cov( , )
p p p p

b b 

              (16) 

This stochastic moment is used for the stochastic EFI in the following section. 

 

3.2 Stochastic Effective Independence Method 

The EFI method is analyzed considering the parametric uncertainty. In Eq.(1) the 

uncertainty of the output y comes from the measurement noise w. However, in reality, 

the target mode shape Φ also has uncertainty that comes from the parametric 

uncertainties, such as Young’s modulus. Thus, a random sample of Φ can be 

expressed as the sum of mean Φm and residual Φv, 

 
m v Φ Φ Φ  (17) 

Then Eq.(1) is described as 

 m v  y Φ q Φ q w  (18) 

In this equation, Φm is deterministic, and Φvq+w is random. Comparing Eq.(18) 

with Eq.(1), Φvq+w can be interpreted as the measurement noise. Hence, the noise 

variance term of the initial FIM in Eq.(4) is no longer considered constant. Therefore, 

the FIM is affected by the variance of Φ. From this perspective, we see that a DOF 
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that largely contributes to the linear independence of the mode shapes cannot always 

be included in the set of sensor locations if its variance is considered. There might 

be a balancing point between linear independence and variance that maximizes the 

determinant of the FIM, on average. 

To analyze the effect of the uncertainty of the mode shape matrix and to evaluate 

the optimal sensor location, the mode shape matrix is expressed as in Eq.(17). Then, 

the FIM is 

    
T

s m v m v  Q Φ Φ Φ Φ  (19) 

Instead of integrating the randomness into the measurement noise, the 

randomness is maintained in the mode shape matrix to keep the same form of the 

FIM with the deterministic EFI method. In this case, the variance of noise is 

stationary and hence ignored in the FIM. The fractional eigenvalue matrix is obtained 

as 

        
1

E m v m v m v m v m v


            F Φ Φ ψ ψ Φ Φ ψ ψ λ λ  (20) 

The eigenvalue and the eigenvector of Qs are expressed as (λm + λv) and (ψm +ψv), 

respectively, since they are also random from the randomness of Qs. To reduce the 

complexity, those eigenpairs are approximated using the first-order, perturbation-
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based stochastic finite element method [25], which is obtained by solving the 

eigenproblem: 

 
0 0s m m

   Q λ I ψ  (21) 

Q0
s is the value evaluated at the expectation of the random variable. Then, the 

fractional eigenvalue matrix becomes 

     1

E m v m m v m m

         F Φ Φ ψ Φ Φ ψ λ  (22) 

Figure 3-1 shows the schematic representation of Eq.(22). A sample of the row 

of Φ has a probabilistic distribution where its mean is located at Φm and its residual 

is Φv. This row vector of the mode shape matrix is transformed by the mean 

eigenvector ψm to the eigenvector space, called absolute identification space. Then, 

the magnitude of the transformed vector is measured by the term-by-term 

multiplication and normalized by the mean eigenvalue λm to compare the 

transformed vector based on the same measure.  
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 Expanding and taking expectation of FE becomes 

 

 

Figure 3-1 Transformation of the row of the mode shape matrix (Φm) to the 

absolute identification space. 
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

 



           

     

   

F Φ Φ ψ Φ Φ ψ λ

Φ Ψ Φ Ψ λ Φ Ψ Φ Ψ λ

Φ Ψ Φ Ψ λ

 (23) 

The expectation of the second term in Eq.(23) is 

        1 1E Em m v m m m m v m m

     Φ Ψ Φ Ψ λ Φ Ψ Φ Ψ λ  (24) 

The expectation of Φv is zero; with the assumption of a symmetric distribution of 

Φ, Eq.(24) vanishes. The expectation of the last term in Eq.(23) is 

     , , , ,E Cov ,v m v m v ik m il m kj m ljij
k l

              Φ Ψ Φ Ψ   (25) 

If there is no correlation between the element of Φv, (for example, Young’s 

modulus of a truss element is not affected by, or independent from the other 

elements), Eq.(25) becomes 

          E Varv m v m v m m
        Φ Ψ Φ Ψ Φ Ψ Ψ  (26) 

In Eq.(26), the Var[Φv] indicates the elementary variance of Φv. In conclusion, 

the expectation of FE is 

            1 1E +VarE m m m m m v m m m

     F Φ Ψ Φ Ψ λ Φ Ψ Ψ λ   (27) 
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In this equation, the first term is the same as the deterministic EFI evaluated at 

the expectation, and the second term contains the effect of the variance on FIM. 

Finally, the summation of the column vector of the E[FE], the stochastic effective 

independence distribution ED,SEFI, represents the contribution of a DOF to the 

determinant of the FIM. 

            1 1

, E +VarD SEFI E m m m m m v m m m

        E F Φ Ψ Φ Ψ λ 1 Φ Ψ Ψ λ 1  (28) 

Then, the rest of the procedure is identical to the procedure used for deterministic 

EFI, described in Section 2. That is, the DOF with the lowest value of ED,SEFI is 

removed at each iteration until the number of the remaining DOFs reaches the given 

number of sensors. 

As an example, consider the following probabilistic mode shape matrix Φ 

composed of the mean Φm and the deviation Φv. The elements of the mode shape 

matrix have the probabilistic distribution function following the Gaussian 

distribution, where its mean and deviation are 

 

5 1

E 4 4

1 1

m

 
 

 
 
  
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Each row and column of Φ corresponds to the DOF and the mode shape, 

respectively. Transformation of each row of Φ to the absolute identification space 

generated by the mean eigenvectors ψm of the FIM is shown in Figure 3-2. In the 

figure, the transformed vector Φiψm from the ith row of Φ by the conventional 

deterministic approach is indicated by the arrow named ρi,det. Furthermore, to 

compare this deterministic result with the stochastic result, 1,000 samples of Φ were 

generated according to its PDF and transformed to the eigenvector space of the FIM. 

The result is shown as clustered points around each tip of the arrow, and named ρi,MCS. 

From Eq.(6), the squares length of the transformed vector is related to the linear 

independency, and it will be affected by the randomness as observed in the figure. 

To see this, the effective independence distribution, ED is calculated using three 

methods, namely, the deterministic method, the mean value of MCS method, and the 

proposed stochastic EFI method; these methods are, respectively 

,det

1

0.9412

0.0588

D

 
 


 
  

E , ,MCS

0.9876

0.9341

0.0783

D

 
 


 
  

E , and ,SEFI

1.0022

0.9434

0.0787

D

 
 


 
  

E  

The elements of ED represent the contribution of corresponding DOFs to the 

linear independence. From the 3rd row of ED,det, and ED,MCS, we see that the 

randomness truly affects the contribution of DOFs to the linear independence, which 

could change the selection of the sensor. Also, we see that the randomness is 
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accurately captured by the stochastic EFI method. Hence, the stochastic EFI method 

will help to select the optimal sensor location under uncertainty.  

The result by MCS in the example is used as a benchmark test to compare the 

accuracy of the stochastic property by the proposed method. However, the MCS 

method cannot be applied in this way because the stochastic property for the mode 

shape matrix is not known; it is computationally expensive to obtain it at every 

iteration of the EFI method. Instead, the MCS method is used to generate random 

samples, and to select the sensor locations for each samples [20]. Then, the most 

frequently selected sensors out of all samples are determined as the final sensor 

locations. This approach, however, contains the possibility that sensors with a low 

contribution to the linear independence are selected instead of those with a higher 

one. This will be shown and discussed in Section 3.4. 
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Figure 3-2 Example of the transformation of the row of the mode shape matrix 

(Φm) to the absolute identification space. The arrow indicates the 

deterministic transformation and the point cluster indicates the 

probabilistic transformation generated by the MCS method. 
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3.3 Energy-Based Stochastic EFI Method 

The EFI method is expanded to the energy-based method by adapting the mass 

and stiffness matrix into the FIM. The FIM is then expressed as 

 T

E Q Φ WΦ  (29) 

If the weight matrix W is the mass matrix, as in Eq.(7), it is the kinetic energy 

equation; if W is the stiffness matrix, it is the strain energy equation. For the energy 

method, the FIM is newly defined as  

 T whereE  Q ζ ζ ζ CΦ  (30) 

Here, the weight W is decomposed by the Cholesky decomposition as W=CTC. 

The decomposition of the weight matrix can be executed in several different ways, 

such as 𝐖 = √𝐂√𝐂. To check other decomposition options and their effects on the 

results, refer to [19]. 

Once the FIM is defined, the rest of the procedure is identical to the EFI method. 

The only difference is that Φ is replaced by ζ. Then, the mean and the covariance of 

ζ are calculated as 

 m mζ CΦ  (31) 
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T

, ,Cov Covv ij v ij
       ζ C C  (32) 

The resultant expectation of the fractional eigenvalue matrix FE for the energy-

based method is 

            1 1E +VarE m m m m m v m m m

     F ζ Ψ ζ Ψ λ ζ Ψ Ψ λ   (33) 

From the equation above, the summation of the column generates the effective 

independence distribution vector for each element indicates the contribution of a 

DOF to the linear independence. The DOF that has the lowest contribution to the 

linear independence is eliminated. The whole procedure is repeated until the number 

of DOFs meets the given number of target modes. 

 

3.4 Case Study 

The method suggested in the previous section is demonstrated here by applying 

it to a two-dimensional truss bridge whose Young’s modulus is set to be a random 

variable. The result is compared with the existing sensor selection method that is 

based on Monte Carlo simulation. 
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3.4.1 Truss Bridge Structure 

To demonstrate stochastic EFI, a truss bridge structure was modeled by the finite 

element method. It is shown in Figure 3-3. The truss bridge is composed of the 41 

truss elements and 18 nodes. Each node has two DOFs that describe x- and y-

direction displacement, respectively. The x-direction DOF for the nth node is 

numbered 2(n-1), and the y-direction DOF is numbered 2n. The DOFs of both 

directions at node 1 and in the y-direction at node 17, that is, DOFs 1, 2, and 34 are 

constrained. The cross-sectional area of the truss element is 5×10-3 m2, and the mass 

density is 2500 kg/m3. The Young’s modulus is set to be a random variable that has 

the truncated normal distribution with mean 70 GPa. Three different standard 

deviations of the Young’s modulus are simulated for verification of the suggested 

method; 0.0.5×70 GPa, 0.1×70 GPa, and 0.2×70 GPa. 

In this case study, the target modes are set to be the first ten modes to represent 

the overall structural behavior. However, for the purpose of structural health 

monitoring, one can choose other modes that are useful for a specific fault. The first 

4 modes are shown in Figure 3-4, with their mean and standard deviation that are 

simulated with the help of the SFEM [30, 31]. 
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Figure 3-3 Two-dimensional truss bridge. 

 

 

(a) 

 

(b) 

 

(c) 

 

(d) 

Figure 3-4 Target mode representation with mean and standard deviation: (a) 1st 

mode, (b) 2nd mode, (c) 3rd mode, and (d) 4th mode. 

 



 

 

34 

 

 

 

3.4.2 Sensor Placement Under Uncertainty 

3.4.2.1 Monte Carlo Simulation 

Optimal sensor selection under parametric uncertainty was studied by Castro-

Triguero [20] for a truss bridge. The authors use Monte Carlo simulation to select 

ten sensors under parametric uncertainty. The histograms of 1,000 EFI simulations 

of sensor selection under three different variances of the Young’s modulus are shown 

in Figure 3-5. 
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(a) 

 

(b) 

 

(c) 

Figure 3-5 Histograms of 1,000 EFI simulations with stochastic Young’s 

modulus with the mean 70 GPa: (a) the standard deviation 0.05×70 

GPa, (b) the standard deviation 0.1×70 GPa, and (c) 0.15×70 GPa. 
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In Figure 3-5, when the variance of the Young’s modulus is low, the set of 

selected sensors does not change much. However, as the variance increases, the 

number of sensors consistently selected decreases. For example, DOF 22 is selected 

for most of the simulation in the lower variance case, but as the variance increases 

the selection ratio reduces gradually. In contrast to DOF 22, the increase in sensor 

selection is observed for other sensors such as DOFs 16, 18, and 35. We also observe 

that the selection of the DOFs around the constraint, such as the DOFs 3, 6, and 33 

does not change much even with a high variance of the Young’s modulus, because 

their variances are kept relatively low by the constraints. In contrast, the DOFs away 

from the constraints, such as DOFs 18, 22, and 23, show less consistency in selection 

even with the low variance. Similar features are observed for energy-based EFI. The 

results of strain energy EFI, which uses the stiffness as a weight, are shown in Figure 

3-6. 
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(a) 

 

(b) 

 

(c) 

Figure 3-6 Histograms of 1,000 strain energy EFI simulations with stochastic 

Young’s modulus with the mean 70 GPa: (a) the standard deviation 

0.05×70 GPa, (b) the standard deviation 0.1×70 GPa, and (c) 0.15×70 

GPa. 

 

(c) 
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Based on the histograms, the MCS method gives the basic idea of selecting sensor 

locations under parametric uncertainty. The intuitive method is to choose the 10 most 

frequently selected sensors, for example, in Figure 3-5 (a) the set (3, 6, 12, 13, 14, 

21, 22, 26, 30, 33) would be selected. However, this selection does not always assure 

the optimal set of sensors, especially when the variance is high, because it overlooks 

the correlation between the sensors. For instance, it is possible that a DOF that has 

lower linear independence than the DOFs with the 10 highest linear independences 

is never selected during the simulation, but that it does belong to the 10 highest 

sensors on average. In the following section, the stochastic EFI indeed shows this 

case, and finds the optimal sensor locations that give the highest ten linear 

independences, on average. 

 

3.4.2.2 SEFI Method 

The DOFs for the sensor placement are selected using the suggested stochastic 

EFI for the truss bridge with three different variances. The set of sensors selected 

using the stochastic EFI are shown and compared with the deterministic EFI and 

MCS results in Table 3-1. 

The performance of each of the three approaches is compared by calculating the 

determinant of the FIM with respect to the randomly generated 1,000 truss bridges 
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according to the random property. The histograms of the determinant of the FIM are 

shown in Figure 3-7 and their mean value is found in Table 3-3. 
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Table 3-1 The set of 10 sensors selected by EFI using the deterministic EFI, MCS, 

and stochastic EFI 

Std. of Young’s 

modulus, GPa 
Method Sensor set 

Mean det(ΦTΦ) 

(log scale) 

0.05×70 

DEFI 

3, 6, 12, 13, 14, 21, 22, 26, 30, 33 -107.6160 MCS 

SEFI 

0.1×70 

DEFI 3, 6, 12, 13, 14, 21, 22, 26, 30, 33 -107.6603 

MCS 3, 6, 12, 13, 18, 21, 22, 26, 30, 33 -107.7878 

SEFI 3, 6, 12, 13, 14, 21, 22, 26, 30, 33 -107.6603 

0.15×70 

DEFI 3, 6, 12, 13, 14, 21, 22, 26, 30, 33 -107.7277 

MCS 3, 6, 12, 13, 18, 22, 23, 26, 30, 33 -107.8264 

SEFI 3, 6, 12, 13, 14, 21, 22, 26, 30, 33 -107.7277 
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 (a) (b) (c) 

 
 (d) (e) (f) 

 
 (g) (h) (i) 

Figure 3-7 Determinant of the Fisher information matrix by (a) EFI with standard 

deviation of 0.05×70 GPa , (b) MCS with standard deviation of 

0.05×70 GPa , (c) stochastic EFI with standard deviation of 0.05×70 

GPa , (d) EFI with standard deviation of 0.1×70 GPa , (e) MCS with 

standard deviation of 0.1×70 GPa , (f) stochastic EFI with standard 

deviation of 0.1×70 GPa , (g) EFI with standard deviation of 0.15×70 

GPa , (h) MCS with standard deviation of 0.15×70 GPa , and (i) 

stochastic EFI with standard deviation of 0.15×70 GPa. 
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For the case of a low variance of Young’s modulus, the selected sensor sets are 

not different for between MCS and stochastic EFI. This is because the selected 10 

sensors overwhelm the other sensors (Figure 3-4(a)); thus, it is not difficult to choose 

the sensors using either method. Also, the results are the same with deterministic EFI 

because of the low variance. However, as the variance increases, the number of 

overwhelming sensors decreases (Figure 3-4(b)), and the selection becomes 

confusing when the frequencies in the histogram are similar. However, in this case, 

the selection of higher frequency does not always give the best result, as mentioned 

before. For example, in the mid-variance case, the sets selected by the MCS and the 

stochastic EFI are the same, except for DOFs 14 and 18. Although DOF 14, selected 

by stochastic EFI, has less frequency than DOF 18, selected by the MCS as in Figure 

3-4(b), det(ΦTΦ) with DOF 14 is higher as shown in Figure 3-7 (b) and in Table 3-3. 

This phenomenon is intensified as the variance grows, the number of overwhelming 

sensors decreases, and the difference between the MCS and the stochastic EFI results 

increases. This is observed in the high-variance case. The number of different 

sensors between the sets selected by MCS and stochastic EFI increased to two, which 

are DOF (18, 23) for MCS and (14, 21) for stochastic EFI. 

Another aspect to notice is that deterministic EFI gives the same sensor sets as 

stochastic EFI. This is because deterministic EFI is basically the zeroth order 

approximation of stochastic EFI. However, deterministic EFI does not always give 
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the same results as stochastic EFI, if the variance can affect the results more. This 

will be shown in the results of the following energy-based EFI method. Also, note 

that the determinant of FIM is decreasing as the variance increases. 

The difference in the determinant of the Fisher information matrix, or the linear 

independence, leads to different estimation performance. To show this, estimations 

are conducted for two cases of deflection, as shown in Figure 3-8. 

For those cases, the Young’s modulus of each element is set to have 15% standard 

deviation from its mean, and 1000 samples are generated accordingly. The 

corresponding sensor locations are found in Table 3-1. Based on the data measured 

at the given sensor locations, the deflection for each sample is reconstructed using 

Eq.(3). Sample estimations for both MCS and proposed method are shown in Figure 

3-9. The estimated errors are calculated for 1000 samples; the average differences 

are shown in Table 3-2. 
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Figure 3-8 The target deflections of a truss bridge with the mean Young’s modulus 

 

 

 (a) (b) 

 

 (c) (d) 

Figure 3-9 The estimated deflection for a randomly generated truss bridge 

generated by: (a) MCS for case 1, (b) MCS for case 2, (c) SFEM for 

case 1, and (d) SFEM for case 2 
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Table 3-2 The average estimation error of MCS and SFEM for given cases 

 Average RMS error 

 Case 1 Case 2 

MCS 0.0253 0.0055 

SFEM 0.0109 0.0023 
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From the results, we see that the proposed method not only shows the higher 

linear independence, but also it indeed gives more accurate estimation than the MCS 

method.  

Stochastic EFI is verified with the energy-based method. The stiffness matrix is 

used for the weight matrix, W and the Cholesky decomposition is used to define the 

FIM. The results are shown in Table 3-3 and the determinant of the FIM for different 

standard deviations of Young’s modulus are shown in Figure 3-10. 
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Table 3-3 The set of 10 sensors selected by strain-energy-based EFI using the 

deterministic EFI, MCS, and stochastic EFI 

Std. of Young’s 

modulus, GPa 
Method Sensor set Mean det(ζTζ) 

0.05×70 

DEFI 8, 11, 12, 16, 17, 24, 27, 28, 32, 33 4.3139×1010 

MCS 7, 8, 12, 16, 20, 24, 27, 28, 32, 33 4.3066×107 

SEFI 7, 8, 9, 12, 20, 24, 27, 29, 32, 35 9.0426×1010 

0.1×70 

DEFI 8, 11, 12, 16, 17, 24, 27, 28, 32, 33 4.4851×1010 

MCS 7, 8, 12, 16, 20, 24, 27, 28, 32, 33 1.5199×108 

SEFI 7, 8, 9, 12, 20, 23, 24, 29, 32, 35 1.5042×1011 

0.15×70 

DEFI 8, 11, 12, 16, 17, 24, 27, 28, 32, 33 4.5497×1010 

MCS 7, 8, 12, 16, 20, 24, 27, 28, 32, 33 3.7275×108 

SEFI 8, 11, 12, 16, 17, 24, 27, 28, 32, 33 1.3712×1011 
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 (a) (b) (c) 

 
 (d) (e) (f) 

 
 (g) (h) (i) 

Figure 3-10 Determinant of the Fisher information matrix by (a) energy-based 

EFI with standard deviation of 0.05×70 GPa , (b) MCS with standard 

deviation of 0.05×70 GPa , (c) stochastic EFI with standard deviation 

of 0.05×70 GPa , (d) energy-based EFI with standard deviation of 

0.1×70 GPa , (e) MCS with standard deviation of 0.1×70 GPa , (f) 

stochastic EFI with standard deviation of 0.1×70 GPa , (g) energy-

based EFI with standard deviation of 0.15×70 GPa , (h) MCS with 

standard deviation of 0.15×70 GPa , and (i) stochastic EFI with 

standard deviation of 0.15×70 GPa. 
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Unlike the EFI method, this strain-energy-based method shows different sensor 

selection even in the case of low variance. This is because the stiffness matrix is the 

function of the random variable, Young’s modulus, and the sensor selection becomes 

more sensitive by taking it into the FIM. Note that while all the methods give 

different results, stochastic EFI gives the best results among them. 

Another energy-based method, the kinetic-energy-based method that uses the 

mass matrix as the weight matrix, shows different sensor locations with the EFI and 

strain-energy-based methods due to the targeting of different information. The 

results are shown in Table 3-4. It is worth noting that the variation of sensor locations 

according to the uncertainty is more comparable with the EFI method than the strain-

energy-based method. This is because the mass matrix is not a random quantity, and 

does not add randomness to the kinetic energy form as the stiffness matrix does to 

the strain energy form. Thus, the mode shape matrix is the only factor that affects 

the result, as seen in the EFI method. 
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Table 3-4 The set of 10 sensors selected by kinetic-energy-based EFI using the 

deterministic EFI, MCS, and stochastic EFI 

Std. of Young’s 

modulus, GPa 
Method Sensor set Mean det(ζTζ) 

0.05×70 

DEFI 8, 11, 12, 16, 17, 24, 27, 28, 32, 33 4.3139×1010 

MCS 7, 8, 12, 16, 20, 24, 27, 28, 32, 33 4.3066×107 

SEFI 7, 8, 9, 12, 20, 24, 27, 29, 32, 35 9.0426×1010 

0.1×70 

DEFI 8, 11, 12, 16, 17, 24, 27, 28, 32, 33 4.4851×1010 

MCS 7, 8, 12, 16, 20, 24, 27, 28, 32, 33 1.5199×108 

SEFI 7, 8, 9, 12, 20, 23, 24, 29, 32, 35 1.5042×1011 

0.15×70 

DEFI 8, 11, 12, 16, 17, 24, 27, 28, 32, 33 4.5497×1010 

MCS 7, 8, 12, 16, 20, 24, 27, 28, 32, 33 3.7275×108 

SEFI 8, 11, 12, 16, 17, 24, 27, 28, 32, 33 1.3712×1011 
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The advantage of stochastic EFI does not only lie in optimal sensor selection, but 

also in reducing the computational effort. Stochastic EFI requires much less 

computational work than the MCS method. The MCS method generates a large 

number of input samples and simulates as many times as the number of the input 

samples to obtain the probabilistic characteristics of the output. Unlike MCS, 

stochastic EFI with SFEM needs only one simulation to determine the stochastic 

properties of the output. The computational times of both methods are compared for 

the various lengths of the truss bridge in Table 3-5. 

  



 

 

52 

 

 

 

 

 

 

 

Table 3-5 The simulation time of MCS with 1,000 simulations and stochastic EFI for 

a 2-D truss bridge 

No. of truss block 6 7 8 9 10 11 

MCS 3.8261 4.8313 5.6736 6.6168 7.5172 8.3789 

Stochastic EFI 0.0087 0.011 0.0158 0.0121 0.0161 0.0154 
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For a six truss block sample, the MCS method with 1,000 simulations takes 

almost 440 times longer than the proposed method. This computational difference 

increases if the structure becomes large and complicated, as observed in Table 3-5. 

As the number of the truss blocks increases, the computational time of MCS 

increases, while the computational time of the stochastic EFI method remains almost 

constant. If the required number of samples increases due to multiple random 

variables, or a complex probability distribution, the computational difference will be 

much more severe. 

 

3.5 Conclusion 

The research described in this dissertation proposed an analytic method for 

optimal sensor placement under parametric uncertainty. The stochastic EFI was 

derived, which is composed of the deterministic EFI and an additional random part. 

With the help of SFEM, the stochastic moments required for the stochastic EFI 

method are readily obtained, dramatically reducing the total computation time. 

Applying the suggested method to a 2-dimensional truss bridge case study showed 

the same or higher determinant of FIM on average as the MCS method, which 

indicated higher linear independency between the columns of the mode shape matrix 

with reduced DOFs. It also showed higher representativeness of the general vibration 



 

 

54 

 

 

using the information from the given locations of the sensors. For small variances of 

the parameter, the selected sensor sets were the same for both methods; however, as 

the variance increased, the sensor set from the suggested method showed higher 

linear independence. 

The proposed method was expanded to energy-based OSP methods, such as the 

kinetic energy method, and the strain energy method – both originate from the EFI 

method. The derivation of such methods for a stochastic case were obtained and they 

were validated with the same truss bridge case study. The results show that the 

suggested method shows higher linear independence. 

In deriving the stochastic EFI, the symmetric probability distribution of a random 

variable, and the first-order Taylor expansion for some variables were assumed. For 

more accurate results, analysis of these assumptions will be required. This analysis 

will be dealt with in a future study. 
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Chapter 4. Robust Sensor Network Design 

This chapter proposes a sensor network design that considers possible sensor 

malfunctions, and where the designed sensor network is applied for estimation of the 

temperature distribution of a Li-ion battery pack. Section 4.1 describes the 

development of the thermal model for the battery pack to extract the basis matrix. In 

the next section, an objective function is proposed and solved using the genetic 

algorithm for the optimization problem that maximizes the linear independence of 

the system under malfunction. In the final section, the proposed method is validated 

for various heat conditions. 

 

4.1 Battery System 

4.1.1 Battery Pack Overview 

Here, a thermal simulation model for a battery pack is developed using the 

lumped parameter. The battery pack is composed of 50 number 18650 cylindrical 

cells (ICR18650B4, LG Chem.) with 2600mAh capacity, and 3.7V nominal voltage. 

The geometry of the battery pack is shown in Figure 4-1(a) and its lumped finite 

element model is shown in Figure 4-1(b). Each cell is represented as a node and it is 

connected with the surrounding cells by thermal resistance. At each cell, heat is 
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generated by electrochemical reactions. The heat is transferred to the surrounding 

cells by conduction and to the air by convection. The energy balance equation for 

the ith cell in the battery pack is as follows [32-34]: 

 ,( ) ( )i

h t i j i amb i

j

dT
C R T T Q h T T

dt
      (34) 

where Ch is the heat capacity of the cell, Ti is the temperature at the ith cell, and Tj is 

the cell around the ith cell, Tamb,i is the ambient temperature, t is the time, Rt is the 

thermal resistance between cells, 𝑄̇ is the heat generation rate, and h is the heat 

transfer coefficient. The rationale for the simplicity of this lumped model is based 

on three perspectives. First, for practical use in a management system, the 

computational requirement needs to be small. Second, the errors that could occur in 

the model can be compensated for through the measurements. In addition, the small 

size of the 18650 cells with small Biot numbers allow us to assume a small 

temperature variance in the cell [34, 35].  
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(a) 

 
(b) 

 

Figure 4-1 (a) Battery pack geometry, and (b) the lumped parameter model. 
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4.1.2 Heat Generation Model 

During charging and discharging, heat is generated inside the cell. There are 

several heat sources, such as irreversible ohmic heating, reversible entropic heat, 

heat from phase change of the active materials, and the heat of mixing [34-36]. In 

this study, two dominant heat sources, irreversible ohmic heating and reversible 

entropic heating are considered [32]. The heat generation rate is given as 

 2 OCVdV
Q I R IT

dT
   (35) 

where I is the input current, R is the impedance of the cell, and VOCV is the open 

circuit voltage. The first term is the ohmic heating and the second term is the entropic 

heat. Since the impedance is dependent on the state-of-charge (SOC), the hybrid 

pulse power characterization (HPPC) test is performed to obtain the SOC and 

impedance relationship [36, 37]. Figure 4-2(a) shows the HPPC test profile. The 

discharge pulse is applied for 10 seconds followed by 1C discharge to reduce the 

SOC by 10%. By repeating this procedure, the impedance at every 10% SOC can be 

calculated. At the last step, the discharge current is half of the others in order not to 

violate the cut-off voltage. Therefore, the impedance obtained at this step is for 5% 

SOC. The impedance is simply calculated as V/I at the beginning of discharging the 

current. The impedance to the SOC is shown in Figure 4-2(b). Also, dVOCV/dT for 
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entropic heat is obtained as a function of SOC according to [32, 36]. The voltage of 

the battery at rest is measured with the change of the temperature at a certain SOC 

level. The equation VOCV=A+BT+Ct is fitted to the measured voltage, then the 

coefficient B is dVOCV/dT at a given SOC. The test profile at SOC 0% is shown in 

Figure 4-3(a) as an example. Similarly, dVOCV/dT at different SOC levels is obtained, 

and the results are shown in Figure 4-3(b). 

Finally, for calculation of the SOC during operation, the coulomb counting 

method given in Eq.(36) is used [38]. 

 
1

i

k k k

n

t
z z I

C




 
  

 
 (36) 

In the above equation, k is the time index, zk is the SOC at time index k, ηi is the 

Coulombic efficiency, Δt is the time difference between k+1 and k time indices, Cn 

is the nominal capacity of the cell, and Ik is the input current. With the impedance, 

dVOCV/dT, and SOC as a lookup table, the heat generation can be calculated. 
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(a) 

 

(b) 

Figure 4-2 (a) HPPC test profile, and (b) impedance values at SOC levels. 
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(a) 

 

(b) 

Figure 4-3 (a) Entropic heat test profile and (b) dVocv/dT. 
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4.1.3 Model Calibration and Validation 

The model parameters of a single cell, the heat capacity, and the heat transfer 

coefficient, are calibrated and validated with experimental results. All the 

experiments are conducted using the Maccor Series 4000 for dis/charging, and the 

heat chamber for controlling the ambient conditions. First, for model calibration, the 

temperature under a 1C discharging condition is obtained and used for target vector 

to optimize the model parameters. The optimized heat capacity and heat transfer 

coefficient are 69.43 J/K, and 0.1555 W/m2K, respectively. The measured and the 

simulated temperatures are shown in Figure 4-4. The model is then validated with 

the urban dynamometer driving schedule (UDDS) current profile, which is shown in 

Figure 4-5(a). The UDDS profile and 10% SOC discharging is performed 

alternatively until the SOC is near zero, then the charging process follows. The 

measured and the simulated temperatures for this current profile are shown in Figure 

4-5(b). The simulated result shows good agreement with the measured temperature 

during the discharge. The temperature at charging deviates a bit from the measured 

one, because the impedance used is obtained from discharging pulse. For better 

results during charging, the impedance needs to be calculated using the charging 

impulse. 
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Figure 4-4 The measured and simulated temperatures under 1C (=2.6A) 

discharge current. 
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(a) 

 

(b) 

Figure 4-5 UDDS test results: (a) UDDS current profile, and (b) the measured 

and the simulated temperature. 
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4.2 Robust Sensor Network Design 

Using the parameters found by the single cell experiments, the pack model is 

constructed and simulated. Various scenarios that cover possible realizations of the 

battery pack are generated as a training data set. One of the scenarios is shown in 

Figure 4-6. It is obtained from the constant current discharge condition. The figure 

on the left is the temperature change of the cells across time and the figure on the 

right is the temperature distribution of the pack at a certain time (83 min.). From the 

training data set, the covariance matrix is found as in Eq.(9), and the eigenanalysis 

of the covariance matrix gives the basis matrix, Φ. The first four bases are shown in 

Figure 4-7. This basis matrix will be used to find the optimal sensor locations. 
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(a) 

 
(b) 

Figure 4-6 The temperature distribution of a battery pack under constant current: 

(a) temperature change across time, and (b) the temperature 

distribution at 83 min. 
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 (a) (b) 

 
 (c) (d) 

Figure 4-7 The first four eigenvectors of the training data set: (a) 1st mode, (b) 

2nd mode, (c) 3rd mode, and (d) 4th mode. 
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The object of selecting sensor locations is to maximize the determinant of the 

Fisher information matrix with the (k×k) matrix, Φs. It is the matrix that (n-k) rows 

and columns are eliminated out of the (n×n) mode shape matrix, Φ. Therefore, the 

selections must be made for both rows and columns. The rows are the candidate 

location of sensor placement and will be decided by the genetic algorithm later. The 

columns are the mode shape vectors, and will be selected as the mode shapes 

corresponding to the k lowest eigenvalues of Φ. The choice of low-frequency mode 

shapes is adequate to represent the general behavior of the system. If the operating 

condition of the system is restricted so that the dominant mode shapes are known by 

and large, then the selection of these mode shapes will bring better estimation under 

that condition. However, this study focuses on the estimation of an arbitrary loading 

condition and so we stay with k lowest mode shapes. 

The choice of rows, or sensor locations, is considered in two aspects. First, the 

linear independence needs to be high enough to reconstruct the whole thermal map 

out of the measured signal. Second, for the sensor network to be robust, the sensor 

network needs to keep its functionality under latent sensor failure. Then, the 

objective function and the constraints are formulated as follows:  
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  (37) 

where k is the given number of sensors, Φ[i1,…, ik; j1,…, jk] is the submatrix of Φ 

formed from the rows {i1,…, ik}and columns {j1,…, jk} such that il∈, 1≤ il ≤n, and 

il ≠ im. As mentioned before, the mode shapes are preselected as the first k mode 

shapes. The random variable for calculating the expectation in the objective function 

is ij which is an element in {i1,…, ik}. Therefore, the objective function indicates the 

average linear independence of the system when a sensor fails. The constraint is set 

to satisfy a certain performance. That criterion is determined based on the sensor 

placement result without considering the failure. The iopt is the optimal sensor 

location when failure is not considered. The coefficient α determines the 

performance criterion. 

Since the sensor placement is the combinatorial problem that selects a given 

number of sensors k out of n candidate locations, the integer valued optimization 

method is required. Integer valued optimization is a non-convex problem that cannot 

be solved by gradient-based optimization. Thus, in this study, the genetic algorithm 

is adopted to find the sensor location giving the best linear independence of the 
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system. The genetic algorithm is a sampling-based optimization algorithm inspired 

by biological evolution. It generates initial random samples (or population) and pass 

them to the next generation with modification. The modification contains crossover, 

mutation, and selection that are based on the evaluation of the objective function for 

the samples. As the generation goes on, the optimal evolution is found as in natural 

selection [39]. The sensor locations found by the genetic algorithm are shown with 

the sensor network design that does not consider sensor failure in Figure 4-8. 
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(a) 

 
(b) 

Figure 4-8 The sensor locations: (a) Optimal sensor placement (OSP), and (b) 

the robust optimal sensor placement. 
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4.3 Case Study 

The estimation accuracy with and without considering failure of sensors is 

validated for three test sets. The results are compared with the other sensor network 

designs; one that does not consider the failure of sensors and another one that uses 

duplicated sensors for reliability. 

 

4.3.1 Case 1: Different Heat Generation for the Cells  

Each cell that makes up the battery pack has a different specification due to 

manufacturing tolerances and different degradation rates during operation. The first 

test set is generated to emulate this variation of the cells. The difference in cell 

specifications emerges as the different heat generation rate. Therefore, each cell is 

assumed to be discharged with a constant current where the amplitude is realized 

from the normal distribution N(2.6, 0.26). The temperature change is shown in 

Figure 4-9(a) and the temperature distribution at 83 min. as shown in Figure 4-9(b) 

is set as the target temperature distribution to be estimated. 

The temperature estimations provided by the existing optimal sensor placement 

(OSP) method and the proposed robust optimal sensor placement (ROSP) method 

are compared in Table 4-1. Under normal conditions, both the OSP and the ROSP 
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methods show accurate estimation results of less than 1°C. Although OSP should 

have the best estimation result in general, it need not be the best estimation for all 

cases. This is why ROSP has slightly higher accuracy than OSP for the given case, 

even though it is not the best sensor network design for the given number of sensors. 

The accuracy of the estimation decreases as one of the sensors fails. However, the 

accuracy drop of ROSP is less than that of OSP. Especially when the malfunction 

occurs on sensor 3 the accuracy drops are severe, but ROSP has less of an accuracy 

drop than OSP. The same is also true for other cases, except sensors 5 and 7. The 

results of ROSP with a malfunction of sensor 5 and 7 are also comparable with OSP. 
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(a) 

 
(b) 

Figure 4-9 The temperature distribution of the battery pack under a constant 

current realized from the random distribution: (a) temperature change 

across time, and (b) the temperature distribution at 83 min. 
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Table 4-1 The RMS error of OSP and ROSP methods for case 1 

 Estimation error (RMS) 

Failed sensor No. OSP ROSP 

Normal 0.3311 0.5161 

1 2.7575 1.4072 

2 4.4064 1.2929 

3 17.1811 7.6999 

4 1.7658 1.6222 

5 2.0477 1.974 

6 4.8249 2.7842 

7 1.6839 1.5953 

8 1.9328 1.1974 

Mean error for failure 4.57 2.45 
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4.3.2 Case 2: Forced Convection 

The second case is designed to imitate a battery pack with a cooling system. The 

battery pack is cooled down by forced convection that comes from the left side of 

the battery pack by a set different heat transfer coefficient for each cell. The 

simulation result is shown in Figure 4-10. As expected, the cells near the air inlet 

and the circumference of the pack have a lower temperature than the others.  

The estimation results for normal and malfunction conditions are shown in Table 

4-2. Similar to what was observed in case 1, both OSP and ROSP methods give 

accurate estimation results in normal conditions; however, the accuracy drops with 

a sensor malfunction. The accuracy drop for the ROSP result is less than the accuracy 

drop for OSP. 
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(a) 

 
(b) 

Figure 4-10 The temperature distribution of a battery pack under forced 

convection: (a) temperature change across time, and (b) the 

temperature distribution at 83 min. 
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Table 4-2 The RMS error of OSP and ROSP methods for case 2 

 Estimation error (RMS) 

Failed sensor No. OSP ROSP 

Normal 0.2658 0.3369 

1 3.0945 1.3521 

2 5.3976 1.5131 

3 20.213 8.2920 

4 1.9524 1.7199 

5 2.3377 2.0404 

6 5.5522 2.8814 

7 1.8372 1.5646 

8 2.1750 1.1891 

Mean error for failure 5.32 2.57 
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4.3.3 Further Discussion on the Result 

This section discusses how two aspects of sensor network design affect the results, 

specifically, 1) the number of sensors and 2) the selection of mode shapes. First, the 

impact of the number of sensors is tested by comparing the estimation error along an 

increasing number of sensors. For case 1 and 2, Table 4-3 shows the relationship 

between the differing number of selected sensors and the estimation error. 

Naturally, as the number of sensors increases the estimation becomes more 

accurate. Because the number of sensors is the same as the available mode shapes 

used for estimation, the more sensors used, the accurate the estimation becomes. 

Another thing to note is that any particular sensor network with a smaller number of 

sensors is not a subset of a larger sensor network. Thus, the selection of the sensors 

cannot be conducted in a consecutive manner; rather, it should be conducted for each 

case. 
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Table 4-3 Sensor placement corresponding to the number of sensors and estimation 

accuracy 

No. Sensor Sensor Placement 
Estimation Error 

Case 1 Case 2 

5 1, 10, 22, 24, 28 1.9494 2.0523 

6 1, 10, 22, 23, 26, 29 1.0888 1.0957 

7 1, 10, 22, 24, 27, 29, 32 1.1843 1.1892 

8 1, 10, 22, 23, 27, 29, 32, 36 0.3311 0.2658 

9 1, 10, 12, 22, 23, 24, 27, 29, 36 0.1491 0.1490 

10 14, 20, 22, 23, 25, 28, 32, 37, 41, 50 0.1148 0.1145 

11 4, 11, 14, 20, 22, 23, 25, 27, 28, 32, 50 0.0512 0.0511 
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The second aspect that affects accuracy is the selection of the mode shapes. In 

the previous study, the mode shapes were successively selected, from the low-order 

mode shape to the higher order. This way of selecting sensors is for general 

estimation of the system. However, if the system behavior is confined to a certain 

range of the domain, estimation accuracy can be enhanced by using the dominant 

mode shapes in that range. This is verified for case 1 by comparing the results with 

different mode shapes; one with the low-order mode shape and the other with the 

dominant mode shape. The result is shown in Table 4-4. 

Two things can be observed from these results. First, the estimation accuracy is 

enhanced by choosing a different mode shape. Although the increase in accuracy 

observed in this example is not significant due to the small difference between the 

dominant mode shapes and low-order mode shape, if there are other cases that 

deviate from the orderly selected mode shape the difference will increase. Second, 

the sensor locations change as the selected mode shapes are changed. This is because 

the Fisher information matrix depends on the given mode shape. For this case, it is 

obvious to find the dominant mode shape, so the sensor network for that specific 

case is easily found. However, if the cases extend over a wider range, finding the 

dominant mode shape should be carefully investigated; which will be left for future 

research. 
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Table 4-4 Sensor locations and the estimation accuracy for different mode shapes 

 Dominant mode shape Low order mode shape 

mode shape 1, 2, 3, 4, 5, 6, 8, 33 1, 2, 3, 4, 5, 6, 7, 8 

Sensor locations 
1, 4, 12, 20, 22, 

23, 26, 28, 41, 50 

14, 20, 22, 23, 25, 

28, 32, 37, 41, 50 

RMS error 0.2854 0.3311 
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4.4 Conclusion 

In this study, we proposed a robust sensor network design that sustains estimation 

accuracy under failure. We defined the objective function and the constraint for this 

purpose. The optimization problem was solved by the genetic algorithm. The 

selected sensor locations were used to reconstruct the temperature distribution of 

various cases. The estimation results were compared with the other sensor network 

designs; one was the existing sensor placement method that focuses on accuracy and 

the other was to use duplicated sensors for robustness. The results show that the 

proposed method has estimation capability that is comparable to the existing optimal 

sensor design and that the proposed method has higher reliability than observed 

using duplicated sensors. 

The proposed method is advantageous for practical use in temperature estimation 

for a battery pack. By combining the model and the measured data, it captures both 

the computational efficiency and the estimation accuracy. In practice, such as in the 

case of a battery management system in an electric vehicle, computational efficiency 

is an important issue. Thus, a complicated model requiring heavy computation 

cannot be used in spite of its accuracy in estimation. In contrast, the simple model is 

free from the computational burden; however, it is less accurate. The proposed 

method requires only a small memory to save the basis matrix and the capability to 
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calculate the matrix product; inaccuracy is compensated by the measured data and 

thus, it is suitable for practical use. The use of sensors only to obtain the temperature 

distribution of the battery pack is not practical because of the cost and the potential 

for sensor malfunctioning. 

Another benefit of the proposed method lies in the sustainability of the sensor 

network under failure. The sensor network contributes to protect the system as a part 

of PHM; however, the sensor network itself is vulnerable to failure. Nevertheless, 

developing another protective system for the sensor network is not a good solution 

because it requires redundant cost. In this situation, the proposed sensor network 

design could be a solution because it does not require an extra system, while it does 

maintain a certain degree of performance under failure. Unlike the PHM, which tries 

to prevent failure, the proposed design allows the failure and gains time to take care 

of the failure. 

In this study, the sensor locations were found through the optimization method, 

but it has several shortcomings. It requires significant computational resources to 

find the optimal solution. Also, to find the proper solution, proper setting of the 

optimization parameters is important. The genetic algorithm and the other sampling-

based optimization methods are known as the global optimization methods; however, 

their solution depends on the optimization parameters and thus they do not always 
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give a global optimization solution. Hence, to reduce the computational cost, an 

analytic solution is required. This will be addressed in future research. 
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Chapter 5. Contributions and Future Work 

 

5.1 Contributions and Impacts 

The work presented in this dissertation focuses on sensor network design for 

prognostics and health management (PHM). As the beginning step of PHM, the 

sensor network design has a profound effect on the overall successful 

implementation of PHM. One of the principal problems in sensor network design is 

how and where to put the limited number of sensors on the system to have the best 

information we want to measure. One important property in the sensor network 

design is the linear independence. The basis vectors of the finite element model that 

compose an arbitrary behavior of the system, are linearly independent if the signal 

corresponding to each degree-of-freedom (DOF) is known. However, the limited 

measure of the system only gives partial information on some measured DOF, as a 

result, the linear independence between the measured DOF is no longer guaranteed. 

Since this linear independence determines the representability of the basis vectors 

for the system, the purpose of the sensor network design becomes to find the 

locations that make the basis vectors as linearly independent as possible. The 

maximization of linear independence is considered mainly in two different aspects; 

it has the following contributions:  
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Increase in estimation accuracy of sensor network design under system 

uncertainty 

The first research thrust proposes a method to maximize linear independence 

under system uncertainty. The system in practice always has uncertainty, and the 

sensor network design will be different from the deterministic solution. To find the 

optimal sensor network design that considers system uncertainty, the deterministic 

approach of the sensor network design is modified to its stochastic version. The 

proposed method is validated using the truss bridge structure, and the results are 

compared with another stochastic approach, the Monte Carlo simulation method. 

The results of the research show higher linear independence on average, which 

means higher representability of the system than observed in the Monte Carlo 

simulation.  

Reduced Computational Cost 

By formulating the explicit form of the sensor network design algorithm, the 

computational cost is greatly reduced. The typical approach to solve the stochastic 

problem is to use Monte Carlo simulation. However, this sampling-based method 

generates a large amount of samples and evaluates the system response with respect 

to the samples; hence, it suffers from a significant computational burden. In contrast, 
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the proposed method evaluates the stochastic response only once for each iteration. 

Thus, it reduces the computational time. 

Increased Robustness in the Sensing System 

Although PHM prevents the system from failure, the sensor network, as a part of 

PHM, does not have any safety against failure. However, adding another safety 

system for PHM is too redundant of a design. However, the proposed robust sensor 

network design could be a compromise. The proposed sensor network is designed to 

allow and endure the failure to some degree instead of preventing it. Once the failure 

occurs, the sensor network still does its job with reduced but reasonable performance. 

This approach increases the robustness of the sensing system without an additional 

device. 

 

5.2 Suggestions for Future Research 

Although the proposed method achieves technical advances in sensor network 

design, there are still research areas for improvement. Specific suggestions for future 

research are as follows: 

Hybrid Sensor Network Design 
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This study introduced two primary approaches that are distinguished by the basis 

vectors of the system. One basis is obtained from the mode shape matrix of the FE 

model, and the other is from the data. Each method has its own characteristics. The 

former, called the model-based approach, can estimate all possible realizations of the 

system; however, for specific cases, the accuracy is less than what is found in the 

latter, which is called a data-based approach. In contrast, the data-based approach 

has benefits for estimation of specific cases that are similar to the training data; 

however, it is less accurate for other cases. Therefore, the model-based sensor 

network design is relevant and best for unknown and dynamic operating conditions, 

while the data-based approach is most relevant for predictable operating conditions. 

However, combination of both methods could give a better solution that lies in 

between the two approaches. 

Sensor Network Design for Transformed Signals 

Current sensor networks are designed to estimate the same quantity that the 

sensor measures. However, for some cases of PHM, the raw signal is transformed to 

the diagnostic features. For example, the measured signal can be transformed to the 

entropy form to reveal the health condition of the system. However, sensor network 

design for the transformed signal has not yet been thoroughly studied, except for the 

energy form. Therefore, the development of sensor network design for transformed 

signals will help to improve PHM. 
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Abstract (Korean) 

기계 시스템 건전성 평가를 위한 

효율독립성 기반 센서 네트워크 디자인 

연구 

 

 

김 태 진 

서울대학교 대학원 

기계항공공학부 

 

기계 시스템의 불시 고장은 경제적, 사회적 손실을 야기한다. 이러한 

손실을 미연에 방지하기 위한 방안으로 PHM (prognostics and health 

management)이 주목받고 있다. PHM 은 시스템의 현 상태를 추정하고 

미래 상태를 예측하여 시스템의 고장을 미연에 방지하고 나아가 

시스템의 최적 운영을 가능케 한다. PHM 은 측정, 진단, 예지, 그리고 

관리의 네 단계로 구성되는데, 특히 측정은 PHM 의 첫 단계로써 이후 

단계의 성공적 수행에 결정적 영향을 미친다. 
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본 연구는 시스템으로부터 최대의 정보를 얻기 위한 센서 네트워크 

디자인에 관한 문제를 다룬다. 먼저 시스템의 불확실성을 고려한 센서 

네트워크 디자인에 관해, 그리고 센서의 고장을 고려한 센서 네트워크 

디자인에 대해 논의한다. 시스템의 불확실성을 고려한 센서 네트워크 

디자인은 기존의 결정론적 접근 방식을 변형하여 확률적으로 접근 

가능한 식을 유도하였으며 이로부터 기존의 확률적 접근 방식이던 

샘플링 기반 방법에 비해 정확도와 효율을 개선할 수 있었다. 다음으로 

센서의 고장을 고려함으로써 일부 센서의 고장 시에도 그 역할을 지속 

할 수 있는 강건한 센서 네트워크 디자인을 제안하여 전체 PHM 의 

안전성을 높였다. 

 

주제어 :  센서 네트워크 디자인 

유효독립 방법 

고유지도 방법 

확률적 효율독립 방법 

강건 센서 네트워크 디자인 
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