
 

 

저작자표시-비영리-변경금지 2.0 대한민국 

이용자는 아래의 조건을 따르는 경우에 한하여 자유롭게 

l 이 저작물을 복제, 배포, 전송, 전시, 공연 및 방송할 수 있습니다.  

다음과 같은 조건을 따라야 합니다: 

l 귀하는, 이 저작물의 재이용이나 배포의 경우, 이 저작물에 적용된 이용허락조건
을 명확하게 나타내어야 합니다.  

l 저작권자로부터 별도의 허가를 받으면 이러한 조건들은 적용되지 않습니다.  

저작권법에 따른 이용자의 권리는 위의 내용에 의하여 영향을 받지 않습니다. 

이것은 이용허락규약(Legal Code)을 이해하기 쉽게 요약한 것입니다.  

Disclaimer  

  

  

저작자표시. 귀하는 원저작자를 표시하여야 합니다. 

비영리. 귀하는 이 저작물을 영리 목적으로 이용할 수 없습니다. 

변경금지. 귀하는 이 저작물을 개작, 변형 또는 가공할 수 없습니다. 

http://creativecommons.org/licenses/by-nc-nd/2.0/kr/legalcode
http://creativecommons.org/licenses/by-nc-nd/2.0/kr/


공학박사학위논문 

 

 

다양한 데이터 형식에 적용 가능한   

증기터빈 잔존유효수명 예측 방법론  
 

A Framework for Remaining Useful Life Prediction of 

Steam Turbines Applicable to Various Data Types  

 
 
 
 
 

2018 년 8 월 

 
 
 
 
 

서울대학교 대학원 

기계항공공학부 

최  우  성 

 



i 

 

Abstract 

 

A Framework for Remaining Useful 

Life Prediction of Steam Turbines 

Applicable to Various Data Types  
 

Woosung Choi 

Department of Mechanical and Aerospace Engineering 

The Graduate School 

Seoul National University 

 

The power plant industry focuses significant effort on reducing operation costs and 

extending the service life of critical machines as competition between utilities 

increases. On the other hand, the deterioration of core facilities (e.g., steam turbines) 

of the power plant is accelerated as operating time closes to design life. Unplanned 

outages of power plant due to accelerated degradation or unexpected failure, whether 

sustained or only momentary, can lead to considerable financial losses as well as 

nationwide disaster. Thus, various methodologies are being developed to enable stable 

operation of the power plant without failure. Recently, prognostic and health 

management (PHM) has been successful in various industries by predicting the health 

condition of the system and helping managers make decision for optimal maintenance.  
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From the perspective of optimal maintenance, the remaining useful life (RUL) 

obtained by suitable PHM methodologies make it possible to perform effective 

maintenance management based on the actual condition of the facilities. Since a 

steam turbine is a key facility to determine a design life of power plant, an effective 

method is required to predict accurate RUL for steam turbine in service through the 

limited and available resources. In order to facilitate the development of formal 

methodologies for this needs, this doctoral dissertation aims at advancing three 

essential and co-related research areas for RUL prediction of steam turbine using 

Bayesian approach: (1) Research Thrust 1 – an RUL prediction framework for steam 

turbine with failure mode and effective analysis (FMEA) analysis; (2) Research Thrust 2 

- a damage growth model for RUL prediction of steam turbine (empirical model-

based approach); and (3) Research Thrust 3 - a mode-dependent damage model for 

steam turbine with creep-fatigue interaction (physical model-based approach). The 

research scope in this doctoral dissertation is to develop technical advances in the 

following three research thrusts: 

First, Research Thrust 1 proposes an RUL prediction framework for steam 

turbine with FMEA. The framework is composed of two approaches: measured data-

driven and damage model-based methodologies. The proposed RUL prediction 

framework with uncertainty quantification step enables the statistical prediction of 

RULs. The key to success in this effort is to quantify and reduce uncertainties of 

predicted RUL results considering different purpose such as off-line and/or on-line 

prediction.  
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Second, Research Thrust 2 aims at developing damage growth model for RUL 

prediction of steam turbine based as data-driven approach. An RUL prediction 

methodology incorporates a damage index into the damage growth model. A Bayesian 

inference technique is used to consider uncertainties while estimating the probability 

distribution of a damage index from on-site hardness measurements. The predictive 

distribution of the damage index is estimated using its mean and standard deviation. 

As a case study, real steam turbines from power plants are examined to demonstrate 

the effectiveness of the proposed Bayesian approach. The results from the proposed 

damage growth model can be used to predict the RULs, including uncertainties, of the 

steam turbines of power plants regardless of load types (peak-load or base-load) of 

the power plant.  

Finally, Research Thrust 3 proposes a mode-dependent damage model with creep-

fatigue interaction as a model-based approach. The effect of operation and damage 

mode on the creep and fatigue damage was statistically investigated in terms of creep-

fatigue damage interaction effects. The three steps are systematically organized as 

follows: (1) statistical calculation of dominant damage mechanisms; (2) development 

of mode-dependent damage model with creep-fatigue interaction effects; (3) 

investigation of interaction effects according to the operation and damage modes. 

 

Keywords:  Steam turbine 

Remaining Useful Life (RUL) 

Uncertainty 

Bayesian inference 

Creep-Fatigue Damage Interaction  
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Chapter 1 Introduction 

 

Introduction 

 

1.1 Motivation 

The deterioration of core facilities, large industrial facilities such as power 

plant, is accelerated as operating time goes by. Unplanned shutdown due to 

degradation or unexpected failure, whether sustained or only momentary, can 

lead to considerable financial losses as well as nationwide accidents. The 2011 

South Korea Blackout, which had an economic loss of about 63 million 

dollar, was a power outage across South Korea on September 15, 2011. It was 

known that this is caused by an unexpected failure of the old components, not a 

mistake of forecasting electric power demand. As shown in Figure 1-1, more than 

one-third of facilities are operating for more than 20 years among domestic 

power generation facilities. Therefore, it is necessary to maintain stable operation 

in consideration of accelerated aging of old facilities in order to prevent 

unexpected power outages. Recently, prognostic and health management (PHM) 

has been successful in various industries by enabling proactive maintenance 

decisions beyond conventional preventive maintenance. PHM technologies can 

https://en.wikipedia.org/wiki/Power_outage
https://en.wikipedia.org/wiki/South_Korea
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effectively predict the health condition of the system and help managers make 

decisions for optimal maintenance.  

 

From the perspective of optimal maintenance, the remaining useful life (RUL) 

obtained from the accurate prediction make it possible to perform maintenance 

management based on the real state of the facilities, rather than conservative 

maintenance strategy; time-based replacement or new construction following 

recommendation of the manufacturer. In case of power plants, the new 

construction cost (1000~1500$/kW) is larger than life extension cost 

(150~200$/kW) as shown in Figure 1-2. Thus, new PHM technologies that 

tracking changes in the health condition of power plants and predicting its RUL 

is becoming a constant topic of power generation industry. Accurate RUL 

prediction by PHM technologies should be developed to extend conservative 

service life, and to secure reliability and stability of plant.  

 

Figure 1-1 Status of coal fired and NG power plant in Korea (2010) 
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Figure 1-2 Comparison of new construction and life extension cost for power plant 

 

Especially, it is important to predict the RUL of the turbine in assessing the 

state of the plant since steam turbine is a key facility that determines service life 

of power plant. It is well known that expected service life of turbine is about 20-

25 years according to the guideline of manufacturing companies.  

Many research efforts have been made to develop RUL prediction 

methodologies for major component of power plant. However, there is still a 

great need for RUL prediction methodologies using actual operation conditions 

for important component such as turbine, not limited to test material in laboratory. 

The advantages and disadvantages are clearly distinguished from the data-and 

model-based methodologies. Thus, it is necessary to develop novel 

methodologies to eliminate uncertainty and to improve the accuracy of RUL 

prediction in a given condition.  

First, RUL assessment guidelines are depend on individual method such as 

replication, hardness, analytic method and so on, respectively. And there is no 
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valid framework to predict RUL of turbine considering various purposes 

including online or offline estimation. If it is possible to obtain sensory data from 

a real steam turbine, second, obtained data can be analysed and used to predict 

RUL using statistical approach such as Bayesian inference. Finally, there is a 

need for a methodology to predict the RUL when there is an appropriate physical 

model though it is difficult to obtain data on site. 

As a result, the above three technical challenges should be properly 

addressed to successfully predict RUL of steam turbine. 

 

1.2 Research Scope and Overview 

This doctoral dissertation aims at advancing three essential and co-related 

research areas for RUL prediction of steam turbine: (1) Research Thrust 1 – an 

RUL prediction framework for steam turbine applicable to various data types 

after FMEA analysis; (2) Research Thrust 2 - a damage growth model for RUL 

prediction of steam turbine (empirical model-based approach); and (3) Research 

Thrust 3 - a mode-dependent damage model for steam turbine with creep-fatigue 

interaction (physical model-based approach). The research scope in this doctoral 

dissertation is to develop technical advances in the following three research 

thrusts: 

Research Thrust 1: An RUL Prediction Framework for Steam Turbine with 

FMEA Analysis 
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Research Thrust 1 proposes an RUL prediction framework for steam turbine 

with failure mode and effective analysis (FMEA). Many research efforts have 

been devoted to the RUL prediction of high temperature components. To the best 

of the author’s knowledge, previous researches have not been able to 

systematically organize step-by-step procedure, but those are tendency to bias 

how the calculations are carried out accurately in each step. This thrust places the 

main focus on the design of RUL prediction framework based on FMEA results. 

The framework is composed of two approaches: measured data driven and 

damage model based methods. The proposed RUL prediction framework with an 

uncertainty quantification enables the statistical prediction of RULs. 

 

Research Thrust 2:  A Damage Growth Model for RUL Prediction of Steam 

Turbine (Empirical model-based Approach) 

Research Thrust 2 aims at developing damage growth model for RUL prediction 

of steam turbine based as data-driven approach. The hardness measurement is 

most commonly and easily used in actual field for RUL prediction. However this 

method is subject to uncertainties due to aleatory and epistemic uncertainties in 

irregular and discontinuous measurement and non-homogeneous samples. A 

Bayesian inference and MCMC sampling technique are used to consider 

uncertainties while estimating the probability distribution of a damage index 

from on-site hardness measurements. The predictive distribution of the damage 

the damage index and RUL are estimated for retired turbines to determine a 

threshold which is of great importance to RUL prediction. As a case study, real 
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steam turbines from power plants are examined to demonstrate the effectiveness 

of the proposed Bayesian approach. The results from the proposed damage 

growth model can be used to predict the RULs of the steam turbines of power 

plants regardless of load types (peak-load or base-load) of the power plant.  

 

Research Thrust 3:  A Mode-Dependent Damage Model for Steam Turbine 

with Creep-Fatigue Interaction (Physical Model-based 

Approach) 

Following the development of Research Thrust 1 and 2, Research Thrust 3 

proposes a mode-dependent damage model with creep-fatigue interaction as a 

model-based approach. The accurate knowledge of damage rate or risk of the 

steam turbine is critical to the necessary for the effective operation and 

maintenance of power plant. Many researches are carried out to investigate the 

creep and fatigue damage behavior of steam turbines that operated under high 

temperature and frequent loading condition. However, there is a growing 

reliability concerns as the operation mode has shifted in the direction of 

accelerating significant damages to the steam turbine. This study proposes a 

damage interaction model based on combining creep and fatigue damage with 

actual field data and material test data. The interaction effects of operation and 

damage modes on the creep and fatigue damages are statistically investigated in 

terms of creep-fatigue damage interaction effects. Additionally, risk is evaluated 

using the proposed mode-dependent damage interaction model.  
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1.3 Dissertation Layout 

This doctoral dissertation is organized as follows. Chapter 1 reviews the current 

state of knowledge regarding life prediction. Chapter 2 proposes a practical RUL 

prediction framework of steam turbine with FMEA (Research Thrust 1).  

Chapter 3 presents a damage growth model using sporadically measured and 

heterogeneous onsite data (Research Thrust 2). Chapter 4 discusses mode-

dependent damage assessment with creep and fatigue interaction model. Finally, 

Chapter 5 summarizes the doctoral dissertation with its contributions and 

suggests future research directions. 
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Chapter 2  

 

Literature Review 

 

To provide readers with sufficient background information, this chapter is 

designated to present the literature reviews of the knowledge within the scope of 

this doctoral dissertation: (1) life prediction methodologies of steam turbine; (2) 

measured data driven life prediction; (3) damage model based life prediction 

using creep and fatigue damage analysis. Literatures on each of these three 

aspects are discussed in one subsection and challenges are addressed. Since this 

doctoral dissertation focuses on how to estimate remaining useful life and 

evaluated total damage rate by means of real field data from steam turbine, 

general characteristics of prognostics and health management of engineering 

systems are not reviewed in detail here and such works can be found in the 

existing review articles. 

 

2.1 Life Prediction Methodologies for Steam Turbine  

The design life of steam turbines is typically 25 years or 200,000~250,000 hours 

[1-3]. The power plant industry focuses significant effort on reducing operation 
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costs and extending the service life of critical machines (e.g., steam turbines) to 

avoid premature failure. Condition-based maintenance (CBM) has drawn great 

attention as a strategy for cost-effective operation and maintenance (O&M) 

decisions. A CBM program consists of four main steps: data acquisition, data 

processing, health prognostics, and maintenance decision-making [4, 5]. The 

health prognostics step includes not only diagnostics for fault detection, isolation, 

and identification; it also includes prognostics for predicting the remaining useful 

life (RUL) before failure [6-8]. There are increasing demands for engineering 

aftermarket services to manage steam turbines in a timely and proper manner [9]. 

RUL prediction for complicated and large-scale systems is a major scientific 

challenge and a significant issue for effective O&M. With respect to turbines that 

are already in service, an effective method is required to accurately predict RUL 

through the limited available resources [10]. 

 

Major components of power plants are exposed to harsh thermal loading 

conditions. Theoretically, the RUL of key components could be predicted by 

metallurgical or theoretical analysis of as-received and degraded elements [1]. 

Recent life assessment technology and applied experience for existing steam 

turbines are described in Table 2-1. In general, it is well known that there are 

mainly three kinds of life assessment methods for steam turbine; the destructive, 

the nondestructive and the analytical method [11].  
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Table 2-1 Comparison of RUL Prediction (life assessment) methods for Steam Turbine 

Approach Destructive Non-destructive Statistical Analytic  

Feature 

 Direct 

 Inconvenient/limited 

 Partially predict RUL  

life 

 In-direct 

 Convenient/limited 

 Not predict RUL life 

 In-direct 

 Mathematical function 

 Failure data dependent 

 Predict RUL life 

 Complex calculation 

 Physical model 

 Predict RUL life 

Prediction 

area 

Stress 

Concentration 

area 

 Partially applicable  Partially applicable  Partially applicable  Applicable 

Flat area  Applicable  Applicable  Partially applicable  Applicable 

RUL 

prediction 

Creep ○ ○ △ △ 

Fatigue ○ Ⅹ △ △ 

Creep-fatigue 

interaction 
○ Ⅹ △ △ 

Assessable 

damage 

range 

Creep Full damage range  Partially applicable  Partially applicable  Full damage range 

Fatigue  Not applicable  Not applicable  Partially applicable  Full damage range 

Creep-fatigue 

interaction 
 Not applicable  Not applicable  Partially applicable 

 Full damage range 

 Damage interaction  

Model required 

Method  

 Tensile test 

 Creep rupture test 

 Fatigue test 

 Cavitation analysis 

 Replication 

 Hardness  

measurement 

 Indentation test 

 Regression 

 Neural Network 

 Bayesian (with model) 

 Finite element analysis 

 Probabilistic analysis 
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2.1.1 Destructive Method 

Although the destructive method can directly evaluate the metallurgical property in 

laboratory testing devices, sample taking is extremely limited as operations 

because of difficult preparation of specimen for testing the shape and construction 

from the target components. And the analytical method must be used in 

combination in order to establish the test conditions.  

 

Generally, the RUL prediction of high-temperature components of power plant 

facilities can be divided into cases where there are no cracks and cases where there 

are cracks. In this research, creep and fatigue damage of steam turbine are 

evaluated under no-crack conditions considering the characteristic of rotating 

machine that a catastrophic accident occurs when a crack occurs. 

 

2.1.2 Nondestructive Method 

Non-destructive techniques, such as replication analysis and hardness tests, can 

also be used to evaluate the damage rate. Replication analysis has been widely 

adopted to evaluate the damage rate of in-service steam turbines. It can be used to 

classify the level of material degradation in accordance with guidelines such as 

Neubauer or Vereinigung der Großkesselbesitzer e.V (VGB) [9, 10, 12-16].  

 

Damage rates for steam turbines with ferritic steel have been determined by 

investigating the degree of micro-structural phase evolution, micro-void formation 

of grain boundaries, and evolution of carbides from visual inspection via scanning 

electron microscope (SEM) images [12, 17, 18]. Several elements (e.g., tubes, 
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turbines, and pipes) have been studied to quantify damage via replication analysis. 

However, the replication method is based on five or six states; thus, results of its 

RUL prediction are classified as five or six states. Quantitative and accurate RUL 

prediction is relatively difficult [19]. For example, from the visual inspection of 

scanning electron microscope (SEM) image as shown in Figure 1, there was little 

difference in microstructures between highly-stressed and lowly locations. Because 

of the classification results from Figure 2-1, it is difficult to use them for RUL 

prediction of turbine as they are the relative results of qualitative damage rate from 

microstructure analysis. It would be desirable to quantitatively estimate RUL 

related to creep or fatigue damage rather than relying on a qualitative measure such 

as visual inspection from Optical Microscope (OM) or SEM images. 

 

      
(a)  

      

(b) 

Figure 2-1 OM (X500) and SEM (X3000) image (a) highly-stressed location and 

(b) lowly-stressed location of 1Cr1Mo1/4V rotor steel after 146,708 hour operation 
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 Rebound hardness test methods provide quantitative measures to evaluate the 

relative damage rate. These measures can be easily implemented, and measured 

hardness values can be calibrated with results from the conventional Vickers 

hardness test, which is only available in a laboratory setting [20]. Fujiyama et al. 

[21, 22] used hardness values as a correction factor to supplement empirical 

formulas (e.g., the Larson-Miller Parameter (LMP)) for RUL prediction that 

considers creep damage. Recently, Mukhopadhyay et al. [23] proposed a hardness-

ratio-based creep life model that considers dislocation and precipitate phenomena.  

 

However, in this approach, the predicted creep life can significantly deviate due to 

variations in temperature, as hardness values are combined with the LMP relation. 

Recently, instrumented indentation test methods were developed to measure 

strength in-situ. The indentation test is a non-destructive technique that determines 

material properties – including elastic modulus, tensile strength, and residual stress 

– by analyzing the indentation load-depth curve [24].  

 

2.1.3 Analytical Method 

For the RULs prediction of a turbine, the maximum stress or strain of the turbine 

should be calculated at the failure susceptible locations, respectively. In the 

analytical method, operating history, geometrical information of turbine, and 

thermal and material properties are used to calculate the stress, strain, and 

temperature distribution. Life assessment method of turbine components through 

experimental and finite element analysis is developed to predict fatigue life [25]. 

To perform accurate life calculation, a finite element analysis is carried out 
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considering operation condition and characteristic of material behavior after 

modeling based on geometrical information [26]. The maximum stress and strain 

from finite element analysis (FEA) are reflected to life assessment of interesting 

facilities. 

If a mathematical model or user-defined function about material behavior are 

defined, visco-plastic analysis can be carried out using finite element analysis [27] 

as shown in Figure 2-2. As seen from the Figure 2-2, the stress contour illustrates 

that the stress nearby the inlet notch and bore zone are significantly sensitive to the 

transient condition such as start-up. By FEA, calculate stress and strain results 

considering plastic behavior are used to determine creep and fatigue life by 

applying a life relation equation.  

 

 

 

 

 

 

 

 

(a)                  (b)                (c) 

 

 

 

 

 

 

 

 

(d)                  (e)                (f) 

 

Figure 2-2 Contour of von Mises stress during start-up (a) rolling start (b) 127min 

(c) 200 min (d) 300 min (e) 400 min (f) 500 min [27] 
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Comparing elastic analysis, however, 3 dimensional visco-plastic analysis have 

some limitations such as long calculation time, convergence weakness. As an 

alternative, results of simplified elastic analysis or numerical analysis can be used 

to consider stress/strain concentration effects through the Neuber expression [28].   

 

 

2.1.4 Summary and Discussion 

The various RUL prediction methods previously described can be conveniently 

integrated into a phased approach with the three levels [29]. Since the destructive 

methods are not applicable for continuously operated key component (turbine) in 

power plant, non-destructive or analytical methods are relatively easy to predict 

RUL and those methods are useful to apply to the plant site. 

 

 However, it is necessary to understand the characteristics of each method and 

obtain sufficient information for more accurate RUL predictions, respectively. 

Therefore, the characteristics and uncertainties of the nondestructively measured 

data should be quantitatively analyzed. Related with analytical method, it is 

necessary to determine the dominant damage model directly related to the RUL and 

calculate accurate damage rate without the complexities and high costs.  

 

 

2.2 Data-driven and Model-based RUL Prediction  
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In general, prognostic approaches can be classified into three categories: 1) 

model-based approaches [30-32]; 2) data-driven approaches [33, 34]; and 3) hybrid 

approaches [35]. Data-driven approaches use a system health knowledge learned 

from system behavior data. These are mainly based on massive sensory data with 

reduced requirements for knowing inherent system failure mechanisms. On the 

other hand, model-based approaches use mathematical or empirical models that 

represent system degradation. Such approaches based on the understanding of 

physics of failure and underlying degradation models. Hybrid approaches combine 

data-driven and model-based methodologies [36, 37]. A good review of hybrid 

prognostic approaches was given in [37]. The hybrid prognostic approaches 

mentioned in the above literature survey can mainly be categorized into five types 

through the combination of Experience-based model, data-driven model and 

physics-based model. Sparse literature has mentioned the practices of using the 

hybrid approach since there are some challenges even though it is potentially 

beneficial to fuse all types of information. 

Data-driven and model-based prognostic approaches are compared and 

summarized with recent examples in Table 2-2. 

 

2.2.1 Data Driven Approach 

Data-driven approaches derive predictive models from routinely collected 

monitoring data [38]. It is usually based on statistical, machine learning, and neural 

network methods. Though those are necessary to require failure data for training, 

such approaches are better to predict the RUL in the system-level without physical 

knowledge.  
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Table 2-2 Comparison of data-driven and model-based prognostics approaches 

 Data-driven approach Model-based approach 

Definition 
To use a system health knowledge learned from 

system behavior data 

To use mathematical/empirical models that represent 

system degradation 

Pros 

  Better to predict RUL at the end of life 

  Applicable to system level 

  Taking into account uncertainties  

  in sensing / operation condition  

 Possible to assess RUL in early stages 

 Applicable for Virtual qualification 

   - stress calculation by FEA   

 

Cons 

 Need to build training data  

 Application-specific 

 Failure data needed  

  Need to understand physics of failure  

  Information lacking in many physical parameters 

  Applied to component level  

Examples 

 RUL prediction for Cooling fan [6] 

 RUL prediction for bearing using ANN [28, 39] 

 RUL prediction for Turbofan, battery using 

Bayesian approach. [29]  

 To predict fatigue crack growth rate using NN [40] 

 Forecasting the rate of defect growth on a bearing 

[41-43]  

Prognosis for aircraft actuator/bearing [42, 44] 

 Prognosis for cracked rotor shaft [45] 

 RUL prediction of OLED [46] 
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2.2.2 Model based Approach 

As described in Section 2.2, Model-based approaches are usually based on 

empirical or physical model describe the degradation process of the components. 

For example, Paris’s law was used to predict the rate of crack growth on a 

complicate system [43, 52]. Though such approaches require specific domain 

knowledge related with physics of failure, it is possible to assess the RUL in early 

stage. As practical engineered system generally consist of multiple components 

with multiple failure modes, understanding all potential physics of failure and their 

interaction for a complex system is almost impossible [57]. In practice, even when 

the model of the degradation process is known, the RUL estimate may be difficult 

since the degradation state of the system may not be directly measured and the 

measured data may be affected by various uncertainties. 

In this study, empirical model-based approach is based on statistical and machine 

learning methods that aim at discovering the turbines’ degradation using off-line 

measured data instead of the on-line sensory data. And physical model-based 

approaches build creep and fatigue damage models describing the degradation of 

steam turbine and consider their interaction effects.   

 

2.3 Empirical Model-based RUL Prediction  

2.3.1 On-site Data Measurement 

Non-destructive techniques, such as replication analysis and hardness tests, can 

also be used to evaluate the damage rate. Replication analysis has been widely 

adopted to evaluate the damage rate of in-service steam turbines. It can be used to 

classify the level of material degradation in accordance with guidelines such as 
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Neubauer or Vereinigung der Großkesselbesitzer e.V (VGB) [9, 10, 12-16]. 

Damage rates for steam turbines with ferritic steel have been determined by 

investigating the degree of micro-structural phase evolution, micro-void formation 

of grain boundaries, and evolution of carbides from visual inspection via scanning 

electron microscope (SEM) images [12, 17, 18]. Several elements (e.g., tubes, 

turbines, and pipes) have been studied to quantify damage via replication analysis. 

However, the replication method is based on five or six states; thus, results of its 

RUL predictions are classified as five or six states. Quantitative and accurate RUL 

prediction is relatively difficult [19]. For example, there was little difference in 

microstructures between low-stress and high-stress locations. Likewise, the 

hardness at the locations shows relatively little difference. Since it is difficult to use 

these results to quantify the health conditions from visual inspection of optical 

microscope (OM) or SEM images, a quantitative measure is appropriate to predict 

RUL related to creep or fatigue damage rather than qualitative measures.  

 Rebound hardness test methods provide quantitative measures to evaluate the 

relative damage rate. These methods can be easily implemented, and measured 

hardness values can be calibrated with results from the conventional Vickers 

hardness test, which is only available in a laboratory setting [20]. Fujiyama et al. 

[21, 22] used hardness values as a correction factor to supplement empirical 

formulas (e.g., the Larson-Miller Parameter (LMP)) for RUL prediction that 

considers creep damage. Recently, Mukhopadhyay et al. [23] proposed a hardness-

ratio-based creep life model that considers dislocation and precipitate phenomena. 

However, in this approach, the predicted creep life can significantly deviate due to 

variations in temperature, as hardness values are combined with the LMP relation. 

Recently, instrumented indentation test methods were developed to measure 
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strength in-situ. The indentation test is a non-destructive technique that determines 

material properties – including elastic modulus, tensile strength, and residual stress 

– by analyzing the indentation load-depth curve [24].  

Despite its potential advantages, to date, a very limited amount of scientific work 

has been conducted in the research area of damage rate evaluation or RUL 

prediction of in-service components [47-49]. Also, there is almost no actual 

measurement data available from indentation testers that include operating time.  

 

2.3.2 Bayesian Inference 

The traditional linear least square method can be used to identify deterministic 

parameters when the model is a linear function of the parameters. This method is in 

particular powerful when many data are available [50]. On the other hand, 

Bayesian approaches have been widely used to address uncertainty for model-

based prognostics with pre-existing model though it is computationally expensive 

in case of multi-dimensional integration. It can take into account the prior 

knowledge on the unknown parameters and improve it using experimental 

observations. For example, Guan et al. [51] proposed a general framework for 

probabilistic prognosis using maximum entropy approach with the classical 

Bayesian method for fatigue damage assessment. Dawn et al. [52] used Bayesian 

inferences with the MCMC algorithm to estimate fatigue and wear damage. More 

recently, Chiachío et al. [53] presented a Bayesian approach to update model 

parameters of existing fatigue models for composites. Compare et al. [54] proposed 

a semi-Markov degradation model based on expert knowledge and few field data 

within the Bayesian statistical framework. In the previous Bayesian approaches, the 
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correlation between hyper-parameters and uncertainties of damage model’s 

parameters was not accounted for. To the best of our knowledge, this study is the 

first attempt to define a damage threshold for steam turbines to execute an RUL 

prediction. 

 

2.3.3 Summary and Discussion 

As a one of nondestructive methods, however, the hardness measurement 

method that is most commonly and easily used in actual field settings is used for 

RUL prediction. Nonetheless, RUL predictions based on the rebound hardness test 

method are subject to uncertainties. Those uncertainties are due to aleatory and 

epistemic uncertainties in irregular and discontinuous measurement and non-

homogeneous samples. In this study, sporadically measured hardness is random 

due to the uncertainty that arises from the heterogeneity of turbines in terms of 

manufacturers, sizes, operating conditions, sites, etc.  

Since Bayesian approaches have been used to address uncertainty [55, 56], in 

particular, discrepancy reduction and a damage growth model that considers 

uncertainties should be developed for accurate RUL prediction of aged components 

in power plants. If there is a suitable damage growth model with parameters, also, 

the correlation between parameters and uncertainties of damage growth model’s 

parameters should be accounted to execute an RUL prediction. 

 

2.4 Physical Model-based RUL Prediction  

2.4.1 Creep or Fatigue Damage Model Analysis 

The development of creep-fatigue damage in high-temperature components steel 
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of power plant depends on temperature, strain range, strain rate, hold time, and the 

creep strength and ductility of the material [58-62]. A RUL prediction of steam 

turbine at creep-fatigue conditions is usually performed using the life fraction rule 

[63-66]. The creep-fatigue resistance of power plant steels may be characterized in 

terms of different parameters depending on whether the component evaluation 

interest is defect-free or defect assessment [67]. 

 

Creep damage model based analysis 

Tremendous research efforts have been devoted to investigate creep behavior for 

high temperature materials. Most of the studies carried out in the 1980s were based 

on the Norton-Bailey relation [68] which is based on Arrhenius equation. Also, 

various empirical equations; θ-projection model [69], Graham-Walles model [70], 

and modified Graham-Walles model [71] were proposed through creep rupture test. 

However, those models are not appropriate to estimate lifetime since a too many 

parameters are required or the creep behavior can be only analyzed in a certain 

ranges.  

Thus, the Larson-Miller parameter [72] is commonly used to predict the creep 

failure time since it can be easily applied using limited test data. Recently, a 

probabilistic methodology is proposed to assess life of high-temperature 

components there are very wide scatter present in creep and creep failure data. As a 

representative example, Monte Carlo technique and the standard damage fraction 

by creep damage are proposed for piping system under creep conditions [73]. 

Fatigue damage model based analysis 

Low cycle fatigue(LCF), considered in this research, is defined as the fatigue 
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mechanism that controls failures occurring at N< 10
4 

cycles and typically is of 

concern when there is significant cyclic plasticity [74]. In transient or dynamic 

environments, stresses in high-temperature components constantly vary, making 

low cycle fatigue failure a critical issue when designing or operating these 

components [75]. 

 

Since there are no fundamental differences between the mechanisms of the low 

cycle fatigue and the high cycle fatigue, S-N curves based on LCF tests are easily 

used to estimate crack initiation time as a fatigue life. Especially, curves of strain 

amplitude and cyclic life obtained in LCF tests can be separated into elastic and 

plastic strain ranges. Therefore, Coffin and Manson relation, which is composed of 

two types of power functions, is commonly used to predict fatigue life for high-

temperature components.  

 

 

2.4.2 Creep-Fatigue Damage Summation Model-based Analysis  

In the past years, many researchers have made great efforts to evaluate the creep-

fatigue damage in terms of new analyses, new models, and theoretical 

considerations with respect to the creep and fatigue coupled conditions. Among the 

various methods of simultaneously considering creep and fatigue, Miner’s linear 

damage accumulation method was a dominant approach to analyze the creep and 

fatigue damage assessment due to its simplicity. The damage based on linear 

cumulative damage rule under creep-fatigue load is generally used to predict 

lifetime or risk of power plant components: rotor, casing and valve etc [8, 25, 76-

80]. By the linear accumulation of creep and fatigue damage, especially, a 
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nonlinear continuum damage mechanics (CDM) model is proposed to assess the 

creep-fatigue life of steam turbine rotor [81] and fatigue interaction model by the 

inelastic strain energy density is developed to represent the damage accumulation 

under stress control mode [82].  

Recently, linear and bi-linear damage loci is used to classify safe and unsafe region 

[67] and torsional vibration damage is linearly added with creep and fatigue 

damage [26]. Compared with the nonlinear accumulation method, however, 

Miner’s method is often over evaluated and it is not applicable if different kinds of 

damages are partially overlapped in a section [83]. If the two types of damages are 

independent with each other and there is no overlap between the creep and fatigue 

damage, creep and fatigue damages can be linear superposition directly. However, 

the traditional linear damage accumulation method causes repeated calculation 

about the overlapping parts and it is no longer applicable if the creep and fatigue 

damage have overlapping parts which are not independent [84].  

Table 2-3 summarizes some creep-fatigue life prediction methods that were 

developed since 1970. Those methods are all empirical, based on 

phenomenological framework. Among the life prediction methods, damage 

summation, strain range partitioning and damage approach are widely used to some 

extent for various applications. However, there is a little systematic scheme to 

predict RUL considering actual system and loading conditions. 
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Table 2-3 Summary of creep-fatigue life prediction methods and equations 

Method of life prediction Life prediction equation 
Material parameters needed 

(number) 

Linear life fraction 

[1, 65, 81, 85, 86] 
∑ 𝑁/𝑁𝑓 + ∑ 𝑡/𝑡𝑟 

Strain-life data (4) 

creep-rupture (2~4) 

Nonlinear life fraction [81, 87] ∑ 𝑁/𝑁𝑓 + ∑ 𝑡/𝑡𝑟  + 𝑒 [∑ 𝑁/𝑁𝑓 ∙ ∑ 𝑡/𝑡𝑟 ]
𝑟

 

Strain-life data (4) 

creep-rupture (2~4) 

interaction term (2) 

Strain range partitioning [88] 
𝑁𝑖𝑗 = 𝐴𝑖𝑗∆𝜀𝑖𝑗

0𝑗𝑘
 , ij~PP, PC, CP, CC loops 

(P: Plastic, C:Creep) 

Four inelastic strain vs. life 

relations (8) 

Generic model [89] 

𝑁𝑓 = 𝑓𝑢𝑛𝑐𝑡𝑖𝑜𝑛(𝑆, 𝑅, 𝑇, 𝐻) 

(S:strain range, R : strain rate, T:temperature, 

H : hold time parameters) 

Hyper-parameter (71) 

Damage growth model [90] 𝐷(t)~N(𝜇𝐷(𝑡), 𝜎𝐷(𝑡)) 
Hyper-parameter of mean 

and standard deviation (4) 
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On the other hand, in case of fatigue damage, there are lots of researches about 

nonlinear fatigue damage accumulation model which is not combined with creep 

damage, since individual damage due to various loads must be added. The 

nonlinear fatigue damage accumulation models can be classified into the 

following approaches: damage curve based approaches [88, 91], continuum 

damage mechanics models [92-95], energy based methods [96-98], physical 

properties degradation based model [96, 99]. 

 

Online & multi-damage life estimation of steam turbine 

To calculate a low cycle fatigue damage, online monitoring model of a 300MW 

steam turbine rotor is introduced using finite element analysis, transfer function 

and continuum damage model [100-102]. And a polynomial control performance 

assessment method is developed using nonlinear low cycle fatigue damage model 

[103]. In recent years, artificial neural network methods are used to evaluate 

multi-damage life [84, 104] or to control the steam turbine heating process as one 

of the recommendations for stable operation [105]. 

However, these were mainly focused on the investigation of only damage 

behavior or the assessment of life expectancy of components without considering 

interaction effects with operation mode and type of damage for the actual steam 

turbine in operation.  
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2.4.3 Summary and Discussion 

A lot of researches have been published for a long time to estimate the 

lifetime by creep and fatigue damage of high-temperature components. 

When the steam turbine is subjected to different damages such as creep and 

fatigue damage, typical linear superposition is not applicable. Because the 

different damages have overlapping parts on the failure susceptible locations of 

steam turbine.  

Thus, advanced methodologies to predict the RUL of steam turbine under 

the creep and fatigue damage coupling should be developed and replaces the 

simple summation of multiple damage coupling. Because acceleration of start-

ups causes to increase life consumption of steam turbines and change of 

operating mode affects the interaction effect of the multiple damage interaction.   
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Chapter 3  

 

A Practical RUL Prediction 

Framework of Steam Turbine with 

FMEA Analysis 

 

As mentioned in the literature review, many research efforts have been 

devoted to the RUL prediction of steam turbine. To the best of the author’s 

knowledge, previous researches have not been able to systematically organize 

step-by-step procedure, but those are tendency to bias how the calculations are 

carried out accurately in each step. 

The remainder of Chapter 3 is organized as follows. Section 0 describes the 

overview of steam turbines. The results obtained by FMEA (Failure Mode and 

Effects Analysis) for steam turbine are discussed in Section 3.2. In Section 3.3 

and 3.4, measured data-driven approach for offline prediction and damage model 

based approach for online prediction are briefly explained, respectively. Finally, 

the conclusions of this work are provided in Section 3.5. 
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3.1 Overview of Steam Turbines 

A conventional power plant consists of boiler, steam turbine and generator, and 

other auxiliaries as shown in Figure 3-1. Boiler generates steam at high pressure 

and high temperature. Turbine is an engine that converts energy of fluid into 

mechanical energy. Generator converts the mechanical energy into electric power. 

Steam turbines are machines that are used to generate mechanical (rotational 

motion) power from the pressure energy of steam. Steam turbines are one of the 

most popular power generating machines used in the power industry. They are 

widely used because water is prevalent, boiling points are moderate, and the 

operating cost is reasonable. Steam turbines are machines that convert thermal 

energy from hot and pressurized steam to mechanical (rotational motion) work. 

Steam turbines are designed to improve thermodynamic efficiency by adopting 

multiple stages to expand steam [106]. As shown in Figure 3-2, high-pressure 

parts of steam turbines consist of (1) a casing or shell that is usually divided at 

the horizontal center line and contains the stationary blade system; (2) a rotor 

carrying the moving buckets (blades or vanes) either on wheels or drums, with 

journal bearings at the ends of the rotor; (3) a set of bearings attached to the 

casing to support the shaft; (4) a coupling to connect with the driven machine; 

and (5) pipe connections to the steam supply at the inlet and to an exhaust system 

at the outlet of the casing or shell. 
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Figure 3-1 Schematic of coal-fired power plant 

 

Figure 3-2 Schematic of a steam turbine (high and intermediate pressure parts) 
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3.2 FMEA for Steam Turbines 

For high-pressure (HP) portions, typical failure events are creep induced 

deformation, thermo-mechanical fatigue cracking and steam flow induced 

erosion. For low pressure (LP) portion, typical failure events are environmental 

assisted fatigue cracking and steam flow induced erosion. The features of events 

are described as follows for major component. A steam turbine can be divided 

into many components, and the life cycle event tree is used for describing the 

chain action of one component failure leading to another component failure. It is 

well known that degradation by creep and fatigue damage is dominant failure 

modes of steam turbine major components [27, 107]. 

 Failure mode and effect analysis (FMEA) is a structured approach to identifying 

the ways in which a product or process can fail and to prioritizing the actions that 

should be taken to reduce risk. Although there are still many doubt about the 

methodology, FMEA has been successfully accepted in many different fields 

[108]. Failure mode and effect analysis (FMEA) of steam turbines was conducted 

over twenty years in the electric power industry; results are shown in Table 3-1. 

FMEA qualitatively shows the occurrence, severity, and risk of key components 

in a steam turbine. From the viewpoint of material and mechanical properties, 

softening and reduction in the strength of forged part such as rotor, blades, bolts, 

casings and valves are caused by creep or fatigue due to long term high 

temperature, stress and/or many start-ups and shut-downs. Among the many 
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turbine components, this study looks specifically at the HIP rotor for RUL 

prediction due to its high risk. Creep and low/high cycle fatigue (LCF/HCF) are 

known to be the dominant failure mechanisms of steam turbines [27, 107]. High 

temperatures and centrifugal force causes creep damage in high-stress regions, 

such as bore and wheel hooks. Thermo-mechanical fatigue damage from the 

thermal cyclic load causes cracking at the wheel corner [1, 22, 107]. Material 

degradation related to damage in the turbines, such as low-cycle fatigue and 

creep, leads to unexpected breakdown and economic losses in the electric 

industry. Since creep and fatigue damage does not occur independently, this 

research classifies the steam turbine rotor into a bore part and 1st stage surface 

part to calculate the RUL under creep-fatigue interaction damage. 
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Table 3-1 FMEA results for a steam turbine 

 

Component Failure cause 
Failure 

mechanism 
Failure mode Occurrence Severity Risk 

HIP(High-Intermediate Pressure) steam turbine 

Rotor Temp. cycling Creep, LCF Fracture Not often Very high High 

HP blade Temp. cycling LCF, HCF Failure Not often High Moderate 

HP casing Temp. cycling CREEP, LCF Crack Not often Moderate Moderate 

IP blade Temp. cycling LCF, HCF Failure Not often High Moderate 

IP casing Temp. cycling CREEP, LCF Crack Not often Moderate Moderate 

LP(Low Pressure) steam turbine 

Rotor Wet. Cycling Corrosion, LCF Fracture Not often High High 

Blade Wet. Cycling 
LCF,HCF, 

Corrosion 
Failure Often Moderate Moderate 

Bearing Wear Wear Vibration often Low Moderate 
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3.3 A Framework for RUL Prediction of Steam Turbine 

The overall framework for RUL prediction of steam turbine is shown in Figure 3-

3. The procedure is largely composed of the empirical model-based and physical 

model-based approaches.  

In the empirical model-based process, sporadically measured data are acquired 

from turbine units. To acquire material hardness data of both healthy and aged 

conditions from the same turbine, the wheel corner of the 1st stage of the turbine 

rotor was selected as an aged location. The groove of the exhaust section was 

chosen as the healthy location. Since measurement data are subject to various 

sources of uncertainty, such as variability in material properties, measurement 

locations, surface conditions, and testing operators, it is necessary to exclude 

physically meaningless values from distributed data sets. Next, damage indices 

from  

Next, a hypothesis test is performed using limited observed data to see if the 

assumed distribution model is sufficiently productive to integrate into a single 

metric for a damage growth model. An area metric and the u-pooling method [109] 

are employed for the hypothesis test to assess the global predictive capability of a 

model. A Bayesian inference technique can be used to estimate the probability 

distribution of the damage index from on-site measurements. As more 

measurement data are integrated into the updating process, hyper-parameters of 

damage growth model are updated. Finally, RUL can be predicted by subtracting 

the PDF of the damage index from the threshold by using the mean and standard 

deviation distribution. 

The steam turbine is fully assessed in terms of the external thermos-mechanical 
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boundary conditions imposed during the operating time, and these are used in 

conjunction with material constitutive equations to define the distribution of stress 

and strain throughout the structure. In case of physical model-based method, on the 

other hand, failure susceptible locations (bore and 1
st
 stage surface) of turbine rotor, 

damage mechanisms, and essential parameters related with life are determined. In 

this research, necessary parameters are defined as stress and strain values by under 

the steady (base-load) and unsteady (peak-load) operation conditions of the specific 

plant and statistically calculated. Next, creep and fatigue damage rate are 

determined by reference to the material test data from creep and fatigue test. As 

more damage rates are integrated into the updating process, hyper-parameters of 

creep-fatigue damage interaction model are updated. If operating hour or the 

number of cycles for target system is obtained from operation history, finally, 

remaining useful life is determined by the time or number of cycle. The creep and 

fatigue damage rates are finally compared with the crack initiation locus in a creep-

fatigue damage diagram and the risk of failure assessed.  

 

Table 3-2 and Table 3-3 details the empirical and physical model-based RUL 

prediction framework with the seven steps, respectively. STEP 2 to STEP 6 can be 

repeated to update the RUL distributions as new measured or online data sets are 

acquired. In the next Chapter 4 and 5, the RUL of steam turbine is calculated by 

data-driven and model-based approaches according to the procedure in Figure 3-2 

and Figure 3-3. 
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Figure 3-3 A framework for RUL prediction of steam turbines applicable to various data types
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Table 3-2  Procedure of the empirical model-based RUL prediction framework  

 

STEP 1 To define the measured data driven RUL prediction problem  

STEP 2 To acquire hardness data sets from highly-aged and lowly-aged 

location ; 

STEP 3 To filter and extract outlier from measured data set 

STEP 4 To analyze statistically to determine distribution of data set 

To valid estimated distribution by U-pool method 

STEP 5 To update damage growth model using Bayesian inference  

STEP 6 To determine the threshold considering design life 

STEP 7 To predict the RUL predictions using damage growth model which 

employs newly added data set  

 

 

 

 Table 3-3 Procedure of the physical model-based RUL prediction framework  

 

STEP 1 To define the damage model based RUL prediction problem 

STEP 2 To perform FMEA analysis and acquire loading signal from operation 

data 

STEP 3 To identify parameter from selected damage model 

STEP 4 To calculate steady state stress for creep damage model and transient 

state strain for low cycle fatigue damage model 

STEP 5 To calculate creep and fatigue damage for steam turbine, statistically 

STEP 6 To update hyper-parameter of mode-dependent damage interaction 

model  

STEP 7 To predict the RUL prediction using  
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3.4 Summary and Discussion 

This chapter presented the RUL prediction framework for steam turbine. 

The framework is composed of two approaches: measured data driven and 

damage model based methods. The proposed RUL prediction framework with 

uncertainty quantification enables the statistical prediction of RULs. 

In this model-based RUL prediction framework, (1) When the hardness 

values can be obtained in a sporadic maintenance schedule, the RUL and 

uncertainty can be calculated by the empirical model-based procedure regardless 

of the type of turbine; (2) If it is possible to obtain real-time operation data such 

as temperature and damage model, on-line RUL prediction is possible according 

to the physical model-based procedure.  

The key to success in this effort is to quantify and reduce uncertainties of 

predicted RUL results considering different purpose such as off-line and/or on-

line prediction.  
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Chapter 4  

 

A Bayesian Approach for RUL 

Prediction of Steam Turbine with 

Damage Growth Model  

 

This research presents a Bayesian approach to a new damage growth model that 

can utilize sporadically measured and heterogeneous on-site data from steam 

turbines. A hardness-based damage index is selected as a damage indicator to 

evaluate the damage rate. Using this, a new damage growth model is proposed as 

a function of operating time. Sporadically measured hardness is random due to 

the uncertainty that arises from the heterogeneity of turbines in terms of 

manufacturers, sizes, operating conditions, sites, etc. Therefore, the mean and 

standard deviation of the damage index are predicted considering the parameters’ 

correlation and the distribution can be identified simultaneously by using 

Bayesian inference [55] and MCMC simulation. The predicted damage growth 

results from the Bayesian and nonlinear regression method are compared and 
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validated using actual field data from ten turbine units.  

 The remainder of the Chapter 4 is organized as follows. Section 4.1 presents 

sporadically measured and heterogeneous on-site data with uncertainties and 

damage indices are explained in Section 4.2. Section 4.3 focuses on the damage 

growth model using the Bayesian updating method and MCMC simulation. 

Section 4.4 presents the RUL prediction results of Bayesian and the nonlinear 

least square (Nlsq) method. A damage threshold is proposed to determine design 

life, the proposed methodology is validated, and the RUL distribution for an aged 

steam turbine is predicted based on the proposed damage growth model. Section 

4.5 presents the conclusions of the research. 

 

4.1 Characteristics of On-site Measurement Data 

It is extremely difficult to measure material degradation directly. Destructive 

analysis is available only in well-controlled laboratories, while non-destructive 

analysis (i.e., the replication method) is limited in its ability to accurately predict 

the damage rate or RUL. 

 This research employed a rebound hardness tester (Leeb hardness tester in 

accordance with DIN 50156-1 and ISO/FDIS 16859-1) because of the need for 

on-site and non-destructive measurement. The load of the handheld probe of the 

hardness tester was 10 kgf. This study used Vickers hardness values. The 

hardness data are subject to uncertainty due to inconsistency in turbine targets, 
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measurement locations, and testing operators [110]. To take into consideration 

the uncertainty effect, a set of measurement data were collected from ten turbine 

units: five base-load and five peak-load units. More than five repeated data 

measurements from each turbine were used in this study, as prior work showed 

that between 3 and 10 measured hardness data points are generally acceptable 

[111]. 

 It is well known that virgin rotors and the low-temperature regions of the 

retired rotors have almost the same microstructure, consisting of finely dispersed 

carbide precipitates and densely distributed dislocations [112]. Within the turbine 

rotor, therefore, the hardness in a low-temperature region can be used as a 

reference hardness. Figure 4-1 shows two different types of a steam turbine; 

typical base-load and peak-load steam turbines. To acquire material hardness data 

of both low-stress and high-stress conditions from the same turbine, as shown in 

Figure 4-1, the wheel corner of the 1
st
 stage of the turbine rotor was selected as a 

high-stress location. The groove of the exhaust section was chosen as the low-

stress location. Steam turbines have different overhaul periods and schedules. Ten 

sets of the hardness data set, which were sporadically measured at overhauls over 

10 years, are shown in Table 4-1. Thus, hardness data sets from both low and 

high-stress locations were arranged according to the equivalent operating hours 

(EOH). For both base-load or peak-load turbines, EOH can be calculated by 

using actual operating hours, the number of starts, and life factor as [113] 

 



42 

 

 𝐸𝑂𝐻 = 𝑡𝑜𝑝 + (𝐿𝐹 × 𝑁𝑜𝑝)    (4-1) 

 

where top is the actual hours of operation, Nop is the number of starts, and LF is 

the life factor.  

 Development of a damage growth model that utilizes on-site hardness data 

encounters two major hurdles: (a) heterogeneity and (b) uncertainty in data. First, 

data can be collected during scheduled major overhauls in accordance with the 

maintenance strategy of the particular power generation company. Major 

overhauls are typically executed every four years and involve the complete 

disassembly, inspection, and reassembly of the steam turbine. In practice, 

sporadically measured data are also acquired from turbine units. Turbine units in 

coal power plants run at the base load continuously throughout a year, while 

peak-load turbines in a combined cycle power plant generally run only during 

periods of peak demand for electricity [114]. Based on these factors, turbine units 

operate with different fuel sources and power outputs, as shown in Table 4-1. 

Second, measurement data are subject to various sources of uncertainty, such as 

variability in material properties, measurement locations, surface conditions, and 

testing operators [115, 116]. Even if turbines are made of the same material, the 

strengths of different turbines are different. In addition, the operator also 

represents a potential source of error related to testing conditions. Slightly 

mismatched measurement locations and/or different handling of the instrument 

https://en.wikipedia.org/wiki/Power_plants
https://en.wikipedia.org/wiki/Peak_demand
https://en.wikipedia.org/wiki/Electricity
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may occasionally lead to deviations in the results. 

 In Table 4-1, Ha signifies the hardness at high-stress locations and Hv 

represents hardness at low-stress locations. These values are distributed, which 

means that uncertainty from sporadic measurements in heterogeneous turbines 

exists for each data set. Since the measured hardness is indirectly related to 

strength, the damage rate can be quantified and damage growth can be predicted 

for RUL calculation. In this research, a damage growth model that uses a 

hardness-based damage index is proposed in Chapter 4.3. 

 To develop the damage growth model in this setting requires the use of 

heterogeneous and sporadic measurement data. 
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High-stress location Low-stress location 

 

(a) 

(b) 

 

Figure 4-1 Measurement locations for material properties of turbines 

(a) steam turbine of base-load power plant and (b) steam turbine of 

peak-load power plant 

 

 

High-stress location 

Low-stress location 
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Table 4-1 Hardness data for ten turbine units 

Plant 

Unit 
A1 B6 C2 

B6 

(replaced) 
B3 

D1 

(retired) 
E2 F1 

G4 

(retired) 

H5 

(retired) 

Output 

(MW) 
500 500 500 500 500 200 182 350 200 200 

Load Base Peak 

Fuel Coal Coal Coal Coal Coal Oil NG Oil NG NG 

EOH (hrs.) 74,327 95,097 115,671 146,708 157,995 186,478 201,671 212,522 213,175 255,288 

Ha 

# 5 10 5 17 9 10 20 10 9 5 

Mean 260.0 241.1 260.5 251.6 241.7 260.1 222.0 237.8 243.5 222.0 

St. 

dev. 
3.34 4.01 4.87 3.99 5.35 4.34 4.96 3.43 5.79 6.28 

Hv 

# 5 10 5 17 9 10 20 10 9 5 

Mean 263.0 245.7 265.8 258.8 249.3 271.6 236.1 261.9 267.8 272.8 

St. 

dev. 
2.49 2.41 3.18 3.18 5.70 1.78 5.31 4.72 5.70 5.10 

EOH : Equivalent Operating Hours 
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4.2 Measured Data based Damage Indices 

Eight damage measurement methods and damage indices are compared in Table 

4-2 [117]. Most damage measurements are destructive; thus, they are not suitable 

for in-service facilities and have limitations in their ability to consider both creep 

and fatigue damage. Among non-destructive methods, it is relatively easy to 

measure material hardness from actual steam turbines. Moreover, hardness is 

more sensitive to damage than the replication method due to the softening effect 

of damage [20]. From Table 4-2, thus, this study makes use of hardness data to 

define a hardness based damage index that takes into account both creep and 

fatigue damage as [117] 

 

 𝐷 = 1 − �̃�/𝐻 = 1 − 𝐻𝑎/𝐻𝑣     (4-2) 

 

where Ha and Hv are the hardness values measured at aged (or damaged) and 

virgin (or undamaged) material states, respectively, using the Leeb hardness test. 

The hardness at the aged state is measured in a high-stress region (Ha), while the 

one at the virgin state is measured in a low-stress region (Hv), as shown in Figure 

4-1. Figure 4-2 illustrates the box plots of measured hardness at different 

operating hours. Although the spread in the levels of hardness are not the same, 

the difference between high-stress and low-stress hardness increased. Due to 
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Table 4-2 Damage index by direct damage measurement 

Damage measurement Damage Index Creep Fatigue Etc 

Hardness 𝐷 = 1 − �̃�/𝐻 Normal Good Non-destructive 

Elasticity modulus 𝐷 = 1 − �̃�/𝐸  Good Good Non-destructive 

Density 𝐷 = (1 − �̃�2/𝜌)2/3 Bad Bad Destructive 

Ultrasonic waves 𝐷 = (1 − �̃�2/𝑣)2/3 Normal Bad Destructive 

Cyclic stress amplitude 𝐷 = (1 − ∆𝜎∗/∆𝜎)  Bad Normal Destructive 

Tertiary creep 𝐷 = 1 − (ε̇p
∗ /ε̇p )

1/𝑗
 Good Bad Destructive 

Electrical resistance 𝐷 = 1 − �̃�/𝑉 Normal Bad Destructive 

Micrography 𝐷 = ∂SD/ ∂S  Normal Bad Destructive 
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previously mentioned uncertainties, hardness data are statistically distributed so 

that the probability density functions (PDF) of the damage index are shown in 

Figure 4-3 at different operating hours. Since damage indices are able to track the 

progress of damage with operating hours, distributed damage indices based on 

hardness can be used to develop a damage growth model for RUL prediction. 
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(a) (b)  

(c)  (d)  

(e)  (f)  

(g)  (h)  

(i)  (j)  
 

Figure 4-2 Comparison of hardness; box plots by operation time (a) 74,327 
hours, (b) 95,097 hours, (c) 115,671 hours, (d) 146,708 hours, (e) 157,995 hours,     
(f) 186,478 hours, (g) 201,671 hours, (h) 212,522 hours, (i) 213,175 hours, and   
(j) 255288 hours    
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Figure. 4-3 Histograms based on the damage index (a) 74,327 hours, (b) 95,097 

hours, (c) 115,671 hours, (d) 146,708 hours, (e) 157,995 hours, (f) 186,478 hours,    

(g) 201,671 hours, (h) 212,522 hours, (i) 213,175 hours, and (j) 255,288 hours  

(a)  (b)  

(c)  (d)  

(e)  (f)  

(g)  (h)  

(i)  (j)  



51 

 

4.3 Damage Growth Model using Sporadically Measured 

and Heterogeneous On-site Data 

This section proposes a new damage growth model that utilizes the damage 

indices from hardness data. Bayesian inference and MCMC techniques are used 

to update the parameters of the damage growth model in conjunction with the 

stochastic nature of the damage indices. The proposed model is applied to predict 

the RUL of steam turbines in a case study outlined in Chapter 4.4. 

 

4.3.1 Proposed Damage Growth Model 

Damage growth models based on hardness data are rarely studied, even though 

damage growth or degradation models are needed for predicting the RUL of 

steam turbines. In general, model parameters can be estimated using expert 

knowledge and experimental data. Figure 4-3 shows the histograms of the 

hardness-based damage index estimated from heterogeneous turbines with 

different operating times. The histograms provide an important observation. The 

damage index monotonically increases over operating time, although there is 

uncertainty that arises due to sporadic measurements from heterogeneous 

turbines. It is confirmed from observation that the hardness-based damage index 

can be used to represent damage growth. 

 A regression curve was built to understand damage growth behaviour over 

operating time, as shown in Figure 4-4. Ten sets of hardness data measured at 
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different operating times were used to estimate the damage indices plotted in the 

figure. The regression curve demonstrates the monotonic increase of the damage 

index over the entire lifetime. Moreover, the variability of the damage index 

increases with time. It is believed that greater variability over time mainly arises 

from sporadic measurements and the heterogeneity of turbines in terms of 

manufacturers and operating conditions. This necessitates the definition of a 

damage growth model in a Bayesian sense. This study thus proposes a Bayesian 

approach to the damage growth model as a function of operating times, as shown 

in equation (4-3). It is assumed that the time-varying damage index follows a 

Gaussian distribution, of which parameters can be updated with new hardness 

data using Bayesian inference. This assumption may not be ideal at the beginning 

of operation due to its biased nature. However, the normal distribution can 

Figure 4-4 Fitted line using regression methods 
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represent the distribution of the damage index well at later operating times. This 

assumption is more important than at beginning times from the viewpoint of 

damage prediction, because the histograms become a uni-modal and symmetric 

distribution at later operating times. The damage growth model can be thus 

defined in the form of a distribution as  

 

 𝐷(t)~N(𝜇𝐷(𝑡), 𝜎𝐷(𝑡))     (4-3) 

 

where the mean 𝜇𝐷(𝑡)  and standard deviation 𝜎𝐷(𝑡)  of the time-varying 

damage exponentially increase over operating time, as shown in Figure 4-5. They 

are thus modelled as 𝜇𝐷(𝑡) = 𝛼𝜇𝑒𝑥𝑝𝛽𝜇𝑡  and 𝜎𝐷(𝑡) = 𝛼𝜎𝑒𝑥𝑝𝛽𝜎𝑡 . The 

parameters of the mean and standard deviation of the damage are updated 

through Bayesian inference to reduce the uncertainty in remaining useful life, 

which comes from the uncertainty in the hyper-parameters α, β for the mean and 

standard deviation of the damage indices. 

 The probability distributions of the damage index were independently 

developed using sporadic and heterogeneous experimental data measured at 

different operating (or service) times. However, it is still questionable whether 

hardness datasets measured from different sites at various operating times can be 

integrated to a single a damage growth model as a homogeneous dataset. To 

address the challenge, the U-pooling test is used to validate the adequacy of a  
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(a)  

 

 

 

 

 

 

(b)  

Figure 4-5 Fitted line with mean and standard deviation of the damage index 

distribution (a) mean and (b) standard deviation 
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distribution model of damage indices obtained under homogeneous conditions. 

This is generally used to check the degree of mismatch between the dispersion of 

experimental data and the distribution of predicted results by calculating the area 

between the CDF of the uniform distribution and the empirical CDF of ui values 

corresponding to the experimental data [118-122]. If valid, damage indices 

obtained under heterogeneous conditions can be integrated into a single metric to 

assess the global predictive capability of a model. In order to develop a single 

metric, the goodness-of-fit is first evaluated for each damage index at each data 

set. For each sample ‘k’ of damage index, uk is the value of goodness-of-fit. Then, 

the area metric is calculated by integrating the difference between the CDF of 

uniform distribution U(0,1) and the experimental CDF of uk. Therefore, the area 

metric based on damage indices is defined as: 

 

 𝑈𝑚 = ∫ |𝐹𝑢 − 𝐹𝑢𝑛𝑖|𝑑𝑢
1

0
     (4-4) 

  

where Fu is the transformation of every damage index Di into the CDF of 

responses from an assumed model; Funi is the CDF of a uniform distribution 

U(0,1).  

 In this research, there are ten damage indices Di from experiments. The ui of 

each damage index is calculated and the empirical CDF of each is shown in 

Figure 4-6 (a). Initial damage index values less than zero are physically 
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impossible; therefore, they are excluded for data homogenization at an early 

stage. The calculated area after data homogenization is 0.0144; this is smaller 

than the threshold of 0.0175. The number of damage indices from data 

combination results is 1,116 and the significance level is 0.05. As a result, the 

null hypothesis of a normal distribution of the damage indices cannot be rejected, 

as shown in Figure 4-6 (b), and data homogenization enables integration of 

heterogeneous measured data from different turbines. 

 Though hardness data are obtained from heterogeneous situations, the 

homogeneity of the normally distributed damage index is validated and a 

developed damage growth model is available. 

 

 

 

 

 

 

 

 



57 

 

 

 

 

 

 

 

  

(a)  

 

 

 

 

 

 

 

(b)  

Figure 4-6 Calculation of area metric, Um (a) area metric and (b) hypothesis 

testing based on the area metric with 5% confidence level  
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4.3.2 Bayesian Updating Scheme of the Damage Growth Model 

Damage growth can be predicted by the mean and standard deviation of the 

damage indices. The parameters of the mean and standard deviation can be 

estimated by a regression technique, such as the least squares method in equation   

(4-3). Since typical regression methods cannot consider the statistical correlation 

of hyper-parameters of the damage model, the accuracy of the life prediction 

results is low. One of the advantages of Bayes’ theorem over other parameter 

identification methods (e.g., the least squares method and maximum likelihood 

method) is its ability to identify the uncertainty structure of the identified 

parameters [52]. In this research, the Bayesian technique is employed to estimate 

the coefficients of mean, standard deviation, and statistical correlation for 

damage index distribution. Bayesian inference is based on Bayes’ theorem: 

 

 𝑝(𝜃|𝑧) = 𝐿(𝑧|𝜃)𝑝(𝜃)     (4-5) 

 

where 𝐿(𝑧|𝜃) is the likelihood of the observed data, 𝑧 is conditional on the 

given parameters 𝜃 ; 𝑝(𝜃) is the prior distribution of 𝜃 ; and  𝑝(𝜃|𝑧) is the 

posterior distribution of 𝜃 conditional on 𝑧. We consider posterior distributions 

of the coefficients of the mean and standard deviation models in the same type. 

The posterior distributions of the coefficients are given as: 
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 𝑝(𝛼𝜇 , 𝛽𝜇|𝜇) ∝ 𝐿(𝜇|𝛼𝜇 , 𝛽𝜇)𝑝(𝛼𝜇 , 𝛽𝜇)     (4-6) 

 

In the Bayesian approach, the joint posterior distribution of the hyper-parameters 

α, β for the mean and standard deviation of the damage indices is obtained by 

multiplying likelihoods 𝐿(𝜇|𝛼𝜇 , 𝛽𝜇) , 𝐿(𝜎|𝛼𝜎 , 𝛽𝜎)  with prior distributions 

𝑝(𝛼𝜇 , 𝛽𝜇), 𝑝(𝛼𝜎 , 𝛽𝜎), respectively. The likelihood is the probability of obtaining 

the mean and standard deviation for given hyper-parameters α, β from measured 

hardness data. It has been shown previously that material hardness follows a 

normal distribution [111]. For simplicity, it is assumed that a non-conjugate 

Bayes model is used for the updating process of the damage growth model. 

Therefore, the likelihood also follows a normal distribution, with variances 

𝑠𝜇
2, 𝑠𝜎

2. The likelihood of the mean of the damage index can be expressed as: 

 

 𝐿(𝜇|𝛼𝜇 , 𝛽𝜇) =
1

√2𝜋𝑠𝜇
𝑒𝑥𝑝 [−

1

2
(

𝜇−𝜇𝐷(𝛼𝜇,𝛽𝜇)

𝑠𝜇
2 )

2

]     (4-7) 

 

where 𝜇𝐷(𝛼𝜇 , 𝛽𝜇) is an estimated mean of the damage index equation derived 

from equation (4-3). The standard deviation of the damage index can be modeled, 

similar to equation (4-7). No prior information of the hyper-parameters 𝛼, 𝛽 of 

the mean and standard deviation is available. For practical scenario, it is difficult 

to obtain the prior information for the actual steam turbine’s prognostics. In this 

researh, therefore, the prior distributions of the hyper-parameters are assumed to 
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follow a uniform distribution whose ranges are twice larger than 90% confidence 

bound of the estimated hyper-parameter 𝛼, 𝛽 by the Nlsq method 

 

 𝑝(𝛼𝜇,𝜎
0 )~𝑈(𝛼𝜇,𝜎

𝐿 , 𝛼𝜇,𝜎
𝑈 ), 𝑝(𝛽𝜇,𝜎

0 )~𝑈(𝛽𝜇,𝜎
𝐿 , 𝛽𝜇,𝜎

𝐿 )     (4-8) 

 

where 𝛼𝐿, 𝛼𝑈, 𝛽𝐿, 𝛽𝑈
 are the lower and upper bounds of the hyper-parameters of 

the mean and standard deviation, respectively. 

 Consequently, the posterior becomes a multiplication of the likelihood and 

prior distributions. The prior distribution and the likelihood function, respectively, 

are uniform and normal distribution, as introduced here to estimate parameters of 

the damage growth model using Bayesian inference. 

 

4.3.3 Damage Growth Model Updating 

Since the expression of the posterior distribution of the mean and standard 

deviation of the damage index is available as a product of the likelihood and prior 

in equation (4-8), the shape of the posterior distribution can be estimated by 

calculating its parameters of mean and standard deviation at each time. The 

posterior distribution is complicated due to the correlation between multiple 

parameters in practical engineering applications; thus, a sampling method is 

effective to generate samples from an arbitrary posterior distribution. As a 

sampling method, Markov Chain Monte Carlo (MCMC) simulation is used to 

evaluate the posterior distribution after Bayesian updating [81]. MCMC 
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simulation, in conjunction with the data augmentation technique, is 

computationally effective and useful to identify the correlation between hyper-

parameters of the damage growth model [43, 123]. This paper uses a general 

Metropolis-Hastings (M-H) algorithm to generate samples that simulate the 

posterior distribution of two hyper-parameters α and β of the damage index. As 

shown in Figure 4-7, 20,000 samples for the hyper-parameters of the mean and 

standard deviation are generated to capture the nature of the distributions of the 

hyper-parameters. 4,000 samples from the initial stage are discarded for data 

homogenization. 

 

 

 

 

 

(a) 

 

 

 

 

(b)  

Figure 4-7 Trace iteration of a random sample (a) mean and (b) standard 

deviation 
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In general, the Nlsq method is easily used to estimate the mean and standard 

deviation of the damage index. Nonlinear models are more difficult to fit than 

linear models because hyper-parameters of the damage index cannot be estimated 

using regression. The Levenberg-Marquardt algorithm is used for solving the 

Nlsq problem [124], which estimates the distribution parameters of the damage 

growth model.  

 Figure 4-8 (a) and (b) show the joint random samples of the hyper-

parameters (α and β) generated by using the Nlsq method and Bayesian method 

(BM). The Nlsq method yields the linear correlation of the random samples of 

the hyper-parameters with a constant correlation value. In contrast BM can 

reproduce the nonlinear correlation of the random samples. The correlation can 

be identified well; this is more important for accurately predicting damage 

growth and RUL. Table 4-3 shows the confidence intervals of the hyper-

parameters of the damage growth model, along with the lower and upper bounds 

of the 90% intervals using both the Nlsq method and BM. Since the confidence 

bounds from BM are relatively narrower, the predicted mean and the standard 

deviation for the damage index hold less uncertainty. The probability 

distributions of the mean and standard deviation of the damage index can be 

obtained using equation (4-3) once the joint samples are obtained. To understand 

the effects of the correlation of the parameters in the damage growth model, the 

mean and standard deviation for the damage index are predicted using the Nlsq 

method and BM, as shown in Figure 4-9. It is observed that the second quartile  
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(a)  

 

 

 

 

 

 

 

(b)  

Figure 4-8 Correlated random samples of the coefficient (,) of the damage 

index (a) mean and (b) standard deviation
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Table 4-3 Confidence intervals of parameters for damage growth model 

Mean 

αμ  
βμ 

5% 50% 95% Interval 

 

5% 50% 95% Interval 

Bayesian 0.0018 0.0031 0.0041 0.0023 1.46E-05 1.58E-05 1.80E-05 3.4E-06 

Nlsq 0.0010 0.00260 0.0041 0.0031 
 

1.406E-05 1.66Ee0-5 1.93E-05 5.2E-06 

         

Standard 

deviation 

ασ  
βσ 

5% 50% 95% Interval 
 

5% 50% 95% Interval 

Bayesian 0.0059 0.0106 0.0162 0.0103 
 

2.02E-06 4.14E-06 7.02E-06 5.0E-6 

Nlsq 0.0057 0.0110 0.0163 0.0106 
 

1.50E-07 3.98E-06 6.46E-06 6.3E-6 
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(a)  

 

 

 

 

 

 

 

 

 

(b)  

Figure 4-9 Mean and standard deviation results obtained by performing the 

Bayesian updating (a) mean and (b) standard deviation 

 

 



66 

 

 

(50%) of the mean and standard deviation derived from the two methods are 

quite similar. However, BM gives a smaller deviation of the mean and standard 

deviation. It is known that prediction accuracy is more sensitive to correlation 

than uncertainty type [125]. Each hyper-parameter is deterministically estimated 

and a linear correlation is added to the estimated results based on the covariance 

matrix in the Nlsq method. In the Bayesian method, on the other hand, the 

uncertainties in the unknown hyper-parameters are considered with a joint 

posterior distribution, and the parameters’ correlation and the distribution can be 

identified simultaneously. As a result, it can be seen that the uncertainty of the 

damage growth model can be reduced by considering the nonlinear correlation of 

parameters for mean and standard deviation that constitute the damage growth 

model.   

 Even though measured hardness data are heterogeneous and random, a 

damage growth model can be constructed using the data homogenization process 

and Bayesian updating. Posterior distributions of the hyper-parameters (α and β) 

are used to predict the damage growth by using equation (4-3). 

 Figure 4-10 shows the results of damage growth prediction by the Bayesian 

and Levenberg-Marquardt method, with the 10 data sets of damage indices 

shown in Figure 4-3. The threshold lines of 0.2 and 0.8 are assumed and plotted 

as the typical ranges of the critical damage [126]. Even though both results are 

similar in the upper bound, differences of mean and lower bound gradually 

increase with time. Also, the Nlsq method clearly shows a different prediction 



67 

 

 

with much wider uncertainty, even though the median is close to the true value.

 These results show that the Bayesian method that uses the mean and standard 

deviation of the damage index is applicable for predicting damage distribution 

and damage growth with uncertainty. Since damage growth is predicted with all 

ten data sets with operating times, the results from the two methods seem to have 

a similar trend.  

 

 

 

 

 

 

 

 

Figure 4-10 Damage growth prediction curves with all ten data 
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4.4 Predicting the RUL(Remaining Useful Life) of Steam 

Turbines  

Once the parameters of the damage growth model are identified using Bayesian 

inference, the model can be used to predict the RUL, which is the remaining time 

until the damage indices grow to a threshold. 

 

4.4.1 Damage Threshold 

Typically, RUL is expressed in terms of a damage index 𝐷 and an operation 

hour 𝑡𝑜𝑝 as 𝑡𝑟 = (1/𝐷 − 1)𝑡𝑜𝑝[127]. Ideally, failure can be defined according 

to equation (4-2) when a damage index becomes 1. Once the hyper-parameters of 

the damage growth model are estimated, however, the future damage state and 

remaining useful life (RUL) can be predicted by progressing the damage state 

until the damage index reaches a threshold [128].  

 A damage threshold is of great importance to RUL prediction. However, 

there is to date no study about a damage threshold for steam turbines. Since a 

steam turbine is a rotating machine under high speed, temperature, and pressure 

conditions, crack initiation or fracture in elastic-plastic stress fields should be 

considered to be the criteria to determine the end of life. Sumio [129] proposed 

that the value of critical damage Dc has been ascertained to be 0.2 < Dc < 0.8 for 

elastic-plastic damage.  
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 It is well known that the average design life of a steam turbine is 

approximately 200,000 hours (around 25 years) [106, 130-133]. RUL prediction 

has been carried out to decide between life extension or retirement. 

Approximately 25 to 30 years is generally accepted as an acceptable usage life 

time. However, experience shows that a turbine can operate beyond its design life 

because of its designed safety margin. Table 4-1 shows two units that were retired 

after operating 213,175 and 255,288 hours; service life beyond the average 

design life. In this study, the damage index and RUL are estimated for retired 

turbines to determine a threshold for damage growth of a steam turbine. 

 For the case of damage growth prediction shown in Figure 4-11, there are 

large differences between Bayesian and Nlsq methods at 90% confidence 

intervals; this relates to the B-10 life. The B10 life metric, associated with 90% 

reliability, originated in the ball and roller bearing industry. This metric has 

become widely used in across a variety of industries. [134, 135]. The Bayesian 

methods predict damage growth accurately with relatively small uncertainty, 

compared with the Nlsq method, as shown in Figure 4-11. This study conducted 

RUL prediction at three operating times (0, 200,000, and 250,000 hours) to 

determine an appropriate failure criterion for the damage growth model. Table 4-

4 shows comparison results from the damage growth model derived using 

Bayesian inference. By accepting the damage index, 0.2, as a failure criterion, the 

B50 life is 250,000 hours and B10 life is 241,000 hours. On the other hand, a 
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failure criterion of the damage index 0.8 yields 325,000 and 335,000 hours as the 

B10 and B50 life, respectively. By comparing these findings with the actual 

retirement history of steam turbines, it is concluded that a failure criterion of the 

damage index 0.2 gives a reasonable RUL for a steam turbine. 

 

Table 4-4 Comparison of RUL 

Operating 

Time(hour) 

Threshold 0.2 Threshold 0.8 

B10 B50 B10 B50 

0 240,000 250,000 325,000 335,000 

200,000 40,000 50,000 125,000 135,000 

250,000 -9,000 0 75,000 85,000 
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(a)  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

(b)  
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 

(c) 
 

Figure 4-11 Progressive damage growth predictions with variable 

number of training data (a) using up to 7
th 

damage index (b) using up to 

8
th 

damage index (c) using up to 9
th 

damage index 
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4.4.2 Validation of the Proposed Damage Growth Model 

 Since a new damage index distribution and damage growth model, based on 

sporadic and heterogeneous data, is proposed, it is necessary to validate the 

proposed model. We used the data sets in Table 4-1 to validate the proposed 

Bayesian method. The prior distribution is uniform distributions as discussed in 

Section 4.3.2. The posterior distributions of the hyper-parameters α, β of the 

mean and standard deviation for the damage growth model are obtained with 

seven sets of ten data (i.e., A1 to E2) without 8~10
th
 data set (i.e., F1 and H5). 

For the purpose of comparison, the distributions of hyper-parameters α, β are also 

obtained using the Nlsq method. The mean value of the last data set is used to 

validate the prediction. The results of damage growth prediction using the 

Bayesian and Nlsq methods are given in Figure 4-11(a). Next, the posterior 

distributions of the hyper-parameters α, β of the damage growth model are 

obtained with eight sets of ten data (i.e., A1 to F1) without 9~10
th
 data set (i.e., 

G4 and H5). As shown in Figure 4-11(b), the 8
th 

data point overlaps the 9
th
 data 

point because their operating times and damage indices are almost identical. 

Compared to the actual data, the mean value calculated by the Bayesian method 

shows good agreement and narrow confidence bounds, whereas the damage 

growth prediction by the Nlsq method does poor agreement and wider confidence 

bounds. In Figure 4-11(c), posterior distributions of the hyper-parameters α, β are 

obtained with nine sets of data (i.e., A1 to G4) without the last data set (i.e., H5). 

As expected, the results with the proposed Bayesian method outperformed the 
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Nlsq method. 

Although the estimation results are fairly exact in the early stages, early stages 

are not of interest in terms of prognostics of a steam turbine. Thus, common Nlsq 

methods may not be suitable to predict the damage index distribution and the 

RUL of a steam turbine with limited and distributed data that does not follow a 

normal distribution. Additionally, it is observed that uncertainty in the mean and 

standard deviation is reduced with more data; thus, the confidence intervals are 

reduced from Figure 4-10 and Figure 4-11. Figure 4-12 shows a comparison of 

the damage index distribution between the predicted one and the measured true 

one at 255,000 hours’ operation. Even though the number of data in the true 

damage index distribution is quite small at 25, in Figure 4-12, the damage 

distribution from the Bayesian method is very close to the true one. Additionally, 

the area metrics from the Bayesian and Levenberg-Marquardt method are 

calculated with the aggregated 25 data. The threshold was 0.11785 for the sample 

size of 25 and a significance level of 0.05. The area metric result of the Bayesian 

method of 0.09423 is less than the threshold; whereas, the Levenberg-Marquardt 

result is larger than the threshold. We can also conclude that the Bayesian 

approach can accept the assumption of a normally distributed distribution of the 

damage index in the validation process. 
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Figure 4-12 Damage index distribution at 255,000 hours operation 

 

4.4.3 RUL Prediction 

 Although advanced maintenance techniques are available in the literature, 

they have not been well implemented in the industry for various reasons, 

including lack of data, lack of an efficient model, and difficulty of 

implementation [4]. A common practice in condition-based maintenance for 

turbines in power plants is to analyze the condition of the component at regular or 

irregular intervals; the measurement of such condition information is then used in 

RUL prediction. RUL predictions of steam turbines can be used to determine the 

maintenance schedule of whole power plants. RUL can be predicted by 

subtracting the PDF of the damage index from the threshold by using the mean 

and standard deviation distribution. Since there is no information about actual 



75 

 

 

failure data of steam turbines, in this study, operating times of 0, 200,000, and 

250,000 hours are used to predict RUL in the proposed damage growth model. 

These operating times represent the initial and average design life, respectively. 

PDFs and CDFs of the damage index with a 0.2 damage threshold at each 

operating time are shown in Figure 4-13. The change of RUL with respect to 

operating times is shown in Figure 4-14. In Figure 4-14, the black solid line 

represents the true RUL. The true RUL is a negative slope line as the RUL 

decreases at every operating time. The red-dashed line is the predicted RUL 

using the damage growth model and threshold. It was clearly shown that the 

confidence bound became narrow with the increase of operating times. To show 

the differences between thresholds, additionally, distributions of RUL at 255,000 

hours are compared in Figure 4-15 and in Table 4-4. By considering the average 

design life and actual retirement history of steam turbines, as a result, it is 

concluded that a damage threshold of 0.2 yields a reasonable RUL for a steam 

turbine. As a result, the RUL distribution of a steam turbine can be predicted 

using the Bayesian method and B-lives can be determined by using the proposed 

damage threshold value of 0.2. 
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(a)   

 

 

 

 

 

 

 

 

 

 

 

 

 

(b)  

 

Figure 4-13 RUL distributions with different operating times under 

damage threshold 0.2 (a) PDF and (b) CDF 
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Figure 4-14 RUL prediction at each operating time  

 

 

 

 

 

 

 

 

 

 

Figure 4-15 RUL distribution under damage threshold 0.2 at 255,000 hours 

operation 
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4.5 Summary and Discussion  

This research presented a damage growth model and an RUL prediction 

methodology for aged steam turbines by using Bayesian inference. Based on the 

study described in this paper, several conclusions can be drawn. First, RUL 

prediction methodologies developed in this research incorporate the damage 

index into damage growth model estimation. Since the damage index, as a 

function of hardness, is distributed due to various uncertainties, the mean and 

standard deviation from the damage index distribution are used to predict the 

damage growth. Second, the damage growth model for a steam turbine was 

proposed as a function of mean and standard deviation from the damage index 

distribution. A Bayesian inference technique was used to estimate the probability 

distribution of the damage index from on-site measurements. Hardness values of 

the damage index were measured using a rebound hardness tester. Third, the 

damage growth predicted using both Bayesian and Levenberg-Marquardt 

methods was compared and validated. It is well known that the ability to use 

prior information and to choose an appropriate statistical model are advantages of 

Bayesian inference over the Nlsqs method, especially in cases of nonlinear 

correlation of unknown parameters for a damage index. Also, as more 

measurement data are integrated into the updating process, uncertainties in 

prediction can be reduced. Fourth, by comparing predictions with the actual 

retirement history of steam turbines, it is concluded that a damage threshold of 
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0.2 gives a reasonable damage distribution and RUL for a steam turbine. Through 

the proposed methodology, it is expected that damage states and RULs of steam 

turbines can be predicted using the operating time, regardless of the type of 

turbine. 
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Chapter 5  

 

Mode-Dependent Damage 

Assessment for Steam Turbines 

with Creep-Fatigue Interaction 

Model 

 

Since the 1980s, power generation companies have opted to build large-capacity, 

more-efficient units with supercritical steam conditions, which are designed for 

base-load operation. The typical start-up ramp rate of steam turbine 

recommended by the manufacture company, as there are limits to the heating  

rates of the rotating parts. Steam turbines require slow temperature changes to 

manage thermal stress to prevent thermal fatigue damage. Recently, however, 

new duty cycles force baseload plants to operate closer or beyond nominal design 

limits and through more thermal cycles than originally anticipated [136]. The life 

of a steam turbine is directly related to thermal transient experienced over time.  

Thus the accurate knowledge of risk of the critical component, where it is 

susceptible to failure, is critical to the necessary to make a plan for the effective 

operation and maintenance. Much concern has been paid to creep and fatigue 
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damage behavior of various systems that operated under high temperature and 

frequent loading condition. At a temperature beyond 30% of the absolute melting 

temperature of the material, significant time-dependent creep damage is 

accumulated in metallic material. Creep can produce large strain deformation, 

stress relaxation, and crack initiation and growth [137]. Fatigue damage is caused 

by repeated stress beyond or below yield strength of material especially at the 

stress concentration configuration during operation. Localized plastic 

deformation occurs at stress concentrated location by fatigue. Apart from fatigue, 

creep damage also plays an important role in the high temperature components. 

The fatigue damage added to an older baseload power plant causes creep and 

fatigue interaction damage, rapid increase in steam turbine failures and balance-

of-plant early creep fatigue failure. In effect, excessive cycling will either 

decrease the remaining useful life of steam turbine, or the cost to maintain the 

steam turbine will rise significantly. Generally, low cycle fatigue wears off 

seventy percent of the life of the plant facilities and creep accounts for the 

remaining thirty percent [138]. However, fatigue and creep damage occurs in 

combination though the dominant damage mechanism varies depending on the 

location. Their interaction is intended for conventional heat resistant steels, but 

their consideration in damage evaluation methods is not realized to satisfaction.  

 Therefore, coupling of fatigue and creep must be considered in the damage 

evaluation of high temperature component. Since creep and fatigue damage 

influences failure probability, the contribution of creep and fatigue damage in 

total damage is important from the point of view of risk assessment, especially 

failure probability [1]. 

In this research, the effect of operation and damage mode on the creep and 
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fatigue damage was statistically investigated in terms of creep-fatigue damage 

interaction model. This Chapter is organized as follows. Section 5.1 describes 

provides damage mechanisms of steam turbine. Section 5.2 explains typical 

operation data and dominant damage model of steam turbine are summarized in 

Section 5.3. Total damage is statistically calculated in Section 5.4. Next, in 

Section 5.5, mode-dependent damage model with creep-fatigue interaction 

effects is investigated. This chapter also outlines the interaction effects and risk 

assessment considering operation and damage mode. Section 5.6 provides 

summary for future work. 

 

5.1 Dominant Damage Mechanisms of Steam Turbine  

A cross-sectional view of High-Intermediate Pressure (HIP) turbine rotor is 

shown in Figure 5-1. According to the Failure mode and Effect Analysis (FMEA) 

of steam turbines, HIP rotor is a key component due to its high risk. And creep 

and low cycle fatigue are known to be the dominant failure mechanisms of steam 

turbine [27, 90, 103, 107]. Figure 5-1 shows the distribution of creep and fatigue 

damage for HIP rotor as a typical example. The maximum creep damage portion 

and the maximum fatigue damage portion are located at slightly different 

portions. As shown in Figure 5-1, creep dominant damage portions are bore, 

while fatigue dominant damage portions are wheel root surface. At the bore, 

creep damage is dominant under load controlled stress by centrifugal force. This 

portion is creep dominant creep-fatigue portion. In case of fatigue dominant 

creep-fatigue portion, fatigue damage is dominant at wheel root surface under 

frequent start-ups and shutdowns by thermal fatigue [102]. Generally, when 

designing a steam turbine, only steady state operation is considered without 
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cyclic load by the temperature fluctuation [139]. However, power plants have 

been force to operate their units in a more cyclic mode although it is designed for 

base-load operation mode. Cyclic stress and strain due to the cyclic and transient 

operation cause the additional fatigue damage. As a result, combined damage of 

creep and fatigue, caused by steady and transient operation such as start-up and 

shut-down, can significantly lead to premature failure ahead of the original 

design life. 

 

 

5.2 Typical Operation Data of Steam Turbine 

In this research, the rotor of a 500MW and 200MW supercritical steam turbine 

was selected for study. Typical in-service loading condition from the power plant 

RTDB(Real Time DB) system was adopted, shown in Figure 5-2. In the start-up 

procedure, large temperature gradients occur and thermal stresses usually 

concentrate in the key region such as high pressure stage as Figure 5-1. During 

start-up, the rate of increase of the main steam temperature is used to calculate 

 

Figure 5-1 Damage mechanisms of steam turbine (HIP rotor) 
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fatigue damage. And the average temperature during steady state operation is 

used to calculate creep damage. Start-ups are generally classified according to the 

time the unit has spent off line. Thus an overnight shut-down is followed by a 

‘hot’ start, a weekend shut-down by a ‘warm’ start, while start-up after an 

extended shut-down of about week would be classified as a ‘cold’ start. During 

cold start regime, the initial metal temperature of the HP rotor is assumed to be 

lower than 100℃. Thus large difference of temperatures between the surface and 

bore of the turbine can be expected before a steady-state regime would be 

reached. In contrast, during hot start the initial metal temperature of the HP rotor 

is assumed to be about 400~450℃, resulting in a lesser difference of temperature, 

∆𝑇, between the surface and bore of the turbine. Assuming independency of the 

coefficient of thermal expansion with temperature, the strain range resulting from 

hot start would be lower than the strain resulting from warm and cold start. 

Because the maximum stress arising in components subjected to cold start would 

be larger than the maximum stress during warm and hot start, the repetition of 

cold start-ups considerations are thus to be taking into account in the load change 

of a 500 and 200 MW steam turbine. This start-up curve is used as input data for 

statistical calculations of thermo-mechanical states.  

Turbine units in coal power plants run at the baseload continuously throughout a 

year, while peakload turbines in a combined cycle power plant generally run only 

during periods of peak demand for electricity [114]. Based on these factors, turbine 

units operate with different fuel sources and power outputs, as shown in Table 5-

1. 

https://en.wikipedia.org/wiki/Power_plants
https://en.wikipedia.org/wiki/Peak_demand
https://en.wikipedia.org/wiki/Electricity
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Table 5-1 Operating history 

Plant/Unit B1 B2 B3 B4 P1 P2 

Output (MW) 500 500 500 500 182 200 

Operation 

mode 
Base Peak 

Type Coal fired power plant 
Combined  

power plant 

Equivalent 

operating 

time 

74,327 95,097 115,671 157,995 201,671 213,175 

Operating 

time 
73,547 93,937 113,511 155,315 190,551 201,535 

Number of 

cycle 
39 58 122 134 556 582 

 

 

Figure 5-2 Typical cold start-up operating data 
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Table 5-2 Chemical composition 

Composition   Cr    Mo     V     C     Si     Mn     S    Ni 

    wt  %    1.29  1.24    0.25   0.29   0.01    0.74   0.004  0.06 

others : P 0.007,  Sn 0.0047 

 

5.3 Damage Models of Steam Turbine 

Damage models of steam turbine are determined by test data. In this research, 

creep data under the elevated temperature and time-dependent fatigue test dataset 

are used to calculate damage for 1Cr1Mo1/4V rotor steel; NIMS(National Institute 

on Materials Science, Japan) [140, 141]. The chemical compositions are 

summarized in Table 5-2. It is well known that a laboratory specimen of 

1Cr1Mo1/4V at 565℃ is a good example of the development of creep-fatigue 

damage [142].  

 

 

5.3.1 Creep Damage Model 

In case of 1Cr1Mo1/4V rotor steel, the coarsening of carbides and the 

annihilation and rearrangement of dislocation tend to occur and result in softening 

by long-term high temperature operation. The most commonly used creep damage 

(rupture) models is the Larson-Miller parameter as below [72]  

 

 P = T(C + log𝑡𝑟)  (5-1) 

 

where T is the temperature and tr is the failure time. The Larson-Miller Parameter 

is used to estimate the creep failure time at a given temperature and given stress 
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level. For 1Cr1Mo1/4V rotor steels, a plot of stress and Larson-Miller Parameter 

resulted in a single plot, within limits of scatter, regardless of the time-temperature 

combination employed to derive the parameter as shown in Figure 5-3. As the log 

stress vs P relationship is normally a convex nonlinear curve, a multiple regression 

method is often used which is expressed as: 

 

 P ≅ 𝐴1 + 𝐴2𝑙𝑜𝑔𝜎 + 𝐴3(𝑙𝑜𝑔𝜎)2 + 𝐴4(𝑙𝑜𝑔𝜎)3 (5-2)  

 

where A1=11.483, A2=–24.204, A3=–21.394, A4=–6.895 for 1Cr1Mo1/4V rotor 

steel. Then the creep failure time 𝑡𝑟 at a different temperature and the same stress 

value may be estimated from equation (5-2) and (5-3) as 

 

 𝑡𝑟 = 10
𝑃(𝜎)

𝑇
−20

 (5-3) 

 

where 𝑃(𝜎) is Larson-Miller Parameter as a function of stress.   

 
 

Figure 5-3 Creep rupture test data of 1CrMo1/4V rotor steel  
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If creep strain varies with stress, creep stress is calculated using creep strain 

relation and tensile strength relation at room temperature. And creep life is 

obtained from creep stress result. Creep analysis results are used in creep life 

assessment without creep stress calculation step for the purpose of conservative 

evaluation. Because creep strain is a temperature related value and Larson-Miller 

Parameter considers temperature. Creep damage is obtained using the operating 

time to the present time after calculating creep rupture time. 

After calculating creep life 𝑡, damage rate 𝐷𝑐 by creep damage is obtained 

using the operating time  𝑡𝑜𝑝 below: 

 

 𝐷𝑐 =
𝑡𝑜𝑝

𝑡⁄  (5-4) 

 

5.3.2 Low Cycle Fatigue Damage Model 

As one of the main causes of fatigue damage in metals, the plastic strain is 

commonly used for crack initiation assessment [143, 144]. Curves of strain 

amplitude and cyclic life obtained in low cycle fatigue tests can be separated into 

elastic and plastic components of the strain range as shown in Figure 5-4. The 

prediction relationship proposed by Coffin and Manson is expressed as following: 

 

 ε = 𝜀𝑒+𝜀𝑝 = 𝐶1𝑁𝛼 + 𝐶2𝑁𝛽 (5-5) 

 

where  is total strain,  e is elastic strain, and  p  
is plastic strain. In equation (5-

4), C1=0.62994, C2=22, α=-0.04572, β = −0.59 for 1Cr1Mo1/4V rotor steel.  

In Figure 5-4, the fatigue lives with temperature are observed to be reduced as the 
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temperature increases. 

After calculating low cycle fatigue life 𝑁𝑡, damage rate 𝐷𝑓 by low cycle fatigue 

is obtained using the number of cycle N below; 

 

 𝐷𝑓 = 𝑁
𝑁⁄

𝑡
  (5-6) 

 

In case of creep, steady state stress is used, but low cycle fatigue life is 

determined by using transient thermal stress. Thus it is necessary to consider each 

start-up mode classified with cold, warm, hot start up for the calculation of low 

cycle fatigue life consumption. The individual stresses are calculated according to 

the start-up mode and each actual strain and low cycle fatigue damage rate is 

determined. The total or cumulative fatigue damage is obtained by summation of 

the fatigue damage rate at each start-up conditions. 

 

Figure 5-4 Low cycle fatigue test data of 1CrMo1/4V rotor steel  
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5.3.3 Creep-Fatigue Damage Model 

Among the various methods of simultaneously considering creep and fatigue 

damage from the Table 2-1 in Chapter 2, Miner’s linear damage accumulation 

method was a dominant approach to analyze the creep and fatigue damage 

assessment due to its simplicity. In the ASME Code N47 [145] and TRD code 508 

[66], creep and fatigue damage is evaluated by a linear summation of fraction of 

cyclic damage and creep damage. The linear summation damage rule is given by  

 

 D = 𝐷𝑐𝑟𝑒𝑒𝑝 + 𝐷𝑓𝑎𝑡𝑖𝑔𝑢𝑒  (5-7) 

 

where 𝐷𝑐𝑟𝑒𝑒𝑝 is a time fraction of t/tr and 𝐷𝑓𝑎𝑡𝑖𝑔𝑢𝑒 is a cycle fraction of N/Nt. 

The damage based on linear cumulative damage rule under creep-fatigue load is 

generally used to predict lifetime or risk of power plant components: rotor, casing 

and valve etc [25, 76-80, 137]. Compared with the nonlinear accumulation method, 

however, Miner’s method is often over evaluated and it is not applicable if different 

kinds of damages are partially overlapped in a section [83]. To overcome limitation 

of linear damage model, thus, a nonlinear continuum damage mechanics (CDM) 

model is proposed to assess the creep-fatigue life of steam turbine rotor [81] and 

fatigue interaction model by the inelastic strain energy density is developed to 

represent the damage accumulation under stress control mode [82].  

In this research, a multiple creep-fatigue interaction model for risk assessment is 

used as below [87]   

 

 D = 𝐷𝑐𝑟𝑒𝑒𝑝 + 𝐷𝑓𝑎𝑡𝑖𝑔𝑢𝑒 + 𝛼[𝐷𝑐𝑟𝑒𝑒𝑝 ∙ 𝐷𝑓𝑎𝑡𝑖𝑔𝑢𝑒]
𝛽

  (5-8) 
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Where  𝛼  and 𝛽  are hyper-parameters used in the interaction term of the 

nonlinear damage model. Though equation (5-8) was proposed and some hyper-

parameters were estimated for turbine by Rusin [87], actual operation condition is 

not considered and damage calculation is not clear under the conservative 

assumptions. Hyper-parameters of creep and fatigue interaction model are 

determined according to the operation mode in this research. The total damages, 

combining creep and fatigue damage, are evaluated and compared according to 

linear and nonlinear damage model under different operation modes, respectively 

in Section 5.5. 

 

 

 

5.4 Statistical Damage Calculation for Steam Turbine 
 

5.4.1  Statistical Characterization of Creep and Fatigue Damage data 

Three candidates were considered to determine the proper distribution type of 

damage data: normal, log-normal, and Weibull distributions. It was found that log-

normal and Weibull distribution were appropriate creep and fatigue test data for 

1Cr1Mo1/4V rotor steel, based on chi-square(χ2
), Komogorov-Smirnov(K-S) and 

Anderson goodness-of-fit(GoF) tests shown in Table 5-3 and in Figure 5-5. The 

functional form of the log-normal and Weibull distributions are expressed as 

 

 F = ∫
1

𝜎√2𝜋
exp [−

1

2
(

𝑙𝑛𝑁−𝜇

𝜎
)] (5-9)  

 F = 1 − exp [− (
N

θ
)

𝛽
]  (5-10) 
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where 𝜇, 𝜎 is mean and standard deviation of the log-normal distribution function, 

respectively. 𝜃 is the scale parameter, 𝛽 is the shape parameter that directly 

affects the shape of the failure density distribution curve of the Weibull distribution 

function. The parameters were estimated using maximum likelihood estimator. 

 

 

 

 

 

 

 

Table 5-3 GoF Test Results 

Damage 

mechanism 
Type 

p-value 

Chi-square 

GoF test 

K-S 

GoF test 

Anderson 

GoF test 

Creep 

Normal 0.13226 0.26428 0.14155 

Lognormal 0.45084 0.76627 0.9341 

Weibull 0.069899 0.21687 0.08093 

Fatigue 

Normal 0.4725 0.68708 0.6303 

Lognormal 0.20315 0.72185 0.91983 

Weibull 0.46475 0.89114 0.94324 
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(a) 

 

(b) 

 

Figure 5-5 Damage distribution plot drawn on probability paper (a) creep damage 

and (b) fatigue damage 
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5.4.2  Creep Damage Calculation with Steady State Stress  

Steam turbine rotor is a high-speed rotating components and stress induced by 

centrifugal force occurs. Radial and circumferential direction stresses must be 

considered simultaneously for the stress analysis. Analytic stress analysis for the 

hollow cylinder shows that maximum stress occurs at the surface of the cylinder. 

The direction of stress is the circumferential and a stress of radial direction is 0. 

Equation (5-11) and (5-12) are used to calculate the radial stress and 

circumferential stress of rotor. 

 

 𝜎𝑟 = [
(3+𝑣)𝑊𝜔2

8𝑔
] (𝑟𝑖

2 + 𝑟𝑜
2 − 𝑟2 −

𝑟𝑖
2𝑟𝑜

2

𝑟2 ) (5-11) 

 𝜎𝑡 = [
(3+𝑣)𝑊𝜔2

8𝑔
] (𝑟𝑖

2 + 𝑟𝑜
2 − (

1+3𝑣

3+𝑣
) 𝑟2 −

𝑟𝑖
2𝑟𝑜

2

𝑟2 )  (5-12) 

By using hook's law, 𝜎𝑡 > 𝜎𝑟 and maximum stress occurs at radius = 𝑎. This 

stress is a major influence on to creep; dominant damage mechanism at borehole. 

 

 𝜎𝑏𝑜𝑟𝑒 =
𝑊𝜔2

4𝑔
[(3 + 𝑣)𝑏2 + (1 − 𝑣)𝑎2] (5-13) 

 𝜎𝑠𝑢𝑟𝑓𝑎𝑐𝑒 =
𝑊𝜔2

4𝑔
[(3 + 𝑣)𝑎2 + (1 − 𝑣)𝑏2] (5-14) 

 

 

Figure 5-6 An element of cross-section of turbine rotor 
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From the calculated stress value from the equation (5-13) and (5-14), the creep 

rupture times may be calculated at a different locations such as bore or surface by 

using equation (5-2) and (5-3), respectively. After calculating creep rupture time 𝑡 , 

damage rate 𝐷𝑐 by creep damage is obtained using the operating time  𝑡𝑜𝑝 from 

equation (5-5). 

 

 

5.4.3  Fatigue Damage Calculation with Transient Strain  

In addition to thermal loading induced by temperature variation, the steam turbine 

is subject to mechanical loadings such as steam forces and pressure, which can 

vary with time. Since excessive stress is not caused by pressure and the level of 

stress is relatively small compared to the total stress, pressure stress can be 

neglected [27, 146]. During start-up or shut-down, the thermal stress or strain of 

turbine can be calculated by finite element analysis. However, it is difficult to 

incorporate these complex components into the finite element code to simulate 

stress, strain and temperature histories. To reduce the calculation jobs, a good 

approximation method was proposed to assess fatigue damage of turbine rotor. The 

thermal strains corresponding to the transient peak-load operation mode, as well as 

the stress and strain concentration factors at the critical regions, need to be 

calculated [147]. From the approximate relationship among thermal strain, rotor 

geometric information and material properties, the thermal strains at the rotor 

surface and bore were calculated. The dimensionless nominal thermal stress C𝑚𝑎𝑥 

on surfaces and bore of turbine rotors can be expressed with Biot number as shown 

in Figure 5-7 [126, 147] 

 

 C𝑚𝑎𝑥 = −
𝜎𝑚𝑎𝑥

𝐸𝛼∆𝑇/(1−𝑣)
  (5-15) 
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where 𝐸 is the elastic modulus, 𝛼 is the thermal expansion coefficient, ∆𝑇 is the 

maximum temperature difference, and 𝑣 is the poisson’s ratio. 𝜎𝑚𝑎𝑥 is actual 

thermal stress. Having determined the nominal thermal strain for a transient 

condition, thermal stress concentration factor 𝐾𝑇  and plastic strain concentration 

factor 𝐾𝜀 should be multiplied. Thermal stress concentration factor 𝐾𝑇 can be 

calculated from the following formula [126, 148] 

 

 𝐾𝑇 = 1 + √𝐷/𝑅 [
𝐷𝐸𝑄

𝐷
− 1]

1
√2

⁄
 (5-16) 

where 

 

 
𝐷𝐸𝑄

𝐷⁄ = min (
𝐷𝑑

𝐷⁄ ,
𝐷𝑆

𝐷⁄ + 0.35 𝐿
𝐷𝑆

⁄ ) (5-17) 

 

Plastic strain concentration factor 𝐾𝜀 for low alloy steels [149] 

 

𝐾𝜀 ≅ 𝐾𝑇[14.958𝜗4  −  32.925𝜗3  +  26.131𝜗2  −  7.9607𝜗  +  1.8401] 

(5-18) 

 

where ϑ is normalized nominal strain range from function of total strain ∆𝜀𝑡 and 

cyclic yield strain 2𝜀𝑦 as ∆𝜀𝑡/2𝜀𝑦. By the total strain ∆𝜀𝑡 = 𝐾𝜀 ∙ 𝐶𝑚𝑎𝑥 for a given 

transient, number of design cycle (creak initiation cycle) for that transient can be 

determined by Coffin-Manson relationship in Section 5.3.2. From the calculated 

design cycle from the equation (5-5), the fatigue damage may be calculated at 

different locations such as bore or surface by using equation (5-6), respectively.  



97 

 

 

(a) 

(b) 

Figure 5-7 Dimensionless nominal stress (a) at bore (b) at surface 
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Analytical calculations are subsequently carried out next to compute the mean 

creep and fatigue damage evolution according to the operation and dominant 

damage modes shown in Figure 5-8. At the beginning of operation, there is almost 

no damage and the damage gradually increases with operating time.  

As described for the dominant damage mechanism in Section 5.1, creep damage 

at bore and fatigue damage at surface are relatively larger than other calculated 

results by different damage mechanisms at the same location and at the same 

operation time.  

Though creep and fatigue damage occurs at the same time, the damage result 

caused by creep, which is the dominant damage mechanism in the bore, is 

relatively large over the entire operation time. Especially, fatigue damage at the 

surface has similar results with creep damage at the bore in the peakload operation 

under cyclic loading as shown in Figure 5-8. 

Each damage results according to the operation mode and the damage mode using 

the actual field information are used to determine the mode-dependent multiple 

damage interaction model for steam turbine in Section 5.5. 
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(a)  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
 

(b)  

 

Figure 5-8 Comparison of mean damage evolution with operating time (a) 

baseload (b) peakload steam turbine 
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5.5 Mode-Dependent Multiple Damage Interaction Model 

 

5.5.1 Estimation of damage interaction parameters 

As shown in Table 5-1, in this research, the baseload and peakload are separately 

analyzed since the baseload turbine is in a relatively short operation time range 

compared to the peakload turbine. In order to investigate the behavior of creep and 

fatigue damage according to the operation mode, stresses and damages are 

evaluated on the surface and at bore where the creep and fatigue damage occurred 

in the individual turbine operated under the baseload and peakload. 

The thrust-region reflective least square analysis was conducted to estimate the 

unknown damage interaction parameter. As interaction parameters, the mean values 

hyper-parameters of the multiple damage interaction model are indicated in Table 

5-4. In order to elucidate the interaction effect of multiple damage mode, this 

research, we assume that the constants related to each damage mechanism are a=1 

and b=1. T he accuracy of the proposed model with interaction parameters are 

evaluated by comparing the true data with statistical distributions calculated by the 

damage model.  

 

Table 5-4 Mean values of estimated interaction parameters 
 

Operation 

Mode 
Location 

Damage 

Mode 

Interaction parameters 

α β RMS 

Baseload 
Surface Fatigue 1.213 0.2787 0.9743 

Bore Creep 2.038 0.3563 0.9943 

Peakload 
Surface Fatigue 0.4306 0.2228 0.9951 

Bore Creep 0.3115 0.0439 0.9942 
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5.5.2 Validation of mode-dependent model 

The results from the mode-dependent multiple damage interaction model were 

compared with those from other models available in the literature. It should be 

noted that, to the best of our knowledge, no multiple damage interaction model 

considering operation and damage modes was developed for actual Steam turbine. 

Therefore, a comparison was conducted with a common linear model and nonlinear 

model derived from material test for turbine rotor steel at 157,995 and 213,175 

hours, respectively. First, a linear damage summation model is widely used to 

describe creep and fatigue interaction for general high temperature steels [25, 76, 

77, 137, 145]. Second, nonlinear model [87] is used for turbine materials. The 

model parameters of linear and nonlinear models are calculated by the nonlinear 

regression analysis and mean values are estimated using the two models. In case of 

baseload operation mode, as a representative example, the damages estimated using 

the two models are 0.2217 and 0.3016% at bore, respectively. The errors are 63.6% 

and 50.4%, respectively. In the peakload operation mode, the difference between 

the true value and the estimated value is relatively small compared with the 

baseload operation mode. Compared to the linear and nonlinear models, however, 

the mean values calculated by the proposed model show good agreements 

regardless of the operation mode and dominant damage mechanisms.  

Consequently, we concluded that the multiple damage interaction model with new 

parameters in this research outperformed the existing models. A summary of the 

comparison is shown in Table 5-5 and Figure 5-9. 
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Table 5-5 Estimated damages depending on different damage model  
 

Operation 
mode 

Dominant 
damage 
mode 

True D 

Linear model Nonlinear model Proposed model 

Est D   Error* Est D   Error* Est D   Error* 

Baseload 
(coal-fired 

power plant) 

Fatigue 

0.6080 

0.2217  63.6% 0.3016  50.4% 0.6218  11.8% 

Creep 0.3368  74.2% 0.3769  63.2% 0.6098   0.5% 

Peakload 
(combined 

power plant) 

Fatigue 

0.8193 

0.5886  28.2% 0.7763  5.2% 0.8209  0.2% 

Creep 0.5492  33.0% 0.6977  14.8% 0.8193  0.0% 

 

*True D, Est D : True and Estimated damage at 157,995 and 213,175 hours respectively. 

*Error : (True D – Est D)/True D 
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(a) (b) 

  

(c) (d) 

 

Figure 5-9 Comparison between true and estimated results considering operation modes (a) bore and (b) surface of 

baseload steam turbine, (c) bore and (d) surface of peakload steam turbine 
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5.5.3  Interaction Effects of mode-dependent damage model 

The creep damage and fatigue damage fractions for all operation modes such as 

baseload and peakload mode depicted in the creep-fatigue interaction diagram 

shown in Figure 5-10. As described in Section 5.1, creep damage at the bore and 

fatigue damage at the surface are relatively significant considering creep and 

fatigue damage occurring at the same time.  

 

 

 The interaction effects of the mode-dependent multiple damage model are also 

considered for each of the baseload and peakload steam turbine. The interaction 

values are calculated using the interaction term of equation (5-8) and the 

estimated interaction parameters in Table 5-3. In Figure 5-11, red solid line refers 

 

 

Figure 5-10 Total damage trends with operating time 
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to the interaction value at the surface where the fatigue damage is dominant and 

the dotted blue lines represent the interaction value at the bore where the creep 

damage is significant. It is observed that the interaction value in the peakload 

steam turbine, affected by fatigue damage due to cyclic loading, is not relatively 

large. In case of baseload steam turbine, interaction value of fatigue dominant 

location (surface) is larger than creep dominant location (bore). It is seen from 

Figure 5-11 that relatively large interaction effects switch from the fatigue 

dominant location to creep dominant location when operation mode changes 

from the baseload to the peakload. Damage calculation results are re-plotted in a 

creep-fatigue damage summation diagram in Figure 5-12. The limiting damage 

summation locus shown in Figure 5-12 was established using a multiple damage 

interaction model. The result is due to the great deviation from the linear damage. 

The creep and fatigue damage interaction diagram is sensitive operation and 

damage modes as shown in Figure 5-12. This diagram significantly points out 

strong interaction effects between creep and fatigue damage.  

From the results of creep-fatigue damage calculation using mode-dependent 

multiple damage model, two important observations can be made: 

1. To calculate the damage rate or lifetime of turbine in which creep damage 

and fatigue damage occurs at the same time, it should reflect the interaction 

effects. Which is determined differently depending on the operation mode 

and dominant damage modes.  

2. If the turbine designed for the baseload operation is operated in the 

peakload condition, it can be assumed that the lifetime reduction due to the 

interaction at the creep damage location (bore), which was relatively 

neglected, is accelerated. 
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(a) 

 

(b)  

Figure 5-11 Interaction effect with operating time (a) baseload (b) peakload steam 

turbine 
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(a) 

 

(b) 

Figure 5-12 Creep-fatigue damage diagram of (a) baseload (b) peakload steam 

turbine 



108 

 

5.5.4  Case study: Risk assessment  

Typical risk-based approaches reported in the literature are relatively qualitative 

method for developing a maintenance plan by considering the probability of the 

component or system for failure and likely consequences [150, 151]. Since 

proposed multiple damage interaction model is validated with the RUL result 

from empirical model-based methodologies, in this research, the technical risk is 

quantitatively evaluated for two types of steam turbines. This risk associated with 

operation modes of steam turbine as well as multiple damage interaction at 

failure susceptible locations is evaluated as practical case study. The risk is 

determined by the risk of the matrix expressed by probability of failure (POF) 

and consequence of failure (COF) [152]. The POF is calculated by cumulative 

probability of creep rupture life ratio and fatigue life ratio from the damage 

distribution data in Section 5.5. To understand the effect of the operation and 

dominant damage mode in the risk of turbine, the probability of failure is 

calculated as shown in Figure 5-13. It is observed that peakload operation mode 

gives a smaller deviation of POF even though POF is relatively large comparing 

with baseload.  

Regardless of operation mode and dominant damage mode, as a result, the large 

interaction values increase the deviation of the POF considering interaction 

effects in Section 5.5.3. To assess the consequences of turbine failure, it is 

essential to fully understand the mechanism of the damage and all effects of its 

occurrence, the financial consequences, etc [87]. It is assumed that COF of steam 

turbine is a C as a consequence of failure of turbine considering actual total costs 

including replacement, start-up losses, profit losses in power plant company 

[152]. When POF and COF are determined, risk assessment results from the 

beginning of operation are presented in the risk matrix in Figure 5-14. 
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(a) baseload 

 

 

 

 

 

 

 

 

(a) 

 

(b) 

Figure 5-13 Risk assessment results with operating time: Probability of failure (a) 

baseload and (b) peakload steam turbine 
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Figure 5-14 Risk matrix result by operation mode and dominant damage 
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5.6 Summary and Discussion 

 

Many researches have been carried out to investigate creep and fatigue damage 

behavior of various systems that operated under high temperature and frequent 

loading condition. In case of steam turbine, as a key facility in the power plant, 

fatigue and creep damage occurs in combination though the dominant damage 

mechanism varies depending on the location. Their interaction is intended for 

conventional heat resistant steels, but their consideration in damage evaluation 

methods is not realized to satisfaction, especially for turbine steels. Also, 

previous studies have not fully applied the practical lifetime or risk assessment 

for steam turbines. 

To fill this research gap, in this research, we proposed 1) a statistical approach 

considering multiple damage test data, 2) a novel damage interaction model, and 

investigate 3) mode-dependence interaction effect.  

First, a statistical approach is proposed to calculate damage rate considering 

creep and fatigue experimental data for rotor steels, respectively. Creep damage 

with steady state stress and fatigue damage with transient strain are calculated 

using actual turbine information including geometric dimension, operation 

conditions.  

Second, a novel multiple damage model considering the operation mode and 

dominant damage mode is proposed to account for the creep-fatigue interaction 

effects. Incorporating into the statistical analyses, the proposed model is 

compared with different damage models in literature and validated with the true 

data in Chapter 4. The creep-fatigue damage interaction model is constructed 
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from the physical knowledge and the parameters are learned and updated using 

the RUL results by empirical model-based approach. Results showed a better 

performance compared to any of the damage summation methods.  

 Finally, interaction effects of creep and fatigue damage are investigated using 

calculated damage values. Interaction effects are depending on the operation 

mode and dominant damage modes. It is observed that relatively large interaction 

effects switch from the fatigue dominant location to creep dominant location 

when operation mode changes from the baseload to the peakload. 

Additionally, the technical risk associated with operation modes of steam turbine 

as well as multiple damage interaction at failure susceptible locations is 

evaluated as practical case study. 

In the future, the ambition is to further enhance these promising results by 

studying the deep learning algorithm to development health monitoring and early 

warning of steam turbine using all operation data relating to the steam turbine.  

 

 

 

 

Sections of this chapter will be submitted as the following journal articles:  

Woosung Choi, Heonjun Yoon and D. Youn, “Mode-dependent Damage 

Assessment for Steam Turbines with Creep-Fatigue Damage Interaction Effects,” 

IEEE Transaction of Industrial Electronics, in preparation, 2018. 
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Chapter 6  

 

Conclusions 

 

6.1 Contributions and Impacts  

The proposed research in this doctoral dissertation aims at development of data-

and model-based RUL prediction methodologies and establishing a practical 

framework for steam turbine. This doctoral dissertation is composed of three 

research thrusts: (1) an RUL prediction framework for steam turbine with FMEA 

analysis; (2) a damage growth model for RUL prediction of steam turbine 

(empirical model-based approach); and (3) a mode-dependent damage model for 

steam turbine with creep-fatigue interaction (physical model-based approach). It 

is expected that the proposed research offers the following potential contributions 

and broader impacts in PHM fields. 

 

Contribution 1: A valid framework for RUL prediction of steam turbine  

The proposed framework for RUL prediction makes two technical contributions: 

(i) when the hardness values can be obtained in a sporadic maintenance schedule, 
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the RUL and uncertainties can be calculated according to the empirical model-

based procedure regardless of the type of turbine; (ii) if it is possible to obtain 

real-time operation data such as temperature and to determine a 

physical/empirical damage model of turbine, on-line RUL prediction is possible 

according to the model-based procedure. The key to success in this effort is to 

quantify and reduce uncertainties of predicted RUL results considering different 

purpose such as off-line and/or on-line prediction.  

 

Contribution 2: A damage growth model and an RUL prediction 

methodology for steam turbines using Bayesian inference  

This research proposes a damage growth model and an RUL prediction 

methodology for aged steam turbines by using Bayesian inference. The proposed 

method consists of three technical contributions: (i) RUL prediction 

methodologies incorporate the damage index into damage growth model 

estimation, (ii) the damage growth model for a steam turbine was proposed as a 

function of mean and standard deviation from the damage index distribution. A 

Bayesian inference technique was used to estimate the probability distribution of 

the damage index from on-site measurements, and (iii) using Bayesian inference, 

nonlinear correlation of unknown parameters for a damage index is investigated 

and uncertainties in prediction are reduced comparing with nonlinear least square 

method.  
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Contribution 3: Determination of damage threshold for RUL prediction of 

steam turbine  

This research proposes a damage threshold for RUL prediction of steam turbine. 

The RUL, which is the remaining time until the degradation grows to damage 

threshold, can be predicted. Since determining the threshold depends on specific 

application with experience, it is difficult to determine or select the suitable 

threshold. Though a damage threshold is of great importance to RUL prediction, 

there is to date no study about a damage threshold for steam turbines. To the best 

of our knowledge, the proposed threshold can be treated as the first attempts to 

predict the RUL of steam turbine.  

 

Contribution 4: Mode-dependent damage assessment with creep-fatigue 

interaction model 

Many researches have been carried out to investigate creep and fatigue damage 

behavior of various systems that operated under high temperature and frequent 

loading condition. Their interaction is intended for conventional heat resistant 

steels, but their consideration in damage evaluation methods is not realized to 

satisfaction, especially for turbine steels. In this research, a novel multiple 

damage model considering the operation mode and dominant damage mode is 

proposed to account for the creep-fatigue interaction effects. Incorporating into 

the statistical analyses, the proposed model is compared with different damage 

models in literature and validated with the true data. The creep-fatigue damage 

interaction model is constructed from the physical knowledge and the parameters 

are learned and updated using the RUL results by the empirical model-based 

approach. Results showed a better performance compared to any of the damage 

summation methods.  
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Contribution 5: Creep and fatigue interaction effect of mode-dependent 

damage model  

From the results of creep and fatigue damage calculation using mode-dependent 

damage model, the creep damage and fatigue damage fractions for all operation 

modes such as baseload and peakload depicted in the creep-fatigue interaction 

diagram. In this research, important observations can be made: (i) to calculate the 

damage rate or lifetime of turbine in which creep damage and fatigue damage 

occur at the same time, the interaction effects should be reflected. Which is 

determined differently depending on the operation mode and dominant damage 

modes. (ii) if the turbine, designed for the baseload operation, is operated in the 

peakload condition, it can be assumed that the lifetime reduction due to the 

interaction at the creep damage location (bore), which was relatively neglected, is 

accelerated. 

 

 

6.2 Suggestions for Future Research 

Although the technical advances proposed in this doctoral dissertation 

successfully address some challenges in RUL prediction for turbine in both data-

driven and model-based approaches, there are still several research topics that 

further investigations and developments are required to overcome existing 

limitations and to improve the completeness of this research. Specific 

suggestions for future research are listed as follows. 

Suggestion 1: Development of hybrid prognostic methodologies with 

uncertainty management 
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Regardless of online or offline data, RUL prediction can be done by data-driven 

approaches when physical models, loading conditions are not available. However, 

it would be challenging to develop RUL prediction model based on few data or 

no data, especially for newly commissioned systems. Since many set of training 

data are rare in practice, it is necessary to overcome limitations by combining 

suitable model-based methodologies. Hybrid prognostic methodologies that 

combine the data-and model-based approaches results can be considered to 

improve the accuracy of prediction results and reduce uncertainties. On the other 

hand, the prediction uncertainties in RUL prediction should be quantified and 

managed. The representation of the uncertainty of prognostics is a difficult task 

because prognostics involves both subjective and objective uncertainties, and 

operates over the time horizon form the past, through the present, and into the 

future [37]. 

Suggestion 2: Consolidation and verification of the proposed RUL 

prediction framework 

The proposed RUL prediction framework provides the first step guidance but 

substantive procedure for steam turbine in service. Though, in this research, 

model-based approaches are combined with data-driven approaches to estimate 

model parameters using RUL and damage values, further research works are still 

needed to consolidate and verify the proposed framework. Especially, future 

researches should be devoted to the following task: a proposed framework should 

be generalized to consider different degradation or damage mechanism. It should 

not be limited to turbine but should be applicable to high temperature 

components such as boiler tube, piping, etc.  
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Suggestion 3: Deep learning based RUL Prediction using online/offline data 

related with turbine 

Existing condition monitoring and diagnosis technology for power plant provide 

limited information by using specific data such as temperature, pressure and 

vibration separately. For accurate and comprehensive analysis, therefore, it is 

required to develop condition monitoring and diagnosis techniques utilizing all 

kinds of actual data at the same time. Various types of data obtained from power 

plant facilities can be used to evaluate actual conditions or notify an early 

warning to prevent unexpected failure by using deep learning techniques such as 

deep belief network (DBN), convolution neural network (CNN), and recurrent 

neural network (RNN), etc. In addition, more accurate and reliable 

methodologies can be developed based on maintenance-related history data as 

well as monitored operational data for efficient operation and maintenance of the 

power plant. 
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국문 초록 

 

다양한 데이터 형식에 맞는   

증기터빈 잔존유효수명 예측 방법론  

 

최근 발전사간 경쟁이 치열해짐에 따라 발전 산업에서는 운전 

비용을 절감하고 핵심 설비의 수명을 연장하는데 많은 노력을 

기울이고 있다. 한편 운전 시간이 설계 수명에 근접함에 따라 

증기터빈과 같은 핵심 설비의 열화가 가속되고 크고 작은 고장이 많이 

발생하고 있다. 가속화된 열화나 예기치 못한 손상으로 발전소가 

정지되면 막대한 경제적 손실과 국가적인 재해를 야기할 수 있다. 

이에 따라 안정적인 설비의 운전을 가능케 하는 다양한 기술들이 

개발되고 있으며 최근 들어 더욱 많은 각광을 받고 있는 시스템 

건전성 관리 기술은 효과적으로 시스템의 상태를 감지, 진단, 그리고 

예지하여 관리자가 유지 보수에 있어 필요한 결정을 내릴 수 있도록 

도와준다. 특히 최적 유지정비 관점에서 적합한 방법론을 통해 예측된 

잔존유효수명은 설비 수명에 정확한 정보를 기반으로 효과적인 유지 

정비를 가능하게 한다.  

증기 터빈은 발전소 수명을 결정하는 핵심 설비이기 때문에 

발전소의 최적 운영을 위해 활용 가능한 정보를 최대한 활용하여 운전 

중인 증기터빈의 잔존유효수명을 정확하게 예측하는 방법론의 개발이 
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매우 중요하다. 이에 본 박사학위 논문에서는 (1) 증기 터빈에 대한 

고장모드영향분석과 연계한 잔존유효수명 예측 프레임워크, 그리고 

이를 바탕으로 한 (2) 손상 성장 모델 (데이터 기반 방법론), (3) 

크리프-피로 손상 상호작용을 고려한 모드 의존 손상 모델 (모델 

기반 방법론) 등의 연구를 제안한다. 

 

첫 번째 연구에서는 고장모드영향분석에 기반하여 증기터빈의 

잔존유효수명을 예측하는 프레임워크를 제안한다. 프레임워크는 

측정된 데이터에 기반한 방법론과 손상 모델에 기반한 방법론으로 

구성된다. 오프라인이나 온라인과 같이 다른 목적으로 잔존유효수명을 

예측할 때 불확실도를 평가하고 감소시킬 수 있도록 불확실도를 

정량화하는 절차를 포함하였다. 

 

두 번째 연구에서는 데이터 기반 방법론을 이용해 증기터빈의 

잔존유효수명을 평가할 수 있는 손상 성장 모델의 개발을 목적으로 

한다. 잔존유효수명은 손상 인자로부터 손상 성장 모델을 연계하여 

예측한다. 현장에서 측정된 경도값으로부터 손상인자의 확률분포를 

추정하고 손상의 성장을 평가할 때 불확실도를 고려하기 위해 

베이지안 방법을 사용하였다. 제안된 손상 성장 모델을 통해 

기저부하나 첨두부하에 사용되는 증기터빈의 종류에 상관없이 정확한 

잔존유효수명 예측이 가능하다는 것을 검증하였다. 

 

마지막 연구에서는 모델 기반 방법론을 이용해 크리프와 피로 

상호작용이 고려된 모드 기반 손상모델을 제안하였다. 손상기구에 

따른 재료 데이터를 통계적 기법으로 분석하고 실 증기터빈의 형상 
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정보와 운전정보를 이용해 기저부하와 첨두부하 터빈을 대상으로 

크리프 및 피로 손상율을 계산하였다. 각각 계산된 손상율 결과와 

크리프-피로 상호작용 모델을 통해 운전모드 또는 손상모드에 따른 

증기터빈에서의 크리프와 피로 상호작용 효과를 분석하였다.  

 

 

 

 

 

 

 

주요어:  증기 터빈 

 잔존 유효 수명 

 불확실도 

 베이지안 추론 

 크리프-피로 손상 상호작용 
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