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This dissertation aims at developing a generic reliability analysis and design 

framework that enables reliability prediction and design improvement with random 

parameter, field, and process variables. The capability of this framework is further 

improved by predicting and managing reliability even with a dearth of data that can 

be used to characterize random variables. To accomplish the research goal, three 

research thrusts are set forth. First, advanced techniques are developed to characterize 

the random field or process. The fundamental idea of these techniques is to model the 

random field or process with a set of important field signatures and random variables. 

These techniques enable the use of random parameter, field, and process variables for 

reliability analysis and design even with a dearth of data. Second, a generic reliability 

analysis framework is proposed to accurately assess system reliability in the presence 

of random parameter, field, and process variables. An advanced probability analysis 

technique, the Eigenvector Dimension Reduction (EDR) method, is developed by 



  

integrating the Dimension Reduction (DR) method with three proposed 

improvements: 1) an eigenvector sampling approach to obtain statistically 

independent samples over a random space; 2) a Stepwise Moving Least Square 

(SMLS) method to accurately approximate system responses over a random space; 

and 3) a Probability Density Function (PDF) generation method to accurately 

approximate the PDF of system responses for reliability analysis. Third, a generic 

Reliability-Based Design Optimization (RBDO) framework is developed to solve 

engineering design problems with random parameter, field, and process variables. 

This design framework incorporates the EDR method into RBDO. To illustrate the 

effectiveness of the developed framework, many numerical and engineering examples 

are employed to conduct the reliability analysis and RBDO with random parameter, 

field, and process variables. This dissertation demonstrates that the developed 

framework is very accurate and efficient for the reliability analysis and RBDO of 

engineering products and processes. 
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Chapter 1: Introduction 

1.1 Background and motivation 

A random field/process is a generalization of a stochastic field, of which 

randomness can be characterized as a function of spatial/time variables. For the sake 

of convenience, random field is used throughout the dissertation to represent both 

random field and random process. So far, little effort has been made to consider the 

random field in most engineered system design [Choi et al. 2006; Missoum 2008; 

Chen et al. 2010]. That is mainly because of little or no effective approach for random 

field characterization, misconception of minor influence of the random field on 

system responses, or both. Hence, the Random Parameter Approach (RPA) has been 

popular in probability analysis and design for engineering products and processes. 

The RPA parameterizes manufacturing and operation variability while simplifying or 

ignoring the spatial variability. For instance, one thickness random parameter is used 

for modeling thickness variability although it has spatial variability over an entire 

plate. However, it has been widely acknowledged [Rajaee et al. 1994; Tamura et al. 

1999; Berkooz et al. 1996; Fukunaga 1990; Missoum 2008; and Yin et al. 2009] that 

consideration of the random field is quite significant to variability in system 

responses, especially, geometry-sensitive failures (e.g., buckling) and small-scale 

applications, in which tolerance control is more challenging. Ignorance of the random 

field in engineering design may lead to an unreliable and risk design. Examples of the 

random field can be often found as a geometry, material, and process variation in 

Micro-Electro-Mechanical Systems (MEMS), mechanical, and electronics products. 
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Figure 1-1 presents two examples of the random field in an MEMS bi-stable 

mechanism and a mechanical assembly process.  

①①①① ②②②② ③③③③
④④④④ ⑤⑤⑤⑤ ⑥⑥⑥⑥

Front-L

Hinge

Location Index

Freezer 

side

 

        (a)                                                                      (b) 

Figure 1-1: Geometrical random field in (a) a MEMS bi-stable mechanism; and (b) 

hinge installation in a refrigerator assembly process 

 

The use of random field for reliability analysis and design is challenging due to 

four primary reasons. First, characterization of the random field in engineered 

systems could be prohibitively complicated and expensive. Massive multi-

dimensional random field data must be accurately measured and systematically 

stored. Second, there is no generic framework to take into account both random 

parameter and field variables for reliability analysis and design. Third, statistical 

dependence in random field increases technical difficulty for reliability analysis and 

design. Fourth, the amount of data to characterize the random field is often lacking in 

most engineering problems. The objective of this dissertation is to understand and 
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manage the effect of the random field on system responses, reliabilities, and designs 

of engineered systems. In this dissertation, three technical concerns are addressed: 1) 

effective random field characterization with both sufficient and insufficient number of 

data; 2) reliability analysis for engineering problems with both random parameter and 

field variables; and 3) reliability-based design optimization for engineering problems 

with both random parameter and field variables. 

1.2 Research scopes and objectives 

The goal of the research is to develop a generic reliability analysis and design 

framework, which enables the use of both random parameter and field variables even 

with the dearth of corresponding data as shown in Fig. 1-2. First of all, statistical 

input data of the engineered system are classified into random parameter data and 

random field data. The random field data indicate that the randomness can be 

characterized as a function of spatial variables, such as the wind field loading applied 

to the wind turbine generator, or the thermal field loading applied to mechatronic 

products. The random parameter data denote that the randomness is independent on 

the spatial variables. Then, the random parameter variables are characterized from the 

available random parameter data and their statistical properties are represented by the 

Probability Density Functions (PDFs). Furthermore, the random field variables are 

defined from the random field characterization approach and their statistical 

properties are also represented by the PDFs. Next, the statistical dependency of the 

random parameter and field variables has to be considered for accurate prediction of 

engineered system performances. Then, reliability analysis is conducted to identify 

the reliability of engineered system performances with both random parameter and 
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field variables. Finally, Reliability-Based Design Optimization (RBDO) is performed 

to improve the reliability of engineered system performances considering both 

random parameter and field variables. This research development could bring a great 

impact to many engineering design problems where the random field is the inherent 

property for the loading conditions, material properties and manufacturing tolerance. 

To achieve this research goal, this dissertation sets three research objectives. 

Random Parameter Data

Data

Random Field Data

Sufficient Field Data Insufficient Field Data

Random Field Characterization

Statistical Dependency

Random Field Variables

Reliability Analysis with Both Random Parameter and Field Variables

Reliability-Based Design Optimization with Both Random Parameter and Field Variables

Random Parameter Variables

 

Figure 1-2: A generic reliability analysis and design framework with a set of random 

parameter and field variables 

 

The first research objective is to develop advanced techniques for random field 

characterization. The fundamental idea of the techniques is to model the random field 

in terms of a set of important field signatures. These techniques enable the use of both 

random parameter and field variables even with the dearth of corresponding data. 

This research objective is achieved through the accomplishment of following 
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techniques: 1) projection of the random field onto a set of important field signatures 

for the random field characterization with the minimum number of random field 

variables; 2) a Bayesian approach with Bayesian Copula dependence modeling to 

characterize the random field with the lack of field data sets; and 3) Rosenblatt 

transformation with an optimal transformation sequence for the transformation of 

statistically dependent random field variables into statistically independent random 

field variables;  

The second research objective is to propose a generic reliability analysis 

framework, which assesses system reliability accurately in the presence of both 

random field and parameter variables. This technique is developed based upon the 

Dimension Reduction (DR) method [Rabitz and Alis 1999; Rahman and Xu 2004]. 

This research objective is achieved through the accomplishment of following 

techniques: 1) an eigenvector sampling to obtain statistically independent samples 

over a random space; 2) a Stepwise Moving Least Square (SMLS) method to 

accurately approximate system responses over a random space; and 3) a Probability 

Density Function (PDF) generation method to accurately approximate PDFs of 

system responses for reliability analysis.  

The third research objective is to structure a generic framework for Reliability-

Based Design Optimization (RBDO) that can solve an engineering design problem 

with both random parameter and field variables to achieve target reliability. This 

research objective is achieved through the accomplishment of following techniques: 1) 

sensitivity analysis to calculate sensitivity of controllable random parameters; and 2) 

sensitivity analysis to calculate sensitivity of controllable means of the random field. 
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1.3 Dissertation overview 

The rest of the dissertation is organized as follows. Chapter 2 provides an 

overview of random field characterization, reliability analysis and Reliability-Based 

Design Optimization (RBDO). Chapter 3 aims at developing advanced techniques for 

random field characterization in order to model any geometric and non-geometric 

random fields in engineered systems whether or not the random field can be realized 

with either sufficient or insufficient field data. Chapter 4 develops a generic reliability 

analysis framework that requires no derivative information of system responses while 

taking into account statistical dependence among random variables. The Eigenvector 

Dimension Reduction (EDR) method is proposed for the generic reliability analysis 

framework. Chapter 5 proposes a generic RBDO framework that can deal with both 

random parameter and field variables. Chapter 6 concludes the dissertation with a 

discussion on potential future research directions.  

1.4 Summary of contributions 

The significant contributions of this dissertation are as follows. 

1) An effective random field characterization approach capable of projecting the 

random field onto a set of important field signatures (or random field variables). 

2) Rosenblatt transformation with an optimal transformation sequence to transform 

statistically dependent random variables into statistically independent random 

variables. 

3) A Bayesian approach with Copula dependence models to characterize the random 

field with the lack of field data sets. 
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4) A generic reliability analysis framework to assess system reliability accurately in 

the presence of both random field and parameter variables.  

5) A generic Reliability-Based Design Optimization (RBDO) framework to solve 

engineering design problems with both random parameter and field variables. 

The items indicated above present a generic reliability analysis and design 

framework, which enables the use of both random parameter and field variables even 

with the dearth of corresponding data.  
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Chapter 2: Literature Review 

2.1 Random field characterization 

In the area of the stochastic finite element methods, a random field is the 

mathematical theory to represent and analyze uncertainties in the mechanical 

properties of a continuous media. A random field θ (x, t) can be defined as a 

collection of infinitely many random variables denoted by a continuous parameter x. 

This means that for a given xi, θ (xi, t) is a random variable. Conversely, for a given 

outcome ti, θ (x, ti) is a realization of the random field. A discretization procedure of 

the random field is the approximation of θ (•) by θɶ  (•) defined by means of a finite 

set of random variables {xi, i = 1, 2, …, n}.  

In the 1990s, the random field had already gained its popularity in applications 

of civil engineering [Yamazaki and Shinozuka 1990; Liu and Der Kiureghian 1991; 

Ghanem and Spanos 1991; Liu and Liu 1993; Zhang and Ellingwood 1994; Sudret 

and Der Kiureghian 2000]. It had also been considered in many different disciplines, 

including fluid dynamics [Rajaee et al. 1994], wind pressure field [Tamura et al. 

1999], coherent structures [Berkooz et al. 1996], and pattern recognition [Fukunaga 

1990]. Numerous techniques to characterize a discrete random field (or scanned 

digital data) had been developed. The methods include the midpoint method [Der 

Kiureghian and Ke 1988], spatial averaging method [Vanmarcke and Grigoriu 1983], 

shape function method [Liu et al. 1986], and Karhunen-Loeve (K-L) decomposition 

or Proper Orthogonal Decomposition (POD) method [Turk and Pentland 1991]. 
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2.1.1 The midpoint method  

This method was first introduced by Der Kiureghian and Ke to approximate the 

random field in each discrete element by a single random variable θ (xi, t). Its value is 

defined as the field value at the centroid of this element. The approximate random 

field is then defined by the random vector θɶ  = [θ (x1, t), θ (x2, t), … , θ (xn, t)] in an 

entire field domain, where n is the number of elements in the field domain. Its mean µµµµ 

and covariance matrix ΣΣΣΣ  are evaluated at the element centroids. Each realization of 

θɶ  (•) is a piecewise constant with the discontinuities being localized at the element 

boundaries.  

2.1.2 The spatial averaging method 

The spatial average method was proposed by Vanmarcke and Grigoriu. Provided 

a mesh of the structure is available, it defines the approximate random field in each 

element as a constant being computed as the average of the original field over the 

element. The approximate random field is then defined by the random vector θɶ  = [θ 

(x1, t), θ (x2, t), … , θ (xn, t)] in an entire field domain, where n is the number of 

elements in the field domain. The mean and covariance matrix of θɶ  are computed 

from the mean and covariance function of θ (•) as integrals over the element domain.  

2.1.3 The shape function method 

Liu et al. first proposed this method, which approximates θ (•) in each element 

using the nodal value xi and shape functions as follows:  

 
1

( ) ( ) ( )
q

i i

i

x H x xθ θ
=

=∑ɶ  (2.1) 
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where q is the number of nodes, xi is the coordinate of the i-th node and Hi is the 

polynomial shape function associated with the element. The approximate random 

field θɶ (•) is obtained from [θ(x1), θ(x2), … , θ(xN)], where {xi, i = 1, 2, … , N} is the 

set of the nodal coordinates of the mesh. Each realization of the approximate random 

field θɶ (x, t0) is a continuous function, which is an advantage over the previous two 

methods.  

2.1.4 K-L decomposition (or POD) method 

A random field θ(x,t) can be decomposed into the mean µ(x) and variation 

parts ν(x,t). At time tk, the random field of a sampled snapshot (or the kth snapshot) is 

observed as  

 ( , ) ( ) ( , )k kx t x x tθ µ ν= +  (2.2) 

The purpose of the K-L decomposition (or POD) method is to find the most important 

signature φ(x) of an ensemble of the random field variation ν(x,t) over the entire 

sampled time (or entire sampled snapshots). This turns out to be an optimization 

problem expressed as: 

 ( )
2

( )Maximize y xφ ν∞= •  (2.3) 

where ν∞ stands for the ensemble of the field variation ν(x,t) and the operator • 

indicates an inner product. By definition of the inner product, the objective function y 

can be further expressed as  

 { }
{ }

2( ( ) ) ( ) ( ) ( ') ( ') '

( ) ( ') ( ) ( ') '

( , ') ( ) ( ') '

y x x x dx x x dx

x x x dx x dx

K x x x dx x dx

φ ν φ ν φ ν

ν ν φ φ

φ φ

∞ ∞ ∞
Ω Ω

∞ ∞Ω Ω

Ω Ω

= • =

=

=

∫ ∫

∫ ∫

∫ ∫

 (2.4) 
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where ( , ') ( ) ( ')K x x x xν ν∞ ∞=  and x′ is the dummy variable. Define a positive-definite 

integral operator as 

 ( , ')( )I K x x dx
Ω

= ⋅∫  (2.5) 

Then the objective function can be simplified as 

 2( ( ) ) ( )( ) ' ( )y x I dx Iφ ν φ φ φ φ∞
Ω

= • = = •∫  (2.6) 

To maximize the objective function, Iφ should have the same direction with the vector 

φ. Thus, the maximum objective function can be obtained when  

 Iφ λφ=  (2.7) 

From Eq.(2.7), φ(x) is the signature of the operator I and λ is the corresponding 

eigenvalue. Thus, the field variation ν(x,t) can be decomposed as 

 
1

( )
( , ) ( )

( )
i

i

i i

x
x t t

x

φ
ν α

φ

∞

=

=∑  (2.8) 

where αi(t) is the coefficient of the corresponding signature. Its value can be achieved 

by the projection of the field variation ν(x,t) on the corresponding unit signatures and 

stated as  

 
( )

( ) ( , )
( )

i
i

i

x
t x t

x

φ
α ν

φ
= •  (2.9) 

Therefore, the random field can be decomposed into Eq. (2.10) using the K-L (or 

POD) approach 
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i
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=
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2.1.4.1 Discrete representation of a random field 

In engineering applications, it is more practical to represent a random field in a 

discrete manner than in a continuous way because a finite amount of field data is 

given at discrete field locations. Each snapshot is assumed to have a finite amount of 

measurement points (n) and the physical quantity at the measurement points has 

variability over a finite amount of sampled snapshots (m). The data sets 

characterizing the random field could be relevant to geometries, material properties, 

and loads. Thus an m×n matrix (θθθθ) representing the discrete random field can be 

constructed as [Missoum 2008] 

 

11 12 1

21 22 2

1 2

n

n

m m mn

θ θ θ

θ θ θ

θ θ θ

 
 
 =
 
 
 

⋯

⋯

⋮ ⋮ ⋱ ⋮

⋯

θθθθ  

where θij indicates the measured data at the j-th measurement point of the i-th 

sampled snapshot. Such representation works for multi-dimensional problems. 

Regardless of the dimension of the random field, the scanned multi-dimensional data 

are listed in a one-dimensional array from θi1 to θin for the i-th sampled snapshot. The 

mean of the random field is estimated as 

1 2, , ,
n

θ θ θ• • •
 =  ⋯µµµµ  

where j
θ•  stands for the average of the jth measured data over the samples. Hence the 

variation part is expressed as 

11 1 12 2 1
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1 1 2 2

n n

n n

m m mn n

θ θ θ θ θ θ

θ θ θ θ θ θ

θ θ θ θ θ θ

• • •
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• • •

 − − −
 

− − − =
 
 

− − −  

⋯

⋯

⋮ ⋮ ⋱ ⋮
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The signature φφφφ can then be obtained by solving an eigen-problem as 

 ΣΣΣΣ    φφφφ = λφφφφ (2.11) 

where λ is the eigenvalue and ΣΣΣΣ (m×m) is a covariance matrix and defined as  

 ΣΣΣΣ =ννννννννΤ (2.12) 

2.1.5 Discussion 

So far, little effort has been made to consider the random field in engineered 

system design. Most researches in the random field characterization focus on how to 

represent the random field effectively, either in a discrete or continuous domain. The 

techniques for random field characterization have been applied for modeling the 

random field in physical quantities, such as material properties and spatial variation in 

geometry shape and size. Furthermore, should the random field realizations (or 

snapshots) be sufficiently given, techniques addressed above can precisely model the 

random field.  

This random field study has widely perceived limitations including: 1) an 

effective approach to characterize the random field for reliability analysis and 

Reliability-Based Design Optimization (RBDO) is lacking; 2) statistical dependence 

in random field characterization has not been considered for reliability analysis and 

RBDO; and 3) existing techniques for random field characterization demand a large 

number of field realizations (e.g., snapshots), which may become impractical in many 

engineering applications.  

2.2 Reliability analysis 

Reliability analysis is of critical importance to predict the chances of physics-of-

failures (PoFs) in various engineering applications. However, a common challenge in 
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reliability analysis is a multi-dimensional integration to assess the probability of 

failure (e.g., failures due to fatigue, corrosion, and injury metrics) in various 

engineering applications (e.g., vehicle, airplane, and electronics). It is almost 

impossible to conduct analytical multi-dimensional integration or direct numerical 

integration for reliability analysis in large-scale engineering applications. Other than 

this approach, existing reliability analysis methods can be categorized into the four 

groups as: 1) sampling method; 2) expansion method; 3) the Most Probable Point 

(MPP)-based method; and 4) stochastic response surface method. 

2.2.1 The sampling method 

The sampling method is the most comprehensive but expensive method to use 

for estimating statistical moments, reliability, and quality of system responses. Monte 

Carlo Simulation (MCS) [Varghese et al. 1996; Lin et al. 1997] is the most widely 

used sampling method but demands thousands of computational analyses (e.g., Finite 

Element Analysis (FEA), crash analysis, etc.). To relieve the computational burden, 

other sampling methods have been developed, such as quasi-MCS [Niederreiter and 

Spanier 2000; Sobol 1998], importance (adaptive) sampling [Engelund and Rackwitz 

1993; Melchers 1989; Bucher 1988; Wu 1994], directional sampling [Bjerager 1988], 

etc. Nevertheless, sampling methods are considerably expensive. Thus, it is often 

used for verification of reliability analysis when alternative methods are employed. 

2.2.2 The expansion method 

The idea of the expansion method is to estimate statistical moments of system 

responses with a small perturbation to simulate input uncertainty. This expansion 

method includes Taylor expansion, perturbation method [Kleiber and Hien 1992; 
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Rahman and Rao 2001], Neumann expansion method [Yamazaki and Shinozuka 

1988], etc. Taylor expansion and perturbation methods require high-order partial 

sensitivities to maintain good accuracy. The Neumann expansion method employs 

Neumann series expansion of the inverse of random matrices, which requires an 

enormous amount of computational effort. In summary, all expansion methods could 

become computationally inefficient or inaccurate when the number or the degree of 

input uncertainty is high. Moreover, since it requires high-order partial sensitivities of 

system responses, it may not be practical for large-scale engineering applications. 

2.2.3 The MPP-based method  

The MPP-based method has been widely used to perform reliability analysis. 

Rotationally invariant reliability index is introduced through a nonhomogeneous 

transformation [Hasofer and Lind 1974]. Reliability analysis can be conducted in two 

different ways: response-level (G-level) [Hasofer and Lind 1974] and probability-

level (P-level) [Youn et al. 2004; Du and Chen 2004]. It has been found that the P-

level method is more efficient and stable than the G-level method [Youn et al. 2004]. 

However, the MPP-based method requires the first-order sensitivities of system 

responses. Moreover, it could generate relatively large error due to some nonlinearity 

of the system response and is not suitable for multiple MPP problems. 

2.2.4 The stochastic response surface method 

There currently exist a number of stochastic response surface methods, such as 

Polynomial Response Surface Models (PRSM) [Myers and Montgomery 1995], 

Multivariate Adaptive Regression Splines (MARS) [Friedman 1991], Radial Basis 

Functions (RBF) [Dyn et al. 1986], kriging [Cressie 1988], neural networks [Haykin 
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1999], Support Vector Regression (SVR) [Clarke et al. 2005], Polynomial Chaos 

Expansion (PCE) [Ghanem and Spanos 1991; Xiu and Karniadakis 2003], and 

Dimension Reduction (DR) [Rabitz and Alis 1999; Rahman and Xu 2004]. Each 

method has its associated fitting approach. For example, PRSM are usually fitted with 

the (moving) least square method [Myers and Montgomery 1995]. The kriging is 

fitted with the search for the best linear unbiased predictor [Cressie 1988; Simpson et 

al. 2001]. All of these techniques are capable of the function approximation, but they 

vary in their accuracy, robustness, computational efficiency, and transparency. PRSM 

is not suitable for high dimensional problems because of a curse of dimensionality 

[Youn et al. 2008]. MARS constructs response surface from a set of coefficients and 

basis functions from the regression data, which makes it suitable for problems with 

high input dimensions [Friedman 1991]. However, it normally cannot produce 

accurate results for nonlinear problems [Wang and Shan 2007]. RBF is useful for 

multivariate scattered data interpolation [Dyn et al. 1986; Fang and Horstemeyer 

2006]. However, it is unable to interpolate large sets of data in an efficient and 

numerically stable way and maintain a good level of accuracy at the same time 

[Mullur and Messac 2005]. In general the Kriging can produce accurate results for 

nonlinear problems but difficult to obtain and use because a global optimization 

process is applied to identify the maximum likelihood estimators [Wang and Shan 

2007]. Although neural networks are able to well approximate very complex models, 

they have the two disadvantages: 1) being a “black box” approach, and 2) having a 

computationally expensive training process [Jin et al. 2001; Haykin 1999]. It is well 

known that the accuracy of SVR depends on a good setting of meta-parameters and 
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the kernel parameters where optimal parameter selection is complicated [Clarke et al. 

2005]. Although the PCE method is considered to be accurate, the primary drawback 

of the PCE method is the curse of dimensionality, which substantially increases the 

computational cost with the increase of the number of random variables [Hu and 

Youn 2009]. In the univariate DR method [Rahman and Xu 2004], it uses an additive 

decomposition of the responses that simplifies one multi-dimensional integration to 

multiple one-dimensional integrations. Generally, it can provide accurate lower 

moment of system responses such as mean. However, it may produce a relatively 

large error for the second-order or higher moments of nonlinear system responses. In 

the general DR method [Xu and Rahman 2004], the theoretical error of the univariate 

DR method can be reduced by considering multi-dimensional integrations. However, 

the computation effort is increased exponentially. Therefore, it is hard to afford a 

general DR calculation in most engineering applications.  

2.2.5 Discussion 

In the last decade, a considerable advance has been made in the area of reliability 

analysis. Many advanced methods for reliability analysis have been focused on the 

enhancement of numerical efficiency, accuracy and stability. Despite these advances, 

statistical dependence has little been considered in reliability analysis and design. 

This is mainly because of the misconception of minor influence of the statistical 

dependence on system responses and the lack of an effective tool to model the 

statistical dependence and perform reliability analysis. 
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2.3 Reliability-Based Design Optimization (RBDO) 

RBDO is the technique used for engineering design when uncertainty is being 

considered. In general, the RBDO can be formulated as 

minimize  ( ; )

subject to  ( ( ; ) 0) (0) ( ), 1, ,

                 ,  and 

i ii G t

ND N

y

P G F i NP

R R

β≤ = ≥ Φ =

≤ ≤ ∈ ∈L U

x d

x d

d d d d x

⋯  

where y(x; d) is the objective function, d = µµµµ(x) is the design vector, x is the random 

vector, βti is the prescribed target reliability, NP, ND, and N are the number of 

probabilistic constraints, design variables, and random variables, respectively. The 

probabilistic constraint, FGi(0), is expressed as  

 
( ) 0

(0) ( )
i

i

G
G

F f d
≤

= ∫ ∫ X
X

x x⋯  (2.13) 

RBDO is composed of two sub-problems, reliability analysis and design 

optimization. Reliability analysis evaluates probabilistic constraints at a given design. 

Design optimization seeks for an optimal design subject to the probabilistic 

constraints. Many efforts have been made to enhance the numerical accuracy, 

efficiency and stability of the RBDO through the development of three RBDO 

approaches: a nested double-loop, decoupled double-loop, and single-loop approach. 

2.3.1 Nested double-loop RBDO approach 

The efficiency of this type of method is usually low since it employs nested 

optimization loops. The inner loop is the assessment of probabilistic constraints, 

which involves an iterative procedure using either Reliability Index Approach (RIA) 

[Tu et al. 1999] or Performance Measurement Approach (PMA) [Youn et al. 2003]. 

The outer loop controls the design search process, which calls the inner loop 
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repeatedly for sensitivity or function assessments. 

2.3.2 Decoupled double-loop RBDO approach 

To improve the efficiency of the double-loop RBDO, some methods decouple 

the nested optimization loops. With the decoupling strategies, the reliability analysis 

loop and optimization loop are in the same design cycle sequentially instead of being 

nested. In general, the decoupled double-loop RBDO reduces the computational effort 

compared to the nested double-loop RBDO. 

Du and Chen developed a decoupled double-loop RBDO termed Sequential 

Optimization and Reliability Assessment (SORA) [Du and Chen 2004]. The key 

concept of the SORA method is to shift the boundaries of violated constraints to the 

feasible direction based on the reliability information obtained in the previous cycle. 

The reliability analysis is performed using the MPP based method after the 

deterministic optimization to verify the constraint feasibility. Hence, the design is 

improved from cycle to cycle and the computation efficiency is improved by 

decoupling the reliability analysis from the optimization loop. By building a relation 

between the safety factor and the reliability of a system, researchers developed 

Sequential Optimization with Reliability-based Factors of Safety (SORFS) methods 

[Qu and Haftka 2004; Wu et al. 2001; Ba-abbad et al. 2006]. This type of methods 

decouples the reliability analysis from the design optimization using the safety factor 

to replace the probabilistic constraints with deterministic constraints. Tu et al. 

developed the Design Potential Method (DPM), where the search direction for 

optimization is determined at the so called Design Potential Point (DPP) [Tu et al. 

2001], which is defined as the design point derived from the MPP using either RIA or 



 

 20 
 

PMA. The DPM improves the efficiency of RBDO by taking advantage of the 

important design information unveiled in the reliability analysis. Zou and Mahadevan 

decoupled the optimization and reliability analysis by approximating the probabilistic 

constraints using the first-order Taylor series expansion [Zou and Mahadevan 2006]. 

2.3.3 Single-loop RBDO approach 

The single-loop RBDO was proposed to enhance numerical efficiency in the 

RBDO process by eliminating numerical iterations in the reliability analysis 

[Thanedar and Kodiyalam 1992; Chen and Hasselman 1997; Wang and Kodiyalam 

2002; Shan and Wang 2008]. Two different approaches were made: using the mean 

value first-order reliability method [Thanedar and Kodiyalam 1992; Shan and Wang 

2008] or using the steepest ascent direction obtained at the previous design [Chen and 

Hasselman 1997; Wang and Kodiyalam 2002]. Thus, the single-loop structure 

benefits the RBDO by improving numerical efficiency. However, it is well known 

that single-loop RBDO using a mean value method shows numerical inaccuracy or 

instability because of inaccurate estimation of probabilistic constraints in the RBDO 

process. The single-loop RBDO using the steepest ascent direction improves 

numerical accuracy of evaluating probabilistic constraints. However, it has been 

found [Chen and Hasselman 1997] that this method could be numerically unstable 

and/or inaccurate because it does not satisfy Karush-Kuhn-Tucker (KKT) necessary 

condition. 

2.3.4 Discussion 

Nested double-loop methods are structured with the inner loop for the reliability 

analysis and the outer loop for the design optimization. As a result, these methods are 
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computationally expensive for most engineering design problems. Later, decoupled 

double-loop and single-loop methods have been developed to address the 

computational challenges aforementioned. Despite the extensive effort made in the 

RBDO methods, the numerical efficiency, accuracy, and stability is still of great 

concern.  
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Chapter 3: Random Field Characterization in Engineered 

Systems 

This chapter aims at developing advanced techniques for random field 

characterization in order to model any geometric or non-geometric random fields in 

engineered systems whether or not the random field can be realized with either 

sufficient or insufficient field data (or snapshots). 

3.1 Introduction 

Manufacturing variability (geometries and material properties) over samples and 

stochastic nature in loads have been modeled using spatially independent random 

parameter variables [Zou et al. 2002; Penmetsa and Grandhi 2002; Maute and 

Frangopol 2003; Qu and Haftka 2004; Du and Chen 2005; Youn et al. 2004a; Youn et 

al. 2004b; Youn et al. 2005; Smith and Mahadevan 2005; Yin and Chen 2006]. 

Although these literatures have provided a great foundation to integrate probability 

analysis to engineering system design, their works lack practical consideration of 

spatial variability over samples (or the random field).  

In many engineering applications the manufacturing and load variability is a 

function of spatial variables (x, y, and z) and temporal variable (t). The random field 

is thus coined to reflect spatial and temporal variability. For instance, the thickness of 

a metal sheet has variation over space and samples (or sampled time). This notion of 

the random field can also be observed in material properties (e.g., an elastic modulus) 

and loading conditions. In the 1990s, the random field had already gained its 

popularity in applications of civil engineering [Yamazaki and Shinozuka 1990; Liu 

and Der Kiureghian 1991; Ghanem and Spanos 1991; Liu and Liu 1993; Zhang and 
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Ellingwood 1994; Sudret and Der Kiureghian 2000]. It had also been considered in 

many different disciplines, including fluid dynamics [Rajaee et al. 1994], wind 

pressure fields [Tamura et al. 1999], coherent structures [Berkooz et al. 1996], and 

pattern recognition [Fukunaga 1990]. Numerous techniques have been developed to 

represent a discrete or continuous random field. Methods include the midpoint 

method [Der Kiureghian and Ke 1988], spatial averaging method [Vanmarcke and 

Grigoriu 1983], shape function method [Liu et al. 1986], and Proper Orthogonal 

Decomposition (POD) method [Turk and Pentland 1991]. However, little effort has 

been made to consider the random field in probability analysis and design [Choi et al. 

2006; Missoum 2008; Chen et al. 2010]. The major reason lies in the fact that spatial 

variability has been conceived to negligibly affect system responses. However, our 

study showed that spatial variability may influence variability in system responses 

significantly, especially in geometry-sensitive failures (e.g., buckling, fillet failures) 

and small-scale applications in which tolerance control is more challenging. 

This research was initially inspired by a random field paper [Missoum 2008] that 

originally applied the idea of the POD to engineering design problems. The POD 

method has been employed to extract the important signatures of the random field 

observed in an engineering product or process. Our preliminary study found that the 

parametric representation of the random field in Missoum’s work is not directly 

related to the available random field data and the coefficients of the signatures are 

statistically uncorrelated but dependent in most cases. Furthermore, existing 

techniques for random field characterization demand a large number of random field 

realizations (e.g., snapshots), which may become impractical in many engineering 
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applications. This chapter thus proposes a generic and robust random field 

characterization method, which can characterize any geometric or non-geometric 

random fields in engineered systems whether or not the random field can be realized 

with either sufficient or insufficient field data while accounting for the statistical 

dependence among the coefficients for probability analysis and design. The proposed 

approach has three technical contributions. The first contribution is to develop a 

generic approximation scheme of random field as a function of the most important 

field signatures while preserving prescribed approximation accuracy. The coefficients 

of the signatures can be modeled as random field variables and their statistical 

properties are identified using the Chi-Square goodness-of-fit test. Second, a 

Bayesian approach with Bayesian Copula dependence modeling to characterize the 

random field with the lack of field data sets. Third, the Rosenblatt transformation is 

employed to transform the statistically dependent random field variables into 

statistically independent random field variables. The number of the transformation 

sequences exponentially increases as the number of random field variables becomes 

large. It was found that improper selection of a transformation sequence among many 

may introduce high nonlinearity into system responses, which may result in 

inaccuracy in probability analysis and design. Hence, this chapter proposes a novel 

procedure of determining an optimal sequence of the Rosenblatt transformation that 

introduces the least degree of nonlinearity into the system response. The proposed 

random field characterization can be integrated with any advanced probability 

analysis method, such as the Dimension Reduction (DR) method [Rabitz et al. 1999; 

Rabitz and Alis 1999; Xu and Rahman, 2004], Eigenvector Dimension Reduction 



 

 25 
 

(EDR) method [Youn et al. 2008], Polynomial Chaos Expansion (PCE) method [Lee 

and Chen 2009; Hu and Youn 2009], etc. Three structural problems including a 

Micro-Electro-Mechanical Systems (MEMS) bistable mechanism, one refrigerator 

assembly problem, and one heat generation problem of the Lithium-ion battery are 

used to demonstrate the effectiveness of the proposed approach in Section 3.5.  

3.2 Random field characterization with sufficient data 

This section characterizes the random field with sufficient data. In Section 3.2.1, 

an adaptive loop is proposed to select the most important signatures for representing a 

random field. In Section 3.2.2, a unique approach for modeling the random field 

variable is proposed for probability analysis and design. Statistical properties of the 

random field variable are discussed in Section 3.2.3.  

3.2.1 Important signatures for representing a random field 

Theoretically, an infinite number of signatures are required to represent the 

random field exactly using the Proper Orthogonal Decomposition (POD) method. 

Practically, only a few important signatures may be vital to approximate the random 

field accurately. Hence, instead of using all signatures, a small number of important 

signatures (r) are selected to approximate the random field as shown in Eq. (3.1). 
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where ( , )x tθɶ  is an approximate random field with r number of important signatures. 

The importance of the signature is indicated by the magnitude of the eigenvalue 

as shown in Eq. (2.11). The larger eigenvalue indicates the greater importance of the 
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corresponding signature in approximating the random field. Therefore, the eigenvalue 

can be ranked based on the magnitude of the normalized eigenvalue (ρi) defined as 
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where λ1 is the largest eigenvalue and m is the total number of eigenvalues. 

It could be subjective to determine the number (r) based on the magnitude of the 

normalized eigenvalue. Therefore, a posteriori normalized error ε is defined to 

adaptively determine the minimal number of the most important signatures, which 

preserves a prescribed accuracy in approximating the random field. The normalized 

error is defined as 
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 (3.3) 

where m is the number of the sampled snapshots; n is the number of the measurement 

points at each snapshot; 
ij

θɶ  is the approximate random field data at the j-th 

measurement point of the i-th sampled snapshot with k (≤ r) number of important 

signatures; θij is the actual random field data; µmax and µmin are the maximum and 

minimum values of the mean of the random field, respectively. The normalized error 

indicates an average error between the actual and approximate random fields at all 

measurement points. A flowchart for adaptively selecting the number of the most 

important signatures is shown in Fig. 3-1. Once the random field data sets (θθθθm×n) are 

obtained, the total m number of the signatures can be ranked based on Eq. (3.2). The 

approximate random field is gradually refined by adding one more signature in each 

iteration until the normalized error in Eq. (3.3) is smaller than a threshold error value 
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εc which is generally set to 0.1%. The threshold value must be small enough to ensure 

high accuracy of the random field modeling while using the minimal number of the 

important signatures. Otherwise, the statistical uncertainty in the random field 

modeling may be comparable to the physical uncertainty or even dominate in 

probability analysis. 

Random field 

data  sets θθθθm×n

Obtain m ranked signatures

Approximate the random field with 

r number of important signatures

ε < εc ?

End

r = r + 1

Set r = 1

 

Figure 3-1:  Flowchart for determining the number of the important signatures 

 

3.2.2 Modeling random field variables  

The random field variables will be used to characterize a random field observed 

in an engineering product or process. In Eq.(3.1), αi(t) represents a coefficient 

dataset of the i-th signature obtained from all sampled snapshots (t=1,…,m). Vi is thus 

defined as a random field variable that statistically models the coefficient dataset of 

the i-th signature. By replacing αi(t) with the random field variable (Vi), Eq. (3.1) can 

be rewritten as 
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The formulation of the random field variable (Vi) is unique compared with the 

previous study [Missoum, 2008] where a weight function was multiplied by a user-

selected coefficient, say αi(1), for the parametric representation of a random field. 

The weight function was used to modify the contribution of each random field 

signature. However, it may fail to represent the actual random field since this 

parametric representation is not directly related to the available random field data. 

The random field variable (Vi) contains the variability over the sampled snapshots that 

are obtained during the sampled time (t). Once the statistical properties of Vi are 

characterized, the original random field can be approximated by Eq. (3.4). Therefore, 

the random system response in the presence of the random field can be effectively 

analyzed using any probability analysis method.  

Accuracy in modeling the random field variable Vi depends upon the number of 

sampled snapshots. This section employs a large amount of sampled snapshots and, 

thereafter, considers aleatory uncertainty1 only. For epistemic uncertainty2 with the 

lack of sampled snapshots, Bayesian statistics [Wang et.al 2009] can be integrated to 

the proposed framework in Section 3.3. This study uses a large amount of input 

random data for the construction of aleatory uncertainty. The statistical properties of 

the random field variable Vi can be characterized with the following three steps as:  

Step 1: Obtain optimum distribution parameters for candidate distributions using 

the maximum likelihood method. It can be formulated as  

10

1

maximize ( | ) [ ( | )]
m

i il

l

L V log f v
=

=∑δ δ  

                                                
1 Aleatory uncertainty is defined as objective and irreducible uncertainty with sufficient information on 
the random variable. 
2 Epistemic uncertainty can be classified as subjective and reducible uncertainty due to the lack of 
knowledge on the random variable. 
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where δδδδ is the unknown distribution parameter vector; vil is a realization of Vi 

from the l-th snapshot; L(•) is the likelihood function; m is the number of 

snapshots; and f is the Probability Density Function (PDF) of Vi for the given δδδδ. 

Step 2: Perform quantitative hypothesis tests for the candidate distribution types 

with the optimum distribution parameters obtained in Step 1. Among the Chi-

Square goodness-of-fit test, Kolmogorov-Smirnov (K-S) test, and Anderson-

Darling (AD) test, the Chi-Square goodness-of-fit test is selected in this study 

due to its good performance for both continuous and discrete distributions given 

a large amount of data.   

Step 3: Select the distribution type with the maximum p-value as the optimal 

distribution type for Vi.  

3.2.3 Statistical properties of random field variables 

When multiple random field variables are needed to accurately approximate the 

random field, statistical correlation and statistical dependence of the random field 

variables becomes one of the greatest concerns in probability analysis. Using Eqs. 

(2.9), (2.12), and (3.4), the inner product of any two random field variables can be 

expressed as  

 
( ) ( )

( ) ( )

i i j

i j

i j

x x
VV

x x

λφ φ

φ φ

•
=  (3.5) 

Since two signatures (φi(x) and φj(x)) are orthogonal, E(ViVj) becomes zero. 

Furthermore, the expected value (or mean) of every random field variable is zero 

because the mean of the variation in Eq. (2.9) is zero. Thus, Vi and Vj must be 

statistically uncorrelated, that is 
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( )( ) ( ) ( ) ( ) 0
i i j j i j i j

E V V E V V E V E Vµ µ − − = − =   

However, they may not be statistically independent because of 

( , ) ( ) ( )
i j i jVV i j V i V jf v v f v f v≠ . If the random field variables are statistically independent, 

they are statistically uncorrelated. But the converse is not true. A complicated random 

field tends to require a large number of random field variables. Such a problem poses 

a great challenge in handling statistical dependence of the random field variables 

since little effort has been devoted to handling probability analysis for system 

responses with statistically dependent random variables. This problem will be 

resolved in Section 3.4 in this chapter.  

3.3 Random field characterization with insufficient data 

This section characterizes the random field with insufficient data. Insufficient 

data refers to a small amount of samples for a random field from which statistical 

distributions of random field variables cannot be modeled precisely. Efron [Efron 

1982] suggested that to achieve a reasonable result, at least 100 samples are needed to 

use bootstrapping resampling method for modeling a random variable. Picheny et al. 

[Picheny et al. 2010] considered 20 to 1000 samples as limited samples when 

modeling random variables. In Section 3.3.1, a Bayesian updating approach using the 

Markov Chain Monte Carlo (MCMC) method is proposed to update the random field. 

In Section 3.3.2, a Bayesian Copula dependence modeling approach is proposed to 

model the statistical dependence among random field realizations at different 

measurement locations. Hence, Monte Carlo Simulation (MCS) can be employed to 

generate sufficient random field snapshots based on the dependence modeling. 
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3.3.1 Random field updating using the MCMC method 

Let θ (x, t) be a random field of interest. Every realization (or snapshot) of the 

random field consists of n measurement points such that θ (x, t) ≈θθθθ = [θ (x1, t), … , θ 

(xn, t)], where x1, …, xn are known measurement locations. Assume the random field 

realizations at n measurement points are independent. Thus, the random field θθθθ    is 

represented by n independent random variables. Let the random field θθθθ follows an n-

dimensional joint Probability Density Function (PDF) fΘΘΘΘ(θθθθ    | δδδδ), where δδδδ    is the 

independent unknown distribution parameter vector. According to the Bayesian point 

of view, δδδδ is interpreted as a realization of a random vector ∆∆∆∆ with an n-dimensional 

joint PDF f    ∆∆∆∆ (δδδδ). The density function expresses what one thinks about the occurring 

frequency of ∆∆∆∆ before any future observation of θθθθ is taken, that is, a prior distribution. 

Based on the Bayes’ theorem, the posterior distribution of ∆∆∆∆ given a new observation 

θθθθ can be expressed as 

 
|,

|

( | ) ( )( , )
( | )

( ) ( )

f ff
f

f f

⋅
= =

Θ ∆ ∆Θ ∆ ∆Θ ∆ ∆Θ ∆ ∆Θ ∆Θ ∆Θ ∆Θ ∆

∆ Θ∆ Θ∆ Θ∆ Θ

Θ ΘΘ ΘΘ ΘΘ Θ

θ δ δθ δ δθ δ δθ δ δθ δθ δθ δθ δ
δ θδ θδ θδ θ

θ θθ θθ θθ θ
 (3.6) 

The Bayesian approach is used for updating information about the parameter 

vector δδδδ. First, a prior distribution of ∆∆∆∆ must be assigned before any future 

observation of θθθθ is taken. Then, the prior distribution of ∆∆∆∆ is updated to the posterior 

distribution as the data for θθθθ is obtained. This process can be repeated with evolution 

of data sets by setting the posterior distribution to a new prior distribution. 

It is extremely difficult to compute the exact analytical form of the posterior 

distribution for the parameter vector δδδδ since the normalization factor (the denominator 

in Eq. (3.6)) requires complicated and multi-dimensional integration. Although it is 
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hard to obtain the posterior distribution directly, it is feasible to draw relevant 

samples. MCMC method provides a mechanism to draw samples from the 

complicated posterior distribution. This study uses the Metropolis-Hastings algorithm 

for MCMC method [Berg 2004].  

3.3.2 Random field dependence modeling using the Bayesian Copula 

Copulas are multivariate distributions modeling the dependence structure among 

random variables, irrespective of their marginal distributions. The choice of the best 

multivariate distribution can be done in two steps: 1) choose the optimal marginal 

distribution; and 2) choose the optimal Copula. The optimal marginal distribution is 

obtained from the n-dimensional joint PDF fΘΘΘΘ(θθθθ    | δδδδ) after the updating of parameter 

vector δδδδ    in Eq. (3.6). In this section, a Bayesian Copula approach [Huard et al. 2006] 

combined with a neighboring search algorithm are employed to choose the optimal 

Copula for the dependence modeling of the random field realizations at different 

measurement locations.  

A Copula is a joint distribution function of standard uniform random variables 

[Sklar 1959]. According to Sklar’s theorem, there exists an n-dimensional Copula C 

such that for all x in real random space  

 F(x1, …, xn) = C(F1(x1), …, Fn(xn)) (3.7) 

where F is an n-dimensional distribution function with marginal functions F1, …, Fn. 

Most Copulas deal with bivariate data due to the lack of practical n-dimensional 

generalization of the correlation parameter [Roser 1999; Huard et al. 2006]. For 

multivariate data, the usual approach is to analyze the data pair by pair using two-

dimensional Copulas. The most commonly employed methods to select the best 
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Copula are based on a likelihood approach [Fermanian 2005; Chen and Fan 2005; 

Panchenko 2005], which relies on the estimation of an optimal parameter set. Strictly 

speaking, comparisons are made among Copulas with given parameters. The 

Bayesian Copula approach selects the best Copula independent of the parameter 

estimation.  

According to Huard et al, a set of hypotheses are first made as follows: 

Hl : The data come from Copula Cl, l= 1, . . . , Q 

The objective is to find the Copula with the highest Pr(Hl | D) from a finite set of 

Copulas (CQ), where D represents bivariate data in standard uniform space. Based on 

the Bayes’ theorem, the probability that data come from the Copula Cl is expressed as 

 ( )
( ) ( )1

1

Pr | Pr( ) Pr | , Pr( | ) Pr( )
Pr |

Pr( ) Pr( )

l l l l

l

D H H D H H d
H D

D D

τ τ τ τ
−

= = ∫  (3.8) 

where τ is the Kendall’s tau, which is a non-parametric measure of the statistical 

dependence associated to Copulas. Kendall’s tau (τ) belongs to the set of each Copula 

and the outcome is equally likely. All Copulas are equally probable with respect to a 

given τ which reflects no preference over the Copulas. The likelihood Pr(D | Hl, τ) 

depends upon the τ  and can be calculated from the Copula PDF as 

 ( ) ( )1 2

1

Pr | , , |
m

l l i i

i

D H c u uτ τ
=

= ∏  (3.9) 

where cl (•) is the PDF of the l-th Copula; m is the total number of data (or snapshots); 

u1i and u2i are the i-th realizations of the statistically dependent bivariate variables. 

The normalization of Pr(D) can be computed using the sum rule [Jaynes and 

Bretthorst 2003].  

To improve the accuracy of the statistical dependence modeling among the 
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random field realizations at different measurement locations, a neighboring search 

algorithm is proposed to control the range of the statistical dependence. For the 

realizations at a given measurement location, the statistical dependence modeling is 

only performed for the neighbors of that location. The neighbors are defined 

according to an assigned Euclidean distance.  

3.4 Statistically dependent random field variables 

To handle the statistical dependence of the random field variables for probability 

analysis of system responses, the statistically dependent random field variables need 

to be transformed into statistically independent random field variables. Thus, any 

advanced probability analysis method can be integrated with the proposed random 

field approach for probability analysis and design. In Section 3.4.1, the Rosenblatt 

transformation is employed to transform the statistically dependent random field 

variables into statistically independent random field variables. The number of the 

transformation sequences exponentially increases as the number of random field 

variables becomes large. It was found that improper selection of a transformation 

sequence among many may introduce high nonlinearity into system responses, which 

may result in inaccuracy in probability analysis and design. Section 3.4.2 thus 

proposes a novel procedure of determining an optimal sequence of the Rosenblatt 

transformation that introduces the least degree of nonlinearity to the system response.  

3.4.1 Incorporation of the Rosenblatt transformation  

In many advanced probability analysis methods, only a few simulations or 

function evaluations at a set of samples of the input random variables are required for 

probability analysis if the input random variables are statistically independent. For 
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example, the Eigenvector Dimension Reduction (EDR) method demands either 2N+1 

or 4N+1 samples for probability analysis where N is the number of the input random 

variables. In the Polynomial Chaos Expansion (PCE) method, the evaluation of the 

PCE coefficients requires the response values at the predefined Gaussian quadrature 

points [Le Maître et al. 2002],  the collocation points specified by the Smolyak 

algorithm [Gerstner and Griebel 1998] or the univariate and bivariate sample points 

[Hu and Youn 2009]. Hence, probability analysis of the system response can be 

carried out using one of the advanced probability analysis methods if the system 

response can be evaluated at the required samples in the transformed standard normal 

space (or U-space). In this section, the objective is to determine the samples in the 

statistically dependent random space (or V-space) for probability analysis. The 

samples in V-space can be obtained through the inverse Rosenblatt transformation 

from those in U-space. The overall procedure is detailed as follows: 

Step 1: Obtain the required sample points (u1
(j),…, uN

(j)) for j = 1,…, M in U-space 

for a given probability analysis method, where M is the total number of the sample 

points. 

Step 2: Transform the sample points from U-space to V-space using the inverse 

Rosenblatt transformation as  
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where (v1
(j),…, vN

(j)) denotes the j-th transformed sample point in V-space, F-1(•) 

is the inverse joint Cumulative Distribution Function (CDF) of the random 

variable in V-space. It is noted that the choice of a transformation sequence 

significantly affects the nonlinearity of the system response and will be discussed 

in the subsequent section.  

Step 3: Obtain the system response values at the transformed sample points: 

Y(v1
(j),…, vN

(j)), for j = 1,…, M and perform probability analysis.  

Step 2 is further elaborated with a two-dimensional problem. Let (u1, u2) = (−3, 0) be 

one of the required samples in U-space. An empirical CDF of v1 can be obtained 

using the dataset for v1. The first component value c1 (= v1) of the sample in V-space 

can be set to 
1

1

1( ( 3))
V

F u− Φ = − . Given the identified first component value v1 = c1 an 

empirical conditional CDF of v2 can be constructed using the statistically dependent 

dataset. The second component value c2 (= v2) of the sample in V-space can then be 

set to 
2 1

1

| 2( ( 0))
V V

F u− Φ = . This process can be continued to determine other samples in 

V-space using the available statistically dependent data. 

3.4.2 Determination of an optimal transformation sequence 

The number of the transformation sequences exponentially increases as the 

number of random field variables becomes large. It was found that improper selection 

of a transformation sequence among many may introduce high nonlinearity into 

system responses, which may result in inaccuracy in probability analysis and design. 

Hence, it is critical to determine an optimal sequence of the Rosenblatt transformation 

that introduces the least degree of nonlinearity into the system response.  
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A linear response function is employed to study the nonlinearity introduced by 

different transformation sequences as shown in Eq. (3.11). 

 
1

N

T i

i

Y v
=

=∑  (3.11) 

where N is the total number of random variables; vi is the i-th random variable. The 

linear response function becomes nonlinear after the Rosenblatt transformation and is 

expressed as  

 ( ), 1 2, , , where  ( )
T k N k

Y f u u u T= =u v⋯  (3.12) 

where Tk(•) indicates the Rosenblatt transformation with the k-th transformation 

sequence; YT,k stands for the nonlinear response obtained through the k-th 

transformation; and k = 1, …, N!. It is apparent that the best sequence must have the 

least degree of nonlinearity in the system response. Hence, the nonlinearity of YT,k 

needs to be quantified for all possible sequences. The degree of nonlinearity in Eq. 

(3.12) introduced by a particular transformation sequence can be obtained by 

measuring the degree of deviation from a linear response YL = ∑i ui. The degree of 

deviation of YT,k(•) from the j-th linear response (Ŷj) through the k-th transformation 

sequence can be defined as 

 
2

, , , , , ,
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ˆ ˆ(0,...,0, ,0,...,0) where
Q

j k T k j l j l j l j l

l

S Y u Y Y u
=

 = − = ∑  (3.13) 

where Q is the number of discrete data points along the j-th random variable uj. 

Repeating this for N random variables, the total degree of deviation can be calculated 

as ∑j Sj,k for the k-th transformation sequence. The sequence with the minimum total 

degree of deviation will be defined as the optimal sequence of the Rosenblatt 
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transformation. For a small number of random variables (say N<10), the best 

sequence can be determined by finding the minimum total degree of deviation in all 

possible sequences. For a large number of random variables (say N>10), a genetic 

algorithm can be employed to effectively determine the best sequence with the 

minimum total degree of deviation. An optimization problem can be formulated as  

{ }

,

1

:

. . 1, , !

N

j k

j

Minimize S

S T k N

=

∈

∑

⋯
 

3.5 Examples and results 

Examples are presented in this section to demonstrate the proposed random field 

characterization with both sufficient and insufficient data.  

3.5.1 Examples with sufficient data 

Three structural examples including a Micro-Electro-Mechanical Systems 

(MEMS) bistable mechanism are used to demonstrate the effectiveness of the 

proposed approach with sufficient data. 

3.5.1.1 Beam example 

A cantilever beam is one of the most commonly used structures in engineering 

applications, which has spatial variability to some degree. This variability may 

influence variability in beam responses. The top and bottom surfaces of the beam 

were modeled to have a symmetric random field about the mid-surface. A 

mathematical expression of the random field in the top surface is formulated as  

 ( )( ) 0.1sin / 2h x K xπ=  (3.14) 
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where K~Normal (2, 0.022) and 0 ≤ x ≤ 10 [mm]. The beam height is 2mm at x=0. 

One thousand sampled snapshots were artificially created by generating 1000 random 

K values from the prescribed normal distribution. One hundred measurement points 

are evenly distributed along the length of the beam.  

Step 1: Determination of the important signatures 

First, an m×n matrix (θθθθ) representing the random field was created to obtain the 

field signatures. Using the posteriori normalized error in Eq. (3.3), the two most 

important signatures were selected to approximate the random field as shown in Fig. 

3-2. The normalized error of the approximate random field is less than 0.1% with 

these two signatures. Thus, the random field can be approximated as 
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= +∑ɶ  (3.15) 

 

Figure 3-2: The first two normalized signatures 

 

Figure 3-3 shows the 1-st random field realizations in the region of 8 ≤ x ≤ 10 

[mm], which confirms the accuracy of approximate random fields with the two most 

important signatures. The figure contains one true and two approximate realizations 
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of the random field. The approximate realizations were built using one and two of the 

most important signatures. The use of the most important signature produced a 

normalized error of 0.44% in approximating the random realization. The inclusion of 

the second most important signature decreased the error to 0.03%. Two random field 

variables (V1 and V2) were thus used to describe the random field. 

 

Figure 3-3: Comparison of the exact and approximate random fields  

(the 1-st random field realization) 

 

Step2: Modeling random field variables and statistical dependence 

One thousand random samples of two random field variables (V1 and V2) were 

obtained from one thousand sampled snapshots and the histograms of two random 

field variables are shown in Fig. 3-4 (a) and (b). The Maximum Likelihood 

Estimation (MLE) and Chi-Square goodness-of-fit test were used to find the 

distributions and statistical parameters of two random field variables. They were 

modeled as 

2

1 2~ (0, 0.1192 )   and   ~ (0, 0.0181, 0.1560, 0.0126)V Normal V Beta −  
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The Probability Density Function (PDF) and normalized histograms were compared 

in the figures. As explained in Section 3.2.3, no statistical correlation exists between 

V1 and V2. However, their statistical dependence was clearly observed by plotting one 

thousand samples of V1 and V2, as shown in Fig. 3-4 (c). In this special case, V2 is a 

function of V1. For a given V1 value, the corresponding V2 value was obtained using 

the moving least square method. Therefore, Eq. (3.15) can be reformulated to resolve 

the difficulty of the statistical dependence. 

 1 1 1 2( ) ( ) ( ) ( ) ( )h x x V x f V xµ φ φ= + +ɶ  (3.16) 
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(a) Histogram and distribution for V1 
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(b) Histogram and distribution for V2 
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(c) Random realizations of V1 and V2 

Figure 3-4: Statistical properties of V1 and V2 

 



 

 42 
 

Comparison between the proposed approach and Missoum’s approach 

The proposed approach for the random field characterization is directly related 

to the available random field data. In Missoum’s approach, a weight function was 

multiplied by a user-selected coefficient, say αi(1), for the parametric representation 

of a random field. The weight function was used to modify the contribution of each 

random field signature. This approach may fail to represent the actual random field 

since it is not directly related to the available random field data. As a demonstration, 

the weight function is assumed to follow the uniform distribution and multiplied by a 

user-selected coefficient αi(1) in Missoum’s approach. Figure 3-5 shows the 

comparison between two approaches for the parametric representation of a random 

field. Black solid curves represent the contour of the true random field. Red solid dots 

indicate the random field contour from the proposed approach. Blue dotted lines stand 

for the contour from Missoum’s approach. The proposed approach is more accurate 

than the Missoum’s approach for representing the actual random field as shown in Fig. 

3-5.  

 

Figure 3-5: Comparison between the proposed approach and Missoum’s approach  
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3.5.1.2 MEMS bistable mechanism 

A MEMS device was used for the second example because spatial variability 

may influence variability in MEMS device responses significantly. A bistable 

mechanism is able to remain in stable equilibrium in two distinct positions. MEMS 

bistable mechanisms are useful as micro valves [Golly et al. 1996], micro relays [Qiu 

et al. 2003], fiber optical switches [Hoffmann et al. 1999], etc. In a micro scale, a 

monolithic bistable mechanism is necessary to avoid friction, backlash, and wear at 

joints. One feasible monolithic MEMS bistable mechanism [Qiu et al. 2004] was 

recently developed by rigidly coupling two curved beams together at their midpoints 

as shown in Fig. 3-6. Figure 3-7 shows the relationship between a typical force and 

displacement curve for such a bistable mechanism when the force is applied 

downwards at the center of the upper beam. There are three equilibriums during this 

process. S1 and S3 are the stable equilibriums and S2 is the unstable one. If the force is 

released before passing the unstable equilibrium S2, the structure returns to the stable 

equilibrium S1. Otherwise, it moves to the second stable equilibrium S3. Three system 

responses, the maximum force, minimum force, and distance from the state S1 to S2, 

are normally important for different applications. 

 

Figure 3-6: Bistable mechanism 
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Figure 3-7: Force displacement curve 

The two curved beams were designed to have uniformly distributed thickness 

and the top surface of the beam can be modeled as 

 2
( ) 1 cos

2

h x
w x

l

π  
= −   

  
 (3.17) 

where h/2 is the apex of the curved beam, and l is the length. The bottom surface of 

the beam is described as w(x) − t, where t is the thickness of the beam. In the 

application of such a MEMS bistable mechanism, the thickness commonly lies in the 

range of a few micro-meters, so it is extremely difficult to fabricate a uniformly thick 

beam. Random field may affect the reliability of the MEMS device significantly since 

the device responses are considerably affected by the spatial variability of the 

thickness. 

A mathematical expression for the random field in the top surface is formulated 

as  

 2
1'( ) cos

2

k xh
w x k

l

π  
= −   

  
 (3.18) 

where k1~Normal(1,0.012) and k2~Normal(2,0.012). Figure 3-8 displays the top (w+), 

bottom (w−), and a realization of the randomly field for the top surface (w′). This 

example employs a moderate degree of random field, compared to the previous 
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example. Two beams in the bistable mechanism are assumed to share the same 

random field. One thousand sampled snapshots were used for characterizing the 

random field and each snapshot has one hundred measurement points evenly 

distributed along the length of the beam. 

 

Figure 3-8: Creation of the random field for one beam 

 

Step 1: Determination of the important signatures 

An m×n matrix (θθθθ) representing the random field was created to obtain the 

important field signatures. Using the posteriori normalized error in Eq. (3.3), the two 

most important signatures were selected to approximate the random field as shown in 

Fig. 3-9. The criterion for the normalized field characterization error is set to 0.1%. 

The random field in the top surface of the beam can be approximated as 

 
2

1

'( ) ( ) ( )i i

i

w x x V xµ φ
=

= +∑ɶ  (3.19) 

Figure 3-10 shows the 1-st random field realizations in the region of 1000 ≤ x ≤ 

2000 [µm], which confirms the accuracy of approximate random fields with the two 

most important signatures. The figure contains one true and two approximate 



 

 46 
 

realizations of the random field. The approximate realizations were built using one 

and two of the most important signatures. The use of the most important signature led 

to a normalized error of 0.29% in approximating the random realization, whereas the 

inclusion of the second most important signature decreased the error to 0.01%. Two 

random field variables (V1 and V2) can be thus used to describe the random field. 

 

Figure 3-9: The first two normalized signatures 

 

 

Figure 3-10: Comparison of exact and approximate random fields  

(the 1-st random field realization) 

 

Step2: Modeling random field variables and statistical dependence 
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One thousand random values for two random field variables (V1 and V2) can be 

generated from one thousand sampled snapshots and the histograms of two random 

field variables are shown in Fig. 3-11 (a) and (b). The MLE and Chi-Squae goodness-

of-fit test were used to find the distributions and statistical parameters of two random 

field variables. Two random field variables were modeled as 

 2 2

1 2~ (0, 4.00 ) and ~ (0, 2.56 )V Normal V Normal   

The PDF and normalized histograms were compared in the figures. Unlike the 1-st 

example, it is found that V1 and V2 are statistically independent as shown in Fig. 3-11 

(c). 
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(a) Histogram and distribution for V1 

-15 -10 -5 0 5 10 15
0

0.02

0.04

0.06

0.08

0.1

0.12

0.14

0.16

V
2

P
D

F

 

(b) Histogram and distribution for V2 
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(c) Random realizations of V1 and V2 

Figure 3-11: Statistical properties of V1 and V2 
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3.5.1.3 Beam example with a complex random field 

This example employed the same cantilever beam used in Section 3.5.1.1 with 

different spatial variability. The top and bottom surfaces of the beam were modeled to 

have a symmetric random field about the mid-surface. A mathematical expression for 

the random field in the top surface is formulated as 

 
5
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( )
0.1 sin sini i

i
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i i

π π

=

 −   
= +    

    
∑  (3.20) 

where Ki ~ Normal(2, 0.022); L (= 10 mm) is the length; the beam height is 2 mm at 

x= 0. One thousand snapshots of the random field can be constructed by generating 

one thousand random values of Ki. Figure 3-12 shows the 1-st, 501-st and 1000-th 

random field snapshots. Figure 3-13 shows the normalized error history as more 

significant signatures are adaptively included. The eight most important signatures 

are required to attain the prescribed accuracy in approximating the random field.  

 

Figure 3-12: Three random field snapshots 
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Figure 3-13: History of the normalized error 

 

Figure 3-14 displays three approximate random fields (with one, four, and eight 

signatures) for the 501-st and 1000-th random field snapshot. It is apparent that the 

use of the eight most important signatures represents the true random field very 

accurately. Statistical dependences were observed for the eight random field 

variables. Among all statistical dependences, three statistical dependences between V1, 

V4, and V8 are shown in Fig. 3-15.  

 

 

(a) 



 

 50 
 

 

(b) 

Figure 3-14: Approximation of the random field with different number of signatures 

 

 

Figure 3-15: Statistical dependence of random field variables 

 



 

 51 
 

3.5.2 Examples with insufficient data 

Three examples including a structural problem, a refrigerator assembly problem, 

and a heat generation problem of the Lithium-ion battery are used to demonstrate the 

effectiveness of the proposed approach with insufficient data.  

3.5.2.1 Beam example with a complex random field 

This example employed the same cantilever beam used in Section 3.5.1.3. Five 

snapshots of the random field were constructed by generating five random values of 

Ki in Eq. (3.20). Figure 3-16 shows five known random field snapshots. Each 

snapshot consists of 100 measurement locations over the length of the beam. 

 

Figure 3-16: Five random field snapshots 

 

Step 1: Random field updating using the Markov Chain Monte Carlo (MCMC) 

method 

Assume five random field realizations at 100 measurement points are 

independent. Thus, the random field θθθθ    is represented by 100 independent random 

variables. Let the random field θθθθ follows a 100-dimensional joint Gaussian PDF with 

the known standard deviation (=0.1) vector and unknown mean vector (µµµµ).   Assume 
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the mean vector (µµµµ) follows a prior joint Gaussian PDF with the known mean (=0) 

and standard deviation (=0.1) vector. Based on the Bayes’ theorem, the posterior 

distribution of the unknown mean vector (µµµµ) given a new observation θθθθ can be 

expressed as 
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( | ) ( )( , )
( | )

( ) ( )

f ff
f

f f

⋅
= =
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Μ ΘΜ ΘΜ ΘΜ Θ

Θ ΘΘ ΘΘ ΘΘ Θ

θ µ µθ µ µθ µ µθ µ µθ µθ µθ µθ µ
µ θµ θµ θµ θ

θ θθ θθ θθ θ
 (3.21) 

MCMC method with the Metropolis-Hastings algorithm was employed to draw 

samples from the posterior distribution of the mean vector (µµµµ). Monte Carlo 

Simulation (MCS) was then used to draw 1000 snapshots of the random field θθθθ    as 

shown in Fig. 3-17. It is observed that the contour of the random field well matches 

the five snapshots. However, the random field realizations may not be realistic as 

shown in Fig. 3-18 because the statistical dependence is not considered in this step. 

 

Figure 3-17: Random field updating using the MCMC method 
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Figure 3-18: One random field realization after the random field updating 

 

Step 2: Random field dependence modeling using the Bayesian Copula 

Five procedures were conducted for the dependence modeling in this step. First, 

the random field realizations at each measurement location were transformed into a 

standard uniform space based on its marginal distribution obtained in step 1. Second, 

a neighboring search algorithm was employed to find the neighbors of each 

measurement location. In this one-dimensional example, the Euclidean distance was 

defined as 1 mm. Third, Bayesian Copula dependence modeling was performed at 

each measurement location with its neighbors. Four types of Copula, such as Clayton, 

Gaussian, Frank, and Gumbel, were employed in this study. Forth, MCS was 

employed to generate sufficient random field snapshots in the standard uniform space 

according to the dependence modeling. Fifth, the random field snapshots in the 

standard uniform space were transformed back to the original random space. Figure 

3-19 shows the statistical dependence modeling between the random field realizations 

at the 1-st and 2-nd location where Gaussian Copula was selected. The contour of the 

modeled random field covers the actual random field as shown in Fig. 3-20. It 
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indicates that the modeled random field contains the conservativeness due to the lack 

of data. Furthermore, the random field realizations become more realistic as shown in 

Fig. 3-21 because the statistical dependence is considered in this step. 

 

Figure 3-19: Random field dependence modeling using the Gaussian Copula 

 

 

Figure 3-20: Random field modeling in step 2 
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Figure 3-21: One random field realization after the dependence modeling 

 

3.5.2.2 Door misalignment of a two-door refrigerator 

As shown in Fig. 3-22, the door misalignment of a two-door refrigerator can be 

realized as a result of three assembly processes. The objective of this study is to 

statistically predict the door misalignment by sequentially analyzing field and 

parameter variability in three assembly processes as: 

1) Insertion of the front-L to the inner case in both freezer and refrigerator sides; 

2) Foaming process to increase the stiffness of the refrigerator main frame; 

3) Hinge installation to the front-L. 

Process 1: Insertion 

FEA

Outputs: front-L deformation 

front-L

Process 2: Foaming

Outputs: front-L deformation 

Black-box analysis

Foaming 

tolerance

Process 3: Hinge process 

Output: door misalignment 

Measurements

Rigid assembly analysis 

door hinge

 

Figure 3-22: Door misalignment prediction of a two-door refrigerator 
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Figure 3-23 shows relevant parts (front-L, inner case, hinge, and freezer and 

refrigerator sides) in the assembly process. In these processes, the deformation of the 

front-L was represented by the random field since the deformation is not uniformly 

distributed over the front-L. In this example, the objective is to characterize the front-

L deformation after the foaming process. The front-L deformation was modeled as 

two random fields based on insufficient field deformation data for both freezer and 

refrigerator sides. Figure 3-24 presents nine known random field snapshots where 

each snapshot consists of six measurement locations. 

Inner Case

Flange

Front-L 

Hinge 

Insertion

direction

Refrigerator side

Freezer side

 

Figure 3-23: Main parts in a two-door refrigerator assembly process 

 

Step 1: Random field updating using the MCMC method 

Assume nine random field realizations at six measurement points are 

independent. Thus, the random field θθθθ    is represented by six independent random 

variables. Let the random field θθθθ follows a six-dimensional joint Gaussian PDF with 

the known standard deviation (=0.3) vector and unknown mean vector (µµµµ). Assume 
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the mean vector (µµµµ) follows a prior joint Gaussian PDF with the known mean (=1) 

and standard deviation (=0.3) vector.  

 

(a) 

 

(b) 

 

(c) 

Figure 3-24: Random field snapshots of both freezer and refrigerator sides 

 

MCMC method with the Metropolis-Hastings algorithm was employed to draw 

samples from the posterior distribution of the mean vector (µµµµ). MCS was then used to 

draw 1000 snapshots of the random field θθθθ    as shown in Fig. 3-25. It is observed that 

the contour of the random field well matches the nine snapshots. However, random 

field realizations may not be realistic because the statistical dependence is not 

considered in this step. 
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(a) 

 

(b) 

Figure 3-25: Random field updating using the MCMC method 

 

Step 2: Random field dependence modeling using the Bayesian Copula 

Five procedures were conducted for the dependence modeling in this step. First, 

random field realizations at each measurement location were transformed into a 

standard uniform space based on its marginal distribution obtained in step 1. Second, 

a neighboring search algorithm was employed to find neighbors of each measurement 

location as shown in Table 3-1. Third, Bayesian Copula dependence modeling was 

performed at each measurement location with its neighbors. Four types of Copula, 

such as Clayton, Gaussian, Frank, and Gumbel, were employed in this study. Forth, 

MCS was employed to generate sufficient random field snapshots in the standard 

uniform space according to the dependence modeling. Fifth, the random field 

snapshots in the standard uniform space were transformed back to the original 

random space. Figure 3-26 shows the statistical dependence modeling between the 

random field realizations at the 1-st and 2-nd location, and the 3-rd and 4-th location. 

The statistical dependence is observed between the 1-st and 2-nd location because 
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they are close to each other in the geometrical space, whereas this is not applicable 

for the 3-rd and 4-th location. Figure 3-27 presents 1000 snapshots of the random 

field θθθθ    after the statistical dependence modeling. 

Table 3-1: Neighbor list at each measurement location 

Location Neighbors 

1 2, 4 

2 1, 3, 5 

3 2, 6 

4 1, 5 

5 2, 4, 6 

6 3, 5 

 

 

(a) 

 

(b) 

Figure 3-26: Random field dependence modeling using the Copula 
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(a) 

 

(b) 

Figure 3-27: Random field modeling in step 2 

 

3.5.2.3 Heat generation rate of Lithium-ion batteries 

Lithium-ion batteries are growing in popularity for many engineering 

applications with several advantages such as high energy density, little memory 

effect, and low self-discharge. The main disadvantage is the rare, but highly risky 

failure mode such as fire and explosions. In most cases, thermal runaway is the 

initiating failure mechanism where increased temperature causes some chemical 

reactions, which in turn further increase the temperature and cause more the reactions. 

Hence, thermal management of the Lithium-ion battery has become critical for the 

system design. When the Lithium-ion battery is charged or discharged at various 

operating conditions, heat is generated because of the inherent electrical, 

thermodynamic, and electrochemical impedances. Accurate characterization of the 

heat generation rate of the Lithium-ion battery is one of the cornerstones to build an 

effective thermal management platform for the system design. However, the heat 

generation rate is heavily uncertain over the time at a given charge or discharge rate. 



 

 61 
 

Figure 3-28 shows ten heat generation curves obtained from ten Lithium-ion cells at a 

0.5C (1.15A) discharge rate where each curve consists of 64 measurement time. 

 

Figure 3-28: Ten curves of the heat generation rate 

 

Step 1: Random process updating using the MCMC method 

Assume ten random process realizations at 64 measurement time are 

independent. Thus, the random process θθθθ    is represented by 64 independent random 

variables. Let the random process θθθθ follows a 64-dimensional joint Gaussian PDF 

with the known standard deviation (=0.02) vector and unknown mean vector (µµµµ).   

Assume the mean vector (µµµµ) follows a prior joint Gaussian PDF with the known mean 

(=0.5) and standard deviation (=0.02) vector.  

MCMC method with the Metropolis-Hastings algorithm was employed to draw 

samples from the posterior distribution of the mean vector (µµµµ). MCS was then used to 

draw 1000 snapshots of the random process θθθθ    as shown in Fig. 3-29. It is observed 

that the contour of the random process well matches the ten snapshots. However, the 



 

 62 
 

random process realizations may not be realistic as shown in Fig. 3-30 because the 

statistical dependence is not considered in this step. 

 

Figure 3-29: Random process updating using the MCMC method 

 

 

Figure 3-30: One random process realization after the random process updating 

 

Step 2: Random process dependence modeling using the Bayesian Copula 

Five procedures were conducted for the dependence modeling in this step. First, 

the random process realizations at each measurement time were transformed into a 

standard uniform space based on its marginal distribution obtained in step 1. Second, 
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a neighboring search algorithm was employed to find the neighbors of each 

measurement time. In this example, the realizations of the heat generate rate at the 

(k+1)-th time step is only depends upon the realizations at the k-th time step. Third, 

Bayesian Copula dependence modeling was sequentially performed at each 

measurement time. Four types of Copula, such as Clayton, Gaussian, Frank, and 

Gumbel, were employed in this study. Forth, MCS was employed to generate 

sufficient random process snapshots in the standard uniform space according to the 

dependence modeling. Fifth, the random process snapshots in the standard uniform 

space were transformed back to the original random space. Figure 3-31 presents 1000 

snapshots of the random process θθθθ    after the statistical dependence modeling. The 

random process realizations become more realistic as shown in Fig. 3-32 because the 

statistical dependence is considered in this step. 

 

Figure 3-31: Random process modeling in step 2 
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Figure 3-32: One random process realization after the dependence modeling 

 

3.6 Summary 

So far, spatial variability (or the random field) has been generally overlooked in 

most engineering probability analysis and design. The reason could be in part a lack 

of an effective approach for random field characterization in probability analysis and 

design, misconception of minor influence of the random field on the system response, 

or both. Hence, the random parameter approach (RPA) has been popular in 

engineering probability analysis and design by simply modeling manufacturing 

variability without its spatial randomness.  

This chapter proposed a generic and robust random field characterization method, 

which can characterize any geometric or non-geometric random fields in engineered 

systems whether or not the random field can be realized with either sufficient or 

insufficient field data while accounting for the statistical dependence among the 

random field variables for probability analysis and design. The proposed approach 

has three technical contributions. The first contribution is the development of a 
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generic approximation scheme of the random field as a function of the most important 

field signatures while preserving prescribed approximation accuracy. The coefficients 

of the signatures can be modeled as random field variables and their statistical 

properties are identified using the Chi-Square goodness-of-fit test. Second, a 

Bayesian approach with Bayesian Copula dependence modeling is designed to 

characterize the random field with the lack of field data sets. Third, the Rosenblatt 

transformation is employed to transform the statistically dependent random field 

variables into statistically independent random field variables. The number of the 

transformation sequences exponentially increases as the number of random field 

variables becomes large. It was found that improper selection of a transformation 

sequence among many may introduce high nonlinearity into system responses, which 

may result in inaccuracy in probability analysis and design. Hence, this chapter 

proposed a novel procedure of determining an optimal sequence of the Rosenblatt 

transformation that introduces the least degree of nonlinearity into the system 

response. The proposed random field characterization can be integrated with any 

advanced probability analysis method, such as the Dimension Reduction (DR) 

method, Eigenvector Dimension Reduction (EDR) method, Polynomial Chaos 

Expansion (PCE) method, etc. Three structural problems including a Micro-Electro-

Mechanical Systems (MEMS) bistable mechanism, one refrigerator assembly 

problem, and one heat generation problem of the Lithium-ion battery were used to 

demonstrate the effectiveness of the proposed approach. The results show that the 

proposed random field approach is very accurate and efficient. Moreover, it is shown 

that the statistical dependence in random field characterization cannot be neglected. 
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Chapter 4: Reliability Analysis with Both Random Parameter 

and Field Variables 

This chapter develops a generic reliability analysis framework that requires no 

derivative information of system responses while taking into account both random 

parameter and field variables. The Eigenvector Dimension Reduction (EDR) method 

is proposed for the generic reliability analysis framework. 

4.1 Introduction 

A high-fidelity modeling has come true as computational mechanics has been 

sophisticated. Thus, probability analysis is of critical importance to understand 

random nature of physics in various engineering applications. However, a common 

challenge in probability analysis is a multi-dimensional integration to quantify 

probabilistic nature of system responses (e.g., fatigue life, corrosion, injury metrics) 

in various engineering applications (e.g., vehicle, airplane, electronics). Neither 

analytical multi-dimensional integration nor direct numerical integration is possible 

for large-scale engineering applications. Other than those approaches, existing 

approximate methods for probability analysis can be categorized into four groups: 1) 

sampling method; 2) expansion method; 3) the Most Probable Point (MPP)-based 

method; and 4) stochastic response surface method. 

Recently, the Dimension Reduction (DR) method [Rabitz and Alis 1999; Rahman 

and Xu 2004; Xu and Rahman 2004] has been proposed and is known to be a 

sensitivity-free method. In the univariate DR method [Rahman and Xu 2004], it uses 

an additive decomposition of the responses that simplifies one multi-dimensional 

integration to multiple one-dimensional integrations. Generally, it can provide 
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accurate lower moment of system responses such as mean. However, it may produce 

a relatively large error for the second-order or higher moments of nonlinear system 

responses. Otherwise, it could be expensive with large number of numerical 

integration points. In the general DR method [Xu and Rahman 2004], the theoretical 

error of univariate DR method can be reduced by considering multi-dimensional 

integrations. However, the computation effort is increased exponentially. Therefore, it 

is hard to afford a general DR calculation in most engineering applications. 

This chapter proposes the Eigenvector Dimension Reduction (EDR) method, 

which is an enhancement of the univariate DR method. It has three technical 

elements: 1) eigenvector sampling; 2) one-dimensional response approximations; and 

3) a stabilized Pearson system. The 2N+1 and 4N+1 eigenvector sampling schemes 

are proposed in the EDR method to resolve correlated and asymmetric random input 

variables while maintaining high accuracy and efficiency for sensitivity-free 

probability analysis. The Stepwise Moving Least Squares (SMLS) method is 

proposed for response approximation. The SMLS method integrates a Moving Least 

Squares (MLS) method [Youn and Choi 2004b] with a stepwise regression scheme 

[Myers and Montgomery 1995]. The one-dimensional response approximation allows 

the increase of integration points without demanding additional computation. 

Therefore, the EDR method improves numerical accuracy in calculating the statistical 

moments with no extra expense other than the eigenvector samples. The stabilized 

Pearson system is proposed to predict the probability density function (PDF) of the 

responses while eliminating singular behavior of the original Pearson system.   
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In this chapter, the univariate DR method is first reviewed. The EDR method is 

then developed based on the univariate DR method with three new technical 

components in Section 4.2. Numerous examples demonstrate that the EDR method 

makes considerable improvements from the perspective of accuracy, efficiency, and 

stability compared with the univariate DR method and some traditional probability 

analysis methods in Section 4.3.  

4.2 Eigenvector Dimension Reduction (EDR) method 

The univariate Dimension Reduction (DR) method is enhanced by incorporating 

three technical components: 1) eigenvector sampling; 2) the Stepwise Moving Least 

Squares (SMLS) method for efficient and accurate numerical integration; and 3) a 

stabilized Pearson system for Probability Density Function (PDF) generation. 

Although the univariate DR method gives reasonably good results for probability 

analysis, the EDR method attempts to resolve the disadvantages of the DR method 

addressed in Section 4.1. 

4.2.1 Univariate DR method 

4.2.1.1 DR method using additive decomposition  

In general, statistical moments of system responses (e.g., fatigue life, corrosion, 

injury metrics), Y(X), can be calculated as 

 { }( ) ( ) ( ) , 0,1, 2,m m
E Y Y f d m

+∞ +∞

−∞ −∞
= ⋅ ⋅ =∫ ∫ XX x x x⋯ ⋯  (4.1) 

In Eq. (4.1), a major challenge is a multi-dimensional integration over the entire 

random input (X) domain. To resolve this difficulty, the univariate DR method uses 

an additive decomposition that converts a multi-dimensional integration in Eq. (4.1) 
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into multiple one-dimensional integrations. The additive decomposition, Ya, is defined 

as 

 1 1 1 1
1

( ,..., ) ( ,..., ) ( ,..., ,..., ) ( 1) ( ,..., )
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To validate the use of the additive decomposition, the error incurred due to its use in 

determining the statistical moments must be small. To accomplish this, the Taylor 

series expansion of the actual function, Y(x), in Eq. (4.3) is compared to the 

expansion of the additive decomposition, Ya(x), in Eq. (4.4). 
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It can be seen in Eq. (4.5) that the largest error occurs at the fourth even-order term, 

producing negligible error. In fact, the error produced by the additive decomposition 

is less than that of a second-order Taylor expansion method for probability analysis 

[Rahman and Xu 2004]. The accuracy in the use of the additive decomposition is 

partly because the integration is being performed over a symmetric domain. This 

results in all of the odd-order terms in the integration to be zero. 
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In aid of the additive decomposition, probability analysis of system responses 

becomes much simpler. For reliability and quality assessment, the m-th statistical 

moments for the responses are considered in Eq. (4.6) as 
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Using a binomial formula, Eq. (4.6) can be evaluated by executing one-

dimensional integration recursively. In other words, uncertainty of system responses 

can be evaluated through multiple one-dimensional numerical integrations. So the 

challenge of the problem still remains how to carry out one dimensional integration 

effectively. Using numerical integration, one-dimensional integration will be 

performed with integration weights wj,i and points xj,i using Eq. (4.7). 

 1 , 1 ,
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= = =
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The number of integration points determines computational efficiency of the 

univariate DR method. In general, the univariate DR method uses (n−1)×N+1 

integration points where N is the number of input random parameters and n is the 

integration points along each random variable. It is suggested in the proposed EDR 

method that n must be maintained at 3 or, at most, 5, for large-scale engineering 

design problems. 
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4.2.1.2 One-dimensional numerical integration in the DR method 

The DR method suggests the use of a moment-based quadrature rule to perform 

the one-dimensional numerical integration in Eq. (4.6). Integration points and weights 

can be obtained by solving a linear system equation that requires the statistical 

information of the input parameters. The linear relationship is made between low- and 

high-order moments of the random input variables, as shown in Eq.  (4.8). 
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Here, µj,n represents the n-th raw moment considering the j-th input variable and r is a 

moment vector. The solution of Eq. (4.8) can be manipulated to produce the resulting 

integration points and the weights. 

4.2.1.3 Remarks on the DR method 

A different statistical moment formula from Eq. (4.6) was developed in the DR 

paper [Xu and Rahman 2004] by replacing Ym with Z, expressed as 
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Thus, it may eliminate a complicated process using a binomial formula. But it is 

found that this formula could lead to larger error due to the replacement of the power 
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term before the additive decomposition. For example, when m = 2, Eq. (4.6) gives the 

following formula as 
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However, Eq. (4.9) proposed for simplicity gives the different formula as 
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A distinctive difference is found between two formulae as 
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where the difference is an additional error induced by the different formulation in the 

reference [Xu and Rahman 2004].  

4.2.2 Eigenvector sampling 

With the additively decomposed function in Eq. (4.2), the challenge of 

probability analysis still remains how to carry out one dimensional integration 

efficiently and accurately. Accuracy for probability analysis can be increased as the 

number of integration points increases in recursive one-dimensional integration. 

However, the increase of integration points makes probability analysis prohibitively 

expensive for large-scale applications. To achieve both accuracy and efficiency in 

probability analysis, an eigenvector sampling scheme selects sample points along the 

eigenvectors of the covariance matrix (ΣΣΣΣ) of the system input random parameters (X), 
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and then one dimensional response surface (Section 4.2.3) will be created using the 

response values at the samples. The primary reason to choose samples along the 

eigenvectors is because the eigenvectors and eigenvalues contain information for 

statistical correlation and variation. 

The eigenvector sampling scheme assist finding the samples using the 

eigenvectors and eigenvalues of the covariance of the system input random 

parameters. For efficiency, the EDR method employs either two (n=2) or four (n=4) 

samples along each eigenvector excluding the sample at the design point, depending 

on nonlinearity of the system responses. For N number of random variables, the EDR 

method demands 2N+1 or 4N+1 samples. To obtain the eigenvectors and eigenvalues, 

an eigenvalue problem for the covariance of the system input random parameters X 

can be formulated as  

 λ=ΣX X  (4.13) 

where X and λ are eigenvectors and eigenvalues of the covariance matrix, ΣΣΣΣ. The 

covariance matrix with the N random input variables is defined as 

2
11 12 13 1 1 12 13 1

2
21 22 23 2 21 2 23 2

2
31 32 33 3 31 32 3 3

2
1 2 3 1 2 3

N N

N N

N N

N N N NN N N N N

σ

σ

σ

σ

Σ Σ Σ Σ  Σ Σ Σ 
  Σ Σ Σ Σ Σ Σ Σ  
  = Σ Σ Σ Σ = Σ Σ Σ
  
  
  Σ Σ Σ Σ Σ Σ Σ   

Σ

⋯ ⋯

⋯ ⋯

⋯ ⋯

⋮ ⋮ ⋮ ⋱ ⋮ ⋮ ⋮ ⋮ ⋱ ⋮

⋯ ⋯

 

where the covariance between the input variables Xi and Xj can be defined as 

Cov(Xi, Xj) = Σij = E[(Xi − µi)(Xj − µj)] 

and µi and µj are the means of Xi and Xj. According to the definition, the covariance is 

symmetric with Σij = Σji and σi
2 is the variance of any random variable Xi. 
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Depending on the random properties of system inputs, four different types of the 

random properties can be defined as: (a) uncorrelated and symmetric, (b) correlated 

and symmetric, (c) uncorrelated and asymmetric, and (d) correlated and asymmetric. 

The 2N+1 eigenvector sampling scheme is first considered here. For any 

circumstance, the 2N+1 eigenvector samples will be found at 

 1 ' 2 '

i i i i i i
k kλ λ= − = +V µ X  and V µ X  (4.14) 

where Xi′′′′ and λi are the i-th eigenvector and eigenvalue, and k determines a sample 

location along the eigenvectors. The locations of the eigenvector samples dictate 

accuracy of one-dimensional response approximations. Subsequently, accuracies of 

one-dimensional response approximations determine accuracy of one-dimensional 

numerical integrations and, eventually, probability analysis in the EDR method. 

If the k is too large, accuracy of one-dimensional response approximations will 

be degraded on the inner side of two eigenvector samples 1
Vi and 

2
Vi; on the other 

hand, if k is too small, accuracy of the response approximations will be descended on 

the outer side of eigenvector samples because of an extrapolation. Since the response 

approximation is involved, it is nearly impossible to determine the optimum location 

(k) of the eigenvector samples with a reasonable justification. Thus, a parametric 

study is performed by using a set of mathematical examples and two facts are 

observed: (1) the accuracy of the EDR appears to be the best with k = [2.5 ~ 3.5]; (2) 

the accuracy is nearly insensitive with any k value in the range. So, this study uses 

k=3 for eigenvector sampling. For the different types of the system input random 

properties, the eigenvector samples are found as follows: 

a. Uncorrelated and symmetric 
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If all random variables are statistically uncorrelated, all off-diagonal terms in 

the covariance matrix become zero. In this case, the eigenvectors are simply 

the original random variable axes. The eigenvector samples are obtained along 

the original random vectors at 1 ' '3 3
i i i i i

λ σ= − = −V X Xµ µµ µµ µµ µ  and 

2 ' '3 3
i i i i i

λ σ= + = +V X Xµ µµ µµ µµ µ , where Xi
’
 is the i-th eigenvector where all 

elements are zero except the i-th element is one. 

b. Correlated and symmetric 

If some random variables are statistically correlated, the eigenvector samples 

are obtained at 1 '3
i i i

λ= −V Xµµµµ  and 2 '3
i i i

λ= +V Xµµµµ  along the eigenvectors 

of the eigenvalue problem in Eq. (4.13). 

c. Uncorrelated and asymmetric 

If all random variables are statistically uncorrelated but asymmetrically 

distributed, the eigenvectors are still same as the original random variable 

axes. To facilitate the eigenvector sampling for asymmetrically distributed 

random input parameters, the random parameters are transformed into a 

standard-normally distributed random parameter (U), such as T: Xi →→→→ Ui [].  

The eigenvector samples are similarly obtained along the eigenvectors in the 

transformed space at 1 '3
i i

= −U U  and 2 '3
i i

= +U U , where Ui
’
 is the i-th 

eigenvector where all elements are zero except the i-th element is one. Then, 

two eigenvector samples 1
Vi and 

2
Vi will be found from 1

Ui and 
2
Ui through 

the inverse transformation, T-1. 

d. Correlated and asymmetric 
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If some random variables are both correlated and with asymmetric 

distributions, the eigenvectors of the covariance matrix of the system input 

random parameters must be first obtained, as illustrated in the part b. For the 

random variables with correlated and asymmetric distributions, the 

eigenvector samples will be chosen along the eigenvectors through the 

transformation given in the part c. 

The 2N+1 eigenvector samples are illustrated for the four different cases shown 

in Fig. 4-1 and the samples are used for constructing one-dimensional response 

approximation using the SMLS method in the following section. To enhance 

numerical accuracy in probability analysis, the 4N+1 eigenvector samples will be 

selected with two extra samples located at 3 '1.5
i i i

λ= −V Xµµµµ  and 

4 '1.5
i i i

λ= +V Xµµµµ . 

4.2.3 SMLS for numerical integration 

The moving least square (MLS) method is improved by a stepwise selection of 

basis functions, referred to as the SMLS method. The optimal set of basis terms is 

adaptively chosen to maximize numerical accuracy by screening the importance of 

basis terms. This technique is exploited for approximating the additively decomposed 

one-dimensional integrand in Eq. (4.6). The idea of a stepwise selection of basis 

functions comes from the stepwise regression method [Myers and Montgomery 

1995]. The SMLS method for one-dimensional response approximation proceeds in 

the following steps: 
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Figure 4-1: Eigenvector samples for EDR method 

 

STEP 1. Define a pool of basis elements and forced basis elements out of 

the pool. Set the total number of basis elements, nb, and sub-

domain counter, m=0. 

STEP 2. Define the m-th sub-domain surrounded by nb neighboring 

samples. 

STEP 3. Find nt training points in all sub-domains, where training points are 

defined in the middle of every two samples. 

 

(a) uncorrelated and symmetric 

 

(b) correlated and symmetric 

 

(c) uncorrelated and asymmetric 

 

(d) correlated and asymmetric 
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STEP 4. Approximate responses at training points using the MLS method as 

1ˆ ( ) ( ) ( ) ( )T −=Y d h d M d B d Y , where M = HT
W(d)H, B = HT

W(d), 

where W is the weight matrix and H is the basis matrix. 

STEP 5. Filter the basis elements adaptively in the m-th subdomains by 

ranking the magnitudes of the coefficients. The basis element with 

the maximum coefficient will be selected and add to the forced 

basis elements as the current basis elements. This process will be 

repeated until the total number of required basis elements (nb) is 

reached. 

STEP 6. Set m = m + 1 and go to STEP 2 if m ns≤  where ns is the total 

number of subdomains. Otherwise go to STEP 7. 

STEP7. Construct one-dimensional response surface using sample 

responses. 

Example of SMLS Method 

Since the objective is to approximate one-dimensional response accurately, a 

highly nonlinear one-dimensional response example is used to show accuracy of the 

SMLS. For the purpose of the EDR method, the response would be treated as the 

integrand used in the EDR method. The exact response is explicitly expressed as 

 2( ) (2 sin(2 )) / 4, 1 7Y X X X X= + ≤ ≤  (4.15) 

Six subdomains (m=6) are defined and six training points (nt = 6) are used.  

Seven basis terms (nb = 7) are used where two (1 and X) are the forced basis terms.  

Including the forced basis terms, the pool of basis terms are {1, X, X2, X3, X4, X5, X6, 

X
7, sinX, cosX, exp(X)}. In addition to the ordinary polynomial basis, the sinusoidal 
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and exponential basis terms are used because they are good for nonlinear 

representation. For example, at X = 4 the selected basis terms are [1, X, sinX, cosX, 

X
2, X

3, X
4] with the corresponding coefficients [-124.2285, 617.9624, -151.2387, -

97.4442, -382.9456, 74.3153, -4.4639]. As shown in Fig. 4-2, the SMLS method 

approximates the response very accurately in aid of the adaptive selection of basis 

elements in different subdomains. In Table 4-1, the normalized error is measured as 

 
2

2
1

ˆ( )1

( )

tnt
i i

t
i i

y y
e

nt y=

 −
=  

 
∑  (4.16) 

where the total trial points, nt = 61. ˆ
iy  and t

iy  are approximate and true responses, 

respectively, at the i-th trial points. 
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Figure 4-2: Response approximation using SMLS method 

 

Table 4-1: Normalized Errors of the MLS and SMLS. 

Method MLS SMLS 

Normalized error 3.2200 0.0130 
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In general, for numerical calculation of statistical moments, the integration 

domain is relatively small because the contribution of PDF is negligible for X <µ−6σ 

and X > µ+6σ. For some bounded random distributions, such as uniform and beta 

distributions, the integration domain will be limited from lower to upper bounds. 

Therefore, although probability analysis is applied for nonlinear system responses, 

they are less nonlinear in a local region than those in a global region. Thus, the SMLS 

method can approximate system responses very accurately in the integration domain.  

The SMLS method allows the increase in the number of numerical integration points 

without requiring actual simulations (or experiments) for system response 

evaluations. Responses at all integration points are approximately obtained from 

approximated one-dimensional responses, ,
ˆ( )j iY x , instead of system responses, 

,( )j iY x  through actual system evaluations, as shown in Eq. (4.17). 

 

1 , 1 ,
1 1 1

, 1 ,
1 1

( ,..., ,..., ) ( ,..., ,..., )

ˆ( ,..., ,..., )

N N n

j N j i j i N

j j i

N n

j i j i N

j i

E Y X w Y x

w Y x

µ µ µ µ

µ µ

= = =

= =

 
≅ 

  

≅

∑ ∑∑

∑∑
 (4.17) 

Thus, a large number (n = 20 ~ 30) of integration points can be used to increase 

numerical accuracy in assessing statistical moments of the responses without 

requiring actual system evaluations. So, numerical accuracy in estimating statistical 

moments is improved considerably while high efficiency is remained, since only 

2N+1 or 4N+1 simulations or experiments are required.  

a. Moment based quadrature rule [Rahman and Xu 2004] 

In the DR method, a moment based quadrature rule was proposed for one-

dimensional numerical integration due to its good accuracy and efficiency, compared 
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with other integration methods. However, it may still produce a relatively large error 

for the second order or higher moments of nonlinear responses as will be shown in 

the later examples. In the EDR method, however, since large amount of integration 

points could be employed without actual simulations (or experiments) for system 

response evaluations, accuracy of moment based quadrature rule could be improved 

substantially. Thus, moment based quadrature rule could still be used in the EDR 

method. However, moment based quadrature rule could have two problems as 

1) The number of integration points should be predetermined. So it is hard to 

decide an optimal number of the points to maximize accuracy of the EDR 

method for probability analysis.  

2) Larger amount of integration points could result in a singular moment matrix 

in Eq. (4.8). So it may fail to find the corresponding integration points.  

Specifically, a large number of integration points require the use of higher 

order statistical raw moments. As the order of the moments is increased, the 

matrix in Eq. (4.8) becomes singular due to the higher-order moments 

asymptotically approaching zero. 

b. Adaptive Simpson rule [Yamazaki and Shinozuka 1988] 

This study suggests an adaptive Simpson rule as an alternative integration 

method. It gives more freedom on selection of probability distribution types for 

system input random variables. Adaptive Simpson’s rule uses an adaptive way to 

estimate the error from calculating a definite integral using Simpson’s rule. If the 

error is larger than a user specified tolerance, the integration interval is divided into 

subintervals and Simpson’s rule is applied to each subinterval. The adaptive Simpson 
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rule generally demands a large number of integration points to preserve good 

accuracy by specifying the tolerance. The SMLS method enables the increase in the 

number of integration points to as many as possible with no additional computation. 

Unlike the DR method, the EDR method has no restriction to choose numerical 

integration schemes, although this study uses the adaptive Simpson rule for the one-

dimension integration. 

4.2.4 A stabilized Pearson system 

The Pearson system [Johnson et al. 1995] can be used to construct the PDF of a 

random response (y) based on its first four moments (mean, standard deviation, 

skewness and kurtosis).  The detail expression of the PDF can be achieved by solving 

the differential equation as 

 
2

0 1 2

1 ( )

( )

df y a y

f y dy c c y c y

+
= −

+ +
 (4.18) 

where a, c0, c1 and c2 are four coefficients determined by the first four moments of the 

random response (y) and expressed as 

1

0 2 1 2 1 2

1

1 1 2 2 1 2

1

2 2 1 2 1
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( 3)(10 12 18)

(2 3 6)(10 12 18)

c

a c

c

β β β β µ

β β β β µ

β β β β

−

−

−

= − − −

= = + − −

= − − − −

 

where β1 is the square of skewness (x-axis in Fig. 4-3), β2 is the kurtosis (y-axis in 

Fig. 4-3), and µ2 is the variation. The mean value is always treated as zero in the 

Pearson system, and later it can be shifted to the true mean value once the differential 

equation is solved. Basically, the differential equation can be solved based on the 

different assumptions of the four coefficients a, c0, c1, and c2. For example, if c1 = c2 = 

0, this equation can be solved with a normal distribution, which corresponds to [0, 3] 
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point in Fig. 4-3, and the type 1 in Pearson system corresponds to both roots of c0 + 

c1y + c2y
2 being real. For more detail information, readers can refer to the reference 

[Johnson et al. 1995]. 

Generally, there are seven distribution types in the Pearson system based on the 

four coefficients, and among some types, subtypes are present. Normally, PDF can be 

successfully constructed based on the first four moments. However, the Pearson 

system can fail to construct the PDF, especially when the statistical moments in the 

Pearson curve fall into the region that several distribution types merge, as shown in 

Fig. 4-3. The horizontal axis is for the square of skewness (β1) and vertical axis is for 

the kurtosis (β2). The solid dots stand for the locations having an instability problem 

while constructing the PDF. The trouble lies at the calculation of coefficients of a 

specific distribution type, which results in a numerical instability. 

 

Figure 4-3: Pearson curve (x-axis is the square of skewness, β1,  

and y-axis is the kurtosis, β2) 
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For the distributions (type II, III, V, VII) with an equality condition, it is rare 

that statistical moments meet the condition tightly. To resolve instability of the 

Pearson system, the condition is relaxed with a tolerance bound. In this study, 0.001 

is used for the tolerance bound. For instance, the PDF should belong to type 6 based 

on the first four moments [−0.5491, 0.1085, −0.1573, 3.0464]. However, numerical 

singularity is met due to larger numbers of n1=3273.5 and n2= −3930.2 in type 6 as 

1 2

1 2 2( ) ( ) ( ) ,n n
f y K a y a y y a= − − <  

The Pearson system fails to calculate the coefficient, K, since f(y) approaches 0 ⋅∞ .  

By relaxing the tolerance bounds, type 3 can be selected, but the singularity problem 

still remains. Finally, a normal distribution is selected to approximate the PDF by 

increasing the tolerance value to 0.0118. However, as shown in Fig. 4-4, the Pearson 

system produces a noticeable error, compared to MCS with 1,000,000 samples. 
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Figure 4-4: Comparison of PDF 

 

In the EDR method, a stabilized Pearson system is proposed to avoid instability 

without relaxing tolerances. Two PDFs are generated by fixing the first three 
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statistical moments, and slightly increasing or decreasing the original kurtosis until 

two PDFs are successfully constructed. Then these two PDFs are used to approximate 

the PDF with original kurtosis. Suppose that the Pearson system fails to construct a 

PDF with the first four moments [m1, m2, m3, m4].  Detail procedures follow as 

Step1: The first three moments are kept constant and gradually decrease the m4 

by a small decrement ( 4 0 01m∆ = . ) until a PDF can be successfully 

constructed.  f1(y) and m4,1 are denoted as the PDF and the corresponding 

kurtosis value, respectively. 

Step2: The first three moments are kept constant and gradually increase the m4 

by a small increment ( 4 0 01m∆ = . ) until a PDF can be successfully 

constructed.  f2(y) and m4,2 are denoted as the PDF and the corresponding 

kurtosis value, respectively. 

Step3: To build the PDF over the entire domain of the random response (y), the 

response domain is discretized as yi, i=1 to l. At every value yi, the PDF 

value, f(yi), is obtained using two hyper-PDFs f1(yi) and f2(yi), where they 

are obtained with the kurtosis m4,1 and m4,2, respectively. With two hyper-

PDF values having the kurtosis m4,1 and m4,2, the PDF f(yi) with the actual 

kurtosis m4 (m4,1 < m4 < m4,2) can be approximated using SMLS without a 

singularity. It is found that the PDF f(yi) is accurately generated because 

the amount of the kurtosis perturbation is relatively small. 

The perturbation size ( 4 0 01m∆ = . ) of a kurtosis is used to preserve a relatively 

small perturbation. Basically, the smaller the difference between m4,1 and m4,2, the 

more accurate the PDF approximation for the actual kurtosis m4. Once the probability 
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distribution (f(y)) for system response is obtained, the distribution is explicitly given.  

So, reliability is computed through a numerical integration for 

 
0

Reliability ( )f y dy
−∞

= ∫  (4.19) 

4.3 Examples and results 

4.3.1 Probability analysis with random field variables 

Random field approach is recommended if the randomness of statistical inputs 

for the engineered system can be characterized as a function of spatial variables. 

Three structural examples including a Micro-Electro-Mechanical Systems (MEMS) 

bistable mechanism are used to demonstrate the effectiveness of the proposed 

approach for probability analysis with random field variables. 

4.3.1.1 Beam example 

The same example in Section 3.5.1.1 is employed for probability analysis after 

the random field characterization. The cantilever beam is fixed at the right end and a 

concentrate force (100N) is applied at the left tip of the beam as shown in Fig. 4-5. 

The maximum beam deflection was considered as the system response. The beam 

deflection was calculated through a finite element (FE) analysis using OptiStruct in 

HyperMesh. Different FE models were created for different snapshots using 

HyperMorph in HyperMesh. Specifically, a FE basis model was first built based on 

the mean of the random field. HyperMorph was then used to define the perturbation 

vectors of the measurement points (or element nodes) based on the signatures of the 

random field. The signature coefficients were next defined as the perturbation 

coefficients of the perturbation vectors in HyperMorph. Hence, different FE models 

were constructed by providing the corresponding set of coefficients. The thickness of 
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the shell elements was set to 1 mm. Both probability analyses of the system response 

using the Random Field Approach (RFA) and Random Parameter Approach (RPA) 

were carried out for the purpose of comparison. For the RPA, the average height of 

the one hundred measurement points obtained in one sampled snapshot was treated as 

the uniform height over the entire beam length.  

 
 

Figure 4-5:  Simulation model of a cantilever beam with the random field 

 

Probability analysis considering a random field 

Probability analyses using MCS with one thousand samples were conducted 

using two different approaches: RFA and RPA. For RPA, the histogram of the beam 

height is shown in Fig. 4-6. The maximum beam deflection was considered as a 

system response and the histograms from two different approaches are shown in Fig. 

4-7. The two approaches produced substantially different histograms because the 

beam with a uniform height in RPA is stiffer than the beam with a varying height in 

RFA. Because the RPA greatly underestimates the displacement by ignoring the 

spatial variation, it is very important to consider the RFA for probability analysis and 

design. The EDR method with 2N+1 samples (3 analyses) was employed for RFA and 

the maximum beam deflection was statistically quantified in terms of the four 

statistical moments. Table 4-2 shows that the proposed RFA accurately estimates the 

four statistical moments compared with MCS. The 100(1-2α)% confidence intervals 

[d1, d2] of the four statistical moments can be found by solving the equation of F(m′ | 
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m = d1) = 1−α and F(m′´| m = d2) = α, where m denotes the true statistical moment; 

m′ is a consistent estimator of m; F(m′ |m) is the CDF of the estimator m′ [Buckland 

1984]. It was confirmed in Fig. 4-7 that the proposed RFA can accurately 

approximate the PDF of the maximum beam deflection.  

 
Figure 4-6:  Histogram of the beam height for RPA 

 

 

Figure 4-7: Histograms of the maximum beam deflection using RFA and RPA 

 

Table 4-2: Statistical moments of Y using the proposed RFA and MCS 

 
Mean Std Skewness Kurtosis Fun. Eval. 

MCS -0.2749 0.0016 -2.4728 11.8629 1,000 
RFA -0.2749 0.0016 -2.3244 11.3535 3 
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4.3.1.2 MEMS bistable mechanism 

The same example in Section 3.5.1.2 is employed for probability analysis after 

the random field characterization. The bistable mechanism was modeled with beam23 

elements using 1,388 nodes and 4,148 DOFs, and the connection between two beams 

was modeled using a rigid element. ANSYS 10.0 was employed for the FE analysis. 

To achieve the force-displacement system response, nonlinear FE analyses were 

performed and each simulation takes about 40 seconds. The FE model information 

follows: the length l is 3mm; the thickness t is 6 µm; the apex value is 60 µm; the 

beam depth is 490 µm; Young’s modulus is 169 Pa, and the gap between two beams 

is 90 µm.  

Probability analysis considering a random field 

Probability analyses using MCS with one thousand samples were conducted 

using two different approaches: RFA and RPA. For RPA, the histogram of variability 

in the beam thickness is shown in Fig. 4-8. The maximum and minimum forces, and 

unstable equilibrium distance were considered as system responses and the 

histograms from two different approaches are shown in Fig. 4-9. Even if this example 

engages the smaller degree of random field variability, both approaches produced 

substantially different histograms in three system responses. It was observed that 

RFA produced relatively narrower distributions for both maximum and minimum 

forces than RPA whereas RFA yielded wider unstable equilibrium distance than RPA. 

Smaller variation of the unstable equilibrium distance is better because it is robust to 

operate the MEMS device. Greater variability of the distance can be predicted when 

accounting for the random field, as shown in Fig. 4-9(c). In other words, it is  
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Figure 4-8:  Histogram of beam thickness for RPA 

 

 

(a) Maximum force 

 

(b) Minimum force 

 

(c) Unstable equilibrium distance 

Figure 4-9: Comparison of RFA and RPA 
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important to take into account the random field if exist. The EDR method with 2N+1 

samples (5 analyses) was employed to predict the random behavior of the system 

responses for RFA. Table 4-3 shows that the proposed RFA accurately estimates the 

four statistical moments. The accuracy comparison of the PDFs of the system 

responses is shown in Fig. 4-10. 

Table 4-3: Statistical moments of Y using the proposed RFA and MCS 

Response Method Mean Std Skewness Kurtosis Fun. Eval. 

Maximum force 
MCS 4.0986 0.6923 0.2367 3.2445 1,000 

RFA 4.1253 0.6561 0.3181 3.1545 5 

Minimum force 
MCS -1.5221 0.3389 0.7759 5.6786 1,000 

RFA -1.5617 0.3004 0.5695 5.5742 5 

Unstable equilibrium 

distance 

MCS 90.6885 1.6106 0.7327 5.1094 1,000 

RFA 91.3631 1.7723 0.5221 4.1532 5 

 

4.3.1.3 Beam example with statistical dependence 

The same example in Section 3.5.1.3 is employed for probability analysis after 

the random field characterization. A concentrate force (100N) is applied at the left tip 

of the beam. The system response is the maximum beam deflection. Statistical 

dependences were observed for eight random field variables. The optimal sequence 

was obtained as [v1, v2, v3, v4, v7, v8, v6, v5], which presents the minimum total degree 

of deviation (= 0.0458) using the genetic algorithm provided in the Matlab software. 

Then the EDR method with a bivariate decomposition [Rabitz et al. 1999; Rabitz and 

Alis 1999; Xu and Rahman 2004] was used to predict the statistical properties of the 

maximum beam deflection for RFA. MCS with 1,000 samples was executed for a 

benchmarking solution. Table 4-4 shows that the proposed RFA accurately assesses 



 

 92 
 

the four statistical moments compared with MCS. Figure 4-11 compares the PDFs 

from RFA using the EDR method and MCS. It was found that RPA produced the 

PDF of the maximum beam deflection which is significantly different from RFA. 

Figure 4-12 shows reliability errors using RFA with and without considering the 

statistical dependences between the eight random field variables and underscores the 

importance for the consideration of statistical dependence in probability analysis. The 

reliabilities were computed at a set of system response target values. 

 

(a) Maximum force 

 

(b) Minimum force 

 

(c) Unstable equilibrium distance 

Figure 4-10: Comparison of the proposed RFA and MCS 
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Table 4-4: Statistical moments of Y using the proposed RFA and MCS 

 
Mean Std Skewness Kurtosis Fun. Eval. 

MCS 0.3935 0.0002 0.1242 3.2262 1,000 

RFA 0.3935 0.0002 0.1132 3.3143 56 

 

 

Figure 4-11: Comparison of RFA and RPA 

 

 

Figure 4-12: Reliability error by ignoring statistical dependence of random field 

variables 
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4.3.2 Probability analysis with random parameter variables 

Seven examples are used to show the effectiveness of the EDR method. In these 

examples, either 2N+1 or 4N+1 eigenvector samples are used based on the degree of 

response nonlinearity. A systematic selection of 2N+1 or 4N+1 is out of the scope of 

this study. However, it will be discussed in the future research. 

4.3.2.1 Mathematical example 

The following nonlinear mathematical example [Rahman and Xu 2004] is used 

to compare accuracy and efficiency of different probability analysis methods such as 

the DR method, Taylor expansion, EDR method, etc.    

 
2 2 2 2
1 2 1 2

1
exp

1 100 2
G

X X X X

 
= − 

+ + + 
 (4.20) 

where Xj ~ Normal(0,σ2), j = 1, 2 are two independent and identically normal 

distribution. The MCS is conducted with 100,000 samples, while the DR and EDR 

methods operate with 4N+1 samples (5 samples in each eigenvector direction). In 

addition, the DR method is performed with 6N samples (6 samples in each 

eigenvector direction) to illustrate the stability problem of the DR method.  

Additionally, the 2-nd order Taylor series and 4-th order Perturbation method (P-

method) are compared. As shown in Fig. 4-13, the standard deviations of the response 

are displayed with different standard deviations of the inputs. The EDR method 

approximates the standard deviation of system response very accurately comparing 

with the MCS result. However, the approximated standard deviation using the DR 

method with 4N+1 samples is overestimated and underestimated with 6N samples 

when the standard deviations of the input variables increase. And the 4-th order P-

method shows some degree of error in estimating the standard deviations of the 



 

 95 
 

response except when input standard deviations are extremely small. And the 2-nd 

order Taylor expansion shows large error, even the input standard deviation are very 

small. 
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Figure 4-13: Standard deviations of response with different input standard deviations 

 

 4.3.2.2 I Beam Example 

An I beam example [Huang and Du 2006] is used to demonstrate that the EDR 

method is capable of handling all kinds of input uncertainties such as symmetric, 

asymmetric, bounded and unbounded distributions. An I beam is subject to a 

concentrate force P with a distance a away from the fixed end as shown in Fig. 4-14. 

The maximum stress can be expressed as: 

 max

( )

2

Pa L a h

LI
σ

−
=  (4.21) 

where  

3 3

2 1( )( 2 )

12

wh w t h t
I

− − −
=  
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The beam is safe only if the maximum stress is less than a target value S. A system 

response can be defined as Y = σmax – S with the safety domain Y < 0. The uncertainty 

properties of eight random variables are shown in Table 4-5. Many distribution types 

such as normal, lognormal, uniform, etc. are considered since they are commonly met 

in engineering problems.   

 

Figure 4-14: Loading condition and structure of an I beam 

 

Table 4-5: Statistical properties of random variables in beam example 

Variable Type Mean Std. Dev. Lower Bound Upper Bound Mode 

P Normal 6070 200 - - - 

L Beta 120 6 100 150 - 

a Uniform - - 50 80 - 

S Lognormal 170000 4760 - - - 

h Triangular - - 2.25 2.38 2.30 

w Weibull 2.9665 0.0750 - - - 

t1 Normal 0.1600 0.0208 - - - 

t2 Lognormal 0.2600 0.0208 - - - 

 

4N+1 eigenvector samples are used to approximate the eight one-dimensional 

responses accurately using SMLS. Any numerical integration method can be 

employed to calculate the statistical moments of system response without extra 

computation effort except for the 4N+1 eigenvector samples. The statistical moments 
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of system response achieved by the EDR method and 1,000,000 MCS are compared 

in Table 4-6. The percentage error of statistical moments is quite small except for the 

skewness because of the small value. Based on the approximated statistical moments, 

stabilized Pearson system is employed to approximate the PDF of system response.  

In Fig. 4-15, the PDF directly achieved from MCS are compared with the one 

constructed by the stabilized Pearson system. The reliability value calculated by the 

EDR method and MCS are 99.9943% and 99.9827%, respectively. The results with 

similar accuracy can be achieved using bivariate DR method in the reference paper 

[Huang and Du 2006]. However, bivariate DR method employed 277 function 

evaluations, which are much more than 33 function evaluations used in the EDR 

method.  

Table 4-6: Comparison of statistical moments 

 Mean Std. Dev. Skewness Kurtosis 

MCS(1,000,000) -49883 12961 0.0083 3.1479 

EDR(4N+1) -49860 12815 0.0050 2.9840 

Error(%) 0.0460 1.1312 39.9880 5.2077 
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Figure 4-15: PDFs using the EDR and MCS method 

 

4.3.2.3 Side Impact Crash Problem 

Vehicle side impact [Youn et al. 2004a] responses are considered for system 

performances with statistical correlation. The properties of the design and random 

variables are shown in Table 4-7. In this example, the velocity of front door at B-

pillar is studied.  The system performance can be expressed as 

 
3 7 5 6 9 10

2

9 11 11

16 45 0 489 0 843 0 0432

0 0556 0 000786

Y X X X X X X

X X X

= − − + −

−

. . . .

. .
 (4.22) 

Table 4-7: Properties of design and random variables of vehicle side impact model 

Random Variables 
Distr. 

Type 

Std 

Dev. 
dL d dU 

X1 (B-pillar inner) Normal 0.050 0.500 1.000 1.500 

X2 (B-pillar reinforce) Normal 0.050 0.500 1.000 1.500 

X3 (Floor side inner) Normal 0.050 0.500 1.000 1.500 

X4 (Cross member) Normal 0.050 0.500 1.000 1.500 

X5 (Door beam) Normal 0.050 0.500 1.000 1.500 
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X6  (Door belt line) Normal 0.050 0.500 1.000 1.500 

X 7  (Roof rail) Normal 0.050 0.500 1.000 1.500 

X8  (Mat. B-pillar inner) Normal 0.006 0.192 0.300 0.345 

X9 (Mat. Floor side inner) Normal 0.006 0.192 0.300 0.345 

X10   (Barrier height) Normal 10.0 10th and 11th random variables are 

not regarded as design variables  X11  (Barrier hitting) Normal 10.0 

 

Two studies are performed with different set of statistical correlation. In the first 

study, among these input variables, [X3, X7], [X5, X6], and [X9, X10] are assumed to 

have statistical correlation coefficient 0.8, 0.7, and 0.4, respectively. The EDR 

method employing 2N+1 (15) analyses is carried out to approximate the first four 

statistical moments of system performance and construct the PDF. The MCS with 

100,000 samples is also carried out for both correlated and uncorrelated cases and the 

PDFs are correspondingly constructed. Figure 4-16 (a) displays the results of the first 

case. In this case, there is only slight difference between correlated and uncorrelated 

cases. In the second study, since X10 and X11 are the variables having the maximum 

variation, they are assumed to have a statistical correlation coefficient 
10 11

0 7
X X

ρ = . .  

Unlike the previous, this case shows the significant effect of statistical correlation on 

the system response, as shown in Fig. 4-16 (b). In both cases, the EDR method can 

predict the PDF of the system response with statistical correlation very efficiently and 

accurately. 
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(a) PDF comparison of system response 

( 3,7 5,6 9,100.8, 0.7, 0.4ρ ρ ρ= = = ) 

(b) PDF comparison of system response 

( 10,11 0.7ρ = ) 

Figure 4-16: PDF comparison of system response with correlation 

 

4.3.2.4 Two-dimensional statistical dependence 

A mathematical example with non-normally distributed, statistically dependent 

random variables was employed to demonstrate the procedure of determining the best 

transformation sequence. The system response is expressed as 

 
( )

2 2
1 2 1 2

5 ( 12)
1

30 120

v v v v
Y

+ − − −
= − −  (4.23) 

where v1 and v2 are the statistically dependent random variables with sufficient data 

(say, 1,000 sampled data), as shown in Fig. 4-17. To observe the sequence effect, the 

total degree of deviation was calculated as 0.0279 and 0.1680 for two sequences [v1, 

v2] and [v2, v1], respectively, where [v1, v2] means the transformation of v1 and v2 in 

order. Figures 4-18 and 4-19 show the response nonlinearity after two different 

transformation sequences. The figures confirmed that the second sequence [v2, v1] 

produced much higher nonlinearity than the first. This study suggested using the first 

sequence [v1, v2] for probability analysis.  
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(a) Histogram of v1 

 

(b) Histogram of v2 

 

(c) Statistical dependence of v1 and v2 

Figure 4-17: Random characteristics of two random variables, v1 and v2 

 

(a) Nonlinearity of ,T k
Y  with respect to u1  

 

(b) Nonlinearity of ,T k
Y  with respect to u2 

Figure 4-18: Nonlinearity of ,T k
Y  with the transformation sequence [v1, v2] 
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(a) Nonlinearity of ,T k
Y  with respect to u1 

 

(b) Nonlinearity of ,T k
Y with respect to u2 

Figure 4-19: Nonlinearity of ,T k
Y  with the transformation sequence [v2, v1] 

 

Using the Rosenblatt transformation with the sequence [v1, v2], the EDR method 

with 4N+1 sampling scheme was employed for probability analysis of the system 

response subject to the non-normally distributed, statistically dependent random 

variables. Figure 4-20 shows the nine EDR samples mapped in V-space and the 

predicted PDF of the response. It was observed in Table 4-8 that the EDR method 

predicted the first four moments very accurately. The predicted PDF using the EDR 

method agrees well with the normalized histogram using MCS. It was also found in 

Fig. 4-21 that the EDR method using an inappropriate transformation sequence [v2, v1] 

yielded a relatively large prediction error in probability analysis.  

Table 4-8: Statistical moments of Y using the EDR method and MCS 

 Mean Std Skewness Kurtosis Fun. Eval. 

EDR -1.0427 0.2183 -0.0562 2.3132 9 

MCS -1.0406 0.2164 -0.0334 2.3707 1000 
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(a) EDR samples 

 

(b) PDF comparison 

Figure 4-20: EDR results with the transformation sequence [v1, v2] 

 

 

(a) EDR samples 

 

(b) PDF comparison 

Figure 4-21: EDR results with the transformation sequence [v2, v1] 

 

4.3.2.5 Dimension dependency study 

A mathematical multi-dimension problem [Rahman and Xu 2004] is considered 

for the accuracy study with the increase of random variables. In this example, the 

standard deviation of system response is employed for the accuracy study. The input 

random variables are assumed to follow normal distribution as Xk ~ Normal(0, 1). The 

multi-dimension problem is expressed as   
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 2

1

N

k k

k

Y kX X
=

= −∑  (4.24) 

First, the analytical solution for the standard deviation of the response Y is solved for 

the increasing number of random variables up to 40. Then, the EDR method with 

2N+1 and MCS with 100,000 samples are separately carried out to approximate the 

standard deviation of response Y. Finally, their absolute errors with respect to the 

analytical solution are calculated, as shown in Fig. 4-22. This result clearly indicates 

that accuracy of EDR is independent with the number of random variables. Accuracy 

of MCS, however, is dependent on the random variables. 
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Figure 4-22: Comparison of errors using MCS and the EDR method 

 

4.3.2.6 Plate buckling 

Buckling is a very important design issue occurring in many engineering 

disciplines, such as mechanical, aerospace, civil, etc. Structural buckling often leads 

to catastrophic failures. Thus, it is crucial to accurately estimate the effects of 

uncertainties inherent in a design upon the critical buckling load. As shown in Fig. 4-

23, a highly non-linear buckling example is considered with three shape design 
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variable: the height (h) and width (w) of the plate and the hole diameter (d). The 

statistical information regarding these variables is presented in Table 4-9. A morphing 

technique in the HyperWorks 7.0 software package is used to deal with the shape 

variables (h, w and d) in the FEA model. The plate is modeled using plane stress 

quad4 elements, consisting of 1681 nodes, 1571 elements, and 9798 DOF. A unit load 

is applied along the top edge of the plate, while the bottom edge of the plate remains 

fixed in all 6 direction. The plate is made of Aluminum 6061, where E=67.6 GPa and 

ν=0.3. 

 

Figure 4-23: Plate FE model 

 

Table 4-9: Random properties in plate model 

Random Variable Mean Standard Deviation Distribution Type 

h (shape) 500.0 25.0 Normal 

w (shape) 500.0 25.0 Normal 

d (shape) 100.0 5.0 Normal 
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The 2N +1 samples (7 buckling analyses) are used for this problem. As shown in 

Fig. 4-24, there is a good agreement of statistical moments for the first two buckling 

modes between the MCS and the EDR method. As well, Table 4-10 displays the 

resulting statistical information of the response from the EDR method and the MCS 

with 100,000 samples. It is found that the EDR method performs the uncertainty 

propagation analysis accurately.  
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Figure 4-24: PDF of MCS and EDR method 

 
Table 4-10: Results of buckling example 

 1st Buckling Mode 2nd Buckling Mode 

Method Mean STD Skew. Kurto. Mean STD Skew. Kurto. 

MCS 3.503 0.394 0.323 3.169 27.250 1.357 0.320 3.381 

EDR 3.494 0.396 0.303 3.227 27.219 1.337 0.328 3.153 

Error, % 0.251 0.455 6.060 1.833 0.113 1.442 2.293 6.732 

 

4.3.2.7 Comparison of EDR, FORM and SORM for reliability 

In practice, reliability is one of the important engineering metrics to determine 

how well a product or process is designed. The most common method for reliability 
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analysis is the First-Order Reliability Method (FORM) or Second-Order Reliability 

Method (SORM), due to their reasonable accuracy and efficiency. This study aims at 

comparing the EDR method with both FORM and SORM for reliability analysis. For 

reliability analysis and design, it will be shown that the EDR method is far more 

efficient than the other two, since one EDR execution takes care of reliability 

analyses for all constraints without requiring sensitivity of system responses. 

The same example used in Section 4.3.2.3 is used here to compare reliability 

results from the EDR method, FORM, SORM, and MCS at the optimum design using 

FORM [Youn et al. 2004a]. With 90% target reliability, the optimum design point is 

obtained at [d*]T = [0.500, 1.327, 0.500, 1.262, 0.623, 1.500, 0.500, 0.345, 0.192, 

0.000, 0.000]T. At the optimum design, reliabilities for ten constraints is verified 

using three other different methods: SORM, EDR and MCS with 100,000 samples. It 

is found in Table 4-11 that FORM yields large errors in reliability estimation 

especially for G8 and G10 constraints. Although the errors can be slightly reduced to 

some extent using SORM, its accuracy is deficient. However, the EDR method 

predicts the reliability very accurately. The reason that both FORM and SORM have 

large error is mainly due to highly nonlinear responses, as shown in Fig.4-25. The 

dashed and dotted lines show the first-/second-order approximations of failure 

surfaces used in FORM and SORM for two active constraints G8 and G10 at the 

optimum design. Inaccurate approximations of failure surfaces lead to the significant 

errors of FORM and SORM, whereas the EDR method can precisely estimate the 

failure domains. Nonetheless, it is found that the EDR method is far more efficient 

than both FORM and SORM. 
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(a) Failure surface for G8 (b) Failure surface for G10 

Figure 4-25: FORM and SORM reliability analysis in hyper-plane (a): G8; (b): G10 

 

Table 4-11: Results of component reliability analysis 

Reliabilities FORM SORM EDR MCS 

G1 1 1 1 1 

G2 1 1 1 1 

G3 0.9989 0.9989 0.9989 0.9989 

G4 0.9000 0.9136 0.9026 0.9026 

G5 1 1 1 1 

G6 1 1 1 1 

G7 1 1 1 1 

G8 0.9000 0.8723 0.7140 0.7067 

G9 0.9897 0.9905 0.9905 0.9900 

G10 0.9000 0.9025 0.9794 0.9714 

Function Eval. 47 47 23 100,000 

Sensitivity Eval. 47 47 0 0 

Hessian Eval. 10 10 0 0 
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4.3.3 Probability analysis with both random parameter and field variables 

This section presents probability analysis with both random parameter and field 

variables. The EDR method was used to perform probability analysis for engineered 

systems. The door misalignment example of a two-door refrigerator is used to show 

the effectiveness of the proposed approach. As illustrated in Section 3.5.2.2, the 

deformation of the front-L was represented by two random fields in both freezer and 

refrigerator sides and hinge variations were modeled as random parameters. Hence, 

the door misalignment prediction requires probability analysis with both random 

parameter and field variables. In this example, the problem was simplified by only 

considering the last assembly process. Hence, the front-L deformation after the 

foaming process and the hinge variation at both freezer and refrigerator sides are 

considered as statistical inputs for the prediction of door misalignment.  

The door misalignment (Y4) is defined as a difference between the freezer side 

hinge measurement (Y3F) and the refrigerator side hinge measurement (Y3R) as shown 

in Eq. (4.25).  

 Y4 = Y3F – Y3R  (4.25) 

The hinge measurements (Y3F and Y3R) are calculated based on a rigid assembly 

process as shown in Fig. 4-26. The hinge measurement at freezer side (Y3F) is 

expressed as: 

 3 6 cos( ( )) ( )
F F F F

Y X dα= −θ θθ θθ θθ θ  (4.26) 

where X6F is the hinge variation at freezer side, α and d are functions of the front-L 

deformation, θF is the front-L deformation at freezer side represented by a random 

field. Similarly, the hinge measurement at refrigerator side (Y3R) is expressed as: 
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 3 6 cos( ( )) ( )
R R R R

Y X dα= −θ θθ θθ θθ θ  (4.27) 

Hence, the door misalignment (Y4) is defined as: 

 4 6 6cos( ( )) ( ) cos( ( )) ( )
F F F R R R

Y X d X dα α= − − +θ θ θ θθ θ θ θθ θ θ θθ θ θ θ  (4.28) 

where the subscript F and R indicate freezer and refrigerator sides, respectively; X6F ~ 

Weibull (52.9525, 105.7080), and X6R ~ Lognormal (3.9814, 0.0097). The random 

fields (θF and θR) of the front-L deformation were modeled with sufficient data in 

Section 3.5.2.2 using the proposed approach in Section 3.3.  

 

Figure 4-26: Side view of the hinge installation 

 

Step 1: Determination of the important signatures 

Using the posteriori normalized error in Eq.(3.3), six important signatures are 

required to approximate the random fields. Thus, the random field of the front-L 

deformation at freezer side can be expressed as 

 
6

1

( ) ( ) ( )
F F iF iF

i

x x V xθ µ φ
=

= +∑  (4.29) 

Similarly, the random field of the front-L deformation at refrigerator side can be 

expressed as 

 
6

1

( ) ( ) ( )
R R iR iR

i

x x V xθ µ φ
=

= +∑  (4.30) 
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The use of five important signatures leads to 1.76% of the normalized error in 

the approximate random realization for one thousand snapshots at refrigerator side, 

whereas the inclusion of six most important signatures makes 0.01% error. Thus, six 

random field variables are necessary to define the random field at refrigerator side. 

Similarly, six random field variables are also required to define the random field at 

freezer side.  

Step2: Modeling random field variables and statistical dependency 

One thousand values for each random field variable can be obtained for both 

refrigerator and freezer sides. The Maximum Likelihood Estimation (MLE) and Chi-

Square goodness-of-fit test are used to find the distributions and statistical 

parameters. They all follow Beta distributions with statistical properties listed in 

Table 4-12. It is further found that these random field variables are statistically 

independent. 

Step 3: Probability analysis considering both random parameter and field variables 

For one thousand samples, probability analyses using MCS are conducted. The 

EDR method with 2N+1 eigenvector samples (29 analyses) is employed to predict the 

door misalignment with both random parameter and field variables. The EDR method 

accurately predicts the PDF of the door misalignment, which is compared with the 

normalized histogram from MCS, as shown in Fig. 4-27. 
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Table 4-12: Statistical properties of random field variables 

 
Mean STD Lower Bound Upper Bound 

V1R 0 0.7537 -2.7975 4.5223 

V2R 0 0.4583 -2.7495 2.7495 

V3R 0 0.2431 -1.4584 0.9722 

V4R 0 0.2167 -1.3001 1.3001 

V5R 0 0.1377 -0.8263 0.8263 

V6R 0 0.0655 -0.3273 0.3927 

V1F 0 0.6624 -3.3121 3.3121 

V2F 0 0.5486 -2.7429 3.2914 

V3F 0 0.2473 -1.4835 1.4835 

V4F 0 0.2262 -1.3569 1.1308 

V5F 0 0.1386 -0.5545 0.6932 

V6F 0 0.1167 -0.7001 0.7001 

 

 

Figure 4-27: Comparison of EDR and MCS for the prediction of door misalignment 

 

4.4 Summary 

This chapter proposed the Eigenvector Dimension Reduction (EDR) method for 

the generic reliability analysis framework that requires no derivative information of 
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system responses while taking into account both random parameter and field 

variables. The EDR method makes a significant improvement, based upon the 

univariate Dimension Reduction (DR) method. In the univariate DR method, in order 

to improve accuracy of probability analysis, a large number of integration points must 

be involved. Moreover, while increasing the number of integration points, the 

univariate DR method may become singular and inefficient. To resolve those 

difficulties, the EDR method is proposed with the three new technical elements: 1) 

eigenvector sampling; 2) the Stepwise Moving Least Squares (SMLS) method for 

efficient and accurate numerical integration; and 3) a stabilized Pearson system. First, 

the 2N+1 and 4N+1 eigenvector sampling schemes were proposed for probability 

analysis to maintain high accuracy without requiring sensitivity of system 

performances.  Second, the SMLS method was employed to accurately approximate 

the responses, which allow one-dimensional numerical integration with no extra cost 

other than simulations or experiments at the eigenvector samples. Both moment-

based quadrature rule and adaptive Simpson rule can be used for numerical 

integration. Third, the stabilized Pearson system is proposed to eliminate a singular 

behavior of the original Pearson system while accurately predicting Probability 

Density Functions (PDFs) of engineering system performances. In summary, 

compared with the univariate DR method, the EDR method makes considerable 

improvements from the perspective of accuracy, efficiency, and stability. The EDR 

method outperforms the FORM and SORM in terms of the efficiency, since one EDR 

execution takes care of reliability analyses for all constraints without requiring 

sensitivity of system responses. The EDR method could be more accurate than 
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FORM and SORM for highly nonlinear limit state function or limit state function 

involving inflection points. The FORM and SORM maybe work better than the EDR 

method for problems with substantial contribution of high-order mixed terms or for 

problems with high reliability levels (e.g., more than 99.9%). The SORM outperforms 

the FORM in terms of accuracy, but it is less efficient than the FORM.  
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Chapter 5:  Reliability-Based Design Optimization (RBDO) 

with Both Random Parameter and Field Variables 

This chapter proposes a generic RBDO framework that can deal with both 

random parameter and field variables.  

5.1 Introduction 

Reliability-Based Design Optimization (RBDO) is composed of two sub-

problems, reliability analysis and design optimization. Reliability analysis evaluates 

probabilistic constraints at a given design. Design optimization seeks for an optimal 

design subject to the probabilistic constraints. Many efforts have been made to 

enhance the numerical accuracy, efficiency and stability of the RBDO through the 

development of three RBDO approaches: a nested double-loop, decoupled double-

loop, and single-loop approach. Nested double-loop methods are structured with the 

inner loop for the reliability analysis and the outer loop for the design optimization. 

As a result, these methods are computationally expensive for most engineering design 

problems. Later, decoupled double-loop and single-loop methods have been 

developed to address the computational challenges. Despite the extensive effort made 

in the RBDO methods, the numerical efficiency, accuracy, and stability is still of 

great concern. Furthermore, the conventional RBDO approach does not consider 

random field variables as the system inputs.  

This chapter thus proposes a very efficient and accurate approach for RBDO that 

can deal with both random parameter and field variables with an incorporation of the 

Eigenvector Dimension Reduction (EDR) method. Even if the EDR method requires 

no sensitivity of the responses, RBDO still requires sensitivity of reliability and 
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quality to find a design direction in design optimization. An effective RBDO 

approach with both random parameter and field variables was proposed by 

incorporating the EDR method. First, an approximate response surface was employed 

to facilitate sensitivity calculation of reliability where the response surface was 

constructed using the eigenvector samples. Thus, sensitivity analysis becomes very 

efficient and simple. Second, by taking advantage of the EDR method for reliability 

analysis, the proposed RBDO approach does not require an iterative process like First 

Order Reliability Method (FORM) or Second Order Reliability Method (SORM). 

Hence, the proposed RBDO methodology has a single-loop structure. Moreover, the 

EDR execution time can be much shorter by taking advantage of a parallel computing 

power and RBDO can be far more efficient. The proposed RBDO methodology could 

be more accurate than FORM and SORM for the problems with multiple Most 

Probable Points (MPPs) or highly nonlinear limit state functions. It is expected that 

the proposed RBDO using the EDR method can enhance numerical efficiency 

substantially while maintaining good accuracy. Four case studies (side impact crash, 

layered plate bonding process, A-Arm in HMMWV, and door misalignment) are used 

to demonstrate the effectiveness of the proposed RBDO method using the EDR 

method. 

5.2 A generic RBDO framework using the EDR method 

This section proposes a generic Reliability-Based Design Optimization (RBDO) 

framework that can deal with both random parameter and field variables. The RBDO 

can be formulated as 
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where y(d; γγγγ) is the objective function, d = µµµµ(X) is the design vector of random 

parameter variables, γγγγ = µµµµ(ΘΘΘΘ) is the design vector of random fields, X is the random 

parameter vector, ΘΘΘΘ is the random field vector, its prescribed reliability target βti, 

while NP, ND, N, MD, and M are the number of probabilistic constraints, random 

parameter design variables, random parameters, random field design variables, and 

random fields, respectively, and the probabilistic constraint, FGi(0), is expressed as  

 ;
( ; ) 0

(0) ( ; )
i

i

G
G

F f d d
≤

= ∫ ∫ X
X

x x⋯ ΘΘΘΘ
ΘΘΘΘ

θ θθ θθ θθ θ  (5.1) 

At a given design point, sensitivity of reliabilities with respect to a mean and a 

standard deviation (or variation) of a random input must be provided to perform 

RBDO. This is referred to as a probabilistic sensitivity analysis. In Chapter 3, the 

random field is represented by a set of random field variables (V) which have the 

same format as the random parameter variables (X). Hence, the procedure of the 

probabilistic sensitivity analysis for the random field variables is the same as for the 

random parameter variables. Sensitivity of reliabilities requires sensitivity analysis of 

system responses (e.g., fatigue, stress, etc.) at the eigenvector samples for both 

random parameter and field variables. The sensitivity results at the samples are 

obtained using the Finite Difference Method (FDM). First, perturbation of mean or 

standard deviation of a random input identifies new eigenvector samples. Then, the 

Stepwise Moving Least Square (SMLS) method is used to approximate the responses 

at the new eigenvector samples. Finally, the EDR method is performed to compute 
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the perturbed reliabilities with the perturbed mean or standard deviation of the 

random input. Using the original and perturbed values of reliabilities, the FDM 

computes sensitivities of quality or reliabilities. 

5.2.1 Probabilistic sensitivity with respect to an input standard deviation  

This section considers a probabilistic sensitivity analysis with respect to a 

standard deviation of a random input. As shown in Fig. 5-1, the new eigenvector 

sample points, (x1,1′ , x2,0) and (x1,2′, x2,0), are identified with a perturbed standard 

deviation of the random input, X1. A perturbation size of 0.1% is commonly used for 

the FDM. For xi,j, the first subscript (i) indicates the i-th random parameter, and the 

second (j) indicates the j-th sample point along each random parameter. 

 x2

(x1,1,x2,0) (x1,0,x2,0) (x1,2,x2,0)

(x1,1',x2,0) (x1,2',x2,0)

Eigenvector sample

Perturbed eigenvector 

sample

(x1,0,x2,1)

(x1,0,x2,2)

 

Figure 5-1: Sensitivity with respect to a standard deviation of the 1-st random input 

(2N+1 eigenvector sample scheme) 

   

The SMLS method is used to approximate the response values at the two new 

eigenvector sample points when the 2N+1 eigenvector sample points are employed. 

Finally, the EDR method is performed to compute the reliabilities (Ri) with the 

perturbed standard deviation of the random input. The sensitivities of reliabilities with 
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respect to the standard deviation of the i-th random variable (i =1,…, N) are computed 

using the following equations. 

 
( ) ( )

for  1, ,i i i

i i

k X X k Xk

X X

R RR
k NC

σ σ σ

σ σ

+ ∆ −∂
≈ =

∂ ∆
⋯  (5.2) 

where NC is the number of constraints for system responses. 

5.2.2 Probabilistic sensitivity with respect to an input mean 

This section considers a probabilistic sensitivity analysis with respect to a mean 

of a random input. The eigenvector samples with a perturbed mean of the random 

input are identified with a common perturbation size of 0.1%. The five new 

eigenvector samples with the perturbed mean of X1 are identified at (x1,0′ , x2,0), (x1,1′ , 

x2,0), and (x1,2′, x2,0) along X1 and (x1,0′, x2,1) and (x1,0′, x2,2) along X2′, as shown in Fig. 

5-2. The SMLS method is used to approximate the responses at the five new 

eigenvector sample points when the 2N+1 eigenvector sample points are employed. 

Finally, the EDR method is performed to compute the reliabilities (Ri) with the 

perturbed mean of the random input. The sensitivities of reliabilities with respect to 

the mean of the i-th random variable (i =1,…, N) are computed using the following 

equations. 
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Figure 5-2: Sensitivity with respect to a mean of the 1-st random input 

(2N+1 eigenvector sample scheme) 

 

The response values can be accurately approximated at the perturbed eigenvector 

samples located along X1 axis, since the SMLS method accurately approximates the 

one-dimensional response along X1. However, it is difficult to approximate the 

response values at the samples, (x1,0′, x2,1) and (x1,0′, x2,2), located along the axes other 

than X1′. These samples and response values are referred to as the off-axis samples 

and response values. A feasible approach to resolve the difficulty is to approximate 

the off-axis response values using the assistant points (square), as shown in Fig. 5-3. 

The off-axis response values can be approximated using the SMLS method after the 

response values at the assistant points are obtained. In doing so, hyper-assistant points 

(triangle) are used to approximate the responses at the assistant points. The hyper-

assistant points are defined along each variable axis (e.g., X1, X2) and their responses 

can be obtained with high accuracy. Along the dotted lines in Fig.5-3, two hyper-

assistant points are employed to approximate the response at one assistant point 

(square). It is found that the error in the response value could be relatively large when 
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two hyper-assistant points are directly used for off-axis response approximation. 

Therefore, the responses at the assistant points are employed to approximate the 

responses at the perturbed eigenvector samples. Such an approach is expected to 

reduce a numerical error in probabilistic sensitivity estimation. 

 

 

Figure 5-3: Sensitivity with respect to an input mean (2N+1 integration scheme) 

 

5.3 Examples and results 

In this section, four case studies (side impact crash, layered plate bonding 

process, A-Arm in HMMWV, and a refrigerator assembly problem) are used to 

demonstrate the effectiveness of the proposed Reliability-Based Design Optimization 

(RBDO) method considering both random parameter and field variables using the 

Eigenvector Dimension Reduction (EDR) method. In order to improve computational 

efficiency, RBDO starts with 2N+1 and adaptively increases the sample size to 4N+1 

if a response is known to be highly nonlinear. 



 

 122 
 

5.3.1 RBDO with random parameter variables 

5.3.1.1 Side impact crash problem 

A vehicle side impact problem is considered for RBDO with five different cases: 

1) sensitivity calculation with actual function evaluation; 2) sensitivity calculation 

with approximated function evaluation; 3) correlated random variables; 4) non-

normal random variables; and 5) standard deviation as the design parameter. The 

Sequential Quadratic Programming (SQP) is used in RBDO for all five cases. All the 

design and random variables are shown in Table 5-1 for case 1 to case 3. In this 

example, the quality of the abdomen load is treated as an objective function with nine 

reliability constraints, as defined in Table 5-2. The quality is defined as the 

summation of mean and standard deviation. The reliability level for all the constraints 

is set to 99.87%. The RBDO is formulated as 

Minimize

Subject to   ( ( ) 0) ( ), 1, 2, ,9

   0.5 1.5;   1, ,7;     0.192 0.345; 8,9

k

load load

k k t

i i

Q

R P G X k

X i X i

µ σ

β

= +

= ≤ ≤ Φ − =

≤ ≤ = ≤ ≤ =

⋯

⋯

 

where µload and σload are the mean and standard deviation of abdomen load; Gi(X) is 

the nine constraints defined in Table 5-2; and βti=3. 

Table 5-1: Properties of design and random variables of vehicle side impact model 

Random 

Variables 
Distr. Type Std Dev. dL d dU 

X1 Normal 0.050 0.500 1.000 1.500 

X2 Normal 0.050 0.500 1.000 1.500 

X3 Normal 0.050 0.500 1.000 1.500 

X4 Normal 0.050 0.500 1.000 1.500 

X5 Normal 0.050 0.500 1.000 1.500 
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X6 Normal 0.050 0.500 1.000 1.500 

X 7 Normal 0.050 0.500 1.000 1.500 

X8 Normal 0.006 0.192 0.300 0.345 

X9 Normal 0.006 0.192 0.300 0.345 

X10 Normal 10.0 
X10  and X11 are not design variables 

X11 Normal 10.0 

 

Table 5-2: Components and safety rating criteria of vehicle side impact model 

Components Safety criteria 

Objective: Quality of abdomen load (kN) ≤1 

G1-G3:  Rib Deflection 

Upper 

≤32 Middle 

Lower 

G4 -G 6: VC (m/s) 

Upper 

≤0.32 Middle 

Lower 

G7: Pubic symphysis force (kN) ≤4 

G8: Velocity of B-pillar ≤9.9 

G9: Velocity of front door at B-pillar ≤15.7 

 

Case 1: sensitivity calculation with actual function evaluation 

The EDR method with 2N+1 eigenvector samples are employed to calculate the 

quality (objective function) and nine reliability constraints, respectively. For the 

sensitivity analysis of the quality and reliability, (2N+1)M function evaluations must 

be carried out, where N and M are the number of random and design variables, 

respectively. Although the computation is independent upon the number of the 

constraint and objective function, it is still expensive. The design history is shown in 

Table 5-3. In each iteration, (2N+1)(M+1) number of function evaluation is employed 
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for the calculation of the quality, reliability constraints, and their sensitivity. After 

four design iterations, the optimum design is obtained where the third constraint 

becomes active and X2, X3, X4, X8 and X9 reach their upper bounds, as shown in Table 

5-3. Using Monte Carlo Simulation (MCS) with 100,000 random samples, the 

reliability of G3 at the optimum design is found to be 99.87%. 

Table 5-3:  Design history (Case 1) 

Iteration 0 1 2 3 4 Optimum 

# of analyses 230 230 230 230 230 1150 

Objective 0.693 0.158 0.130 0.114 0.114 0.114 

Mean 0.643 0.117 0.090 0.073 0.073 0.073 

Std 0.049 0.040 0.041 0.041 0.041 0.041 

X1 1.000 1.003 1.007 1.073 1.073 1.073 

X2 1.000 1.500 1.500 1.500 1.500 1.500 

X3 1.000 1.257 1.402 1.500 1.500 1.500 

X4 1.000 1.494 1.500 1.500 1.500 1.500 

X5 1.000 1.000 1.000 1.000 1.000 1.000 

X6 1.000 1.028 1.035 1.062 1.056 1.056 

X7 1.000 1.000 1.000 1.000 1.000 1.000 

X8 0.300 0.308 0.344 0.345 0.345 0.345 

X9 0.300 0.345 0.345 0.345 0.345 0.345 

G1 -0.018 -0.377 -0.102 -0.088 -0.101 Inactive 

G2 0.459 -2.762 -3.014 -3.237 -3.237 Inactive 

G3 4.295 0.015 0.001 0.000 0.000 Active 

G4 -0.079 -0.090 -0.093 -0.097 -0.097 Inactive 

G5 -0.095 -0.093 -0.089 -0.089 -0.089 Inactive 

G6 -0.035 -0.055 -0.065 -0.067 -0.067 Inactive 

G7 0.247 -0.065 -0.108 -0.142 -0.141 Inactive 

G8 0.313 -0.441 -0.459 -0.448 -0.453 Inactive 

G9 -0.157 -0.228 -0.302 -0.370 -0.365 Inactive 
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Case 2: sensitivity calculation with approximated function evaluation 

It is found that the case 1 turns out to be very expensive (1150 function 

evaluations). In the case 2, sensitivity of the quality and reliability constraints are 

estimated using approximate responses. The design history is shown in Table 5-4 and 

the reliability of G3 (active constraint) is confirmed as 99.87% at the optimum design 

using MCS with 100,000 samples. The optimum design in the case 2 is slightly 

different from that in the case 1 due to the approximate sensitivity. However, the case 

2 is far more efficient (150 function evaluations) than the case 1 (1,150 function 

evaluations). FORM is also employed to carry out RBDO while the FDM is used for 

sensitivity computation. FORM requires a total of 1,734 function evaluations in 

RBDO. 

Table 5-4:  Design history (Case 2) 

Iteration 0 1 2 3 4 Optimum 

# of analyses 23 23 23 23 23  

Objective 0.693 0.296 0.140 0.115 0.115 0.115 

Mean 0.643 0.258 0.099 0.073 0.073 0.073 

Std 0.049 0.038 0.041 0.042 0.042 0.042 

X1 1.000 1.009 1.008 1.050 1.074 1.074 

X2 1.000 1.394 1.500 1.500 1.500 1.500 

X3 1.000 1.145 1.346 1.500 1.500 1.500 

X4 1.000 1.372 1.500 1.500 1.500 1.500 

X5 1.000 1.000 1.000 1.000 1.000 1.000 

X6 1.000 1.000 0.988 0.960 0.949 0.949 

X7 1.000 1.000 1.003 1.013 0.995 0.995 

X8 0.300 0.328 0.285 0.317 0.345 0.345 

X9 0.300 0.345 0.345 0.345 0.345 0.345 

G1 -0.018 -0.621 0.012 0.005 -0.334 Inactive 
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G2 0.459 -2.593 -2.110 -2.592 -3.221 Inactive 

G3 4.295 0.446 0.576 0.476 -0.001 Active 

G4 -0.079 -0.092 -0.086 -0.094 -0.100 Inactive 

G5 -0.095 -0.098 -0.089 -0.088 -0.092 Inactive 

G6 -0.035 -0.063 -0.051 -0.061 -0.067 Inactive 

G7 0.247 0.022 -0.082 -0.119 -0.116 Inactive 

G8 0.313 -0.385 -0.362 -0.428 -0.540 Inactive 

G9 -0.157 -0.153 -0.240 -0.297 -0.275 Inactive 

 

Case 3: correlated random variables 

For correlated random variables, the EDR method identifies eigenvector samples 

and then the correlated problem is transformed to the uncorrelated. Then the rest of 

the reliability analysis procedure is same as the case 2. In this example, x2 and x3, x10 

and x11, x5 and x7 are assumed correlated each other with the correlation coefficients 

as 0.7, 0.7, and -0.6, respectively. RBDO converges to the optimum design at the five 

design iterations, as shown in Table 5-5. It is found that five design variables (X1, X5, 

X6, X7, X8) are different at the optimum designs of the cases 1 and 2. It indicates that 

the correlated random variables may have a significant impact to the reliability 

analysis and design. MCS with 100,000 samples verifies the reliability of G3 as 

99.88%. 

Table 5-5:  Design history (Case 3) 

Iteration 0 1 2 3 4 5 Optimum 

# of analyses 23 23 23 23 23 23  

Objective 0.694 0.149 0.126 0.118 0.118 0.118 0.118 

Mean 0.643 0.101 0.080 0.073 0.073 0.073 0.073 

Std 0.051 0.048 0.046 0.045 0.044 0.044 0.044 
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X1 1.000 1.008 1.046 1.073 1.099 1.101 1.101 

X2 1.000 1.500 1.500 1.500 1.500 1.500 1.500 

X3 1.000 1.331 1.459 1.500 1.500 1.500 1.500 

X4 1.000 1.500 1.500 1.500 1.500 1.500 1.500 

X5 1.000 1.000 0.999 0.998 0.998 0.998 0.998 

X6 1.000 1.176 1.129 1.091 1.043 1.040 1.040 

X7 1.000 1.000 1.006 1.008 1.009 1.009 1.009 

X8 0.300 0.325 0.345 0.345 0.337 0.336 0.336 

X9 0.300 0.345 0.345 0.345 0.345 0.345 0.345 

G1 -0.088 0.031 -0.001 -0.109 -0.318 -0.335 Inactive 

G2 0.380 -2.955 -3.259 -3.347 -3.388 -3.395 Inactive 

G3 4.295 0.021 -0.008 0.000 0.003 0.000 Active 

G4 -0.062 -0.070 -0.076 -0.079 -0.081 -0.082 Inactive 

G5 -0.090 -0.082 -0.081 -0.082 -0.085 -0.085 Inactive 

G6 -0.034 -0.060 -0.068 -0.069 -0.067 -0.067 Inactive 

G7 0.272 -0.034 -0.057 -0.058 -0.045 -0.044 Inactive 

G8 0.313 -0.332 -0.391 -0.425 -0.465 -0.468 Inactive 

G9 -0.282 -0.544 -0.570 -0.561 -0.523 -0.520 Inactive 

 

Case 4: non-normal random variables 

In this case, non-normal random variables are assumed to be dominated. These 

random inputs are listed in Table 5-6. In the triangular distribution, the mode value is 

treated as design parameter unlike the mean value for all other distribution types. For 

the beta distribution with four parameters, the lower and upper bounds are assumed to 

be located at µ-10σ and µ+6σ, respectively, where µ and σ indicate the mean and 

standard deviation, respectively. For triangular distributions, both the lower and upper 

bounds are assumed to be 0.018 away from the mode value. After four design 

iterations, an optimum design is found with an active G3 constraint as shown in Table 
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5-7. The optimum design is similar to that in the case 2 except for a relatively larger 

standard deviation of the objective function. The mean and standard deviation of the 

objective function is confirmed as 0.073 and 0.064 by running MCS with 100,000 

random samples. The reliability of G3 is also confirmed as 99.87%. 

Table 5-6:  Properties of random input variables 

Variable Type Mean Std. Dev. Lower Bound Upper Bound Mode 

X1 Lognormal 1.000 0.050 - - - 

X2 Beta 1.000 0.050 0.500 1.300 - 

X3 Beta 1.000 0.050 0.500 1.300 - 

X4 Uniform 1.000 0.0866 - - - 

X5 Uniform 1.000 0.0866 - - - 

X6 Uniform 1.000 0.0866 - - - 

X 7 Uniform 1.000 0.0866 - - - 

X8 Triangular - - 0.282 0.318 0.300 

X9 Triangular - - 0.282 0.318 0.300 

X10 Normal 0 10.000 - - - 

X11 Normal 0 10.000 - - - 

 

Table 5-7:  Design history (Case 4) 

Iteration 0 1 2 3 4 Optimum 

# of analyses 23 23 23 23 23  

Objective 0.699 0.216 0.156 0.135 0.135 0.135 

Mean 0.643 0.159 0.096 0.073 0.073 0.073 

Std 0.056 0.057 0.060 0.062 0.062 0.062 

X1 1.000 1.003 1.011 1.078 1.079 1.079 

X2 1.000 1.483 1.500 1.500 1.500 1.500 

X3 1.000 1.197 1.362 1.500 1.500 1.500 

X4 1.000 1.453 1.500 1.500 1.500 1.500 
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X5 1.000 1.000 1.000 1.000 1.000 1.000 

X6 1.000 0.946 0.890 0.849 0.849 0.849 

X7 1.000 1.000 1.000 1.000 1.000 1.000 

X8 0.300 0.309 0.334 0.345 0.345 0.345 

X9 0.300 0.345 0.345 0.345 0.345 0.345 

G1 0.042 -0.679 -0.476 -0.537 -0.538 Inactive 

G2 0.507 -2.767 -2.923 -3.212 -3.213 Inactive 

G3 4.317 0.001 -0.003 -0.000 -0.000 Active 

G4 -0.079 -0.091 -0.095 -0.102 -0.102 Inactive 

G5 -0.094 -0.097 -0.094 -0.094 -0.094 Inactive 

G6 -0.036 -0.054 -0.060 -0.066 -0.066 Inactive 

G7 0.254 -0.437 -0.537 -0.587 -0.587 Inactive 

G8 0.314 -0.500 -0.573 -0.624 -0.624 Inactive 

G9 -0.062 -0.048 -0.080 -0.110 -0.110 Inactive 

 

Case 5: standard deviation as the design parameter 

Generally, the mean of a random variable is regarded as a design parameter 

instead of the standard deviation because it is difficult to control the standard 

deviation rather than the mean value. Robust design attempts to minimize the 

standard deviation of the objective function. In this case study, the optimum design in 

the case 2 is defined as the initial design. Therefore, the contribution of the standard 

deviations of the random input variables to RBDO results can be solely investigated. 

The sensitivity of quality and reliability is approximated using the approach stated in 

section 5.2.2. The lower bound of the standard deviation (x1 to x9) is set as 0.001, and 

noise variables (x10 and x11) are non-designable. After two design iterations, the 

standard deviation of the objective function is reduced from 0.042 to 0.012 as the 
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standard deviations of design variables x2, x3, x4, and x9 are reduced to the lower 

bound 0.001 as shown in Table 5-8.  

Table 5-8:  Design history with standard deviation as the design parameter 

Iteration 0 1 2 Optimum 

# of analyses 23 23 23  

Objective 0.116 0.086 0.085 0.085 

Mean 0.073 0.073 0.073 0.073 

Std 0.042 0.013 0.012 0.012 

X1 0.050 0.050 0.050 0.050 

X2 0.050 0.001 0.001 0.001 

X3 0.050 0.017 0.001 0.001 

X4 0.050 0.001 0.001 0.001 

X5 0.050 0.050 0.050 0.050 

X6 0.050 0.050 0.050 0.050 

X7 0.050 0.050 0.050 0.050 

X8 0.006 0.006 0.006 0.006 

X9 0.006 0.001 0.001 0.001 

G1 -0.334 -0.430 -0.435 Inactive 

G2 -3.221 -3.436 -3.438 Inactive 

G3 -0.001 -0.218 -0.218 Inactive 

G4 -0.100 -0.101 -0.101 Inactive 

G5 -0.092 -0.093 -0.093 Inactive 

G6 -0.067 -0.069 -0.069 Inactive 

G7 -0.116 -0.130 -0.130 Inactive 

G8 -0.540 -0.566 -0.566 Inactive 

G9 -0.275 -0.281 -0.282 Inactive 
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5.3.1.2 Robust design of layered bonding plates model 

The bonding process of layered plates is very popular in the manufacturing of 

semi-conductor or electronic display components. During this process, two layered 

plates are bonded together by a suitable adhesive to form laminated stacks, which can 

be further processed in the following 4 steps: 

1) heating the two plates above the melting temperature of the adhesive; 

2) applying the adhesive at each surface of the plate; 

3) putting them in contact with each other; 

4) cooling them down to a room temperature. 

In this process, residual stress due to the mismatch of the thermal expansion 

coefficients of two layered plates could results in failures of the component such as 

crack, distortion, and interfacial delamination. Therefore, it is very important to 

accurately estimate the stress in order to improve the product quality. Herein, a 

transient thermal Finite Element (FE) analysis is used to predict the stress and 

deformation of plates. The model for the layered bonding plates is shown in Fig. 5-4. 

Considering the symmetry of the problem, a quarter of the model is used, as shown in 

Fig. 5-4(a). Due to the brittle property and high stress at the adherent 1, cracks and 

distortion could occur. To reduce such defects, weights are applied on top of the 

adherent 1, as shown in Fig. 5-4(a) from the beginning of the process, and are 

removed at the end of the cooling process. The bonded assembly is placed on a pair 

of supporting bars, as shown in Fig. 5-4(a). Three design variables, weight at the edge 

(X1 or F2), weight at the center (X2 or F1), and height of the bar (X3 or y0), are 

considered in this problem. Their statistical information is shown in Table 5-9. The 
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objective function is to minimize the quality (summation of mean and standard 

deviation) of residual stress. Two constraints are maximum stress during the process 

(< 130MPa) and center displacement (< 3mm). 

  

(a) Isometric view of the quarter model           (b) FM model 

Figure 5-4: Target bonding process and FE model 

 

Table 5-9: Design/random properties of layered plate bonding model 

Design Variables Distr.Type Mean Std. Dev. 

X1 Normal 4000 400 

X2 Normal 2000 200 

X3 Normal 1 0.1 

 

The RBDO is formulated as   

1 2 3

Minimize

Subject to ( ( ) 0) ( ), 1, 2

2000 10000; 1000 5000;1 5;
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where µr and σr are the mean and standard deviation of residual stress; G1(X) is the 

instantaneous stress; G2(X) is the edge displacement; βti=3. 

The EDR method is applied to evaluate the quality (= mean + standard 

deviation) of residual stress and the reliabilities of two constraints. Since the 
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responses are highly nonlinear, the SMLS method may produce inaccurate responses 

with only 2N+1 eigenvector samples. Subsequently, inaccurate responses may lead to 

inaccurate statistical moments of the system responses. To maximize numerical 

accuracy and efficiency in RBDO, the sample size of the EDR method is adaptively 

decided. RBDO starts with the 2N+1 sample size of the EDR method to efficiently 

reach the neighborhood of the optimum design and then continues with the 4N+1 

sample size of the EDR method to achieve accuracy of the optimum design. The 

transition from 2N+1 to 4N+1 is determined after satisfying a relaxed convergence 

criteria (ε ≤ 0.1). This transition is found at the 4-th design iteration in Table 5-10. 

Although the predicted standard deviation of the residual stress is 0.075 at the 4-th 

design iteration, this value has relatively large error. It is confirmed by running the 

EDR with 4N+1 eigenvector samples at the same design. The standard deviation is 

found to be 0.115 instead of 0.075. The SQP is used as a design optimizer in RBDO. 

After eight design iterations, the optimum design is found where X2 is close to the 

upper bound, as shown in Table 5-10. The EDR method requires totally 80 function 

evaluations for RBDO. MCS with 1000 random samples is used to confirm the EDR 

results at the optimum design. It is found that the results (the mean and standard 

deviation of the residual stress) of the EDR method are very close to those of MCS at 

the optimum design. The overall quality is drastically improved by 38%. 

Table 5-10: Design history of layered bonding plates model 

Iter. Obj Mean Std. Dev. X1 X2 X3 G1 G2 
# of 

analysis 

0 23.322 23.020 0.302 4000.000 2000.000 1.000 -94.876 1.051 7 

1 21.437 21.350 0.087 4579.841 3633.035 2.317 -85.742 0.108 7 
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2 21.358 21.215 0.143 4659.514 4704.467 3.356 -79.354 -0.467 7 

3 21.177 21.040 0.137 4316.124 5000.000 3.734 -77.240 -0.631 7 

4 (2N+1) 20.884 20.808 0.075 3121.245 5000.000 3.772 -77.371 -0.567 7 

4 (4N+1) 20.976 20.862 0.115 3121.245 5000.000 3.772 -77.342 -0.563 6 

5 20.909 20.802 0.110 2752.275 4996.178 3.024 -80.775 -0.207 13 

6 20.900 20.798 0.102 2554.780 4998.089 2.862 -81.861 -0.122 13 

7 20.898 20.795 0.103 2520.106 4998.208 2.849 -82.046 -0.114 13 

Optimum 20.898 20.795 0.103 2520.106 4998.208 2.849 Inactive Inactive 80 

MCS 20.891 20.786 0.105 2520.106 4998.208 2.849 Inactive Inactive 1000 

 

5.3.1.3 Robust design of lower control A-arm 

Vehicle suspension systems experience intense loading conditions throughout 

their service lives. Control arms act as the back-bone of suspension system, where the 

majority of these loads are transmitted through. Therefore, it is crucial that control 

arms be highly reliable, while minimizing its mass. For the purpose of demonstrating 

RBDO using the EDR method, a HMMWV lower control arm is presented as a case 

study.  

The lower control arm is modeled with plane stress elements using 54,666 

nodes, 53,589 elements, and 327,961 DOFs, where all welds are modeled using rigid 

beam elements. For FE and design modeling, HyperWorks 7.0 is used. The loading 

and boundary conditions for this case study are shown in Fig. 5-5(a), where loading is 

applied at the ball-joint (Point D) in three directions, and the boundary conditions are 

applied to simulate the bushing joints (Points A and B) and the joint with a shock 

absorber and spring assemble (Point C). The design variables are the thicknesses of 

the seven major component of the control arm, as shown in Fig. 5-5(b). The statistical 

information of these components is shown in Tables 5-11 and 5-12. The thicknesses 
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are considered as random design variables, whereas the loading condition is 

considered as random noise variables. 

       

(a) Load variables (random variables)          (b) Thickness variables (design variables) 

Figure 5-5: Three loading variables (random variables) 

 
Table 5-11: Random properties of force for lower control A-arm model 

Random Variable Distribution 

Fx ~ N(1900,95) 

Fy ~ N(95,4.75) 

Fz ~ (950,47.5) 

 

Table 5-12: Design variables in lower control A-arm model 

Design Variable dL Initial Des. dU Std. Dev. Dist. Type 

X1 0.100 0.120 0.500 0.006 Normal 

X2 0.100 0.120 0.500 0.006 Normal 

X3 0.100 0.180 0.500 0.009 Normal 

X4 0.100 0.135 0.500 0.007 Normal 

X5 0.150 0.250 0.500 0.013 Normal 

X6 0.100 0.180 0.500 0.009 Normal 

X7 0.100 0.135 0.500 0.007 Normal 
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To determine the hot spots (high stress concentrations) in the model, which are 

used to determine the constraints, a worst case scenario analysis of the control arm is 

performed. For this worst case scenario, all the design variables are set at their lower 

bounds, and all the loads are set at their high values. From the worst case scenario, 

ninety-one constraints (G1 to G91) are defined on several critical regions using the von 

Mises stress, as shown in Fig. 5-6. In this case study, the quality function (= mean + 

standard deviation) of mass is treated as objective function and a target stress value 

for 91 stress constraints is set to 60.9 ksi. The reliability level for all the constraints is 

set to 99.87%.  

The EDR method with 2N+1 (=21) FE analyses is carried out to evaluate the 

quality of the mass, 91 reliability constraints, and their sensitivities at any design 

iteration, where N=10 (7 for random design parameters and 3 for random loads). The 

SQP is used for an optimizer in RBDO. At initial design, the 6-th and 80-th 

constraints severely violate the required reliability. After seven design iterations, the 

optimum design is found where the aforementioned two and 87-th constraints become 

active. The design variables X1 and X5 reach the lower bound and X6 reaches the 

upper bound, as shown in Table 5-13. The EDR method requires totally 147 FE 

simulations for RBDO. In this example, even though RBDO begins with the severely 

violated initial design, the mass is slightly increased because X6 ensures high 

reliability of the stress with only a small increase in the overall mass unlike other 

design variables. MCS with 10,000 random samples is also employed to confirm the 

EDR results at optimum design. The mean and standard deviation of mass are 

confirmed as 31.967 and 0.712. Using MCS, the reliabilities of the 6-th, 80-th, and 
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87-th active constraints are confirmed as 99.84%, 99.86%, and 99.89%, respectively, 

and all other constraints are confirmed inactive. The stress comparison at initial and 

optimum designs for the 6-th and 80-th constraints is shown in Fig. 5-7. 

 

Figure 5-6: Ninety-one critical constraints of the lower control A-arm model 

 

Table 5-13: Design history of lower control A-arm model 

Iteration 0 1 2 3 4 5 6 7 Opt. 

# of analyses 21 21 21 21 21 21 21 21  

Objective 31.474 32.011 32.694 32.644 32.680 32.683 32.680 32.680 32.680 

Mean 30.762 31.299 31.982 31.931 31.968 31.971 31.967 31.968 31.968 

Std. 0.712 0.712 0.712 0.712 0.712 0.712 0.712 0.712 0.712 

X1 0.120 0.100 0.100 0.100 0.100 0.100 0.100 0.100 0.100 

X2 0.120 0.140 0.140 0.140 0.140 0.140 0.140 0.140 0.140 

X3 0.180 0.158 0.164 0.163 0.163 0.163 0.163 0.163 0.163 

X4 0.135 0.160 0.162 0.165 0.166 0.166 0.165 0.166 0.166 

X5 0.250 0.150 0.150 0.150 0.150 0.150 0.150 0.150 0.150 

X6 0.180 0.500 0.500 0.500 0.500 0.500 0.500 0.500 0.500 

X7 0.135 0.100 0.291 0.148 0.107 0.141 0.138 0.136 0.136 

G6 1.388 0.109 -0.006 0.003 0.000 0.000 0.000 0.000 Active 

G80 2.804 0.365 0.006 0.029 0.009 -0.004 0.001 0.000 Active 

G87 -0.490 0.262 -0.021 0.003 0.000 0.000 0.000 0.000 Active 
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(a) G6 at initial design 

 

(b) G6 at optimum design 

 

(c) G80 at initial design 

 

(d) G80 at optimum design 

Figure 5-7: Stress comparison of initial and optimum design 

 

5.3.2 RBDO with both random parameter and field variables 

This section presents RBDO with both random parameter and field variables. 

The door misalignment of a two-door refrigerator is used to show the effectiveness of 

the proposed approach. As illustrated in Section 3.5.2.2, the door misalignment of a 

two-door refrigerator can be realized as a result of three assembly processes: 1) 

insertion process; 2) foaming process; and 3) hinge installation. The statistical inputs 

and outputs in three processes are shown in Fig. 5-8.  

In the insertion process, a contact FE model was constructed using HyperWorks 

and Ansys where the insertion parts were modeled with shell elements. The edge of 

the inner case and the bottom of the front-L are fixed as shown in Fig. 5-9(a). The 

definition of the random parameter variables is shown in Fig. 5-9(b). Statistical 

properties of these variables at the initial design were identified for both freezer and 
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refrigerator sides as listed in Table 5-14. All these variables were considered as 

random design variables. The deformation of the front-L (Y1) at six measurement 

locations (shown in Fig. 3-23) is the system response which is represented by a 

random field.  

Process 1: Insertion

(FEA)

Process 2: Foaming

(a black-box analysis)

Process 3: Hinge process

(Rigid assembly analysis)

Inputs

(X1: gap)

(X2: initial deformation)

(X3: flange deflection)

(X4: flange thickness)

Inputs 

(θ : foaming tolerance)

(Y1 : front-L deformation)

Y1: front-L deformation

Inputs

(X6: Hinge tolerance)

(Y2: front-L deformation)

Y2: front-L deformation Y3: door misalignment

Processes

Outputs

Inputs

 

Figure 5-8: Process flowchart of a two-door refrigerator assembly 

 

Front-L

Flange

Inner case

Front-wheel

Contact region

 

(a) FE model  

 

(b) Parameter definition 

Figure 5-9: FE model and input parameters in the insertion process 
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Table 5-14:  Properties of random input variables in insertion process 

Variable Type Mean Std. Dev. 

X1R Gamma 0.383 0.260 

X2R Lognormal 0.321 0.387 

X3R Beta 0.631 0.431 

X4R Weibull 2.000 0.300 

X1F Gamma 0.222 0.431 

X2F Beta 0.467 0.398 

X3F Beta 0.433 0.375 

X4F Lognormal 1.897 0.290 

 

In the 2-nd assembly process, the deformation of the front-L (Y1) was further 

changed after the foaming process to increase the stiffness of the main frame of the 

refrigerator. The foaming tolerance (θ) was modeled as a random field for both 

freezer and refrigerator sides as shown in Fig. 5-11. Each random field is 

characterized with six random field variables and their statistical properties are shown 

in Table 5-15. These variables are considered as random design variables to affect the 

mean and variation of the foaming tolerance. The deformation of the front-L (Y2) after 

the foaming process is calculated using Eq. (5.4).  

 Y2 = Y1 + θ  (5.4) 

In the last process, the hinge is installed to the deformed front-L at both freezer 

and refrigerator sides where a rigid assembly process is considered. The door 

misalignment caused by the uneven deformation of the front-L (Y2) and the hinge 

tolerance (X6) and can be calculated using Eq. (4.28) in Section 4.3.3.  
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(a)  

 

(b)  

Figure 5-11: Foaming tolerance at both freezer and refrigerator sides 

 

Table 5-15: Statistical properties of random field variables 

 
Distribution Mean STD Lower Bound Upper Bound 

V1R Beta 0 0.4608 -1.5408 1.3915 

V2R Beta 0 0.4030 -1.2139 1.2191 

V3R Beta 0 0.3029 -0.9185 1.1227 

V4R Beta 0 0.2527 -0.6938 0.8990 

V5R Beta 0 0.1728 -0.7114 0.6856 

V6R Beta 0 0.1387 -0.5360 0.5357 

V1F Beta 0 0.9400 -3.5811 2.7251 

V2F Beta 0 0.7504 -2.3523 2.2264 

V3F Beta 0 0.3312 -0.9784 1.0110 

V4F Beta 0 0.2333 -0.8149 0.8382 

V5F Beta 0 0.1905 -0.5951 0.5284 

V6F Beta 0 0.1291 -0.3810 0.4736 
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A Robust Design Optimization (RDO) problem is formulated to minimize the 

door misalignment (Y3) subject to a design cost ($30,000) by changing the mean and 

standard deviation of the random design variables. 

3 3minimize  ( , , , )+6 ( , , , )

subject to  ( , , , ) 30,000

                 ,

,

y y

G

µ σ

≤

≤ ≤ ≤ ≤

≤ ≤ ≤ ≤

X X X X

X X

L U L U
X X X X X X

L U L U

Θ Θ Θ ΘΘ Θ Θ ΘΘ Θ Θ ΘΘ Θ Θ Θ

Θ ΘΘ ΘΘ ΘΘ Θ

Θ Θ Θ Θ Θ ΘΘ Θ Θ Θ Θ ΘΘ Θ Θ Θ Θ ΘΘ Θ Θ Θ Θ Θ

µ σ µ σ µ σ µ σµ σ µ σ µ σ µ σµ σ µ σ µ σ µ σµ σ µ σ µ σ µ σ

µ σ µ σµ σ µ σµ σ µ σµ σ µ σ

µ µ µ σ σ σµ µ µ σ σ σµ µ µ σ σ σµ µ µ σ σ σ

µ µ µ σ σ σµ µ µ σ σ σµ µ µ σ σ σµ µ µ σ σ σ

 

A cost function G is defined as the summation of the cost for changing the mean and 

standard deviation of each random design variable as shown in Eq. (5.5).  

 1 2 3 4( , , , ) ( ) ( ) ( ) ( )G G G G G= + + +X X X XΘ Θ Θ ΘΘ Θ Θ ΘΘ Θ Θ ΘΘ Θ Θ Θµ σ µ σ µ µ σ σµ σ µ σ µ µ σ σµ σ µ σ µ µ σ σµ σ µ σ µ µ σ σ  (5.5) 

A constant cost is assigned for the change of each mean, whereas a linear cost 

function is defined for the change of the standard deviation as shown in Eqs.(5.6) and 

(5.7).  

 ( )3 ,0 ,1( ) / 1
i ii X X

i

G k σ σ= −∑Xσσσσ  (5.6) 

 ( )4 ,0 ,1( ) / 1
j jj

j

G k σ σΘ Θ Θ= −∑σσσσ  (5.7) 

where ,0iXσ  and ,1iXσ  denote the i-th initial and new standard deviation of the 

random parameter variable, respectively; ,0j
σΘ and ,0j

σΘ  stand for the j-th initial and 

new standard deviation of the random field, respectively; ki (=$2,000) and kj (=$6,000) 

are the cost coefficients. For this problem, $1,000 and $3,000 are demanded to 

change each mean of a random parameter variable and a random field, respectively.  

The EDR method with 2N+1 (=45) analyses was carried out to evaluate the 

mean and standard deviation of the door misalignment, the cost for design changes, 
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and their sensitivities at any design iteration, where N=22 (10 for random parameter 

variables and 12 for random field variables). The SQP was used for an optimizer in 

RDO. The objective function was reduced from 9.84 mm to 3.28 mm within a $30,000 

budget limit after eleven design iterations. The PDF comparison of the door 

misalignment is shown in Fig. 5-12 between the initial and optimal design.  

 

Figure 5-12: PDF comparison of the door misalignment at initial and optimal design 

 

5.4 Summary 

This chapter proposed an effective approach for Reliability-Based Design 

Optimization (RBDO) considering both random parameter and field variables by 

incorporating the Eigenvector Dimension Reduction (EDR) method. It has been 

shown that the use of the EDR method provides three benefits to RBDO. First, an 

approximate response surface facilitates sensitivity calculation of reliability and 

quality where the response surface is constructed using the eigenvector samples. 

Thus, sensitivity analysis becomes very efficient and simple. Second, one EDR 

execution evaluates a set of quality (objective) and reliability (constraint) functions. 



 

 144 
 

In general, the EDR requires 2N+1 or 4N+1 simulation runs where N is the total 

number of random variables. Unlike First Order Reliability Method (FORM) or 

Second Order Reliability Method (SORM), the EDR execution does not require an 

iterative process, so the proposed RBDO methodology has a single-loop structure. 

Moreover, the EDR execution time can be much shorter by taking advantage of a 

parallel computing power and RBDO can be far more efficient. Third, the EDR 

method allows solving problems with statistical dependent and non-normally 

distributed random inputs. As demonstrated with four case studies (side impact crash, 

layered plate bonding process, A-Arm in HMMWV, and door misalignment), it is 

expected that the proposed RBDO using the EDR method can enhance numerical 

efficiency substantially while maintaining good accuracy. Even though the EDR 

method provided many desirable features to RBDO, the use of the EDR method must 

be carefully considered when system responses have high-order interaction terms or 

when high target reliability (e.g., greater than 99.9%) is required. 
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Chapter 6:  Conclusion 

6.1 Principle contributions and significances 

This dissertation presented a generic reliability analysis and design framework, 

which enabled the use of random parameter, field, and process variables for reliability 

prediction and design improvement even with a dearth of data. The significant 

contributions of this dissertation are as follows. 

Contribution 1: An effective random field characterization approach capable of 

projecting the random field onto a set of important field signatures (or random field 

variables). 

The conventional random field characterization approach, such as the Proper 

Orthogonal Decomposition (POD) method, demands an infinite number of field 

signatures to represent the actual random field. It can also be employed to 

approximate the actual random field with a few important field signatures. 

However, the number of signatures is subjectively determined by the weight of a 

few eigenvalues compared to the sum of all the eigenvalues. Furthermore, the 

definition of the random field variable is unclear since the POD method is not 

typically applied for reliability analysis and design of engineered systems. These 

technical issues were resolved in this dissertation. First, an adaptive 

approximation scheme was developed to find the minimum number of important 

field signatures while preserving prescribed approximation accuracy. The 

approximation accuracy was determined by a defined posteriori normalized error. 

Then, random field variables were defined from the coefficients of the field 

signatures, and their statistical properties were identified using the Chi-Square 
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goodness-of-fit test. The proposed random field characterization approach is very 

accurate and efficient, as demonstrated by three examples in Section 3.5.1.  

Contribution 2: A Rosenblatt transformation with an optimal transformation sequence 

to transform statistically dependent random variables into statistically independent 

random variables. 

Statistical dependence has been given little attention in reliability analysis and 

design because of the lack of an effective tool to model the statistical dependence 

and perform reliability analysis. This dissertation highlighted the importance of 

considering the statistical dependence in reliability analysis and design, since it is 

often observed in the random field variables. Ignoring the statistical dependence 

could cause unreliable and risky design. An effective approach was proposed to 

transform statistically dependent random variables into statistically independent 

random variables. Rosenblatt’s transformation was employed for the 

transformation. However, the number of the transformation sequences 

exponentially increases as the number of random variables becomes large. It was 

found that improper selection of a transformation sequence among many may 

introduce high nonlinearity into system responses, which may result in 

inaccuracy for reliability analysis and design. Hence, a novel procedure was 

proposed to determine an optimal sequence of the Rosenblatt transformation that 

introduces the least degree of nonlinearity into the system response. Any 

probability analysis method can be employed for reliability analysis and design 

with the statistically dependent random variables using the proposed approach.  
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Contribution 3: A Bayesian approach with copula dependence models to characterize 

the random field with the lack of field data sets. 

Conventional random field characterization demands sufficient field data sets, 

which is not practical for many engineered systems. There is thus a need for an 

effective tool to characterize the random field with insufficient field data sets. 

This technical challenge must be resolved to make a reliable design of the 

engineered system subject to the unknown field variability. A Bayesian approach 

with Bayesian copula dependence modeling was proposed to characterize the 

random field with a lack of field data sets. First, a Bayesian updating approach 

using the Markov Chain Monte Carlo (MCMC) method was employed to update 

the random field with insufficient and evolving data sets. Second, a Bayesian 

copula dependence modeling approach was proposed to model the statistical 

dependence among random field realizations at different measurement locations. 

Hence, sufficient random field data sets can be generated based on the proposed 

approach. The random field characterization with insufficient field data sets is 

thus transformed into one with sufficient field data sets. 

Contribution 4: A generic reliability analysis framework to accurately assess system 

reliability in the presence of both random field and parameter variables.  

Many advanced methods for reliability analysis have been focused on the 

enhancement of numerical efficiency, accuracy and stability. Despite these 

advances, no generic reliability analysis framework currently exists to accurately 

assess system reliability in the presence of both random parameter and field 

variables. Furthermore, statistical dependence has been little considered in 
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reliability analysis and design. The Eigenvector Dimension Reduction (EDR) 

method was proposed for reliability analysis and design with both random 

parameter and field variables while considering the statistical dependence. The 

EDR method makes a significant improvement, based upon the univariate 

Dimension Reduction (DR) method, with three new technical elements. First, the 

2N+1 and 4N+1 eigenvector sampling schemes were proposed for probability 

analysis to maintain high accuracy without requiring sensitivity of system 

performances.  Second, the Stepwise Moving Least Square (SMLS) method was 

developed to accurately approximate the responses, which allow one-dimensional 

numerical integration with no extra cost other than simulations or experiments at 

the eigenvector samples. Third, the stabilized Pearson system was proposed to 

eliminate a singular behavior of the original Pearson system while accurately 

predicting the Probability Density Functions (PDFs) of engineering system 

performances. Compared with the univariate DR method, the EDR method 

makes considerable improvements in accuracy, efficiency, and stability. The 

EDR method is far more efficient than traditional probability analysis methods, 

such as the First Order Reliability Method (FORM) and Second Order Reliability 

Method (SORM), since one EDR execution takes care of reliability analyses for 

all constraints without requiring sensitivity of system responses. The EDR 

method could be more accurate than FORM and SORM for highly nonlinear 

limit state functions or limit state functions involving inflection points. However, 

the EDR method may not be good for problems with substantial contribution of 



 

 149 
 

high-order mixed terms. In addition, the EDR method may be less accurate than 

FORM/SORM for high probability levels (e.g., more than 99.9%). 

Contribution 5: A generic Reliability-Based Design Optimization (RBDO) framework 

to solve engineering design problems with both random parameter and field variables. 

Despite extensive efforts made in the RBDO methods, no generic RBDO 

framework currently exists to solve engineering design problems with both 

random parameter and field variables. Furthermore, the numerical efficiency, 

accuracy, and stability of RBDO methods is still of great concern. In this 

dissertation, a generic RBDO framework was proposed by incorporating the 

EDR method to effectively analyze probabilistic system responses with both 

random parameter and field variables. It has been shown that the proposed 

RBDO has three benefits. First, an approximate response surface facilitates 

sensitivity calculation of reliability and quality where the response surface is 

constructed using the eigenvector samples. Thus, sensitivity analysis becomes 

very efficient and simple for the design optimization. Second, the proposed 

RBDO methodology has a single-loop structure since there is no iterative process 

for reliability analysis. Thus, the RBDO is very efficient. Third, the proposed 

RBDO allows solving problems with statistical dependent and non-normally 

distributed random inputs. As demonstrated with four case studies (side impact 

crash, layered-plate bonding process, A-Arm in HMMWV, and door 

misalignment), it is expected that the proposed RBDO using the EDR method 

will enhance numerical efficiency substantially while maintaining good accuracy.  
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6.2 Recommended future research 

In this section, several possible directions for future research are discussed. Based 

on the approaches described in the previous chapters, these directions can be applied 

to overcome the shortcomings of the proposed approaches or to extend the 

applicability of these approaches.  

• Random field characterization with inconsistent and variable numbers of 

measurement locations 

Two conditions must be satisfied to characterize a discrete random field in the 

proposed approach presented in Chapter 3. First, the number of measurement 

locations must be the same for each random field snapshot. Second, the 

measurement location must be the same for each random field snapshot. These 

two conditions are required to build a discrete covariance matrix Σ Σ Σ Σ that is used for 

the random field characterization. However, these two conditions cannot be 

guaranteed in the real discrete process of the random field. In this situation, the 

proposed approach cannot be applied to random field characterization. A rigorous 

approach needs to be developed to deal with inconsistent and variable numbers of 

measurement locations.      

• Investigation of the fundamental reason for statistically dependent random field 

variables 

The Proper Orthogonal Decomposition (POD) method uses the covariance matrix 

to find the orthogonal signature of the random field data. Random field variables 

defined from the coefficients of the orthogonal signature are statistically 

uncorrelated but could be statistically dependent. To address the challenge of 
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probability analysis and design considering the statistically dependent random 

field variables, this dissertation proposed an effective approach to transform the 

statistically dependent random variables into statistically independent random 

variables. However, the fundamental reason for the statistical dependence is not 

clear. A thorough investigation should be conducted to determine why the 

statistical dependence appears and to develop a feasible approach to avoid the 

statistical dependence. This study could bring significant contributions to the 

random field characterization.  

• Adaptive eigenvector samples for the Eigenvector Dimension Reduction (EDR) 

method for effective reliability analysis  

The EDR method demands either 2N+1 or 4N+1 eigenvector samples for 

constructing one-dimensional response approximation using the Stepwise Moving 

Least Square (SMLS) method, where N is the number of random variables. For 

problems with less nonlinearity, the EDR method with 2N+1 eigenvector samples 

can accurately predict the variability of the system response with high efficiency. 

For problems with high nonlinearity, the EDR method with 4N+1 eigenvector 

samples is necessary to improve the prediction accuracy of the system response. 

However, the selection of the sampling scheme is dependent on the engineering 

justification. An adaptive sampling scheme should be developed to determine the 

optimal eigenvector samples with high accuracy and efficiency for reliability 

analysis and design. 

• Comparative study of the Probability Density Function (PDF) approximation 

methods for reliability analysis 
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The PDF approximation methods first approximate the PDF of the system 

response from the estimated statistical moments, and then reliability analysis 

based on the approximate PDF is performed. The stabilized Pearson system, as 

one of the PDF approximation methods, was proposed for reliability analysis in 

the EDR method. In recent years, a number of other methods have been proposed 

to approximate the PDF of the system response, such as the saddlepoint 

approximation, the Maximum Entropy Principle (MEP), and the Johnson system. 

Systematic performance evaluations and comparative analyses of these methods 

have not yet been performed. A comparative study of these PDF approximation 

methods could give insightful guidance for selecting the most appropriate PDF 

approximation method for reliability analysis. 
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